linux/drivers/mmc/core/mmc_test.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Copyright 2007-2008 Pierre Ossman
   4 */
   5
   6#include <linux/mmc/core.h>
   7#include <linux/mmc/card.h>
   8#include <linux/mmc/host.h>
   9#include <linux/mmc/mmc.h>
  10#include <linux/slab.h>
  11
  12#include <linux/scatterlist.h>
  13#include <linux/swap.h>         /* For nr_free_buffer_pages() */
  14#include <linux/list.h>
  15
  16#include <linux/debugfs.h>
  17#include <linux/uaccess.h>
  18#include <linux/seq_file.h>
  19#include <linux/module.h>
  20
  21#include "core.h"
  22#include "card.h"
  23#include "host.h"
  24#include "bus.h"
  25#include "mmc_ops.h"
  26
  27#define RESULT_OK               0
  28#define RESULT_FAIL             1
  29#define RESULT_UNSUP_HOST       2
  30#define RESULT_UNSUP_CARD       3
  31
  32#define BUFFER_ORDER            2
  33#define BUFFER_SIZE             (PAGE_SIZE << BUFFER_ORDER)
  34
  35#define TEST_ALIGN_END          8
  36
  37/*
  38 * Limit the test area size to the maximum MMC HC erase group size.  Note that
  39 * the maximum SD allocation unit size is just 4MiB.
  40 */
  41#define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
  42
  43/**
  44 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
  45 * @page: first page in the allocation
  46 * @order: order of the number of pages allocated
  47 */
  48struct mmc_test_pages {
  49        struct page *page;
  50        unsigned int order;
  51};
  52
  53/**
  54 * struct mmc_test_mem - allocated memory.
  55 * @arr: array of allocations
  56 * @cnt: number of allocations
  57 */
  58struct mmc_test_mem {
  59        struct mmc_test_pages *arr;
  60        unsigned int cnt;
  61};
  62
  63/**
  64 * struct mmc_test_area - information for performance tests.
  65 * @max_sz: test area size (in bytes)
  66 * @dev_addr: address on card at which to do performance tests
  67 * @max_tfr: maximum transfer size allowed by driver (in bytes)
  68 * @max_segs: maximum segments allowed by driver in scatterlist @sg
  69 * @max_seg_sz: maximum segment size allowed by driver
  70 * @blocks: number of (512 byte) blocks currently mapped by @sg
  71 * @sg_len: length of currently mapped scatterlist @sg
  72 * @mem: allocated memory
  73 * @sg: scatterlist
  74 */
  75struct mmc_test_area {
  76        unsigned long max_sz;
  77        unsigned int dev_addr;
  78        unsigned int max_tfr;
  79        unsigned int max_segs;
  80        unsigned int max_seg_sz;
  81        unsigned int blocks;
  82        unsigned int sg_len;
  83        struct mmc_test_mem *mem;
  84        struct scatterlist *sg;
  85};
  86
  87/**
  88 * struct mmc_test_transfer_result - transfer results for performance tests.
  89 * @link: double-linked list
  90 * @count: amount of group of sectors to check
  91 * @sectors: amount of sectors to check in one group
  92 * @ts: time values of transfer
  93 * @rate: calculated transfer rate
  94 * @iops: I/O operations per second (times 100)
  95 */
  96struct mmc_test_transfer_result {
  97        struct list_head link;
  98        unsigned int count;
  99        unsigned int sectors;
 100        struct timespec64 ts;
 101        unsigned int rate;
 102        unsigned int iops;
 103};
 104
 105/**
 106 * struct mmc_test_general_result - results for tests.
 107 * @link: double-linked list
 108 * @card: card under test
 109 * @testcase: number of test case
 110 * @result: result of test run
 111 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
 112 */
 113struct mmc_test_general_result {
 114        struct list_head link;
 115        struct mmc_card *card;
 116        int testcase;
 117        int result;
 118        struct list_head tr_lst;
 119};
 120
 121/**
 122 * struct mmc_test_dbgfs_file - debugfs related file.
 123 * @link: double-linked list
 124 * @card: card under test
 125 * @file: file created under debugfs
 126 */
 127struct mmc_test_dbgfs_file {
 128        struct list_head link;
 129        struct mmc_card *card;
 130        struct dentry *file;
 131};
 132
 133/**
 134 * struct mmc_test_card - test information.
 135 * @card: card under test
 136 * @scratch: transfer buffer
 137 * @buffer: transfer buffer
 138 * @highmem: buffer for highmem tests
 139 * @area: information for performance tests
 140 * @gr: pointer to results of current testcase
 141 */
 142struct mmc_test_card {
 143        struct mmc_card *card;
 144
 145        u8              scratch[BUFFER_SIZE];
 146        u8              *buffer;
 147#ifdef CONFIG_HIGHMEM
 148        struct page     *highmem;
 149#endif
 150        struct mmc_test_area            area;
 151        struct mmc_test_general_result  *gr;
 152};
 153
 154enum mmc_test_prep_media {
 155        MMC_TEST_PREP_NONE = 0,
 156        MMC_TEST_PREP_WRITE_FULL = 1 << 0,
 157        MMC_TEST_PREP_ERASE = 1 << 1,
 158};
 159
 160struct mmc_test_multiple_rw {
 161        unsigned int *sg_len;
 162        unsigned int *bs;
 163        unsigned int len;
 164        unsigned int size;
 165        bool do_write;
 166        bool do_nonblock_req;
 167        enum mmc_test_prep_media prepare;
 168};
 169
 170/*******************************************************************/
 171/*  General helper functions                                       */
 172/*******************************************************************/
 173
 174/*
 175 * Configure correct block size in card
 176 */
 177static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
 178{
 179        return mmc_set_blocklen(test->card, size);
 180}
 181
 182static bool mmc_test_card_cmd23(struct mmc_card *card)
 183{
 184        return mmc_card_mmc(card) ||
 185               (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
 186}
 187
 188static void mmc_test_prepare_sbc(struct mmc_test_card *test,
 189                                 struct mmc_request *mrq, unsigned int blocks)
 190{
 191        struct mmc_card *card = test->card;
 192
 193        if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
 194            !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
 195            (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
 196                mrq->sbc = NULL;
 197                return;
 198        }
 199
 200        mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
 201        mrq->sbc->arg = blocks;
 202        mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
 203}
 204
 205/*
 206 * Fill in the mmc_request structure given a set of transfer parameters.
 207 */
 208static void mmc_test_prepare_mrq(struct mmc_test_card *test,
 209        struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
 210        unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
 211{
 212        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
 213                return;
 214
 215        if (blocks > 1) {
 216                mrq->cmd->opcode = write ?
 217                        MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
 218        } else {
 219                mrq->cmd->opcode = write ?
 220                        MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 221        }
 222
 223        mrq->cmd->arg = dev_addr;
 224        if (!mmc_card_blockaddr(test->card))
 225                mrq->cmd->arg <<= 9;
 226
 227        mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
 228
 229        if (blocks == 1)
 230                mrq->stop = NULL;
 231        else {
 232                mrq->stop->opcode = MMC_STOP_TRANSMISSION;
 233                mrq->stop->arg = 0;
 234                mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
 235        }
 236
 237        mrq->data->blksz = blksz;
 238        mrq->data->blocks = blocks;
 239        mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
 240        mrq->data->sg = sg;
 241        mrq->data->sg_len = sg_len;
 242
 243        mmc_test_prepare_sbc(test, mrq, blocks);
 244
 245        mmc_set_data_timeout(mrq->data, test->card);
 246}
 247
 248static int mmc_test_busy(struct mmc_command *cmd)
 249{
 250        return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
 251                (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
 252}
 253
 254/*
 255 * Wait for the card to finish the busy state
 256 */
 257static int mmc_test_wait_busy(struct mmc_test_card *test)
 258{
 259        int ret, busy;
 260        struct mmc_command cmd = {};
 261
 262        busy = 0;
 263        do {
 264                memset(&cmd, 0, sizeof(struct mmc_command));
 265
 266                cmd.opcode = MMC_SEND_STATUS;
 267                cmd.arg = test->card->rca << 16;
 268                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 269
 270                ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
 271                if (ret)
 272                        break;
 273
 274                if (!busy && mmc_test_busy(&cmd)) {
 275                        busy = 1;
 276                        if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
 277                                pr_info("%s: Warning: Host did not wait for busy state to end.\n",
 278                                        mmc_hostname(test->card->host));
 279                }
 280        } while (mmc_test_busy(&cmd));
 281
 282        return ret;
 283}
 284
 285/*
 286 * Transfer a single sector of kernel addressable data
 287 */
 288static int mmc_test_buffer_transfer(struct mmc_test_card *test,
 289        u8 *buffer, unsigned addr, unsigned blksz, int write)
 290{
 291        struct mmc_request mrq = {};
 292        struct mmc_command cmd = {};
 293        struct mmc_command stop = {};
 294        struct mmc_data data = {};
 295
 296        struct scatterlist sg;
 297
 298        mrq.cmd = &cmd;
 299        mrq.data = &data;
 300        mrq.stop = &stop;
 301
 302        sg_init_one(&sg, buffer, blksz);
 303
 304        mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
 305
 306        mmc_wait_for_req(test->card->host, &mrq);
 307
 308        if (cmd.error)
 309                return cmd.error;
 310        if (data.error)
 311                return data.error;
 312
 313        return mmc_test_wait_busy(test);
 314}
 315
 316static void mmc_test_free_mem(struct mmc_test_mem *mem)
 317{
 318        if (!mem)
 319                return;
 320        while (mem->cnt--)
 321                __free_pages(mem->arr[mem->cnt].page,
 322                             mem->arr[mem->cnt].order);
 323        kfree(mem->arr);
 324        kfree(mem);
 325}
 326
 327/*
 328 * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
 329 * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
 330 * not exceed a maximum number of segments and try not to make segments much
 331 * bigger than maximum segment size.
 332 */
 333static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
 334                                               unsigned long max_sz,
 335                                               unsigned int max_segs,
 336                                               unsigned int max_seg_sz)
 337{
 338        unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
 339        unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
 340        unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
 341        unsigned long page_cnt = 0;
 342        unsigned long limit = nr_free_buffer_pages() >> 4;
 343        struct mmc_test_mem *mem;
 344
 345        if (max_page_cnt > limit)
 346                max_page_cnt = limit;
 347        if (min_page_cnt > max_page_cnt)
 348                min_page_cnt = max_page_cnt;
 349
 350        if (max_seg_page_cnt > max_page_cnt)
 351                max_seg_page_cnt = max_page_cnt;
 352
 353        if (max_segs > max_page_cnt)
 354                max_segs = max_page_cnt;
 355
 356        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 357        if (!mem)
 358                return NULL;
 359
 360        mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
 361        if (!mem->arr)
 362                goto out_free;
 363
 364        while (max_page_cnt) {
 365                struct page *page;
 366                unsigned int order;
 367                gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
 368                                __GFP_NORETRY;
 369
 370                order = get_order(max_seg_page_cnt << PAGE_SHIFT);
 371                while (1) {
 372                        page = alloc_pages(flags, order);
 373                        if (page || !order)
 374                                break;
 375                        order -= 1;
 376                }
 377                if (!page) {
 378                        if (page_cnt < min_page_cnt)
 379                                goto out_free;
 380                        break;
 381                }
 382                mem->arr[mem->cnt].page = page;
 383                mem->arr[mem->cnt].order = order;
 384                mem->cnt += 1;
 385                if (max_page_cnt <= (1UL << order))
 386                        break;
 387                max_page_cnt -= 1UL << order;
 388                page_cnt += 1UL << order;
 389                if (mem->cnt >= max_segs) {
 390                        if (page_cnt < min_page_cnt)
 391                                goto out_free;
 392                        break;
 393                }
 394        }
 395
 396        return mem;
 397
 398out_free:
 399        mmc_test_free_mem(mem);
 400        return NULL;
 401}
 402
 403/*
 404 * Map memory into a scatterlist.  Optionally allow the same memory to be
 405 * mapped more than once.
 406 */
 407static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
 408                           struct scatterlist *sglist, int repeat,
 409                           unsigned int max_segs, unsigned int max_seg_sz,
 410                           unsigned int *sg_len, int min_sg_len)
 411{
 412        struct scatterlist *sg = NULL;
 413        unsigned int i;
 414        unsigned long sz = size;
 415
 416        sg_init_table(sglist, max_segs);
 417        if (min_sg_len > max_segs)
 418                min_sg_len = max_segs;
 419
 420        *sg_len = 0;
 421        do {
 422                for (i = 0; i < mem->cnt; i++) {
 423                        unsigned long len = PAGE_SIZE << mem->arr[i].order;
 424
 425                        if (min_sg_len && (size / min_sg_len < len))
 426                                len = ALIGN(size / min_sg_len, 512);
 427                        if (len > sz)
 428                                len = sz;
 429                        if (len > max_seg_sz)
 430                                len = max_seg_sz;
 431                        if (sg)
 432                                sg = sg_next(sg);
 433                        else
 434                                sg = sglist;
 435                        if (!sg)
 436                                return -EINVAL;
 437                        sg_set_page(sg, mem->arr[i].page, len, 0);
 438                        sz -= len;
 439                        *sg_len += 1;
 440                        if (!sz)
 441                                break;
 442                }
 443        } while (sz && repeat);
 444
 445        if (sz)
 446                return -EINVAL;
 447
 448        if (sg)
 449                sg_mark_end(sg);
 450
 451        return 0;
 452}
 453
 454/*
 455 * Map memory into a scatterlist so that no pages are contiguous.  Allow the
 456 * same memory to be mapped more than once.
 457 */
 458static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
 459                                       unsigned long sz,
 460                                       struct scatterlist *sglist,
 461                                       unsigned int max_segs,
 462                                       unsigned int max_seg_sz,
 463                                       unsigned int *sg_len)
 464{
 465        struct scatterlist *sg = NULL;
 466        unsigned int i = mem->cnt, cnt;
 467        unsigned long len;
 468        void *base, *addr, *last_addr = NULL;
 469
 470        sg_init_table(sglist, max_segs);
 471
 472        *sg_len = 0;
 473        while (sz) {
 474                base = page_address(mem->arr[--i].page);
 475                cnt = 1 << mem->arr[i].order;
 476                while (sz && cnt) {
 477                        addr = base + PAGE_SIZE * --cnt;
 478                        if (last_addr && last_addr + PAGE_SIZE == addr)
 479                                continue;
 480                        last_addr = addr;
 481                        len = PAGE_SIZE;
 482                        if (len > max_seg_sz)
 483                                len = max_seg_sz;
 484                        if (len > sz)
 485                                len = sz;
 486                        if (sg)
 487                                sg = sg_next(sg);
 488                        else
 489                                sg = sglist;
 490                        if (!sg)
 491                                return -EINVAL;
 492                        sg_set_page(sg, virt_to_page(addr), len, 0);
 493                        sz -= len;
 494                        *sg_len += 1;
 495                }
 496                if (i == 0)
 497                        i = mem->cnt;
 498        }
 499
 500        if (sg)
 501                sg_mark_end(sg);
 502
 503        return 0;
 504}
 505
 506/*
 507 * Calculate transfer rate in bytes per second.
 508 */
 509static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
 510{
 511        uint64_t ns;
 512
 513        ns = timespec64_to_ns(ts);
 514        bytes *= 1000000000;
 515
 516        while (ns > UINT_MAX) {
 517                bytes >>= 1;
 518                ns >>= 1;
 519        }
 520
 521        if (!ns)
 522                return 0;
 523
 524        do_div(bytes, (uint32_t)ns);
 525
 526        return bytes;
 527}
 528
 529/*
 530 * Save transfer results for future usage
 531 */
 532static void mmc_test_save_transfer_result(struct mmc_test_card *test,
 533        unsigned int count, unsigned int sectors, struct timespec64 ts,
 534        unsigned int rate, unsigned int iops)
 535{
 536        struct mmc_test_transfer_result *tr;
 537
 538        if (!test->gr)
 539                return;
 540
 541        tr = kmalloc(sizeof(*tr), GFP_KERNEL);
 542        if (!tr)
 543                return;
 544
 545        tr->count = count;
 546        tr->sectors = sectors;
 547        tr->ts = ts;
 548        tr->rate = rate;
 549        tr->iops = iops;
 550
 551        list_add_tail(&tr->link, &test->gr->tr_lst);
 552}
 553
 554/*
 555 * Print the transfer rate.
 556 */
 557static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
 558                                struct timespec64 *ts1, struct timespec64 *ts2)
 559{
 560        unsigned int rate, iops, sectors = bytes >> 9;
 561        struct timespec64 ts;
 562
 563        ts = timespec64_sub(*ts2, *ts1);
 564
 565        rate = mmc_test_rate(bytes, &ts);
 566        iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
 567
 568        pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
 569                         "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
 570                         mmc_hostname(test->card->host), sectors, sectors >> 1,
 571                         (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
 572                         (u32)ts.tv_nsec, rate / 1000, rate / 1024,
 573                         iops / 100, iops % 100);
 574
 575        mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
 576}
 577
 578/*
 579 * Print the average transfer rate.
 580 */
 581static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
 582                                    unsigned int count, struct timespec64 *ts1,
 583                                    struct timespec64 *ts2)
 584{
 585        unsigned int rate, iops, sectors = bytes >> 9;
 586        uint64_t tot = bytes * count;
 587        struct timespec64 ts;
 588
 589        ts = timespec64_sub(*ts2, *ts1);
 590
 591        rate = mmc_test_rate(tot, &ts);
 592        iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
 593
 594        pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
 595                         "%llu.%09u seconds (%u kB/s, %u KiB/s, "
 596                         "%u.%02u IOPS, sg_len %d)\n",
 597                         mmc_hostname(test->card->host), count, sectors, count,
 598                         sectors >> 1, (sectors & 1 ? ".5" : ""),
 599                         (u64)ts.tv_sec, (u32)ts.tv_nsec,
 600                         rate / 1000, rate / 1024, iops / 100, iops % 100,
 601                         test->area.sg_len);
 602
 603        mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
 604}
 605
 606/*
 607 * Return the card size in sectors.
 608 */
 609static unsigned int mmc_test_capacity(struct mmc_card *card)
 610{
 611        if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
 612                return card->ext_csd.sectors;
 613        else
 614                return card->csd.capacity << (card->csd.read_blkbits - 9);
 615}
 616
 617/*******************************************************************/
 618/*  Test preparation and cleanup                                   */
 619/*******************************************************************/
 620
 621/*
 622 * Fill the first couple of sectors of the card with known data
 623 * so that bad reads/writes can be detected
 624 */
 625static int __mmc_test_prepare(struct mmc_test_card *test, int write)
 626{
 627        int ret, i;
 628
 629        ret = mmc_test_set_blksize(test, 512);
 630        if (ret)
 631                return ret;
 632
 633        if (write)
 634                memset(test->buffer, 0xDF, 512);
 635        else {
 636                for (i = 0; i < 512; i++)
 637                        test->buffer[i] = i;
 638        }
 639
 640        for (i = 0; i < BUFFER_SIZE / 512; i++) {
 641                ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
 642                if (ret)
 643                        return ret;
 644        }
 645
 646        return 0;
 647}
 648
 649static int mmc_test_prepare_write(struct mmc_test_card *test)
 650{
 651        return __mmc_test_prepare(test, 1);
 652}
 653
 654static int mmc_test_prepare_read(struct mmc_test_card *test)
 655{
 656        return __mmc_test_prepare(test, 0);
 657}
 658
 659static int mmc_test_cleanup(struct mmc_test_card *test)
 660{
 661        int ret, i;
 662
 663        ret = mmc_test_set_blksize(test, 512);
 664        if (ret)
 665                return ret;
 666
 667        memset(test->buffer, 0, 512);
 668
 669        for (i = 0; i < BUFFER_SIZE / 512; i++) {
 670                ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
 671                if (ret)
 672                        return ret;
 673        }
 674
 675        return 0;
 676}
 677
 678/*******************************************************************/
 679/*  Test execution helpers                                         */
 680/*******************************************************************/
 681
 682/*
 683 * Modifies the mmc_request to perform the "short transfer" tests
 684 */
 685static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
 686        struct mmc_request *mrq, int write)
 687{
 688        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 689                return;
 690
 691        if (mrq->data->blocks > 1) {
 692                mrq->cmd->opcode = write ?
 693                        MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 694                mrq->stop = NULL;
 695        } else {
 696                mrq->cmd->opcode = MMC_SEND_STATUS;
 697                mrq->cmd->arg = test->card->rca << 16;
 698        }
 699}
 700
 701/*
 702 * Checks that a normal transfer didn't have any errors
 703 */
 704static int mmc_test_check_result(struct mmc_test_card *test,
 705                                 struct mmc_request *mrq)
 706{
 707        int ret;
 708
 709        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 710                return -EINVAL;
 711
 712        ret = 0;
 713
 714        if (mrq->sbc && mrq->sbc->error)
 715                ret = mrq->sbc->error;
 716        if (!ret && mrq->cmd->error)
 717                ret = mrq->cmd->error;
 718        if (!ret && mrq->data->error)
 719                ret = mrq->data->error;
 720        if (!ret && mrq->stop && mrq->stop->error)
 721                ret = mrq->stop->error;
 722        if (!ret && mrq->data->bytes_xfered !=
 723                mrq->data->blocks * mrq->data->blksz)
 724                ret = RESULT_FAIL;
 725
 726        if (ret == -EINVAL)
 727                ret = RESULT_UNSUP_HOST;
 728
 729        return ret;
 730}
 731
 732/*
 733 * Checks that a "short transfer" behaved as expected
 734 */
 735static int mmc_test_check_broken_result(struct mmc_test_card *test,
 736        struct mmc_request *mrq)
 737{
 738        int ret;
 739
 740        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 741                return -EINVAL;
 742
 743        ret = 0;
 744
 745        if (!ret && mrq->cmd->error)
 746                ret = mrq->cmd->error;
 747        if (!ret && mrq->data->error == 0)
 748                ret = RESULT_FAIL;
 749        if (!ret && mrq->data->error != -ETIMEDOUT)
 750                ret = mrq->data->error;
 751        if (!ret && mrq->stop && mrq->stop->error)
 752                ret = mrq->stop->error;
 753        if (mrq->data->blocks > 1) {
 754                if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
 755                        ret = RESULT_FAIL;
 756        } else {
 757                if (!ret && mrq->data->bytes_xfered > 0)
 758                        ret = RESULT_FAIL;
 759        }
 760
 761        if (ret == -EINVAL)
 762                ret = RESULT_UNSUP_HOST;
 763
 764        return ret;
 765}
 766
 767struct mmc_test_req {
 768        struct mmc_request mrq;
 769        struct mmc_command sbc;
 770        struct mmc_command cmd;
 771        struct mmc_command stop;
 772        struct mmc_command status;
 773        struct mmc_data data;
 774};
 775
 776/*
 777 * Tests nonblock transfer with certain parameters
 778 */
 779static void mmc_test_req_reset(struct mmc_test_req *rq)
 780{
 781        memset(rq, 0, sizeof(struct mmc_test_req));
 782
 783        rq->mrq.cmd = &rq->cmd;
 784        rq->mrq.data = &rq->data;
 785        rq->mrq.stop = &rq->stop;
 786}
 787
 788static struct mmc_test_req *mmc_test_req_alloc(void)
 789{
 790        struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
 791
 792        if (rq)
 793                mmc_test_req_reset(rq);
 794
 795        return rq;
 796}
 797
 798static void mmc_test_wait_done(struct mmc_request *mrq)
 799{
 800        complete(&mrq->completion);
 801}
 802
 803static int mmc_test_start_areq(struct mmc_test_card *test,
 804                               struct mmc_request *mrq,
 805                               struct mmc_request *prev_mrq)
 806{
 807        struct mmc_host *host = test->card->host;
 808        int err = 0;
 809
 810        if (mrq) {
 811                init_completion(&mrq->completion);
 812                mrq->done = mmc_test_wait_done;
 813                mmc_pre_req(host, mrq);
 814        }
 815
 816        if (prev_mrq) {
 817                wait_for_completion(&prev_mrq->completion);
 818                err = mmc_test_wait_busy(test);
 819                if (!err)
 820                        err = mmc_test_check_result(test, prev_mrq);
 821        }
 822
 823        if (!err && mrq) {
 824                err = mmc_start_request(host, mrq);
 825                if (err)
 826                        mmc_retune_release(host);
 827        }
 828
 829        if (prev_mrq)
 830                mmc_post_req(host, prev_mrq, 0);
 831
 832        if (err && mrq)
 833                mmc_post_req(host, mrq, err);
 834
 835        return err;
 836}
 837
 838static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
 839                                      struct scatterlist *sg, unsigned sg_len,
 840                                      unsigned dev_addr, unsigned blocks,
 841                                      unsigned blksz, int write, int count)
 842{
 843        struct mmc_test_req *rq1, *rq2;
 844        struct mmc_request *mrq, *prev_mrq;
 845        int i;
 846        int ret = RESULT_OK;
 847
 848        rq1 = mmc_test_req_alloc();
 849        rq2 = mmc_test_req_alloc();
 850        if (!rq1 || !rq2) {
 851                ret = RESULT_FAIL;
 852                goto err;
 853        }
 854
 855        mrq = &rq1->mrq;
 856        prev_mrq = NULL;
 857
 858        for (i = 0; i < count; i++) {
 859                mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
 860                mmc_test_prepare_mrq(test, mrq, sg, sg_len, dev_addr, blocks,
 861                                     blksz, write);
 862                ret = mmc_test_start_areq(test, mrq, prev_mrq);
 863                if (ret)
 864                        goto err;
 865
 866                if (!prev_mrq)
 867                        prev_mrq = &rq2->mrq;
 868
 869                swap(mrq, prev_mrq);
 870                dev_addr += blocks;
 871        }
 872
 873        ret = mmc_test_start_areq(test, NULL, prev_mrq);
 874err:
 875        kfree(rq1);
 876        kfree(rq2);
 877        return ret;
 878}
 879
 880/*
 881 * Tests a basic transfer with certain parameters
 882 */
 883static int mmc_test_simple_transfer(struct mmc_test_card *test,
 884        struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 885        unsigned blocks, unsigned blksz, int write)
 886{
 887        struct mmc_request mrq = {};
 888        struct mmc_command cmd = {};
 889        struct mmc_command stop = {};
 890        struct mmc_data data = {};
 891
 892        mrq.cmd = &cmd;
 893        mrq.data = &data;
 894        mrq.stop = &stop;
 895
 896        mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
 897                blocks, blksz, write);
 898
 899        mmc_wait_for_req(test->card->host, &mrq);
 900
 901        mmc_test_wait_busy(test);
 902
 903        return mmc_test_check_result(test, &mrq);
 904}
 905
 906/*
 907 * Tests a transfer where the card will fail completely or partly
 908 */
 909static int mmc_test_broken_transfer(struct mmc_test_card *test,
 910        unsigned blocks, unsigned blksz, int write)
 911{
 912        struct mmc_request mrq = {};
 913        struct mmc_command cmd = {};
 914        struct mmc_command stop = {};
 915        struct mmc_data data = {};
 916
 917        struct scatterlist sg;
 918
 919        mrq.cmd = &cmd;
 920        mrq.data = &data;
 921        mrq.stop = &stop;
 922
 923        sg_init_one(&sg, test->buffer, blocks * blksz);
 924
 925        mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
 926        mmc_test_prepare_broken_mrq(test, &mrq, write);
 927
 928        mmc_wait_for_req(test->card->host, &mrq);
 929
 930        mmc_test_wait_busy(test);
 931
 932        return mmc_test_check_broken_result(test, &mrq);
 933}
 934
 935/*
 936 * Does a complete transfer test where data is also validated
 937 *
 938 * Note: mmc_test_prepare() must have been done before this call
 939 */
 940static int mmc_test_transfer(struct mmc_test_card *test,
 941        struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 942        unsigned blocks, unsigned blksz, int write)
 943{
 944        int ret, i;
 945        unsigned long flags;
 946
 947        if (write) {
 948                for (i = 0; i < blocks * blksz; i++)
 949                        test->scratch[i] = i;
 950        } else {
 951                memset(test->scratch, 0, BUFFER_SIZE);
 952        }
 953        local_irq_save(flags);
 954        sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
 955        local_irq_restore(flags);
 956
 957        ret = mmc_test_set_blksize(test, blksz);
 958        if (ret)
 959                return ret;
 960
 961        ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
 962                blocks, blksz, write);
 963        if (ret)
 964                return ret;
 965
 966        if (write) {
 967                int sectors;
 968
 969                ret = mmc_test_set_blksize(test, 512);
 970                if (ret)
 971                        return ret;
 972
 973                sectors = (blocks * blksz + 511) / 512;
 974                if ((sectors * 512) == (blocks * blksz))
 975                        sectors++;
 976
 977                if ((sectors * 512) > BUFFER_SIZE)
 978                        return -EINVAL;
 979
 980                memset(test->buffer, 0, sectors * 512);
 981
 982                for (i = 0; i < sectors; i++) {
 983                        ret = mmc_test_buffer_transfer(test,
 984                                test->buffer + i * 512,
 985                                dev_addr + i, 512, 0);
 986                        if (ret)
 987                                return ret;
 988                }
 989
 990                for (i = 0; i < blocks * blksz; i++) {
 991                        if (test->buffer[i] != (u8)i)
 992                                return RESULT_FAIL;
 993                }
 994
 995                for (; i < sectors * 512; i++) {
 996                        if (test->buffer[i] != 0xDF)
 997                                return RESULT_FAIL;
 998                }
 999        } else {
1000                local_irq_save(flags);
1001                sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1002                local_irq_restore(flags);
1003                for (i = 0; i < blocks * blksz; i++) {
1004                        if (test->scratch[i] != (u8)i)
1005                                return RESULT_FAIL;
1006                }
1007        }
1008
1009        return 0;
1010}
1011
1012/*******************************************************************/
1013/*  Tests                                                          */
1014/*******************************************************************/
1015
1016struct mmc_test_case {
1017        const char *name;
1018
1019        int (*prepare)(struct mmc_test_card *);
1020        int (*run)(struct mmc_test_card *);
1021        int (*cleanup)(struct mmc_test_card *);
1022};
1023
1024static int mmc_test_basic_write(struct mmc_test_card *test)
1025{
1026        int ret;
1027        struct scatterlist sg;
1028
1029        ret = mmc_test_set_blksize(test, 512);
1030        if (ret)
1031                return ret;
1032
1033        sg_init_one(&sg, test->buffer, 512);
1034
1035        return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1036}
1037
1038static int mmc_test_basic_read(struct mmc_test_card *test)
1039{
1040        int ret;
1041        struct scatterlist sg;
1042
1043        ret = mmc_test_set_blksize(test, 512);
1044        if (ret)
1045                return ret;
1046
1047        sg_init_one(&sg, test->buffer, 512);
1048
1049        return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1050}
1051
1052static int mmc_test_verify_write(struct mmc_test_card *test)
1053{
1054        struct scatterlist sg;
1055
1056        sg_init_one(&sg, test->buffer, 512);
1057
1058        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1059}
1060
1061static int mmc_test_verify_read(struct mmc_test_card *test)
1062{
1063        struct scatterlist sg;
1064
1065        sg_init_one(&sg, test->buffer, 512);
1066
1067        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1068}
1069
1070static int mmc_test_multi_write(struct mmc_test_card *test)
1071{
1072        unsigned int size;
1073        struct scatterlist sg;
1074
1075        if (test->card->host->max_blk_count == 1)
1076                return RESULT_UNSUP_HOST;
1077
1078        size = PAGE_SIZE * 2;
1079        size = min(size, test->card->host->max_req_size);
1080        size = min(size, test->card->host->max_seg_size);
1081        size = min(size, test->card->host->max_blk_count * 512);
1082
1083        if (size < 1024)
1084                return RESULT_UNSUP_HOST;
1085
1086        sg_init_one(&sg, test->buffer, size);
1087
1088        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1089}
1090
1091static int mmc_test_multi_read(struct mmc_test_card *test)
1092{
1093        unsigned int size;
1094        struct scatterlist sg;
1095
1096        if (test->card->host->max_blk_count == 1)
1097                return RESULT_UNSUP_HOST;
1098
1099        size = PAGE_SIZE * 2;
1100        size = min(size, test->card->host->max_req_size);
1101        size = min(size, test->card->host->max_seg_size);
1102        size = min(size, test->card->host->max_blk_count * 512);
1103
1104        if (size < 1024)
1105                return RESULT_UNSUP_HOST;
1106
1107        sg_init_one(&sg, test->buffer, size);
1108
1109        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1110}
1111
1112static int mmc_test_pow2_write(struct mmc_test_card *test)
1113{
1114        int ret, i;
1115        struct scatterlist sg;
1116
1117        if (!test->card->csd.write_partial)
1118                return RESULT_UNSUP_CARD;
1119
1120        for (i = 1; i < 512; i <<= 1) {
1121                sg_init_one(&sg, test->buffer, i);
1122                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1123                if (ret)
1124                        return ret;
1125        }
1126
1127        return 0;
1128}
1129
1130static int mmc_test_pow2_read(struct mmc_test_card *test)
1131{
1132        int ret, i;
1133        struct scatterlist sg;
1134
1135        if (!test->card->csd.read_partial)
1136                return RESULT_UNSUP_CARD;
1137
1138        for (i = 1; i < 512; i <<= 1) {
1139                sg_init_one(&sg, test->buffer, i);
1140                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1141                if (ret)
1142                        return ret;
1143        }
1144
1145        return 0;
1146}
1147
1148static int mmc_test_weird_write(struct mmc_test_card *test)
1149{
1150        int ret, i;
1151        struct scatterlist sg;
1152
1153        if (!test->card->csd.write_partial)
1154                return RESULT_UNSUP_CARD;
1155
1156        for (i = 3; i < 512; i += 7) {
1157                sg_init_one(&sg, test->buffer, i);
1158                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1159                if (ret)
1160                        return ret;
1161        }
1162
1163        return 0;
1164}
1165
1166static int mmc_test_weird_read(struct mmc_test_card *test)
1167{
1168        int ret, i;
1169        struct scatterlist sg;
1170
1171        if (!test->card->csd.read_partial)
1172                return RESULT_UNSUP_CARD;
1173
1174        for (i = 3; i < 512; i += 7) {
1175                sg_init_one(&sg, test->buffer, i);
1176                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1177                if (ret)
1178                        return ret;
1179        }
1180
1181        return 0;
1182}
1183
1184static int mmc_test_align_write(struct mmc_test_card *test)
1185{
1186        int ret, i;
1187        struct scatterlist sg;
1188
1189        for (i = 1; i < TEST_ALIGN_END; i++) {
1190                sg_init_one(&sg, test->buffer + i, 512);
1191                ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1192                if (ret)
1193                        return ret;
1194        }
1195
1196        return 0;
1197}
1198
1199static int mmc_test_align_read(struct mmc_test_card *test)
1200{
1201        int ret, i;
1202        struct scatterlist sg;
1203
1204        for (i = 1; i < TEST_ALIGN_END; i++) {
1205                sg_init_one(&sg, test->buffer + i, 512);
1206                ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1207                if (ret)
1208                        return ret;
1209        }
1210
1211        return 0;
1212}
1213
1214static int mmc_test_align_multi_write(struct mmc_test_card *test)
1215{
1216        int ret, i;
1217        unsigned int size;
1218        struct scatterlist sg;
1219
1220        if (test->card->host->max_blk_count == 1)
1221                return RESULT_UNSUP_HOST;
1222
1223        size = PAGE_SIZE * 2;
1224        size = min(size, test->card->host->max_req_size);
1225        size = min(size, test->card->host->max_seg_size);
1226        size = min(size, test->card->host->max_blk_count * 512);
1227
1228        if (size < 1024)
1229                return RESULT_UNSUP_HOST;
1230
1231        for (i = 1; i < TEST_ALIGN_END; i++) {
1232                sg_init_one(&sg, test->buffer + i, size);
1233                ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1234                if (ret)
1235                        return ret;
1236        }
1237
1238        return 0;
1239}
1240
1241static int mmc_test_align_multi_read(struct mmc_test_card *test)
1242{
1243        int ret, i;
1244        unsigned int size;
1245        struct scatterlist sg;
1246
1247        if (test->card->host->max_blk_count == 1)
1248                return RESULT_UNSUP_HOST;
1249
1250        size = PAGE_SIZE * 2;
1251        size = min(size, test->card->host->max_req_size);
1252        size = min(size, test->card->host->max_seg_size);
1253        size = min(size, test->card->host->max_blk_count * 512);
1254
1255        if (size < 1024)
1256                return RESULT_UNSUP_HOST;
1257
1258        for (i = 1; i < TEST_ALIGN_END; i++) {
1259                sg_init_one(&sg, test->buffer + i, size);
1260                ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1261                if (ret)
1262                        return ret;
1263        }
1264
1265        return 0;
1266}
1267
1268static int mmc_test_xfersize_write(struct mmc_test_card *test)
1269{
1270        int ret;
1271
1272        ret = mmc_test_set_blksize(test, 512);
1273        if (ret)
1274                return ret;
1275
1276        return mmc_test_broken_transfer(test, 1, 512, 1);
1277}
1278
1279static int mmc_test_xfersize_read(struct mmc_test_card *test)
1280{
1281        int ret;
1282
1283        ret = mmc_test_set_blksize(test, 512);
1284        if (ret)
1285                return ret;
1286
1287        return mmc_test_broken_transfer(test, 1, 512, 0);
1288}
1289
1290static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1291{
1292        int ret;
1293
1294        if (test->card->host->max_blk_count == 1)
1295                return RESULT_UNSUP_HOST;
1296
1297        ret = mmc_test_set_blksize(test, 512);
1298        if (ret)
1299                return ret;
1300
1301        return mmc_test_broken_transfer(test, 2, 512, 1);
1302}
1303
1304static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1305{
1306        int ret;
1307
1308        if (test->card->host->max_blk_count == 1)
1309                return RESULT_UNSUP_HOST;
1310
1311        ret = mmc_test_set_blksize(test, 512);
1312        if (ret)
1313                return ret;
1314
1315        return mmc_test_broken_transfer(test, 2, 512, 0);
1316}
1317
1318#ifdef CONFIG_HIGHMEM
1319
1320static int mmc_test_write_high(struct mmc_test_card *test)
1321{
1322        struct scatterlist sg;
1323
1324        sg_init_table(&sg, 1);
1325        sg_set_page(&sg, test->highmem, 512, 0);
1326
1327        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1328}
1329
1330static int mmc_test_read_high(struct mmc_test_card *test)
1331{
1332        struct scatterlist sg;
1333
1334        sg_init_table(&sg, 1);
1335        sg_set_page(&sg, test->highmem, 512, 0);
1336
1337        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1338}
1339
1340static int mmc_test_multi_write_high(struct mmc_test_card *test)
1341{
1342        unsigned int size;
1343        struct scatterlist sg;
1344
1345        if (test->card->host->max_blk_count == 1)
1346                return RESULT_UNSUP_HOST;
1347
1348        size = PAGE_SIZE * 2;
1349        size = min(size, test->card->host->max_req_size);
1350        size = min(size, test->card->host->max_seg_size);
1351        size = min(size, test->card->host->max_blk_count * 512);
1352
1353        if (size < 1024)
1354                return RESULT_UNSUP_HOST;
1355
1356        sg_init_table(&sg, 1);
1357        sg_set_page(&sg, test->highmem, size, 0);
1358
1359        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1360}
1361
1362static int mmc_test_multi_read_high(struct mmc_test_card *test)
1363{
1364        unsigned int size;
1365        struct scatterlist sg;
1366
1367        if (test->card->host->max_blk_count == 1)
1368                return RESULT_UNSUP_HOST;
1369
1370        size = PAGE_SIZE * 2;
1371        size = min(size, test->card->host->max_req_size);
1372        size = min(size, test->card->host->max_seg_size);
1373        size = min(size, test->card->host->max_blk_count * 512);
1374
1375        if (size < 1024)
1376                return RESULT_UNSUP_HOST;
1377
1378        sg_init_table(&sg, 1);
1379        sg_set_page(&sg, test->highmem, size, 0);
1380
1381        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1382}
1383
1384#else
1385
1386static int mmc_test_no_highmem(struct mmc_test_card *test)
1387{
1388        pr_info("%s: Highmem not configured - test skipped\n",
1389               mmc_hostname(test->card->host));
1390        return 0;
1391}
1392
1393#endif /* CONFIG_HIGHMEM */
1394
1395/*
1396 * Map sz bytes so that it can be transferred.
1397 */
1398static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1399                             int max_scatter, int min_sg_len)
1400{
1401        struct mmc_test_area *t = &test->area;
1402        int err;
1403
1404        t->blocks = sz >> 9;
1405
1406        if (max_scatter) {
1407                err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1408                                                  t->max_segs, t->max_seg_sz,
1409                                       &t->sg_len);
1410        } else {
1411                err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1412                                      t->max_seg_sz, &t->sg_len, min_sg_len);
1413        }
1414        if (err)
1415                pr_info("%s: Failed to map sg list\n",
1416                       mmc_hostname(test->card->host));
1417        return err;
1418}
1419
1420/*
1421 * Transfer bytes mapped by mmc_test_area_map().
1422 */
1423static int mmc_test_area_transfer(struct mmc_test_card *test,
1424                                  unsigned int dev_addr, int write)
1425{
1426        struct mmc_test_area *t = &test->area;
1427
1428        return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1429                                        t->blocks, 512, write);
1430}
1431
1432/*
1433 * Map and transfer bytes for multiple transfers.
1434 */
1435static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1436                                unsigned int dev_addr, int write,
1437                                int max_scatter, int timed, int count,
1438                                bool nonblock, int min_sg_len)
1439{
1440        struct timespec64 ts1, ts2;
1441        int ret = 0;
1442        int i;
1443        struct mmc_test_area *t = &test->area;
1444
1445        /*
1446         * In the case of a maximally scattered transfer, the maximum transfer
1447         * size is further limited by using PAGE_SIZE segments.
1448         */
1449        if (max_scatter) {
1450                struct mmc_test_area *t = &test->area;
1451                unsigned long max_tfr;
1452
1453                if (t->max_seg_sz >= PAGE_SIZE)
1454                        max_tfr = t->max_segs * PAGE_SIZE;
1455                else
1456                        max_tfr = t->max_segs * t->max_seg_sz;
1457                if (sz > max_tfr)
1458                        sz = max_tfr;
1459        }
1460
1461        ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1462        if (ret)
1463                return ret;
1464
1465        if (timed)
1466                ktime_get_ts64(&ts1);
1467        if (nonblock)
1468                ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1469                                 dev_addr, t->blocks, 512, write, count);
1470        else
1471                for (i = 0; i < count && ret == 0; i++) {
1472                        ret = mmc_test_area_transfer(test, dev_addr, write);
1473                        dev_addr += sz >> 9;
1474                }
1475
1476        if (ret)
1477                return ret;
1478
1479        if (timed)
1480                ktime_get_ts64(&ts2);
1481
1482        if (timed)
1483                mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1484
1485        return 0;
1486}
1487
1488static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1489                            unsigned int dev_addr, int write, int max_scatter,
1490                            int timed)
1491{
1492        return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1493                                    timed, 1, false, 0);
1494}
1495
1496/*
1497 * Write the test area entirely.
1498 */
1499static int mmc_test_area_fill(struct mmc_test_card *test)
1500{
1501        struct mmc_test_area *t = &test->area;
1502
1503        return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1504}
1505
1506/*
1507 * Erase the test area entirely.
1508 */
1509static int mmc_test_area_erase(struct mmc_test_card *test)
1510{
1511        struct mmc_test_area *t = &test->area;
1512
1513        if (!mmc_can_erase(test->card))
1514                return 0;
1515
1516        return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1517                         MMC_ERASE_ARG);
1518}
1519
1520/*
1521 * Cleanup struct mmc_test_area.
1522 */
1523static int mmc_test_area_cleanup(struct mmc_test_card *test)
1524{
1525        struct mmc_test_area *t = &test->area;
1526
1527        kfree(t->sg);
1528        mmc_test_free_mem(t->mem);
1529
1530        return 0;
1531}
1532
1533/*
1534 * Initialize an area for testing large transfers.  The test area is set to the
1535 * middle of the card because cards may have different characteristics at the
1536 * front (for FAT file system optimization).  Optionally, the area is erased
1537 * (if the card supports it) which may improve write performance.  Optionally,
1538 * the area is filled with data for subsequent read tests.
1539 */
1540static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1541{
1542        struct mmc_test_area *t = &test->area;
1543        unsigned long min_sz = 64 * 1024, sz;
1544        int ret;
1545
1546        ret = mmc_test_set_blksize(test, 512);
1547        if (ret)
1548                return ret;
1549
1550        /* Make the test area size about 4MiB */
1551        sz = (unsigned long)test->card->pref_erase << 9;
1552        t->max_sz = sz;
1553        while (t->max_sz < 4 * 1024 * 1024)
1554                t->max_sz += sz;
1555        while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1556                t->max_sz -= sz;
1557
1558        t->max_segs = test->card->host->max_segs;
1559        t->max_seg_sz = test->card->host->max_seg_size;
1560        t->max_seg_sz -= t->max_seg_sz % 512;
1561
1562        t->max_tfr = t->max_sz;
1563        if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1564                t->max_tfr = test->card->host->max_blk_count << 9;
1565        if (t->max_tfr > test->card->host->max_req_size)
1566                t->max_tfr = test->card->host->max_req_size;
1567        if (t->max_tfr / t->max_seg_sz > t->max_segs)
1568                t->max_tfr = t->max_segs * t->max_seg_sz;
1569
1570        /*
1571         * Try to allocate enough memory for a max. sized transfer.  Less is OK
1572         * because the same memory can be mapped into the scatterlist more than
1573         * once.  Also, take into account the limits imposed on scatterlist
1574         * segments by the host driver.
1575         */
1576        t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1577                                    t->max_seg_sz);
1578        if (!t->mem)
1579                return -ENOMEM;
1580
1581        t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1582        if (!t->sg) {
1583                ret = -ENOMEM;
1584                goto out_free;
1585        }
1586
1587        t->dev_addr = mmc_test_capacity(test->card) / 2;
1588        t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1589
1590        if (erase) {
1591                ret = mmc_test_area_erase(test);
1592                if (ret)
1593                        goto out_free;
1594        }
1595
1596        if (fill) {
1597                ret = mmc_test_area_fill(test);
1598                if (ret)
1599                        goto out_free;
1600        }
1601
1602        return 0;
1603
1604out_free:
1605        mmc_test_area_cleanup(test);
1606        return ret;
1607}
1608
1609/*
1610 * Prepare for large transfers.  Do not erase the test area.
1611 */
1612static int mmc_test_area_prepare(struct mmc_test_card *test)
1613{
1614        return mmc_test_area_init(test, 0, 0);
1615}
1616
1617/*
1618 * Prepare for large transfers.  Do erase the test area.
1619 */
1620static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1621{
1622        return mmc_test_area_init(test, 1, 0);
1623}
1624
1625/*
1626 * Prepare for large transfers.  Erase and fill the test area.
1627 */
1628static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1629{
1630        return mmc_test_area_init(test, 1, 1);
1631}
1632
1633/*
1634 * Test best-case performance.  Best-case performance is expected from
1635 * a single large transfer.
1636 *
1637 * An additional option (max_scatter) allows the measurement of the same
1638 * transfer but with no contiguous pages in the scatter list.  This tests
1639 * the efficiency of DMA to handle scattered pages.
1640 */
1641static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1642                                     int max_scatter)
1643{
1644        struct mmc_test_area *t = &test->area;
1645
1646        return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1647                                max_scatter, 1);
1648}
1649
1650/*
1651 * Best-case read performance.
1652 */
1653static int mmc_test_best_read_performance(struct mmc_test_card *test)
1654{
1655        return mmc_test_best_performance(test, 0, 0);
1656}
1657
1658/*
1659 * Best-case write performance.
1660 */
1661static int mmc_test_best_write_performance(struct mmc_test_card *test)
1662{
1663        return mmc_test_best_performance(test, 1, 0);
1664}
1665
1666/*
1667 * Best-case read performance into scattered pages.
1668 */
1669static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1670{
1671        return mmc_test_best_performance(test, 0, 1);
1672}
1673
1674/*
1675 * Best-case write performance from scattered pages.
1676 */
1677static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1678{
1679        return mmc_test_best_performance(test, 1, 1);
1680}
1681
1682/*
1683 * Single read performance by transfer size.
1684 */
1685static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1686{
1687        struct mmc_test_area *t = &test->area;
1688        unsigned long sz;
1689        unsigned int dev_addr;
1690        int ret;
1691
1692        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1693                dev_addr = t->dev_addr + (sz >> 9);
1694                ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1695                if (ret)
1696                        return ret;
1697        }
1698        sz = t->max_tfr;
1699        dev_addr = t->dev_addr;
1700        return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1701}
1702
1703/*
1704 * Single write performance by transfer size.
1705 */
1706static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1707{
1708        struct mmc_test_area *t = &test->area;
1709        unsigned long sz;
1710        unsigned int dev_addr;
1711        int ret;
1712
1713        ret = mmc_test_area_erase(test);
1714        if (ret)
1715                return ret;
1716        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1717                dev_addr = t->dev_addr + (sz >> 9);
1718                ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1719                if (ret)
1720                        return ret;
1721        }
1722        ret = mmc_test_area_erase(test);
1723        if (ret)
1724                return ret;
1725        sz = t->max_tfr;
1726        dev_addr = t->dev_addr;
1727        return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1728}
1729
1730/*
1731 * Single trim performance by transfer size.
1732 */
1733static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1734{
1735        struct mmc_test_area *t = &test->area;
1736        unsigned long sz;
1737        unsigned int dev_addr;
1738        struct timespec64 ts1, ts2;
1739        int ret;
1740
1741        if (!mmc_can_trim(test->card))
1742                return RESULT_UNSUP_CARD;
1743
1744        if (!mmc_can_erase(test->card))
1745                return RESULT_UNSUP_HOST;
1746
1747        for (sz = 512; sz < t->max_sz; sz <<= 1) {
1748                dev_addr = t->dev_addr + (sz >> 9);
1749                ktime_get_ts64(&ts1);
1750                ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1751                if (ret)
1752                        return ret;
1753                ktime_get_ts64(&ts2);
1754                mmc_test_print_rate(test, sz, &ts1, &ts2);
1755        }
1756        dev_addr = t->dev_addr;
1757        ktime_get_ts64(&ts1);
1758        ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1759        if (ret)
1760                return ret;
1761        ktime_get_ts64(&ts2);
1762        mmc_test_print_rate(test, sz, &ts1, &ts2);
1763        return 0;
1764}
1765
1766static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1767{
1768        struct mmc_test_area *t = &test->area;
1769        unsigned int dev_addr, i, cnt;
1770        struct timespec64 ts1, ts2;
1771        int ret;
1772
1773        cnt = t->max_sz / sz;
1774        dev_addr = t->dev_addr;
1775        ktime_get_ts64(&ts1);
1776        for (i = 0; i < cnt; i++) {
1777                ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1778                if (ret)
1779                        return ret;
1780                dev_addr += (sz >> 9);
1781        }
1782        ktime_get_ts64(&ts2);
1783        mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1784        return 0;
1785}
1786
1787/*
1788 * Consecutive read performance by transfer size.
1789 */
1790static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1791{
1792        struct mmc_test_area *t = &test->area;
1793        unsigned long sz;
1794        int ret;
1795
1796        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1797                ret = mmc_test_seq_read_perf(test, sz);
1798                if (ret)
1799                        return ret;
1800        }
1801        sz = t->max_tfr;
1802        return mmc_test_seq_read_perf(test, sz);
1803}
1804
1805static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1806{
1807        struct mmc_test_area *t = &test->area;
1808        unsigned int dev_addr, i, cnt;
1809        struct timespec64 ts1, ts2;
1810        int ret;
1811
1812        ret = mmc_test_area_erase(test);
1813        if (ret)
1814                return ret;
1815        cnt = t->max_sz / sz;
1816        dev_addr = t->dev_addr;
1817        ktime_get_ts64(&ts1);
1818        for (i = 0; i < cnt; i++) {
1819                ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1820                if (ret)
1821                        return ret;
1822                dev_addr += (sz >> 9);
1823        }
1824        ktime_get_ts64(&ts2);
1825        mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1826        return 0;
1827}
1828
1829/*
1830 * Consecutive write performance by transfer size.
1831 */
1832static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1833{
1834        struct mmc_test_area *t = &test->area;
1835        unsigned long sz;
1836        int ret;
1837
1838        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1839                ret = mmc_test_seq_write_perf(test, sz);
1840                if (ret)
1841                        return ret;
1842        }
1843        sz = t->max_tfr;
1844        return mmc_test_seq_write_perf(test, sz);
1845}
1846
1847/*
1848 * Consecutive trim performance by transfer size.
1849 */
1850static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1851{
1852        struct mmc_test_area *t = &test->area;
1853        unsigned long sz;
1854        unsigned int dev_addr, i, cnt;
1855        struct timespec64 ts1, ts2;
1856        int ret;
1857
1858        if (!mmc_can_trim(test->card))
1859                return RESULT_UNSUP_CARD;
1860
1861        if (!mmc_can_erase(test->card))
1862                return RESULT_UNSUP_HOST;
1863
1864        for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1865                ret = mmc_test_area_erase(test);
1866                if (ret)
1867                        return ret;
1868                ret = mmc_test_area_fill(test);
1869                if (ret)
1870                        return ret;
1871                cnt = t->max_sz / sz;
1872                dev_addr = t->dev_addr;
1873                ktime_get_ts64(&ts1);
1874                for (i = 0; i < cnt; i++) {
1875                        ret = mmc_erase(test->card, dev_addr, sz >> 9,
1876                                        MMC_TRIM_ARG);
1877                        if (ret)
1878                                return ret;
1879                        dev_addr += (sz >> 9);
1880                }
1881                ktime_get_ts64(&ts2);
1882                mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1883        }
1884        return 0;
1885}
1886
1887static unsigned int rnd_next = 1;
1888
1889static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1890{
1891        uint64_t r;
1892
1893        rnd_next = rnd_next * 1103515245 + 12345;
1894        r = (rnd_next >> 16) & 0x7fff;
1895        return (r * rnd_cnt) >> 15;
1896}
1897
1898static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1899                             unsigned long sz)
1900{
1901        unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1902        unsigned int ssz;
1903        struct timespec64 ts1, ts2, ts;
1904        int ret;
1905
1906        ssz = sz >> 9;
1907
1908        rnd_addr = mmc_test_capacity(test->card) / 4;
1909        range1 = rnd_addr / test->card->pref_erase;
1910        range2 = range1 / ssz;
1911
1912        ktime_get_ts64(&ts1);
1913        for (cnt = 0; cnt < UINT_MAX; cnt++) {
1914                ktime_get_ts64(&ts2);
1915                ts = timespec64_sub(ts2, ts1);
1916                if (ts.tv_sec >= 10)
1917                        break;
1918                ea = mmc_test_rnd_num(range1);
1919                if (ea == last_ea)
1920                        ea -= 1;
1921                last_ea = ea;
1922                dev_addr = rnd_addr + test->card->pref_erase * ea +
1923                           ssz * mmc_test_rnd_num(range2);
1924                ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1925                if (ret)
1926                        return ret;
1927        }
1928        if (print)
1929                mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1930        return 0;
1931}
1932
1933static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1934{
1935        struct mmc_test_area *t = &test->area;
1936        unsigned int next;
1937        unsigned long sz;
1938        int ret;
1939
1940        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1941                /*
1942                 * When writing, try to get more consistent results by running
1943                 * the test twice with exactly the same I/O but outputting the
1944                 * results only for the 2nd run.
1945                 */
1946                if (write) {
1947                        next = rnd_next;
1948                        ret = mmc_test_rnd_perf(test, write, 0, sz);
1949                        if (ret)
1950                                return ret;
1951                        rnd_next = next;
1952                }
1953                ret = mmc_test_rnd_perf(test, write, 1, sz);
1954                if (ret)
1955                        return ret;
1956        }
1957        sz = t->max_tfr;
1958        if (write) {
1959                next = rnd_next;
1960                ret = mmc_test_rnd_perf(test, write, 0, sz);
1961                if (ret)
1962                        return ret;
1963                rnd_next = next;
1964        }
1965        return mmc_test_rnd_perf(test, write, 1, sz);
1966}
1967
1968/*
1969 * Random read performance by transfer size.
1970 */
1971static int mmc_test_random_read_perf(struct mmc_test_card *test)
1972{
1973        return mmc_test_random_perf(test, 0);
1974}
1975
1976/*
1977 * Random write performance by transfer size.
1978 */
1979static int mmc_test_random_write_perf(struct mmc_test_card *test)
1980{
1981        return mmc_test_random_perf(test, 1);
1982}
1983
1984static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1985                             unsigned int tot_sz, int max_scatter)
1986{
1987        struct mmc_test_area *t = &test->area;
1988        unsigned int dev_addr, i, cnt, sz, ssz;
1989        struct timespec64 ts1, ts2;
1990        int ret;
1991
1992        sz = t->max_tfr;
1993
1994        /*
1995         * In the case of a maximally scattered transfer, the maximum transfer
1996         * size is further limited by using PAGE_SIZE segments.
1997         */
1998        if (max_scatter) {
1999                unsigned long max_tfr;
2000
2001                if (t->max_seg_sz >= PAGE_SIZE)
2002                        max_tfr = t->max_segs * PAGE_SIZE;
2003                else
2004                        max_tfr = t->max_segs * t->max_seg_sz;
2005                if (sz > max_tfr)
2006                        sz = max_tfr;
2007        }
2008
2009        ssz = sz >> 9;
2010        dev_addr = mmc_test_capacity(test->card) / 4;
2011        if (tot_sz > dev_addr << 9)
2012                tot_sz = dev_addr << 9;
2013        cnt = tot_sz / sz;
2014        dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2015
2016        ktime_get_ts64(&ts1);
2017        for (i = 0; i < cnt; i++) {
2018                ret = mmc_test_area_io(test, sz, dev_addr, write,
2019                                       max_scatter, 0);
2020                if (ret)
2021                        return ret;
2022                dev_addr += ssz;
2023        }
2024        ktime_get_ts64(&ts2);
2025
2026        mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2027
2028        return 0;
2029}
2030
2031static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2032{
2033        int ret, i;
2034
2035        for (i = 0; i < 10; i++) {
2036                ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2037                if (ret)
2038                        return ret;
2039        }
2040        for (i = 0; i < 5; i++) {
2041                ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2042                if (ret)
2043                        return ret;
2044        }
2045        for (i = 0; i < 3; i++) {
2046                ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2047                if (ret)
2048                        return ret;
2049        }
2050
2051        return ret;
2052}
2053
2054/*
2055 * Large sequential read performance.
2056 */
2057static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2058{
2059        return mmc_test_large_seq_perf(test, 0);
2060}
2061
2062/*
2063 * Large sequential write performance.
2064 */
2065static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2066{
2067        return mmc_test_large_seq_perf(test, 1);
2068}
2069
2070static int mmc_test_rw_multiple(struct mmc_test_card *test,
2071                                struct mmc_test_multiple_rw *tdata,
2072                                unsigned int reqsize, unsigned int size,
2073                                int min_sg_len)
2074{
2075        unsigned int dev_addr;
2076        struct mmc_test_area *t = &test->area;
2077        int ret = 0;
2078
2079        /* Set up test area */
2080        if (size > mmc_test_capacity(test->card) / 2 * 512)
2081                size = mmc_test_capacity(test->card) / 2 * 512;
2082        if (reqsize > t->max_tfr)
2083                reqsize = t->max_tfr;
2084        dev_addr = mmc_test_capacity(test->card) / 4;
2085        if ((dev_addr & 0xffff0000))
2086                dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2087        else
2088                dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2089        if (!dev_addr)
2090                goto err;
2091
2092        if (reqsize > size)
2093                return 0;
2094
2095        /* prepare test area */
2096        if (mmc_can_erase(test->card) &&
2097            tdata->prepare & MMC_TEST_PREP_ERASE) {
2098                ret = mmc_erase(test->card, dev_addr,
2099                                size / 512, MMC_SECURE_ERASE_ARG);
2100                if (ret)
2101                        ret = mmc_erase(test->card, dev_addr,
2102                                        size / 512, MMC_ERASE_ARG);
2103                if (ret)
2104                        goto err;
2105        }
2106
2107        /* Run test */
2108        ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2109                                   tdata->do_write, 0, 1, size / reqsize,
2110                                   tdata->do_nonblock_req, min_sg_len);
2111        if (ret)
2112                goto err;
2113
2114        return ret;
2115 err:
2116        pr_info("[%s] error\n", __func__);
2117        return ret;
2118}
2119
2120static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2121                                     struct mmc_test_multiple_rw *rw)
2122{
2123        int ret = 0;
2124        int i;
2125        void *pre_req = test->card->host->ops->pre_req;
2126        void *post_req = test->card->host->ops->post_req;
2127
2128        if (rw->do_nonblock_req &&
2129            ((!pre_req && post_req) || (pre_req && !post_req))) {
2130                pr_info("error: only one of pre/post is defined\n");
2131                return -EINVAL;
2132        }
2133
2134        for (i = 0 ; i < rw->len && ret == 0; i++) {
2135                ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2136                if (ret)
2137                        break;
2138        }
2139        return ret;
2140}
2141
2142static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2143                                       struct mmc_test_multiple_rw *rw)
2144{
2145        int ret = 0;
2146        int i;
2147
2148        for (i = 0 ; i < rw->len && ret == 0; i++) {
2149                ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2150                                           rw->sg_len[i]);
2151                if (ret)
2152                        break;
2153        }
2154        return ret;
2155}
2156
2157/*
2158 * Multiple blocking write 4k to 4 MB chunks
2159 */
2160static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2161{
2162        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2163                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2164        struct mmc_test_multiple_rw test_data = {
2165                .bs = bs,
2166                .size = TEST_AREA_MAX_SIZE,
2167                .len = ARRAY_SIZE(bs),
2168                .do_write = true,
2169                .do_nonblock_req = false,
2170                .prepare = MMC_TEST_PREP_ERASE,
2171        };
2172
2173        return mmc_test_rw_multiple_size(test, &test_data);
2174};
2175
2176/*
2177 * Multiple non-blocking write 4k to 4 MB chunks
2178 */
2179static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2180{
2181        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2182                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2183        struct mmc_test_multiple_rw test_data = {
2184                .bs = bs,
2185                .size = TEST_AREA_MAX_SIZE,
2186                .len = ARRAY_SIZE(bs),
2187                .do_write = true,
2188                .do_nonblock_req = true,
2189                .prepare = MMC_TEST_PREP_ERASE,
2190        };
2191
2192        return mmc_test_rw_multiple_size(test, &test_data);
2193}
2194
2195/*
2196 * Multiple blocking read 4k to 4 MB chunks
2197 */
2198static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2199{
2200        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2201                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2202        struct mmc_test_multiple_rw test_data = {
2203                .bs = bs,
2204                .size = TEST_AREA_MAX_SIZE,
2205                .len = ARRAY_SIZE(bs),
2206                .do_write = false,
2207                .do_nonblock_req = false,
2208                .prepare = MMC_TEST_PREP_NONE,
2209        };
2210
2211        return mmc_test_rw_multiple_size(test, &test_data);
2212}
2213
2214/*
2215 * Multiple non-blocking read 4k to 4 MB chunks
2216 */
2217static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2218{
2219        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2220                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2221        struct mmc_test_multiple_rw test_data = {
2222                .bs = bs,
2223                .size = TEST_AREA_MAX_SIZE,
2224                .len = ARRAY_SIZE(bs),
2225                .do_write = false,
2226                .do_nonblock_req = true,
2227                .prepare = MMC_TEST_PREP_NONE,
2228        };
2229
2230        return mmc_test_rw_multiple_size(test, &test_data);
2231}
2232
2233/*
2234 * Multiple blocking write 1 to 512 sg elements
2235 */
2236static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2237{
2238        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2239                                 1 << 7, 1 << 8, 1 << 9};
2240        struct mmc_test_multiple_rw test_data = {
2241                .sg_len = sg_len,
2242                .size = TEST_AREA_MAX_SIZE,
2243                .len = ARRAY_SIZE(sg_len),
2244                .do_write = true,
2245                .do_nonblock_req = false,
2246                .prepare = MMC_TEST_PREP_ERASE,
2247        };
2248
2249        return mmc_test_rw_multiple_sg_len(test, &test_data);
2250};
2251
2252/*
2253 * Multiple non-blocking write 1 to 512 sg elements
2254 */
2255static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2256{
2257        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2258                                 1 << 7, 1 << 8, 1 << 9};
2259        struct mmc_test_multiple_rw test_data = {
2260                .sg_len = sg_len,
2261                .size = TEST_AREA_MAX_SIZE,
2262                .len = ARRAY_SIZE(sg_len),
2263                .do_write = true,
2264                .do_nonblock_req = true,
2265                .prepare = MMC_TEST_PREP_ERASE,
2266        };
2267
2268        return mmc_test_rw_multiple_sg_len(test, &test_data);
2269}
2270
2271/*
2272 * Multiple blocking read 1 to 512 sg elements
2273 */
2274static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2275{
2276        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2277                                 1 << 7, 1 << 8, 1 << 9};
2278        struct mmc_test_multiple_rw test_data = {
2279                .sg_len = sg_len,
2280                .size = TEST_AREA_MAX_SIZE,
2281                .len = ARRAY_SIZE(sg_len),
2282                .do_write = false,
2283                .do_nonblock_req = false,
2284                .prepare = MMC_TEST_PREP_NONE,
2285        };
2286
2287        return mmc_test_rw_multiple_sg_len(test, &test_data);
2288}
2289
2290/*
2291 * Multiple non-blocking read 1 to 512 sg elements
2292 */
2293static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2294{
2295        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2296                                 1 << 7, 1 << 8, 1 << 9};
2297        struct mmc_test_multiple_rw test_data = {
2298                .sg_len = sg_len,
2299                .size = TEST_AREA_MAX_SIZE,
2300                .len = ARRAY_SIZE(sg_len),
2301                .do_write = false,
2302                .do_nonblock_req = true,
2303                .prepare = MMC_TEST_PREP_NONE,
2304        };
2305
2306        return mmc_test_rw_multiple_sg_len(test, &test_data);
2307}
2308
2309/*
2310 * eMMC hardware reset.
2311 */
2312static int mmc_test_reset(struct mmc_test_card *test)
2313{
2314        struct mmc_card *card = test->card;
2315        struct mmc_host *host = card->host;
2316        int err;
2317
2318        err = mmc_hw_reset(host);
2319        if (!err) {
2320                /*
2321                 * Reset will re-enable the card's command queue, but tests
2322                 * expect it to be disabled.
2323                 */
2324                if (card->ext_csd.cmdq_en)
2325                        mmc_cmdq_disable(card);
2326                return RESULT_OK;
2327        } else if (err == -EOPNOTSUPP) {
2328                return RESULT_UNSUP_HOST;
2329        }
2330
2331        return RESULT_FAIL;
2332}
2333
2334static int mmc_test_send_status(struct mmc_test_card *test,
2335                                struct mmc_command *cmd)
2336{
2337        memset(cmd, 0, sizeof(*cmd));
2338
2339        cmd->opcode = MMC_SEND_STATUS;
2340        if (!mmc_host_is_spi(test->card->host))
2341                cmd->arg = test->card->rca << 16;
2342        cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2343
2344        return mmc_wait_for_cmd(test->card->host, cmd, 0);
2345}
2346
2347static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2348                                     unsigned int dev_addr, int use_sbc,
2349                                     int repeat_cmd, int write, int use_areq)
2350{
2351        struct mmc_test_req *rq = mmc_test_req_alloc();
2352        struct mmc_host *host = test->card->host;
2353        struct mmc_test_area *t = &test->area;
2354        struct mmc_request *mrq;
2355        unsigned long timeout;
2356        bool expired = false;
2357        int ret = 0, cmd_ret;
2358        u32 status = 0;
2359        int count = 0;
2360
2361        if (!rq)
2362                return -ENOMEM;
2363
2364        mrq = &rq->mrq;
2365        if (use_sbc)
2366                mrq->sbc = &rq->sbc;
2367        mrq->cap_cmd_during_tfr = true;
2368
2369        mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2370                             512, write);
2371
2372        if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2373                ret =  mmc_host_cmd23(host) ?
2374                       RESULT_UNSUP_CARD :
2375                       RESULT_UNSUP_HOST;
2376                goto out_free;
2377        }
2378
2379        /* Start ongoing data request */
2380        if (use_areq) {
2381                ret = mmc_test_start_areq(test, mrq, NULL);
2382                if (ret)
2383                        goto out_free;
2384        } else {
2385                mmc_wait_for_req(host, mrq);
2386        }
2387
2388        timeout = jiffies + msecs_to_jiffies(3000);
2389        do {
2390                count += 1;
2391
2392                /* Send status command while data transfer in progress */
2393                cmd_ret = mmc_test_send_status(test, &rq->status);
2394                if (cmd_ret)
2395                        break;
2396
2397                status = rq->status.resp[0];
2398                if (status & R1_ERROR) {
2399                        cmd_ret = -EIO;
2400                        break;
2401                }
2402
2403                if (mmc_is_req_done(host, mrq))
2404                        break;
2405
2406                expired = time_after(jiffies, timeout);
2407                if (expired) {
2408                        pr_info("%s: timeout waiting for Tran state status %#x\n",
2409                                mmc_hostname(host), status);
2410                        cmd_ret = -ETIMEDOUT;
2411                        break;
2412                }
2413        } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2414
2415        /* Wait for data request to complete */
2416        if (use_areq) {
2417                ret = mmc_test_start_areq(test, NULL, mrq);
2418        } else {
2419                mmc_wait_for_req_done(test->card->host, mrq);
2420        }
2421
2422        /*
2423         * For cap_cmd_during_tfr request, upper layer must send stop if
2424         * required.
2425         */
2426        if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2427                if (ret)
2428                        mmc_wait_for_cmd(host, mrq->data->stop, 0);
2429                else
2430                        ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2431        }
2432
2433        if (ret)
2434                goto out_free;
2435
2436        if (cmd_ret) {
2437                pr_info("%s: Send Status failed: status %#x, error %d\n",
2438                        mmc_hostname(test->card->host), status, cmd_ret);
2439        }
2440
2441        ret = mmc_test_check_result(test, mrq);
2442        if (ret)
2443                goto out_free;
2444
2445        ret = mmc_test_wait_busy(test);
2446        if (ret)
2447                goto out_free;
2448
2449        if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2450                pr_info("%s: %d commands completed during transfer of %u blocks\n",
2451                        mmc_hostname(test->card->host), count, t->blocks);
2452
2453        if (cmd_ret)
2454                ret = cmd_ret;
2455out_free:
2456        kfree(rq);
2457
2458        return ret;
2459}
2460
2461static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2462                                      unsigned long sz, int use_sbc, int write,
2463                                      int use_areq)
2464{
2465        struct mmc_test_area *t = &test->area;
2466        int ret;
2467
2468        if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2469                return RESULT_UNSUP_HOST;
2470
2471        ret = mmc_test_area_map(test, sz, 0, 0);
2472        if (ret)
2473                return ret;
2474
2475        ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2476                                        use_areq);
2477        if (ret)
2478                return ret;
2479
2480        return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2481                                         use_areq);
2482}
2483
2484static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2485                                    int write, int use_areq)
2486{
2487        struct mmc_test_area *t = &test->area;
2488        unsigned long sz;
2489        int ret;
2490
2491        for (sz = 512; sz <= t->max_tfr; sz += 512) {
2492                ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2493                                                 use_areq);
2494                if (ret)
2495                        return ret;
2496        }
2497        return 0;
2498}
2499
2500/*
2501 * Commands during read - no Set Block Count (CMD23).
2502 */
2503static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2504{
2505        return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2506}
2507
2508/*
2509 * Commands during write - no Set Block Count (CMD23).
2510 */
2511static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2512{
2513        return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2514}
2515
2516/*
2517 * Commands during read - use Set Block Count (CMD23).
2518 */
2519static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2520{
2521        return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2522}
2523
2524/*
2525 * Commands during write - use Set Block Count (CMD23).
2526 */
2527static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2528{
2529        return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2530}
2531
2532/*
2533 * Commands during non-blocking read - use Set Block Count (CMD23).
2534 */
2535static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2536{
2537        return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2538}
2539
2540/*
2541 * Commands during non-blocking write - use Set Block Count (CMD23).
2542 */
2543static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2544{
2545        return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2546}
2547
2548static const struct mmc_test_case mmc_test_cases[] = {
2549        {
2550                .name = "Basic write (no data verification)",
2551                .run = mmc_test_basic_write,
2552        },
2553
2554        {
2555                .name = "Basic read (no data verification)",
2556                .run = mmc_test_basic_read,
2557        },
2558
2559        {
2560                .name = "Basic write (with data verification)",
2561                .prepare = mmc_test_prepare_write,
2562                .run = mmc_test_verify_write,
2563                .cleanup = mmc_test_cleanup,
2564        },
2565
2566        {
2567                .name = "Basic read (with data verification)",
2568                .prepare = mmc_test_prepare_read,
2569                .run = mmc_test_verify_read,
2570                .cleanup = mmc_test_cleanup,
2571        },
2572
2573        {
2574                .name = "Multi-block write",
2575                .prepare = mmc_test_prepare_write,
2576                .run = mmc_test_multi_write,
2577                .cleanup = mmc_test_cleanup,
2578        },
2579
2580        {
2581                .name = "Multi-block read",
2582                .prepare = mmc_test_prepare_read,
2583                .run = mmc_test_multi_read,
2584                .cleanup = mmc_test_cleanup,
2585        },
2586
2587        {
2588                .name = "Power of two block writes",
2589                .prepare = mmc_test_prepare_write,
2590                .run = mmc_test_pow2_write,
2591                .cleanup = mmc_test_cleanup,
2592        },
2593
2594        {
2595                .name = "Power of two block reads",
2596                .prepare = mmc_test_prepare_read,
2597                .run = mmc_test_pow2_read,
2598                .cleanup = mmc_test_cleanup,
2599        },
2600
2601        {
2602                .name = "Weird sized block writes",
2603                .prepare = mmc_test_prepare_write,
2604                .run = mmc_test_weird_write,
2605                .cleanup = mmc_test_cleanup,
2606        },
2607
2608        {
2609                .name = "Weird sized block reads",
2610                .prepare = mmc_test_prepare_read,
2611                .run = mmc_test_weird_read,
2612                .cleanup = mmc_test_cleanup,
2613        },
2614
2615        {
2616                .name = "Badly aligned write",
2617                .prepare = mmc_test_prepare_write,
2618                .run = mmc_test_align_write,
2619                .cleanup = mmc_test_cleanup,
2620        },
2621
2622        {
2623                .name = "Badly aligned read",
2624                .prepare = mmc_test_prepare_read,
2625                .run = mmc_test_align_read,
2626                .cleanup = mmc_test_cleanup,
2627        },
2628
2629        {
2630                .name = "Badly aligned multi-block write",
2631                .prepare = mmc_test_prepare_write,
2632                .run = mmc_test_align_multi_write,
2633                .cleanup = mmc_test_cleanup,
2634        },
2635
2636        {
2637                .name = "Badly aligned multi-block read",
2638                .prepare = mmc_test_prepare_read,
2639                .run = mmc_test_align_multi_read,
2640                .cleanup = mmc_test_cleanup,
2641        },
2642
2643        {
2644                .name = "Correct xfer_size at write (start failure)",
2645                .run = mmc_test_xfersize_write,
2646        },
2647
2648        {
2649                .name = "Correct xfer_size at read (start failure)",
2650                .run = mmc_test_xfersize_read,
2651        },
2652
2653        {
2654                .name = "Correct xfer_size at write (midway failure)",
2655                .run = mmc_test_multi_xfersize_write,
2656        },
2657
2658        {
2659                .name = "Correct xfer_size at read (midway failure)",
2660                .run = mmc_test_multi_xfersize_read,
2661        },
2662
2663#ifdef CONFIG_HIGHMEM
2664
2665        {
2666                .name = "Highmem write",
2667                .prepare = mmc_test_prepare_write,
2668                .run = mmc_test_write_high,
2669                .cleanup = mmc_test_cleanup,
2670        },
2671
2672        {
2673                .name = "Highmem read",
2674                .prepare = mmc_test_prepare_read,
2675                .run = mmc_test_read_high,
2676                .cleanup = mmc_test_cleanup,
2677        },
2678
2679        {
2680                .name = "Multi-block highmem write",
2681                .prepare = mmc_test_prepare_write,
2682                .run = mmc_test_multi_write_high,
2683                .cleanup = mmc_test_cleanup,
2684        },
2685
2686        {
2687                .name = "Multi-block highmem read",
2688                .prepare = mmc_test_prepare_read,
2689                .run = mmc_test_multi_read_high,
2690                .cleanup = mmc_test_cleanup,
2691        },
2692
2693#else
2694
2695        {
2696                .name = "Highmem write",
2697                .run = mmc_test_no_highmem,
2698        },
2699
2700        {
2701                .name = "Highmem read",
2702                .run = mmc_test_no_highmem,
2703        },
2704
2705        {
2706                .name = "Multi-block highmem write",
2707                .run = mmc_test_no_highmem,
2708        },
2709
2710        {
2711                .name = "Multi-block highmem read",
2712                .run = mmc_test_no_highmem,
2713        },
2714
2715#endif /* CONFIG_HIGHMEM */
2716
2717        {
2718                .name = "Best-case read performance",
2719                .prepare = mmc_test_area_prepare_fill,
2720                .run = mmc_test_best_read_performance,
2721                .cleanup = mmc_test_area_cleanup,
2722        },
2723
2724        {
2725                .name = "Best-case write performance",
2726                .prepare = mmc_test_area_prepare_erase,
2727                .run = mmc_test_best_write_performance,
2728                .cleanup = mmc_test_area_cleanup,
2729        },
2730
2731        {
2732                .name = "Best-case read performance into scattered pages",
2733                .prepare = mmc_test_area_prepare_fill,
2734                .run = mmc_test_best_read_perf_max_scatter,
2735                .cleanup = mmc_test_area_cleanup,
2736        },
2737
2738        {
2739                .name = "Best-case write performance from scattered pages",
2740                .prepare = mmc_test_area_prepare_erase,
2741                .run = mmc_test_best_write_perf_max_scatter,
2742                .cleanup = mmc_test_area_cleanup,
2743        },
2744
2745        {
2746                .name = "Single read performance by transfer size",
2747                .prepare = mmc_test_area_prepare_fill,
2748                .run = mmc_test_profile_read_perf,
2749                .cleanup = mmc_test_area_cleanup,
2750        },
2751
2752        {
2753                .name = "Single write performance by transfer size",
2754                .prepare = mmc_test_area_prepare,
2755                .run = mmc_test_profile_write_perf,
2756                .cleanup = mmc_test_area_cleanup,
2757        },
2758
2759        {
2760                .name = "Single trim performance by transfer size",
2761                .prepare = mmc_test_area_prepare_fill,
2762                .run = mmc_test_profile_trim_perf,
2763                .cleanup = mmc_test_area_cleanup,
2764        },
2765
2766        {
2767                .name = "Consecutive read performance by transfer size",
2768                .prepare = mmc_test_area_prepare_fill,
2769                .run = mmc_test_profile_seq_read_perf,
2770                .cleanup = mmc_test_area_cleanup,
2771        },
2772
2773        {
2774                .name = "Consecutive write performance by transfer size",
2775                .prepare = mmc_test_area_prepare,
2776                .run = mmc_test_profile_seq_write_perf,
2777                .cleanup = mmc_test_area_cleanup,
2778        },
2779
2780        {
2781                .name = "Consecutive trim performance by transfer size",
2782                .prepare = mmc_test_area_prepare,
2783                .run = mmc_test_profile_seq_trim_perf,
2784                .cleanup = mmc_test_area_cleanup,
2785        },
2786
2787        {
2788                .name = "Random read performance by transfer size",
2789                .prepare = mmc_test_area_prepare,
2790                .run = mmc_test_random_read_perf,
2791                .cleanup = mmc_test_area_cleanup,
2792        },
2793
2794        {
2795                .name = "Random write performance by transfer size",
2796                .prepare = mmc_test_area_prepare,
2797                .run = mmc_test_random_write_perf,
2798                .cleanup = mmc_test_area_cleanup,
2799        },
2800
2801        {
2802                .name = "Large sequential read into scattered pages",
2803                .prepare = mmc_test_area_prepare,
2804                .run = mmc_test_large_seq_read_perf,
2805                .cleanup = mmc_test_area_cleanup,
2806        },
2807
2808        {
2809                .name = "Large sequential write from scattered pages",
2810                .prepare = mmc_test_area_prepare,
2811                .run = mmc_test_large_seq_write_perf,
2812                .cleanup = mmc_test_area_cleanup,
2813        },
2814
2815        {
2816                .name = "Write performance with blocking req 4k to 4MB",
2817                .prepare = mmc_test_area_prepare,
2818                .run = mmc_test_profile_mult_write_blocking_perf,
2819                .cleanup = mmc_test_area_cleanup,
2820        },
2821
2822        {
2823                .name = "Write performance with non-blocking req 4k to 4MB",
2824                .prepare = mmc_test_area_prepare,
2825                .run = mmc_test_profile_mult_write_nonblock_perf,
2826                .cleanup = mmc_test_area_cleanup,
2827        },
2828
2829        {
2830                .name = "Read performance with blocking req 4k to 4MB",
2831                .prepare = mmc_test_area_prepare,
2832                .run = mmc_test_profile_mult_read_blocking_perf,
2833                .cleanup = mmc_test_area_cleanup,
2834        },
2835
2836        {
2837                .name = "Read performance with non-blocking req 4k to 4MB",
2838                .prepare = mmc_test_area_prepare,
2839                .run = mmc_test_profile_mult_read_nonblock_perf,
2840                .cleanup = mmc_test_area_cleanup,
2841        },
2842
2843        {
2844                .name = "Write performance blocking req 1 to 512 sg elems",
2845                .prepare = mmc_test_area_prepare,
2846                .run = mmc_test_profile_sglen_wr_blocking_perf,
2847                .cleanup = mmc_test_area_cleanup,
2848        },
2849
2850        {
2851                .name = "Write performance non-blocking req 1 to 512 sg elems",
2852                .prepare = mmc_test_area_prepare,
2853                .run = mmc_test_profile_sglen_wr_nonblock_perf,
2854                .cleanup = mmc_test_area_cleanup,
2855        },
2856
2857        {
2858                .name = "Read performance blocking req 1 to 512 sg elems",
2859                .prepare = mmc_test_area_prepare,
2860                .run = mmc_test_profile_sglen_r_blocking_perf,
2861                .cleanup = mmc_test_area_cleanup,
2862        },
2863
2864        {
2865                .name = "Read performance non-blocking req 1 to 512 sg elems",
2866                .prepare = mmc_test_area_prepare,
2867                .run = mmc_test_profile_sglen_r_nonblock_perf,
2868                .cleanup = mmc_test_area_cleanup,
2869        },
2870
2871        {
2872                .name = "Reset test",
2873                .run = mmc_test_reset,
2874        },
2875
2876        {
2877                .name = "Commands during read - no Set Block Count (CMD23)",
2878                .prepare = mmc_test_area_prepare,
2879                .run = mmc_test_cmds_during_read,
2880                .cleanup = mmc_test_area_cleanup,
2881        },
2882
2883        {
2884                .name = "Commands during write - no Set Block Count (CMD23)",
2885                .prepare = mmc_test_area_prepare,
2886                .run = mmc_test_cmds_during_write,
2887                .cleanup = mmc_test_area_cleanup,
2888        },
2889
2890        {
2891                .name = "Commands during read - use Set Block Count (CMD23)",
2892                .prepare = mmc_test_area_prepare,
2893                .run = mmc_test_cmds_during_read_cmd23,
2894                .cleanup = mmc_test_area_cleanup,
2895        },
2896
2897        {
2898                .name = "Commands during write - use Set Block Count (CMD23)",
2899                .prepare = mmc_test_area_prepare,
2900                .run = mmc_test_cmds_during_write_cmd23,
2901                .cleanup = mmc_test_area_cleanup,
2902        },
2903
2904        {
2905                .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2906                .prepare = mmc_test_area_prepare,
2907                .run = mmc_test_cmds_during_read_cmd23_nonblock,
2908                .cleanup = mmc_test_area_cleanup,
2909        },
2910
2911        {
2912                .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2913                .prepare = mmc_test_area_prepare,
2914                .run = mmc_test_cmds_during_write_cmd23_nonblock,
2915                .cleanup = mmc_test_area_cleanup,
2916        },
2917};
2918
2919static DEFINE_MUTEX(mmc_test_lock);
2920
2921static LIST_HEAD(mmc_test_result);
2922
2923static void mmc_test_run(struct mmc_test_card *test, int testcase)
2924{
2925        int i, ret;
2926
2927        pr_info("%s: Starting tests of card %s...\n",
2928                mmc_hostname(test->card->host), mmc_card_id(test->card));
2929
2930        mmc_claim_host(test->card->host);
2931
2932        for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2933                struct mmc_test_general_result *gr;
2934
2935                if (testcase && ((i + 1) != testcase))
2936                        continue;
2937
2938                pr_info("%s: Test case %d. %s...\n",
2939                        mmc_hostname(test->card->host), i + 1,
2940                        mmc_test_cases[i].name);
2941
2942                if (mmc_test_cases[i].prepare) {
2943                        ret = mmc_test_cases[i].prepare(test);
2944                        if (ret) {
2945                                pr_info("%s: Result: Prepare stage failed! (%d)\n",
2946                                        mmc_hostname(test->card->host),
2947                                        ret);
2948                                continue;
2949                        }
2950                }
2951
2952                gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2953                if (gr) {
2954                        INIT_LIST_HEAD(&gr->tr_lst);
2955
2956                        /* Assign data what we know already */
2957                        gr->card = test->card;
2958                        gr->testcase = i;
2959
2960                        /* Append container to global one */
2961                        list_add_tail(&gr->link, &mmc_test_result);
2962
2963                        /*
2964                         * Save the pointer to created container in our private
2965                         * structure.
2966                         */
2967                        test->gr = gr;
2968                }
2969
2970                ret = mmc_test_cases[i].run(test);
2971                switch (ret) {
2972                case RESULT_OK:
2973                        pr_info("%s: Result: OK\n",
2974                                mmc_hostname(test->card->host));
2975                        break;
2976                case RESULT_FAIL:
2977                        pr_info("%s: Result: FAILED\n",
2978                                mmc_hostname(test->card->host));
2979                        break;
2980                case RESULT_UNSUP_HOST:
2981                        pr_info("%s: Result: UNSUPPORTED (by host)\n",
2982                                mmc_hostname(test->card->host));
2983                        break;
2984                case RESULT_UNSUP_CARD:
2985                        pr_info("%s: Result: UNSUPPORTED (by card)\n",
2986                                mmc_hostname(test->card->host));
2987                        break;
2988                default:
2989                        pr_info("%s: Result: ERROR (%d)\n",
2990                                mmc_hostname(test->card->host), ret);
2991                }
2992
2993                /* Save the result */
2994                if (gr)
2995                        gr->result = ret;
2996
2997                if (mmc_test_cases[i].cleanup) {
2998                        ret = mmc_test_cases[i].cleanup(test);
2999                        if (ret) {
3000                                pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3001                                        mmc_hostname(test->card->host),
3002                                        ret);
3003                        }
3004                }
3005        }
3006
3007        mmc_release_host(test->card->host);
3008
3009        pr_info("%s: Tests completed.\n",
3010                mmc_hostname(test->card->host));
3011}
3012
3013static void mmc_test_free_result(struct mmc_card *card)
3014{
3015        struct mmc_test_general_result *gr, *grs;
3016
3017        mutex_lock(&mmc_test_lock);
3018
3019        list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3020                struct mmc_test_transfer_result *tr, *trs;
3021
3022                if (card && gr->card != card)
3023                        continue;
3024
3025                list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3026                        list_del(&tr->link);
3027                        kfree(tr);
3028                }
3029
3030                list_del(&gr->link);
3031                kfree(gr);
3032        }
3033
3034        mutex_unlock(&mmc_test_lock);
3035}
3036
3037static LIST_HEAD(mmc_test_file_test);
3038
3039static int mtf_test_show(struct seq_file *sf, void *data)
3040{
3041        struct mmc_card *card = (struct mmc_card *)sf->private;
3042        struct mmc_test_general_result *gr;
3043
3044        mutex_lock(&mmc_test_lock);
3045
3046        list_for_each_entry(gr, &mmc_test_result, link) {
3047                struct mmc_test_transfer_result *tr;
3048
3049                if (gr->card != card)
3050                        continue;
3051
3052                seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3053
3054                list_for_each_entry(tr, &gr->tr_lst, link) {
3055                        seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3056                                tr->count, tr->sectors,
3057                                (u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3058                                tr->rate, tr->iops / 100, tr->iops % 100);
3059                }
3060        }
3061
3062        mutex_unlock(&mmc_test_lock);
3063
3064        return 0;
3065}
3066
3067static int mtf_test_open(struct inode *inode, struct file *file)
3068{
3069        return single_open(file, mtf_test_show, inode->i_private);
3070}
3071
3072static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3073        size_t count, loff_t *pos)
3074{
3075        struct seq_file *sf = (struct seq_file *)file->private_data;
3076        struct mmc_card *card = (struct mmc_card *)sf->private;
3077        struct mmc_test_card *test;
3078        long testcase;
3079        int ret;
3080
3081        ret = kstrtol_from_user(buf, count, 10, &testcase);
3082        if (ret)
3083                return ret;
3084
3085        test = kzalloc(sizeof(*test), GFP_KERNEL);
3086        if (!test)
3087                return -ENOMEM;
3088
3089        /*
3090         * Remove all test cases associated with given card. Thus we have only
3091         * actual data of the last run.
3092         */
3093        mmc_test_free_result(card);
3094
3095        test->card = card;
3096
3097        test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3098#ifdef CONFIG_HIGHMEM
3099        test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3100#endif
3101
3102#ifdef CONFIG_HIGHMEM
3103        if (test->buffer && test->highmem) {
3104#else
3105        if (test->buffer) {
3106#endif
3107                mutex_lock(&mmc_test_lock);
3108                mmc_test_run(test, testcase);
3109                mutex_unlock(&mmc_test_lock);
3110        }
3111
3112#ifdef CONFIG_HIGHMEM
3113        __free_pages(test->highmem, BUFFER_ORDER);
3114#endif
3115        kfree(test->buffer);
3116        kfree(test);
3117
3118        return count;
3119}
3120
3121static const struct file_operations mmc_test_fops_test = {
3122        .open           = mtf_test_open,
3123        .read           = seq_read,
3124        .write          = mtf_test_write,
3125        .llseek         = seq_lseek,
3126        .release        = single_release,
3127};
3128
3129static int mtf_testlist_show(struct seq_file *sf, void *data)
3130{
3131        int i;
3132
3133        mutex_lock(&mmc_test_lock);
3134
3135        seq_puts(sf, "0:\tRun all tests\n");
3136        for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3137                seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3138
3139        mutex_unlock(&mmc_test_lock);
3140
3141        return 0;
3142}
3143
3144DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3145
3146static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3147{
3148        struct mmc_test_dbgfs_file *df, *dfs;
3149
3150        mutex_lock(&mmc_test_lock);
3151
3152        list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3153                if (card && df->card != card)
3154                        continue;
3155                debugfs_remove(df->file);
3156                list_del(&df->link);
3157                kfree(df);
3158        }
3159
3160        mutex_unlock(&mmc_test_lock);
3161}
3162
3163static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3164        const char *name, umode_t mode, const struct file_operations *fops)
3165{
3166        struct dentry *file = NULL;
3167        struct mmc_test_dbgfs_file *df;
3168
3169        if (card->debugfs_root)
3170                debugfs_create_file(name, mode, card->debugfs_root, card, fops);
3171
3172        df = kmalloc(sizeof(*df), GFP_KERNEL);
3173        if (!df) {
3174                debugfs_remove(file);
3175                return -ENOMEM;
3176        }
3177
3178        df->card = card;
3179        df->file = file;
3180
3181        list_add(&df->link, &mmc_test_file_test);
3182        return 0;
3183}
3184
3185static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3186{
3187        int ret;
3188
3189        mutex_lock(&mmc_test_lock);
3190
3191        ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3192                &mmc_test_fops_test);
3193        if (ret)
3194                goto err;
3195
3196        ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3197                &mtf_testlist_fops);
3198        if (ret)
3199                goto err;
3200
3201err:
3202        mutex_unlock(&mmc_test_lock);
3203
3204        return ret;
3205}
3206
3207static int mmc_test_probe(struct mmc_card *card)
3208{
3209        int ret;
3210
3211        if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3212                return -ENODEV;
3213
3214        ret = mmc_test_register_dbgfs_file(card);
3215        if (ret)
3216                return ret;
3217
3218        if (card->ext_csd.cmdq_en) {
3219                mmc_claim_host(card->host);
3220                ret = mmc_cmdq_disable(card);
3221                mmc_release_host(card->host);
3222                if (ret)
3223                        return ret;
3224        }
3225
3226        dev_info(&card->dev, "Card claimed for testing.\n");
3227
3228        return 0;
3229}
3230
3231static void mmc_test_remove(struct mmc_card *card)
3232{
3233        if (card->reenable_cmdq) {
3234                mmc_claim_host(card->host);
3235                mmc_cmdq_enable(card);
3236                mmc_release_host(card->host);
3237        }
3238        mmc_test_free_result(card);
3239        mmc_test_free_dbgfs_file(card);
3240}
3241
3242static void mmc_test_shutdown(struct mmc_card *card)
3243{
3244}
3245
3246static struct mmc_driver mmc_driver = {
3247        .drv            = {
3248                .name   = "mmc_test",
3249        },
3250        .probe          = mmc_test_probe,
3251        .remove         = mmc_test_remove,
3252        .shutdown       = mmc_test_shutdown,
3253};
3254
3255static int __init mmc_test_init(void)
3256{
3257        return mmc_register_driver(&mmc_driver);
3258}
3259
3260static void __exit mmc_test_exit(void)
3261{
3262        /* Clear stalled data if card is still plugged */
3263        mmc_test_free_result(NULL);
3264        mmc_test_free_dbgfs_file(NULL);
3265
3266        mmc_unregister_driver(&mmc_driver);
3267}
3268
3269module_init(mmc_test_init);
3270module_exit(mmc_test_exit);
3271
3272MODULE_LICENSE("GPL");
3273MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3274MODULE_AUTHOR("Pierre Ossman");
3275