linux/drivers/mmc/host/mmci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/slot-gpio.h>
  26#include <linux/amba/bus.h>
  27#include <linux/clk.h>
  28#include <linux/scatterlist.h>
  29#include <linux/of.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/dmaengine.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/amba/mmci.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/types.h>
  36#include <linux/pinctrl/consumer.h>
  37#include <linux/reset.h>
  38
  39#include <asm/div64.h>
  40#include <asm/io.h>
  41
  42#include "mmci.h"
  43
  44#define DRIVER_NAME "mmci-pl18x"
  45
  46static void mmci_variant_init(struct mmci_host *host);
  47static void ux500v2_variant_init(struct mmci_host *host);
  48
  49static unsigned int fmax = 515633;
  50
  51static struct variant_data variant_arm = {
  52        .fifosize               = 16 * 4,
  53        .fifohalfsize           = 8 * 4,
  54        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  55        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  56        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  57        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  58        .datalength_bits        = 16,
  59        .datactrl_blocksz       = 11,
  60        .pwrreg_powerup         = MCI_PWR_UP,
  61        .f_max                  = 100000000,
  62        .reversed_irq_handling  = true,
  63        .mmcimask1              = true,
  64        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
  65        .start_err              = MCI_STARTBITERR,
  66        .opendrain              = MCI_ROD,
  67        .init                   = mmci_variant_init,
  68};
  69
  70static struct variant_data variant_arm_extended_fifo = {
  71        .fifosize               = 128 * 4,
  72        .fifohalfsize           = 64 * 4,
  73        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  74        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  75        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  76        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  77        .datalength_bits        = 16,
  78        .datactrl_blocksz       = 11,
  79        .pwrreg_powerup         = MCI_PWR_UP,
  80        .f_max                  = 100000000,
  81        .mmcimask1              = true,
  82        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
  83        .start_err              = MCI_STARTBITERR,
  84        .opendrain              = MCI_ROD,
  85        .init                   = mmci_variant_init,
  86};
  87
  88static struct variant_data variant_arm_extended_fifo_hwfc = {
  89        .fifosize               = 128 * 4,
  90        .fifohalfsize           = 64 * 4,
  91        .clkreg_enable          = MCI_ARM_HWFCEN,
  92        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  93        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  94        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  95        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  96        .datalength_bits        = 16,
  97        .datactrl_blocksz       = 11,
  98        .pwrreg_powerup         = MCI_PWR_UP,
  99        .f_max                  = 100000000,
 100        .mmcimask1              = true,
 101        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 102        .start_err              = MCI_STARTBITERR,
 103        .opendrain              = MCI_ROD,
 104        .init                   = mmci_variant_init,
 105};
 106
 107static struct variant_data variant_u300 = {
 108        .fifosize               = 16 * 4,
 109        .fifohalfsize           = 8 * 4,
 110        .clkreg_enable          = MCI_ST_U300_HWFCEN,
 111        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 112        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 113        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 114        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 115        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 116        .datalength_bits        = 16,
 117        .datactrl_blocksz       = 11,
 118        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 119        .st_sdio                        = true,
 120        .pwrreg_powerup         = MCI_PWR_ON,
 121        .f_max                  = 100000000,
 122        .signal_direction       = true,
 123        .pwrreg_clkgate         = true,
 124        .pwrreg_nopower         = true,
 125        .mmcimask1              = true,
 126        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 127        .start_err              = MCI_STARTBITERR,
 128        .opendrain              = MCI_OD,
 129        .init                   = mmci_variant_init,
 130};
 131
 132static struct variant_data variant_nomadik = {
 133        .fifosize               = 16 * 4,
 134        .fifohalfsize           = 8 * 4,
 135        .clkreg                 = MCI_CLK_ENABLE,
 136        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 137        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 138        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 139        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 140        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 141        .datalength_bits        = 24,
 142        .datactrl_blocksz       = 11,
 143        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 144        .st_sdio                = true,
 145        .st_clkdiv              = true,
 146        .pwrreg_powerup         = MCI_PWR_ON,
 147        .f_max                  = 100000000,
 148        .signal_direction       = true,
 149        .pwrreg_clkgate         = true,
 150        .pwrreg_nopower         = true,
 151        .mmcimask1              = true,
 152        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 153        .start_err              = MCI_STARTBITERR,
 154        .opendrain              = MCI_OD,
 155        .init                   = mmci_variant_init,
 156};
 157
 158static struct variant_data variant_ux500 = {
 159        .fifosize               = 30 * 4,
 160        .fifohalfsize           = 8 * 4,
 161        .clkreg                 = MCI_CLK_ENABLE,
 162        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 163        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 164        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 165        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 166        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 167        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 168        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 169        .datalength_bits        = 24,
 170        .datactrl_blocksz       = 11,
 171        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 172        .st_sdio                = true,
 173        .st_clkdiv              = true,
 174        .pwrreg_powerup         = MCI_PWR_ON,
 175        .f_max                  = 100000000,
 176        .signal_direction       = true,
 177        .pwrreg_clkgate         = true,
 178        .busy_detect            = true,
 179        .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 180        .busy_detect_flag       = MCI_ST_CARDBUSY,
 181        .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 182        .pwrreg_nopower         = true,
 183        .mmcimask1              = true,
 184        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 185        .start_err              = MCI_STARTBITERR,
 186        .opendrain              = MCI_OD,
 187        .init                   = mmci_variant_init,
 188};
 189
 190static struct variant_data variant_ux500v2 = {
 191        .fifosize               = 30 * 4,
 192        .fifohalfsize           = 8 * 4,
 193        .clkreg                 = MCI_CLK_ENABLE,
 194        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 195        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 196        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 197        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 198        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 199        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 200        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 201        .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
 202        .datalength_bits        = 24,
 203        .datactrl_blocksz       = 11,
 204        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 205        .st_sdio                = true,
 206        .st_clkdiv              = true,
 207        .pwrreg_powerup         = MCI_PWR_ON,
 208        .f_max                  = 100000000,
 209        .signal_direction       = true,
 210        .pwrreg_clkgate         = true,
 211        .busy_detect            = true,
 212        .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 213        .busy_detect_flag       = MCI_ST_CARDBUSY,
 214        .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 215        .pwrreg_nopower         = true,
 216        .mmcimask1              = true,
 217        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 218        .start_err              = MCI_STARTBITERR,
 219        .opendrain              = MCI_OD,
 220        .init                   = ux500v2_variant_init,
 221};
 222
 223static struct variant_data variant_stm32 = {
 224        .fifosize               = 32 * 4,
 225        .fifohalfsize           = 8 * 4,
 226        .clkreg                 = MCI_CLK_ENABLE,
 227        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 228        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 229        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 230        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 231        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 232        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 233        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 234        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 235        .datalength_bits        = 24,
 236        .datactrl_blocksz       = 11,
 237        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 238        .st_sdio                = true,
 239        .st_clkdiv              = true,
 240        .pwrreg_powerup         = MCI_PWR_ON,
 241        .f_max                  = 48000000,
 242        .pwrreg_clkgate         = true,
 243        .pwrreg_nopower         = true,
 244        .init                   = mmci_variant_init,
 245};
 246
 247static struct variant_data variant_stm32_sdmmc = {
 248        .fifosize               = 16 * 4,
 249        .fifohalfsize           = 8 * 4,
 250        .f_max                  = 208000000,
 251        .stm32_clkdiv           = true,
 252        .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
 253        .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
 254        .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
 255        .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
 256        .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
 257        .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
 258        .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
 259        .datactrl_first         = true,
 260        .datacnt_useless        = true,
 261        .datalength_bits        = 25,
 262        .datactrl_blocksz       = 14,
 263        .stm32_idmabsize_mask   = GENMASK(12, 5),
 264        .init                   = sdmmc_variant_init,
 265};
 266
 267static struct variant_data variant_qcom = {
 268        .fifosize               = 16 * 4,
 269        .fifohalfsize           = 8 * 4,
 270        .clkreg                 = MCI_CLK_ENABLE,
 271        .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
 272                                  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 273        .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 274        .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 275        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 276        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 277        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 278        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 279        .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
 280        .datalength_bits        = 24,
 281        .datactrl_blocksz       = 11,
 282        .pwrreg_powerup         = MCI_PWR_UP,
 283        .f_max                  = 208000000,
 284        .explicit_mclk_control  = true,
 285        .qcom_fifo              = true,
 286        .qcom_dml               = true,
 287        .mmcimask1              = true,
 288        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 289        .start_err              = MCI_STARTBITERR,
 290        .opendrain              = MCI_ROD,
 291        .init                   = qcom_variant_init,
 292};
 293
 294/* Busy detection for the ST Micro variant */
 295static int mmci_card_busy(struct mmc_host *mmc)
 296{
 297        struct mmci_host *host = mmc_priv(mmc);
 298        unsigned long flags;
 299        int busy = 0;
 300
 301        spin_lock_irqsave(&host->lock, flags);
 302        if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 303                busy = 1;
 304        spin_unlock_irqrestore(&host->lock, flags);
 305
 306        return busy;
 307}
 308
 309static void mmci_reg_delay(struct mmci_host *host)
 310{
 311        /*
 312         * According to the spec, at least three feedback clock cycles
 313         * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 314         * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 315         * Worst delay time during card init is at 100 kHz => 30 us.
 316         * Worst delay time when up and running is at 25 MHz => 120 ns.
 317         */
 318        if (host->cclk < 25000000)
 319                udelay(30);
 320        else
 321                ndelay(120);
 322}
 323
 324/*
 325 * This must be called with host->lock held
 326 */
 327void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 328{
 329        if (host->clk_reg != clk) {
 330                host->clk_reg = clk;
 331                writel(clk, host->base + MMCICLOCK);
 332        }
 333}
 334
 335/*
 336 * This must be called with host->lock held
 337 */
 338void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 339{
 340        if (host->pwr_reg != pwr) {
 341                host->pwr_reg = pwr;
 342                writel(pwr, host->base + MMCIPOWER);
 343        }
 344}
 345
 346/*
 347 * This must be called with host->lock held
 348 */
 349static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 350{
 351        /* Keep busy mode in DPSM if enabled */
 352        datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 353
 354        if (host->datactrl_reg != datactrl) {
 355                host->datactrl_reg = datactrl;
 356                writel(datactrl, host->base + MMCIDATACTRL);
 357        }
 358}
 359
 360/*
 361 * This must be called with host->lock held
 362 */
 363static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 364{
 365        struct variant_data *variant = host->variant;
 366        u32 clk = variant->clkreg;
 367
 368        /* Make sure cclk reflects the current calculated clock */
 369        host->cclk = 0;
 370
 371        if (desired) {
 372                if (variant->explicit_mclk_control) {
 373                        host->cclk = host->mclk;
 374                } else if (desired >= host->mclk) {
 375                        clk = MCI_CLK_BYPASS;
 376                        if (variant->st_clkdiv)
 377                                clk |= MCI_ST_UX500_NEG_EDGE;
 378                        host->cclk = host->mclk;
 379                } else if (variant->st_clkdiv) {
 380                        /*
 381                         * DB8500 TRM says f = mclk / (clkdiv + 2)
 382                         * => clkdiv = (mclk / f) - 2
 383                         * Round the divider up so we don't exceed the max
 384                         * frequency
 385                         */
 386                        clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 387                        if (clk >= 256)
 388                                clk = 255;
 389                        host->cclk = host->mclk / (clk + 2);
 390                } else {
 391                        /*
 392                         * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 393                         * => clkdiv = mclk / (2 * f) - 1
 394                         */
 395                        clk = host->mclk / (2 * desired) - 1;
 396                        if (clk >= 256)
 397                                clk = 255;
 398                        host->cclk = host->mclk / (2 * (clk + 1));
 399                }
 400
 401                clk |= variant->clkreg_enable;
 402                clk |= MCI_CLK_ENABLE;
 403                /* This hasn't proven to be worthwhile */
 404                /* clk |= MCI_CLK_PWRSAVE; */
 405        }
 406
 407        /* Set actual clock for debug */
 408        host->mmc->actual_clock = host->cclk;
 409
 410        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 411                clk |= MCI_4BIT_BUS;
 412        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 413                clk |= variant->clkreg_8bit_bus_enable;
 414
 415        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 416            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 417                clk |= variant->clkreg_neg_edge_enable;
 418
 419        mmci_write_clkreg(host, clk);
 420}
 421
 422void mmci_dma_release(struct mmci_host *host)
 423{
 424        if (host->ops && host->ops->dma_release)
 425                host->ops->dma_release(host);
 426
 427        host->use_dma = false;
 428}
 429
 430void mmci_dma_setup(struct mmci_host *host)
 431{
 432        if (!host->ops || !host->ops->dma_setup)
 433                return;
 434
 435        if (host->ops->dma_setup(host))
 436                return;
 437
 438        /* initialize pre request cookie */
 439        host->next_cookie = 1;
 440
 441        host->use_dma = true;
 442}
 443
 444/*
 445 * Validate mmc prerequisites
 446 */
 447static int mmci_validate_data(struct mmci_host *host,
 448                              struct mmc_data *data)
 449{
 450        if (!data)
 451                return 0;
 452
 453        if (!is_power_of_2(data->blksz)) {
 454                dev_err(mmc_dev(host->mmc),
 455                        "unsupported block size (%d bytes)\n", data->blksz);
 456                return -EINVAL;
 457        }
 458
 459        if (host->ops && host->ops->validate_data)
 460                return host->ops->validate_data(host, data);
 461
 462        return 0;
 463}
 464
 465int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 466{
 467        int err;
 468
 469        if (!host->ops || !host->ops->prep_data)
 470                return 0;
 471
 472        err = host->ops->prep_data(host, data, next);
 473
 474        if (next && !err)
 475                data->host_cookie = ++host->next_cookie < 0 ?
 476                        1 : host->next_cookie;
 477
 478        return err;
 479}
 480
 481void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 482                      int err)
 483{
 484        if (host->ops && host->ops->unprep_data)
 485                host->ops->unprep_data(host, data, err);
 486
 487        data->host_cookie = 0;
 488}
 489
 490void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 491{
 492        WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 493
 494        if (host->ops && host->ops->get_next_data)
 495                host->ops->get_next_data(host, data);
 496}
 497
 498int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 499{
 500        struct mmc_data *data = host->data;
 501        int ret;
 502
 503        if (!host->use_dma)
 504                return -EINVAL;
 505
 506        ret = mmci_prep_data(host, data, false);
 507        if (ret)
 508                return ret;
 509
 510        if (!host->ops || !host->ops->dma_start)
 511                return -EINVAL;
 512
 513        /* Okay, go for it. */
 514        dev_vdbg(mmc_dev(host->mmc),
 515                 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 516                 data->sg_len, data->blksz, data->blocks, data->flags);
 517
 518        host->ops->dma_start(host, &datactrl);
 519
 520        /* Trigger the DMA transfer */
 521        mmci_write_datactrlreg(host, datactrl);
 522
 523        /*
 524         * Let the MMCI say when the data is ended and it's time
 525         * to fire next DMA request. When that happens, MMCI will
 526         * call mmci_data_end()
 527         */
 528        writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 529               host->base + MMCIMASK0);
 530        return 0;
 531}
 532
 533void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 534{
 535        if (!host->use_dma)
 536                return;
 537
 538        if (host->ops && host->ops->dma_finalize)
 539                host->ops->dma_finalize(host, data);
 540}
 541
 542void mmci_dma_error(struct mmci_host *host)
 543{
 544        if (!host->use_dma)
 545                return;
 546
 547        if (host->ops && host->ops->dma_error)
 548                host->ops->dma_error(host);
 549}
 550
 551static void
 552mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 553{
 554        writel(0, host->base + MMCICOMMAND);
 555
 556        BUG_ON(host->data);
 557
 558        host->mrq = NULL;
 559        host->cmd = NULL;
 560
 561        mmc_request_done(host->mmc, mrq);
 562}
 563
 564static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 565{
 566        void __iomem *base = host->base;
 567        struct variant_data *variant = host->variant;
 568
 569        if (host->singleirq) {
 570                unsigned int mask0 = readl(base + MMCIMASK0);
 571
 572                mask0 &= ~variant->irq_pio_mask;
 573                mask0 |= mask;
 574
 575                writel(mask0, base + MMCIMASK0);
 576        }
 577
 578        if (variant->mmcimask1)
 579                writel(mask, base + MMCIMASK1);
 580
 581        host->mask1_reg = mask;
 582}
 583
 584static void mmci_stop_data(struct mmci_host *host)
 585{
 586        mmci_write_datactrlreg(host, 0);
 587        mmci_set_mask1(host, 0);
 588        host->data = NULL;
 589}
 590
 591static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 592{
 593        unsigned int flags = SG_MITER_ATOMIC;
 594
 595        if (data->flags & MMC_DATA_READ)
 596                flags |= SG_MITER_TO_SG;
 597        else
 598                flags |= SG_MITER_FROM_SG;
 599
 600        sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 601}
 602
 603static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 604{
 605        return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 606}
 607
 608static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 609{
 610        return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 611}
 612
 613/*
 614 * All the DMA operation mode stuff goes inside this ifdef.
 615 * This assumes that you have a generic DMA device interface,
 616 * no custom DMA interfaces are supported.
 617 */
 618#ifdef CONFIG_DMA_ENGINE
 619struct mmci_dmae_next {
 620        struct dma_async_tx_descriptor *desc;
 621        struct dma_chan *chan;
 622};
 623
 624struct mmci_dmae_priv {
 625        struct dma_chan *cur;
 626        struct dma_chan *rx_channel;
 627        struct dma_chan *tx_channel;
 628        struct dma_async_tx_descriptor  *desc_current;
 629        struct mmci_dmae_next next_data;
 630};
 631
 632int mmci_dmae_setup(struct mmci_host *host)
 633{
 634        const char *rxname, *txname;
 635        struct mmci_dmae_priv *dmae;
 636
 637        dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 638        if (!dmae)
 639                return -ENOMEM;
 640
 641        host->dma_priv = dmae;
 642
 643        dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 644                                                     "rx");
 645        dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 646                                                     "tx");
 647
 648        /*
 649         * If only an RX channel is specified, the driver will
 650         * attempt to use it bidirectionally, however if it is
 651         * is specified but cannot be located, DMA will be disabled.
 652         */
 653        if (dmae->rx_channel && !dmae->tx_channel)
 654                dmae->tx_channel = dmae->rx_channel;
 655
 656        if (dmae->rx_channel)
 657                rxname = dma_chan_name(dmae->rx_channel);
 658        else
 659                rxname = "none";
 660
 661        if (dmae->tx_channel)
 662                txname = dma_chan_name(dmae->tx_channel);
 663        else
 664                txname = "none";
 665
 666        dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 667                 rxname, txname);
 668
 669        /*
 670         * Limit the maximum segment size in any SG entry according to
 671         * the parameters of the DMA engine device.
 672         */
 673        if (dmae->tx_channel) {
 674                struct device *dev = dmae->tx_channel->device->dev;
 675                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 676
 677                if (max_seg_size < host->mmc->max_seg_size)
 678                        host->mmc->max_seg_size = max_seg_size;
 679        }
 680        if (dmae->rx_channel) {
 681                struct device *dev = dmae->rx_channel->device->dev;
 682                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 683
 684                if (max_seg_size < host->mmc->max_seg_size)
 685                        host->mmc->max_seg_size = max_seg_size;
 686        }
 687
 688        if (!dmae->tx_channel || !dmae->rx_channel) {
 689                mmci_dmae_release(host);
 690                return -EINVAL;
 691        }
 692
 693        return 0;
 694}
 695
 696/*
 697 * This is used in or so inline it
 698 * so it can be discarded.
 699 */
 700void mmci_dmae_release(struct mmci_host *host)
 701{
 702        struct mmci_dmae_priv *dmae = host->dma_priv;
 703
 704        if (dmae->rx_channel)
 705                dma_release_channel(dmae->rx_channel);
 706        if (dmae->tx_channel)
 707                dma_release_channel(dmae->tx_channel);
 708        dmae->rx_channel = dmae->tx_channel = NULL;
 709}
 710
 711static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 712{
 713        struct mmci_dmae_priv *dmae = host->dma_priv;
 714        struct dma_chan *chan;
 715
 716        if (data->flags & MMC_DATA_READ)
 717                chan = dmae->rx_channel;
 718        else
 719                chan = dmae->tx_channel;
 720
 721        dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 722                     mmc_get_dma_dir(data));
 723}
 724
 725void mmci_dmae_error(struct mmci_host *host)
 726{
 727        struct mmci_dmae_priv *dmae = host->dma_priv;
 728
 729        if (!dma_inprogress(host))
 730                return;
 731
 732        dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 733        dmaengine_terminate_all(dmae->cur);
 734        host->dma_in_progress = false;
 735        dmae->cur = NULL;
 736        dmae->desc_current = NULL;
 737        host->data->host_cookie = 0;
 738
 739        mmci_dma_unmap(host, host->data);
 740}
 741
 742void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 743{
 744        struct mmci_dmae_priv *dmae = host->dma_priv;
 745        u32 status;
 746        int i;
 747
 748        if (!dma_inprogress(host))
 749                return;
 750
 751        /* Wait up to 1ms for the DMA to complete */
 752        for (i = 0; ; i++) {
 753                status = readl(host->base + MMCISTATUS);
 754                if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 755                        break;
 756                udelay(10);
 757        }
 758
 759        /*
 760         * Check to see whether we still have some data left in the FIFO -
 761         * this catches DMA controllers which are unable to monitor the
 762         * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 763         * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 764         */
 765        if (status & MCI_RXDATAAVLBLMASK) {
 766                mmci_dma_error(host);
 767                if (!data->error)
 768                        data->error = -EIO;
 769        } else if (!data->host_cookie) {
 770                mmci_dma_unmap(host, data);
 771        }
 772
 773        /*
 774         * Use of DMA with scatter-gather is impossible.
 775         * Give up with DMA and switch back to PIO mode.
 776         */
 777        if (status & MCI_RXDATAAVLBLMASK) {
 778                dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 779                mmci_dma_release(host);
 780        }
 781
 782        host->dma_in_progress = false;
 783        dmae->cur = NULL;
 784        dmae->desc_current = NULL;
 785}
 786
 787/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 788static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 789                                struct dma_chan **dma_chan,
 790                                struct dma_async_tx_descriptor **dma_desc)
 791{
 792        struct mmci_dmae_priv *dmae = host->dma_priv;
 793        struct variant_data *variant = host->variant;
 794        struct dma_slave_config conf = {
 795                .src_addr = host->phybase + MMCIFIFO,
 796                .dst_addr = host->phybase + MMCIFIFO,
 797                .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 798                .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 799                .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 800                .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 801                .device_fc = false,
 802        };
 803        struct dma_chan *chan;
 804        struct dma_device *device;
 805        struct dma_async_tx_descriptor *desc;
 806        int nr_sg;
 807        unsigned long flags = DMA_CTRL_ACK;
 808
 809        if (data->flags & MMC_DATA_READ) {
 810                conf.direction = DMA_DEV_TO_MEM;
 811                chan = dmae->rx_channel;
 812        } else {
 813                conf.direction = DMA_MEM_TO_DEV;
 814                chan = dmae->tx_channel;
 815        }
 816
 817        /* If there's no DMA channel, fall back to PIO */
 818        if (!chan)
 819                return -EINVAL;
 820
 821        /* If less than or equal to the fifo size, don't bother with DMA */
 822        if (data->blksz * data->blocks <= variant->fifosize)
 823                return -EINVAL;
 824
 825        device = chan->device;
 826        nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 827                           mmc_get_dma_dir(data));
 828        if (nr_sg == 0)
 829                return -EINVAL;
 830
 831        if (host->variant->qcom_dml)
 832                flags |= DMA_PREP_INTERRUPT;
 833
 834        dmaengine_slave_config(chan, &conf);
 835        desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 836                                            conf.direction, flags);
 837        if (!desc)
 838                goto unmap_exit;
 839
 840        *dma_chan = chan;
 841        *dma_desc = desc;
 842
 843        return 0;
 844
 845 unmap_exit:
 846        dma_unmap_sg(device->dev, data->sg, data->sg_len,
 847                     mmc_get_dma_dir(data));
 848        return -ENOMEM;
 849}
 850
 851int mmci_dmae_prep_data(struct mmci_host *host,
 852                        struct mmc_data *data,
 853                        bool next)
 854{
 855        struct mmci_dmae_priv *dmae = host->dma_priv;
 856        struct mmci_dmae_next *nd = &dmae->next_data;
 857
 858        if (!host->use_dma)
 859                return -EINVAL;
 860
 861        if (next)
 862                return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 863        /* Check if next job is already prepared. */
 864        if (dmae->cur && dmae->desc_current)
 865                return 0;
 866
 867        /* No job were prepared thus do it now. */
 868        return _mmci_dmae_prep_data(host, data, &dmae->cur,
 869                                    &dmae->desc_current);
 870}
 871
 872int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
 873{
 874        struct mmci_dmae_priv *dmae = host->dma_priv;
 875
 876        host->dma_in_progress = true;
 877        dmaengine_submit(dmae->desc_current);
 878        dma_async_issue_pending(dmae->cur);
 879
 880        *datactrl |= MCI_DPSM_DMAENABLE;
 881
 882        return 0;
 883}
 884
 885void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
 886{
 887        struct mmci_dmae_priv *dmae = host->dma_priv;
 888        struct mmci_dmae_next *next = &dmae->next_data;
 889
 890        if (!host->use_dma)
 891                return;
 892
 893        WARN_ON(!data->host_cookie && (next->desc || next->chan));
 894
 895        dmae->desc_current = next->desc;
 896        dmae->cur = next->chan;
 897        next->desc = NULL;
 898        next->chan = NULL;
 899}
 900
 901void mmci_dmae_unprep_data(struct mmci_host *host,
 902                           struct mmc_data *data, int err)
 903
 904{
 905        struct mmci_dmae_priv *dmae = host->dma_priv;
 906
 907        if (!host->use_dma)
 908                return;
 909
 910        mmci_dma_unmap(host, data);
 911
 912        if (err) {
 913                struct mmci_dmae_next *next = &dmae->next_data;
 914                struct dma_chan *chan;
 915                if (data->flags & MMC_DATA_READ)
 916                        chan = dmae->rx_channel;
 917                else
 918                        chan = dmae->tx_channel;
 919                dmaengine_terminate_all(chan);
 920
 921                if (dmae->desc_current == next->desc)
 922                        dmae->desc_current = NULL;
 923
 924                if (dmae->cur == next->chan) {
 925                        host->dma_in_progress = false;
 926                        dmae->cur = NULL;
 927                }
 928
 929                next->desc = NULL;
 930                next->chan = NULL;
 931        }
 932}
 933
 934static struct mmci_host_ops mmci_variant_ops = {
 935        .prep_data = mmci_dmae_prep_data,
 936        .unprep_data = mmci_dmae_unprep_data,
 937        .get_datactrl_cfg = mmci_get_dctrl_cfg,
 938        .get_next_data = mmci_dmae_get_next_data,
 939        .dma_setup = mmci_dmae_setup,
 940        .dma_release = mmci_dmae_release,
 941        .dma_start = mmci_dmae_start,
 942        .dma_finalize = mmci_dmae_finalize,
 943        .dma_error = mmci_dmae_error,
 944};
 945#else
 946static struct mmci_host_ops mmci_variant_ops = {
 947        .get_datactrl_cfg = mmci_get_dctrl_cfg,
 948};
 949#endif
 950
 951void mmci_variant_init(struct mmci_host *host)
 952{
 953        host->ops = &mmci_variant_ops;
 954}
 955
 956void ux500v2_variant_init(struct mmci_host *host)
 957{
 958        host->ops = &mmci_variant_ops;
 959        host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
 960}
 961
 962static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 963{
 964        struct mmci_host *host = mmc_priv(mmc);
 965        struct mmc_data *data = mrq->data;
 966
 967        if (!data)
 968                return;
 969
 970        WARN_ON(data->host_cookie);
 971
 972        if (mmci_validate_data(host, data))
 973                return;
 974
 975        mmci_prep_data(host, data, true);
 976}
 977
 978static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 979                              int err)
 980{
 981        struct mmci_host *host = mmc_priv(mmc);
 982        struct mmc_data *data = mrq->data;
 983
 984        if (!data || !data->host_cookie)
 985                return;
 986
 987        mmci_unprep_data(host, data, err);
 988}
 989
 990static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 991{
 992        struct variant_data *variant = host->variant;
 993        unsigned int datactrl, timeout, irqmask;
 994        unsigned long long clks;
 995        void __iomem *base;
 996
 997        dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 998                data->blksz, data->blocks, data->flags);
 999
1000        host->data = data;
1001        host->size = data->blksz * data->blocks;
1002        data->bytes_xfered = 0;
1003
1004        clks = (unsigned long long)data->timeout_ns * host->cclk;
1005        do_div(clks, NSEC_PER_SEC);
1006
1007        timeout = data->timeout_clks + (unsigned int)clks;
1008
1009        base = host->base;
1010        writel(timeout, base + MMCIDATATIMER);
1011        writel(host->size, base + MMCIDATALENGTH);
1012
1013        datactrl = host->ops->get_datactrl_cfg(host);
1014        datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1015
1016        if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017                u32 clk;
1018
1019                datactrl |= variant->datactrl_mask_sdio;
1020
1021                /*
1022                 * The ST Micro variant for SDIO small write transfers
1023                 * needs to have clock H/W flow control disabled,
1024                 * otherwise the transfer will not start. The threshold
1025                 * depends on the rate of MCLK.
1026                 */
1027                if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028                    (host->size < 8 ||
1029                     (host->size <= 8 && host->mclk > 50000000)))
1030                        clk = host->clk_reg & ~variant->clkreg_enable;
1031                else
1032                        clk = host->clk_reg | variant->clkreg_enable;
1033
1034                mmci_write_clkreg(host, clk);
1035        }
1036
1037        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039                datactrl |= variant->datactrl_mask_ddrmode;
1040
1041        /*
1042         * Attempt to use DMA operation mode, if this
1043         * should fail, fall back to PIO mode
1044         */
1045        if (!mmci_dma_start(host, datactrl))
1046                return;
1047
1048        /* IRQ mode, map the SG list for CPU reading/writing */
1049        mmci_init_sg(host, data);
1050
1051        if (data->flags & MMC_DATA_READ) {
1052                irqmask = MCI_RXFIFOHALFFULLMASK;
1053
1054                /*
1055                 * If we have less than the fifo 'half-full' threshold to
1056                 * transfer, trigger a PIO interrupt as soon as any data
1057                 * is available.
1058                 */
1059                if (host->size < variant->fifohalfsize)
1060                        irqmask |= MCI_RXDATAAVLBLMASK;
1061        } else {
1062                /*
1063                 * We don't actually need to include "FIFO empty" here
1064                 * since its implicit in "FIFO half empty".
1065                 */
1066                irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067        }
1068
1069        mmci_write_datactrlreg(host, datactrl);
1070        writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071        mmci_set_mask1(host, irqmask);
1072}
1073
1074static void
1075mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076{
1077        void __iomem *base = host->base;
1078
1079        dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080            cmd->opcode, cmd->arg, cmd->flags);
1081
1082        if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083                writel(0, base + MMCICOMMAND);
1084                mmci_reg_delay(host);
1085        }
1086
1087        if (host->variant->cmdreg_stop &&
1088            cmd->opcode == MMC_STOP_TRANSMISSION)
1089                c |= host->variant->cmdreg_stop;
1090
1091        c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092        if (cmd->flags & MMC_RSP_PRESENT) {
1093                if (cmd->flags & MMC_RSP_136)
1094                        c |= host->variant->cmdreg_lrsp_crc;
1095                else if (cmd->flags & MMC_RSP_CRC)
1096                        c |= host->variant->cmdreg_srsp_crc;
1097                else
1098                        c |= host->variant->cmdreg_srsp;
1099        }
1100        if (/*interrupt*/0)
1101                c |= MCI_CPSM_INTERRUPT;
1102
1103        if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104                c |= host->variant->data_cmd_enable;
1105
1106        host->cmd = cmd;
1107
1108        writel(cmd->arg, base + MMCIARGUMENT);
1109        writel(c, base + MMCICOMMAND);
1110}
1111
1112static void mmci_stop_command(struct mmci_host *host)
1113{
1114        host->stop_abort.error = 0;
1115        mmci_start_command(host, &host->stop_abort, 0);
1116}
1117
1118static void
1119mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120              unsigned int status)
1121{
1122        unsigned int status_err;
1123
1124        /* Make sure we have data to handle */
1125        if (!data)
1126                return;
1127
1128        /* First check for errors */
1129        status_err = status & (host->variant->start_err |
1130                               MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131                               MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132
1133        if (status_err) {
1134                u32 remain, success;
1135
1136                /* Terminate the DMA transfer */
1137                mmci_dma_error(host);
1138
1139                /*
1140                 * Calculate how far we are into the transfer.  Note that
1141                 * the data counter gives the number of bytes transferred
1142                 * on the MMC bus, not on the host side.  On reads, this
1143                 * can be as much as a FIFO-worth of data ahead.  This
1144                 * matters for FIFO overruns only.
1145                 */
1146                if (!host->variant->datacnt_useless) {
1147                        remain = readl(host->base + MMCIDATACNT);
1148                        success = data->blksz * data->blocks - remain;
1149                } else {
1150                        success = 0;
1151                }
1152
1153                dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154                        status_err, success);
1155                if (status_err & MCI_DATACRCFAIL) {
1156                        /* Last block was not successful */
1157                        success -= 1;
1158                        data->error = -EILSEQ;
1159                } else if (status_err & MCI_DATATIMEOUT) {
1160                        data->error = -ETIMEDOUT;
1161                } else if (status_err & MCI_STARTBITERR) {
1162                        data->error = -ECOMM;
1163                } else if (status_err & MCI_TXUNDERRUN) {
1164                        data->error = -EIO;
1165                } else if (status_err & MCI_RXOVERRUN) {
1166                        if (success > host->variant->fifosize)
1167                                success -= host->variant->fifosize;
1168                        else
1169                                success = 0;
1170                        data->error = -EIO;
1171                }
1172                data->bytes_xfered = round_down(success, data->blksz);
1173        }
1174
1175        if (status & MCI_DATABLOCKEND)
1176                dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177
1178        if (status & MCI_DATAEND || data->error) {
1179                mmci_dma_finalize(host, data);
1180
1181                mmci_stop_data(host);
1182
1183                if (!data->error)
1184                        /* The error clause is handled above, success! */
1185                        data->bytes_xfered = data->blksz * data->blocks;
1186
1187                if (!data->stop) {
1188                        if (host->variant->cmdreg_stop && data->error)
1189                                mmci_stop_command(host);
1190                        else
1191                                mmci_request_end(host, data->mrq);
1192                } else if (host->mrq->sbc && !data->error) {
1193                        mmci_request_end(host, data->mrq);
1194                } else {
1195                        mmci_start_command(host, data->stop, 0);
1196                }
1197        }
1198}
1199
1200static void
1201mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202             unsigned int status)
1203{
1204        void __iomem *base = host->base;
1205        bool sbc, busy_resp;
1206
1207        if (!cmd)
1208                return;
1209
1210        sbc = (cmd == host->mrq->sbc);
1211        busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212
1213        /*
1214         * We need to be one of these interrupts to be considered worth
1215         * handling. Note that we tag on any latent IRQs postponed
1216         * due to waiting for busy status.
1217         */
1218        if (!((status|host->busy_status) &
1219              (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1220                return;
1221
1222        /*
1223         * ST Micro variant: handle busy detection.
1224         */
1225        if (busy_resp && host->variant->busy_detect) {
1226
1227                /* We are busy with a command, return */
1228                if (host->busy_status &&
1229                    (status & host->variant->busy_detect_flag))
1230                        return;
1231
1232                /*
1233                 * We were not busy, but we now got a busy response on
1234                 * something that was not an error, and we double-check
1235                 * that the special busy status bit is still set before
1236                 * proceeding.
1237                 */
1238                if (!host->busy_status &&
1239                    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240                    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241
1242                        /* Clear the busy start IRQ */
1243                        writel(host->variant->busy_detect_mask,
1244                               host->base + MMCICLEAR);
1245
1246                        /* Unmask the busy end IRQ */
1247                        writel(readl(base + MMCIMASK0) |
1248                               host->variant->busy_detect_mask,
1249                               base + MMCIMASK0);
1250                        /*
1251                         * Now cache the last response status code (until
1252                         * the busy bit goes low), and return.
1253                         */
1254                        host->busy_status =
1255                                status & (MCI_CMDSENT|MCI_CMDRESPEND);
1256                        return;
1257                }
1258
1259                /*
1260                 * At this point we are not busy with a command, we have
1261                 * not received a new busy request, clear and mask the busy
1262                 * end IRQ and fall through to process the IRQ.
1263                 */
1264                if (host->busy_status) {
1265
1266                        writel(host->variant->busy_detect_mask,
1267                               host->base + MMCICLEAR);
1268
1269                        writel(readl(base + MMCIMASK0) &
1270                               ~host->variant->busy_detect_mask,
1271                               base + MMCIMASK0);
1272                        host->busy_status = 0;
1273                }
1274        }
1275
1276        host->cmd = NULL;
1277
1278        if (status & MCI_CMDTIMEOUT) {
1279                cmd->error = -ETIMEDOUT;
1280        } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1281                cmd->error = -EILSEQ;
1282        } else {
1283                cmd->resp[0] = readl(base + MMCIRESPONSE0);
1284                cmd->resp[1] = readl(base + MMCIRESPONSE1);
1285                cmd->resp[2] = readl(base + MMCIRESPONSE2);
1286                cmd->resp[3] = readl(base + MMCIRESPONSE3);
1287        }
1288
1289        if ((!sbc && !cmd->data) || cmd->error) {
1290                if (host->data) {
1291                        /* Terminate the DMA transfer */
1292                        mmci_dma_error(host);
1293
1294                        mmci_stop_data(host);
1295                        if (host->variant->cmdreg_stop && cmd->error) {
1296                                mmci_stop_command(host);
1297                                return;
1298                        }
1299                }
1300                mmci_request_end(host, host->mrq);
1301        } else if (sbc) {
1302                mmci_start_command(host, host->mrq->cmd, 0);
1303        } else if (!host->variant->datactrl_first &&
1304                   !(cmd->data->flags & MMC_DATA_READ)) {
1305                mmci_start_data(host, cmd->data);
1306        }
1307}
1308
1309static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1310{
1311        return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1312}
1313
1314static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1315{
1316        /*
1317         * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1318         * from the fifo range should be used
1319         */
1320        if (status & MCI_RXFIFOHALFFULL)
1321                return host->variant->fifohalfsize;
1322        else if (status & MCI_RXDATAAVLBL)
1323                return 4;
1324
1325        return 0;
1326}
1327
1328static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1329{
1330        void __iomem *base = host->base;
1331        char *ptr = buffer;
1332        u32 status = readl(host->base + MMCISTATUS);
1333        int host_remain = host->size;
1334
1335        do {
1336                int count = host->get_rx_fifocnt(host, status, host_remain);
1337
1338                if (count > remain)
1339                        count = remain;
1340
1341                if (count <= 0)
1342                        break;
1343
1344                /*
1345                 * SDIO especially may want to send something that is
1346                 * not divisible by 4 (as opposed to card sectors
1347                 * etc). Therefore make sure to always read the last bytes
1348                 * while only doing full 32-bit reads towards the FIFO.
1349                 */
1350                if (unlikely(count & 0x3)) {
1351                        if (count < 4) {
1352                                unsigned char buf[4];
1353                                ioread32_rep(base + MMCIFIFO, buf, 1);
1354                                memcpy(ptr, buf, count);
1355                        } else {
1356                                ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1357                                count &= ~0x3;
1358                        }
1359                } else {
1360                        ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1361                }
1362
1363                ptr += count;
1364                remain -= count;
1365                host_remain -= count;
1366
1367                if (remain == 0)
1368                        break;
1369
1370                status = readl(base + MMCISTATUS);
1371        } while (status & MCI_RXDATAAVLBL);
1372
1373        return ptr - buffer;
1374}
1375
1376static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1377{
1378        struct variant_data *variant = host->variant;
1379        void __iomem *base = host->base;
1380        char *ptr = buffer;
1381
1382        do {
1383                unsigned int count, maxcnt;
1384
1385                maxcnt = status & MCI_TXFIFOEMPTY ?
1386                         variant->fifosize : variant->fifohalfsize;
1387                count = min(remain, maxcnt);
1388
1389                /*
1390                 * SDIO especially may want to send something that is
1391                 * not divisible by 4 (as opposed to card sectors
1392                 * etc), and the FIFO only accept full 32-bit writes.
1393                 * So compensate by adding +3 on the count, a single
1394                 * byte become a 32bit write, 7 bytes will be two
1395                 * 32bit writes etc.
1396                 */
1397                iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1398
1399                ptr += count;
1400                remain -= count;
1401
1402                if (remain == 0)
1403                        break;
1404
1405                status = readl(base + MMCISTATUS);
1406        } while (status & MCI_TXFIFOHALFEMPTY);
1407
1408        return ptr - buffer;
1409}
1410
1411/*
1412 * PIO data transfer IRQ handler.
1413 */
1414static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1415{
1416        struct mmci_host *host = dev_id;
1417        struct sg_mapping_iter *sg_miter = &host->sg_miter;
1418        struct variant_data *variant = host->variant;
1419        void __iomem *base = host->base;
1420        u32 status;
1421
1422        status = readl(base + MMCISTATUS);
1423
1424        dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1425
1426        do {
1427                unsigned int remain, len;
1428                char *buffer;
1429
1430                /*
1431                 * For write, we only need to test the half-empty flag
1432                 * here - if the FIFO is completely empty, then by
1433                 * definition it is more than half empty.
1434                 *
1435                 * For read, check for data available.
1436                 */
1437                if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1438                        break;
1439
1440                if (!sg_miter_next(sg_miter))
1441                        break;
1442
1443                buffer = sg_miter->addr;
1444                remain = sg_miter->length;
1445
1446                len = 0;
1447                if (status & MCI_RXACTIVE)
1448                        len = mmci_pio_read(host, buffer, remain);
1449                if (status & MCI_TXACTIVE)
1450                        len = mmci_pio_write(host, buffer, remain, status);
1451
1452                sg_miter->consumed = len;
1453
1454                host->size -= len;
1455                remain -= len;
1456
1457                if (remain)
1458                        break;
1459
1460                status = readl(base + MMCISTATUS);
1461        } while (1);
1462
1463        sg_miter_stop(sg_miter);
1464
1465        /*
1466         * If we have less than the fifo 'half-full' threshold to transfer,
1467         * trigger a PIO interrupt as soon as any data is available.
1468         */
1469        if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1470                mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1471
1472        /*
1473         * If we run out of data, disable the data IRQs; this
1474         * prevents a race where the FIFO becomes empty before
1475         * the chip itself has disabled the data path, and
1476         * stops us racing with our data end IRQ.
1477         */
1478        if (host->size == 0) {
1479                mmci_set_mask1(host, 0);
1480                writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1481        }
1482
1483        return IRQ_HANDLED;
1484}
1485
1486/*
1487 * Handle completion of command and data transfers.
1488 */
1489static irqreturn_t mmci_irq(int irq, void *dev_id)
1490{
1491        struct mmci_host *host = dev_id;
1492        u32 status;
1493        int ret = 0;
1494
1495        spin_lock(&host->lock);
1496
1497        do {
1498                status = readl(host->base + MMCISTATUS);
1499
1500                if (host->singleirq) {
1501                        if (status & host->mask1_reg)
1502                                mmci_pio_irq(irq, dev_id);
1503
1504                        status &= ~host->variant->irq_pio_mask;
1505                }
1506
1507                /*
1508                 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1509                 * enabled) in mmci_cmd_irq() function where ST Micro busy
1510                 * detection variant is handled. Considering the HW seems to be
1511                 * triggering the IRQ on both edges while monitoring DAT0 for
1512                 * busy completion and that same status bit is used to monitor
1513                 * start and end of busy detection, special care must be taken
1514                 * to make sure that both start and end interrupts are always
1515                 * cleared one after the other.
1516                 */
1517                status &= readl(host->base + MMCIMASK0);
1518                if (host->variant->busy_detect)
1519                        writel(status & ~host->variant->busy_detect_mask,
1520                               host->base + MMCICLEAR);
1521                else
1522                        writel(status, host->base + MMCICLEAR);
1523
1524                dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1525
1526                if (host->variant->reversed_irq_handling) {
1527                        mmci_data_irq(host, host->data, status);
1528                        mmci_cmd_irq(host, host->cmd, status);
1529                } else {
1530                        mmci_cmd_irq(host, host->cmd, status);
1531                        mmci_data_irq(host, host->data, status);
1532                }
1533
1534                /*
1535                 * Busy detection has been handled by mmci_cmd_irq() above.
1536                 * Clear the status bit to prevent polling in IRQ context.
1537                 */
1538                if (host->variant->busy_detect_flag)
1539                        status &= ~host->variant->busy_detect_flag;
1540
1541                ret = 1;
1542        } while (status);
1543
1544        spin_unlock(&host->lock);
1545
1546        return IRQ_RETVAL(ret);
1547}
1548
1549static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1550{
1551        struct mmci_host *host = mmc_priv(mmc);
1552        unsigned long flags;
1553
1554        WARN_ON(host->mrq != NULL);
1555
1556        mrq->cmd->error = mmci_validate_data(host, mrq->data);
1557        if (mrq->cmd->error) {
1558                mmc_request_done(mmc, mrq);
1559                return;
1560        }
1561
1562        spin_lock_irqsave(&host->lock, flags);
1563
1564        host->mrq = mrq;
1565
1566        if (mrq->data)
1567                mmci_get_next_data(host, mrq->data);
1568
1569        if (mrq->data &&
1570            (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1571                mmci_start_data(host, mrq->data);
1572
1573        if (mrq->sbc)
1574                mmci_start_command(host, mrq->sbc, 0);
1575        else
1576                mmci_start_command(host, mrq->cmd, 0);
1577
1578        spin_unlock_irqrestore(&host->lock, flags);
1579}
1580
1581static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1582{
1583        struct mmci_host *host = mmc_priv(mmc);
1584        struct variant_data *variant = host->variant;
1585        u32 pwr = 0;
1586        unsigned long flags;
1587        int ret;
1588
1589        if (host->plat->ios_handler &&
1590                host->plat->ios_handler(mmc_dev(mmc), ios))
1591                        dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1592
1593        switch (ios->power_mode) {
1594        case MMC_POWER_OFF:
1595                if (!IS_ERR(mmc->supply.vmmc))
1596                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1597
1598                if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1599                        regulator_disable(mmc->supply.vqmmc);
1600                        host->vqmmc_enabled = false;
1601                }
1602
1603                break;
1604        case MMC_POWER_UP:
1605                if (!IS_ERR(mmc->supply.vmmc))
1606                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1607
1608                /*
1609                 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1610                 * and instead uses MCI_PWR_ON so apply whatever value is
1611                 * configured in the variant data.
1612                 */
1613                pwr |= variant->pwrreg_powerup;
1614
1615                break;
1616        case MMC_POWER_ON:
1617                if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1618                        ret = regulator_enable(mmc->supply.vqmmc);
1619                        if (ret < 0)
1620                                dev_err(mmc_dev(mmc),
1621                                        "failed to enable vqmmc regulator\n");
1622                        else
1623                                host->vqmmc_enabled = true;
1624                }
1625
1626                pwr |= MCI_PWR_ON;
1627                break;
1628        }
1629
1630        if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1631                /*
1632                 * The ST Micro variant has some additional bits
1633                 * indicating signal direction for the signals in
1634                 * the SD/MMC bus and feedback-clock usage.
1635                 */
1636                pwr |= host->pwr_reg_add;
1637
1638                if (ios->bus_width == MMC_BUS_WIDTH_4)
1639                        pwr &= ~MCI_ST_DATA74DIREN;
1640                else if (ios->bus_width == MMC_BUS_WIDTH_1)
1641                        pwr &= (~MCI_ST_DATA74DIREN &
1642                                ~MCI_ST_DATA31DIREN &
1643                                ~MCI_ST_DATA2DIREN);
1644        }
1645
1646        if (variant->opendrain) {
1647                if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1648                        pwr |= variant->opendrain;
1649        } else {
1650                /*
1651                 * If the variant cannot configure the pads by its own, then we
1652                 * expect the pinctrl to be able to do that for us
1653                 */
1654                if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1655                        pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1656                else
1657                        pinctrl_select_state(host->pinctrl, host->pins_default);
1658        }
1659
1660        /*
1661         * If clock = 0 and the variant requires the MMCIPOWER to be used for
1662         * gating the clock, the MCI_PWR_ON bit is cleared.
1663         */
1664        if (!ios->clock && variant->pwrreg_clkgate)
1665                pwr &= ~MCI_PWR_ON;
1666
1667        if (host->variant->explicit_mclk_control &&
1668            ios->clock != host->clock_cache) {
1669                ret = clk_set_rate(host->clk, ios->clock);
1670                if (ret < 0)
1671                        dev_err(mmc_dev(host->mmc),
1672                                "Error setting clock rate (%d)\n", ret);
1673                else
1674                        host->mclk = clk_get_rate(host->clk);
1675        }
1676        host->clock_cache = ios->clock;
1677
1678        spin_lock_irqsave(&host->lock, flags);
1679
1680        if (host->ops && host->ops->set_clkreg)
1681                host->ops->set_clkreg(host, ios->clock);
1682        else
1683                mmci_set_clkreg(host, ios->clock);
1684
1685        if (host->ops && host->ops->set_pwrreg)
1686                host->ops->set_pwrreg(host, pwr);
1687        else
1688                mmci_write_pwrreg(host, pwr);
1689
1690        mmci_reg_delay(host);
1691
1692        spin_unlock_irqrestore(&host->lock, flags);
1693}
1694
1695static int mmci_get_cd(struct mmc_host *mmc)
1696{
1697        struct mmci_host *host = mmc_priv(mmc);
1698        struct mmci_platform_data *plat = host->plat;
1699        unsigned int status = mmc_gpio_get_cd(mmc);
1700
1701        if (status == -ENOSYS) {
1702                if (!plat->status)
1703                        return 1; /* Assume always present */
1704
1705                status = plat->status(mmc_dev(host->mmc));
1706        }
1707        return status;
1708}
1709
1710static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1711{
1712        int ret = 0;
1713
1714        if (!IS_ERR(mmc->supply.vqmmc)) {
1715
1716                switch (ios->signal_voltage) {
1717                case MMC_SIGNAL_VOLTAGE_330:
1718                        ret = regulator_set_voltage(mmc->supply.vqmmc,
1719                                                2700000, 3600000);
1720                        break;
1721                case MMC_SIGNAL_VOLTAGE_180:
1722                        ret = regulator_set_voltage(mmc->supply.vqmmc,
1723                                                1700000, 1950000);
1724                        break;
1725                case MMC_SIGNAL_VOLTAGE_120:
1726                        ret = regulator_set_voltage(mmc->supply.vqmmc,
1727                                                1100000, 1300000);
1728                        break;
1729                }
1730
1731                if (ret)
1732                        dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1733        }
1734
1735        return ret;
1736}
1737
1738static struct mmc_host_ops mmci_ops = {
1739        .request        = mmci_request,
1740        .pre_req        = mmci_pre_request,
1741        .post_req       = mmci_post_request,
1742        .set_ios        = mmci_set_ios,
1743        .get_ro         = mmc_gpio_get_ro,
1744        .get_cd         = mmci_get_cd,
1745        .start_signal_voltage_switch = mmci_sig_volt_switch,
1746};
1747
1748static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1749{
1750        struct mmci_host *host = mmc_priv(mmc);
1751        int ret = mmc_of_parse(mmc);
1752
1753        if (ret)
1754                return ret;
1755
1756        if (of_get_property(np, "st,sig-dir-dat0", NULL))
1757                host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1758        if (of_get_property(np, "st,sig-dir-dat2", NULL))
1759                host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1760        if (of_get_property(np, "st,sig-dir-dat31", NULL))
1761                host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1762        if (of_get_property(np, "st,sig-dir-dat74", NULL))
1763                host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1764        if (of_get_property(np, "st,sig-dir-cmd", NULL))
1765                host->pwr_reg_add |= MCI_ST_CMDDIREN;
1766        if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1767                host->pwr_reg_add |= MCI_ST_FBCLKEN;
1768        if (of_get_property(np, "st,sig-dir", NULL))
1769                host->pwr_reg_add |= MCI_STM32_DIRPOL;
1770        if (of_get_property(np, "st,neg-edge", NULL))
1771                host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1772        if (of_get_property(np, "st,use-ckin", NULL))
1773                host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1774
1775        if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1776                mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1777        if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1778                mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1779
1780        return 0;
1781}
1782
1783static int mmci_probe(struct amba_device *dev,
1784        const struct amba_id *id)
1785{
1786        struct mmci_platform_data *plat = dev->dev.platform_data;
1787        struct device_node *np = dev->dev.of_node;
1788        struct variant_data *variant = id->data;
1789        struct mmci_host *host;
1790        struct mmc_host *mmc;
1791        int ret;
1792
1793        /* Must have platform data or Device Tree. */
1794        if (!plat && !np) {
1795                dev_err(&dev->dev, "No plat data or DT found\n");
1796                return -EINVAL;
1797        }
1798
1799        if (!plat) {
1800                plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1801                if (!plat)
1802                        return -ENOMEM;
1803        }
1804
1805        mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1806        if (!mmc)
1807                return -ENOMEM;
1808
1809        ret = mmci_of_parse(np, mmc);
1810        if (ret)
1811                goto host_free;
1812
1813        host = mmc_priv(mmc);
1814        host->mmc = mmc;
1815
1816        /*
1817         * Some variant (STM32) doesn't have opendrain bit, nevertheless
1818         * pins can be set accordingly using pinctrl
1819         */
1820        if (!variant->opendrain) {
1821                host->pinctrl = devm_pinctrl_get(&dev->dev);
1822                if (IS_ERR(host->pinctrl)) {
1823                        dev_err(&dev->dev, "failed to get pinctrl");
1824                        ret = PTR_ERR(host->pinctrl);
1825                        goto host_free;
1826                }
1827
1828                host->pins_default = pinctrl_lookup_state(host->pinctrl,
1829                                                          PINCTRL_STATE_DEFAULT);
1830                if (IS_ERR(host->pins_default)) {
1831                        dev_err(mmc_dev(mmc), "Can't select default pins\n");
1832                        ret = PTR_ERR(host->pins_default);
1833                        goto host_free;
1834                }
1835
1836                host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1837                                                            MMCI_PINCTRL_STATE_OPENDRAIN);
1838                if (IS_ERR(host->pins_opendrain)) {
1839                        dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1840                        ret = PTR_ERR(host->pins_opendrain);
1841                        goto host_free;
1842                }
1843        }
1844
1845        host->hw_designer = amba_manf(dev);
1846        host->hw_revision = amba_rev(dev);
1847        dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1848        dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1849
1850        host->clk = devm_clk_get(&dev->dev, NULL);
1851        if (IS_ERR(host->clk)) {
1852                ret = PTR_ERR(host->clk);
1853                goto host_free;
1854        }
1855
1856        ret = clk_prepare_enable(host->clk);
1857        if (ret)
1858                goto host_free;
1859
1860        if (variant->qcom_fifo)
1861                host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1862        else
1863                host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1864
1865        host->plat = plat;
1866        host->variant = variant;
1867        host->mclk = clk_get_rate(host->clk);
1868        /*
1869         * According to the spec, mclk is max 100 MHz,
1870         * so we try to adjust the clock down to this,
1871         * (if possible).
1872         */
1873        if (host->mclk > variant->f_max) {
1874                ret = clk_set_rate(host->clk, variant->f_max);
1875                if (ret < 0)
1876                        goto clk_disable;
1877                host->mclk = clk_get_rate(host->clk);
1878                dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1879                        host->mclk);
1880        }
1881
1882        host->phybase = dev->res.start;
1883        host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1884        if (IS_ERR(host->base)) {
1885                ret = PTR_ERR(host->base);
1886                goto clk_disable;
1887        }
1888
1889        if (variant->init)
1890                variant->init(host);
1891
1892        /*
1893         * The ARM and ST versions of the block have slightly different
1894         * clock divider equations which means that the minimum divider
1895         * differs too.
1896         * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1897         */
1898        if (variant->st_clkdiv)
1899                mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1900        else if (variant->stm32_clkdiv)
1901                mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1902        else if (variant->explicit_mclk_control)
1903                mmc->f_min = clk_round_rate(host->clk, 100000);
1904        else
1905                mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1906        /*
1907         * If no maximum operating frequency is supplied, fall back to use
1908         * the module parameter, which has a (low) default value in case it
1909         * is not specified. Either value must not exceed the clock rate into
1910         * the block, of course.
1911         */
1912        if (mmc->f_max)
1913                mmc->f_max = variant->explicit_mclk_control ?
1914                                min(variant->f_max, mmc->f_max) :
1915                                min(host->mclk, mmc->f_max);
1916        else
1917                mmc->f_max = variant->explicit_mclk_control ?
1918                                fmax : min(host->mclk, fmax);
1919
1920
1921        dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1922
1923        host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1924        if (IS_ERR(host->rst)) {
1925                ret = PTR_ERR(host->rst);
1926                goto clk_disable;
1927        }
1928
1929        /* Get regulators and the supported OCR mask */
1930        ret = mmc_regulator_get_supply(mmc);
1931        if (ret)
1932                goto clk_disable;
1933
1934        if (!mmc->ocr_avail)
1935                mmc->ocr_avail = plat->ocr_mask;
1936        else if (plat->ocr_mask)
1937                dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1938
1939        /* We support these capabilities. */
1940        mmc->caps |= MMC_CAP_CMD23;
1941
1942        /*
1943         * Enable busy detection.
1944         */
1945        if (variant->busy_detect) {
1946                mmci_ops.card_busy = mmci_card_busy;
1947                /*
1948                 * Not all variants have a flag to enable busy detection
1949                 * in the DPSM, but if they do, set it here.
1950                 */
1951                if (variant->busy_dpsm_flag)
1952                        mmci_write_datactrlreg(host,
1953                                               host->variant->busy_dpsm_flag);
1954                mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1955                mmc->max_busy_timeout = 0;
1956        }
1957
1958        /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1959        host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1960        host->stop_abort.arg = 0;
1961        host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1962
1963        mmc->ops = &mmci_ops;
1964
1965        /* We support these PM capabilities. */
1966        mmc->pm_caps |= MMC_PM_KEEP_POWER;
1967
1968        /*
1969         * We can do SGIO
1970         */
1971        mmc->max_segs = NR_SG;
1972
1973        /*
1974         * Since only a certain number of bits are valid in the data length
1975         * register, we must ensure that we don't exceed 2^num-1 bytes in a
1976         * single request.
1977         */
1978        mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1979
1980        /*
1981         * Set the maximum segment size.  Since we aren't doing DMA
1982         * (yet) we are only limited by the data length register.
1983         */
1984        mmc->max_seg_size = mmc->max_req_size;
1985
1986        /*
1987         * Block size can be up to 2048 bytes, but must be a power of two.
1988         */
1989        mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1990
1991        /*
1992         * Limit the number of blocks transferred so that we don't overflow
1993         * the maximum request size.
1994         */
1995        mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
1996
1997        spin_lock_init(&host->lock);
1998
1999        writel(0, host->base + MMCIMASK0);
2000
2001        if (variant->mmcimask1)
2002                writel(0, host->base + MMCIMASK1);
2003
2004        writel(0xfff, host->base + MMCICLEAR);
2005
2006        /*
2007         * If:
2008         * - not using DT but using a descriptor table, or
2009         * - using a table of descriptors ALONGSIDE DT, or
2010         * look up these descriptors named "cd" and "wp" right here, fail
2011         * silently of these do not exist
2012         */
2013        if (!np) {
2014                ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2015                if (ret == -EPROBE_DEFER)
2016                        goto clk_disable;
2017
2018                ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2019                if (ret == -EPROBE_DEFER)
2020                        goto clk_disable;
2021        }
2022
2023        ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2024                        DRIVER_NAME " (cmd)", host);
2025        if (ret)
2026                goto clk_disable;
2027
2028        if (!dev->irq[1])
2029                host->singleirq = true;
2030        else {
2031                ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2032                                IRQF_SHARED, DRIVER_NAME " (pio)", host);
2033                if (ret)
2034                        goto clk_disable;
2035        }
2036
2037        writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2038
2039        amba_set_drvdata(dev, mmc);
2040
2041        dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2042                 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2043                 amba_rev(dev), (unsigned long long)dev->res.start,
2044                 dev->irq[0], dev->irq[1]);
2045
2046        mmci_dma_setup(host);
2047
2048        pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2049        pm_runtime_use_autosuspend(&dev->dev);
2050
2051        mmc_add_host(mmc);
2052
2053        pm_runtime_put(&dev->dev);
2054        return 0;
2055
2056 clk_disable:
2057        clk_disable_unprepare(host->clk);
2058 host_free:
2059        mmc_free_host(mmc);
2060        return ret;
2061}
2062
2063static int mmci_remove(struct amba_device *dev)
2064{
2065        struct mmc_host *mmc = amba_get_drvdata(dev);
2066
2067        if (mmc) {
2068                struct mmci_host *host = mmc_priv(mmc);
2069                struct variant_data *variant = host->variant;
2070
2071                /*
2072                 * Undo pm_runtime_put() in probe.  We use the _sync
2073                 * version here so that we can access the primecell.
2074                 */
2075                pm_runtime_get_sync(&dev->dev);
2076
2077                mmc_remove_host(mmc);
2078
2079                writel(0, host->base + MMCIMASK0);
2080
2081                if (variant->mmcimask1)
2082                        writel(0, host->base + MMCIMASK1);
2083
2084                writel(0, host->base + MMCICOMMAND);
2085                writel(0, host->base + MMCIDATACTRL);
2086
2087                mmci_dma_release(host);
2088                clk_disable_unprepare(host->clk);
2089                mmc_free_host(mmc);
2090        }
2091
2092        return 0;
2093}
2094
2095#ifdef CONFIG_PM
2096static void mmci_save(struct mmci_host *host)
2097{
2098        unsigned long flags;
2099
2100        spin_lock_irqsave(&host->lock, flags);
2101
2102        writel(0, host->base + MMCIMASK0);
2103        if (host->variant->pwrreg_nopower) {
2104                writel(0, host->base + MMCIDATACTRL);
2105                writel(0, host->base + MMCIPOWER);
2106                writel(0, host->base + MMCICLOCK);
2107        }
2108        mmci_reg_delay(host);
2109
2110        spin_unlock_irqrestore(&host->lock, flags);
2111}
2112
2113static void mmci_restore(struct mmci_host *host)
2114{
2115        unsigned long flags;
2116
2117        spin_lock_irqsave(&host->lock, flags);
2118
2119        if (host->variant->pwrreg_nopower) {
2120                writel(host->clk_reg, host->base + MMCICLOCK);
2121                writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2122                writel(host->pwr_reg, host->base + MMCIPOWER);
2123        }
2124        writel(MCI_IRQENABLE | host->variant->start_err,
2125               host->base + MMCIMASK0);
2126        mmci_reg_delay(host);
2127
2128        spin_unlock_irqrestore(&host->lock, flags);
2129}
2130
2131static int mmci_runtime_suspend(struct device *dev)
2132{
2133        struct amba_device *adev = to_amba_device(dev);
2134        struct mmc_host *mmc = amba_get_drvdata(adev);
2135
2136        if (mmc) {
2137                struct mmci_host *host = mmc_priv(mmc);
2138                pinctrl_pm_select_sleep_state(dev);
2139                mmci_save(host);
2140                clk_disable_unprepare(host->clk);
2141        }
2142
2143        return 0;
2144}
2145
2146static int mmci_runtime_resume(struct device *dev)
2147{
2148        struct amba_device *adev = to_amba_device(dev);
2149        struct mmc_host *mmc = amba_get_drvdata(adev);
2150
2151        if (mmc) {
2152                struct mmci_host *host = mmc_priv(mmc);
2153                clk_prepare_enable(host->clk);
2154                mmci_restore(host);
2155                pinctrl_pm_select_default_state(dev);
2156        }
2157
2158        return 0;
2159}
2160#endif
2161
2162static const struct dev_pm_ops mmci_dev_pm_ops = {
2163        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2164                                pm_runtime_force_resume)
2165        SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2166};
2167
2168static const struct amba_id mmci_ids[] = {
2169        {
2170                .id     = 0x00041180,
2171                .mask   = 0xff0fffff,
2172                .data   = &variant_arm,
2173        },
2174        {
2175                .id     = 0x01041180,
2176                .mask   = 0xff0fffff,
2177                .data   = &variant_arm_extended_fifo,
2178        },
2179        {
2180                .id     = 0x02041180,
2181                .mask   = 0xff0fffff,
2182                .data   = &variant_arm_extended_fifo_hwfc,
2183        },
2184        {
2185                .id     = 0x00041181,
2186                .mask   = 0x000fffff,
2187                .data   = &variant_arm,
2188        },
2189        /* ST Micro variants */
2190        {
2191                .id     = 0x00180180,
2192                .mask   = 0x00ffffff,
2193                .data   = &variant_u300,
2194        },
2195        {
2196                .id     = 0x10180180,
2197                .mask   = 0xf0ffffff,
2198                .data   = &variant_nomadik,
2199        },
2200        {
2201                .id     = 0x00280180,
2202                .mask   = 0x00ffffff,
2203                .data   = &variant_nomadik,
2204        },
2205        {
2206                .id     = 0x00480180,
2207                .mask   = 0xf0ffffff,
2208                .data   = &variant_ux500,
2209        },
2210        {
2211                .id     = 0x10480180,
2212                .mask   = 0xf0ffffff,
2213                .data   = &variant_ux500v2,
2214        },
2215        {
2216                .id     = 0x00880180,
2217                .mask   = 0x00ffffff,
2218                .data   = &variant_stm32,
2219        },
2220        {
2221                .id     = 0x10153180,
2222                .mask   = 0xf0ffffff,
2223                .data   = &variant_stm32_sdmmc,
2224        },
2225        /* Qualcomm variants */
2226        {
2227                .id     = 0x00051180,
2228                .mask   = 0x000fffff,
2229                .data   = &variant_qcom,
2230        },
2231        { 0, 0 },
2232};
2233
2234MODULE_DEVICE_TABLE(amba, mmci_ids);
2235
2236static struct amba_driver mmci_driver = {
2237        .drv            = {
2238                .name   = DRIVER_NAME,
2239                .pm     = &mmci_dev_pm_ops,
2240        },
2241        .probe          = mmci_probe,
2242        .remove         = mmci_remove,
2243        .id_table       = mmci_ids,
2244};
2245
2246module_amba_driver(mmci_driver);
2247
2248module_param(fmax, uint, 0444);
2249
2250MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2251MODULE_LICENSE("GPL");
2252