linux/drivers/mtd/devices/st_spi_fsm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
   4 *
   5 * Author: Angus Clark <angus.clark@st.com>
   6 *
   7 * Copyright (C) 2010-2014 STMicroelectronics Limited
   8 *
   9 * JEDEC probe based on drivers/mtd/devices/m25p80.c
  10 */
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/regmap.h>
  14#include <linux/platform_device.h>
  15#include <linux/mfd/syscon.h>
  16#include <linux/mtd/mtd.h>
  17#include <linux/mtd/partitions.h>
  18#include <linux/mtd/spi-nor.h>
  19#include <linux/sched.h>
  20#include <linux/delay.h>
  21#include <linux/io.h>
  22#include <linux/of.h>
  23#include <linux/clk.h>
  24
  25#include "serial_flash_cmds.h"
  26
  27/*
  28 * FSM SPI Controller Registers
  29 */
  30#define SPI_CLOCKDIV                    0x0010
  31#define SPI_MODESELECT                  0x0018
  32#define SPI_CONFIGDATA                  0x0020
  33#define SPI_STA_MODE_CHANGE             0x0028
  34#define SPI_FAST_SEQ_TRANSFER_SIZE      0x0100
  35#define SPI_FAST_SEQ_ADD1               0x0104
  36#define SPI_FAST_SEQ_ADD2               0x0108
  37#define SPI_FAST_SEQ_ADD_CFG            0x010c
  38#define SPI_FAST_SEQ_OPC1               0x0110
  39#define SPI_FAST_SEQ_OPC2               0x0114
  40#define SPI_FAST_SEQ_OPC3               0x0118
  41#define SPI_FAST_SEQ_OPC4               0x011c
  42#define SPI_FAST_SEQ_OPC5               0x0120
  43#define SPI_MODE_BITS                   0x0124
  44#define SPI_DUMMY_BITS                  0x0128
  45#define SPI_FAST_SEQ_FLASH_STA_DATA     0x012c
  46#define SPI_FAST_SEQ_1                  0x0130
  47#define SPI_FAST_SEQ_2                  0x0134
  48#define SPI_FAST_SEQ_3                  0x0138
  49#define SPI_FAST_SEQ_4                  0x013c
  50#define SPI_FAST_SEQ_CFG                0x0140
  51#define SPI_FAST_SEQ_STA                0x0144
  52#define SPI_QUAD_BOOT_SEQ_INIT_1        0x0148
  53#define SPI_QUAD_BOOT_SEQ_INIT_2        0x014c
  54#define SPI_QUAD_BOOT_READ_SEQ_1        0x0150
  55#define SPI_QUAD_BOOT_READ_SEQ_2        0x0154
  56#define SPI_PROGRAM_ERASE_TIME          0x0158
  57#define SPI_MULT_PAGE_REPEAT_SEQ_1      0x015c
  58#define SPI_MULT_PAGE_REPEAT_SEQ_2      0x0160
  59#define SPI_STATUS_WR_TIME_REG          0x0164
  60#define SPI_FAST_SEQ_DATA_REG           0x0300
  61
  62/*
  63 * Register: SPI_MODESELECT
  64 */
  65#define SPI_MODESELECT_CONTIG           0x01
  66#define SPI_MODESELECT_FASTREAD         0x02
  67#define SPI_MODESELECT_DUALIO           0x04
  68#define SPI_MODESELECT_FSM              0x08
  69#define SPI_MODESELECT_QUADBOOT         0x10
  70
  71/*
  72 * Register: SPI_CONFIGDATA
  73 */
  74#define SPI_CFG_DEVICE_ST               0x1
  75#define SPI_CFG_DEVICE_ATMEL            0x4
  76#define SPI_CFG_MIN_CS_HIGH(x)          (((x) & 0xfff) << 4)
  77#define SPI_CFG_CS_SETUPHOLD(x)         (((x) & 0xff) << 16)
  78#define SPI_CFG_DATA_HOLD(x)            (((x) & 0xff) << 24)
  79
  80#define SPI_CFG_DEFAULT_MIN_CS_HIGH    SPI_CFG_MIN_CS_HIGH(0x0AA)
  81#define SPI_CFG_DEFAULT_CS_SETUPHOLD   SPI_CFG_CS_SETUPHOLD(0xA0)
  82#define SPI_CFG_DEFAULT_DATA_HOLD      SPI_CFG_DATA_HOLD(0x00)
  83
  84/*
  85 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
  86 */
  87#define TRANSFER_SIZE(x)                ((x) * 8)
  88
  89/*
  90 * Register: SPI_FAST_SEQ_ADD_CFG
  91 */
  92#define ADR_CFG_CYCLES_ADD1(x)          ((x) << 0)
  93#define ADR_CFG_PADS_1_ADD1             (0x0 << 6)
  94#define ADR_CFG_PADS_2_ADD1             (0x1 << 6)
  95#define ADR_CFG_PADS_4_ADD1             (0x3 << 6)
  96#define ADR_CFG_CSDEASSERT_ADD1         (1   << 8)
  97#define ADR_CFG_CYCLES_ADD2(x)          ((x) << (0+16))
  98#define ADR_CFG_PADS_1_ADD2             (0x0 << (6+16))
  99#define ADR_CFG_PADS_2_ADD2             (0x1 << (6+16))
 100#define ADR_CFG_PADS_4_ADD2             (0x3 << (6+16))
 101#define ADR_CFG_CSDEASSERT_ADD2         (1   << (8+16))
 102
 103/*
 104 * Register: SPI_FAST_SEQ_n
 105 */
 106#define SEQ_OPC_OPCODE(x)               ((x) << 0)
 107#define SEQ_OPC_CYCLES(x)               ((x) << 8)
 108#define SEQ_OPC_PADS_1                  (0x0 << 14)
 109#define SEQ_OPC_PADS_2                  (0x1 << 14)
 110#define SEQ_OPC_PADS_4                  (0x3 << 14)
 111#define SEQ_OPC_CSDEASSERT              (1   << 16)
 112
 113/*
 114 * Register: SPI_FAST_SEQ_CFG
 115 */
 116#define SEQ_CFG_STARTSEQ                (1 << 0)
 117#define SEQ_CFG_SWRESET                 (1 << 5)
 118#define SEQ_CFG_CSDEASSERT              (1 << 6)
 119#define SEQ_CFG_READNOTWRITE            (1 << 7)
 120#define SEQ_CFG_ERASE                   (1 << 8)
 121#define SEQ_CFG_PADS_1                  (0x0 << 16)
 122#define SEQ_CFG_PADS_2                  (0x1 << 16)
 123#define SEQ_CFG_PADS_4                  (0x3 << 16)
 124
 125/*
 126 * Register: SPI_MODE_BITS
 127 */
 128#define MODE_DATA(x)                    (x & 0xff)
 129#define MODE_CYCLES(x)                  ((x & 0x3f) << 16)
 130#define MODE_PADS_1                     (0x0 << 22)
 131#define MODE_PADS_2                     (0x1 << 22)
 132#define MODE_PADS_4                     (0x3 << 22)
 133#define DUMMY_CSDEASSERT                (1   << 24)
 134
 135/*
 136 * Register: SPI_DUMMY_BITS
 137 */
 138#define DUMMY_CYCLES(x)                 ((x & 0x3f) << 16)
 139#define DUMMY_PADS_1                    (0x0 << 22)
 140#define DUMMY_PADS_2                    (0x1 << 22)
 141#define DUMMY_PADS_4                    (0x3 << 22)
 142#define DUMMY_CSDEASSERT                (1   << 24)
 143
 144/*
 145 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
 146 */
 147#define STA_DATA_BYTE1(x)               ((x & 0xff) << 0)
 148#define STA_DATA_BYTE2(x)               ((x & 0xff) << 8)
 149#define STA_PADS_1                      (0x0 << 16)
 150#define STA_PADS_2                      (0x1 << 16)
 151#define STA_PADS_4                      (0x3 << 16)
 152#define STA_CSDEASSERT                  (0x1 << 20)
 153#define STA_RDNOTWR                     (0x1 << 21)
 154
 155/*
 156 * FSM SPI Instruction Opcodes
 157 */
 158#define STFSM_OPC_CMD                   0x1
 159#define STFSM_OPC_ADD                   0x2
 160#define STFSM_OPC_STA                   0x3
 161#define STFSM_OPC_MODE                  0x4
 162#define STFSM_OPC_DUMMY         0x5
 163#define STFSM_OPC_DATA                  0x6
 164#define STFSM_OPC_WAIT                  0x7
 165#define STFSM_OPC_JUMP                  0x8
 166#define STFSM_OPC_GOTO                  0x9
 167#define STFSM_OPC_STOP                  0xF
 168
 169/*
 170 * FSM SPI Instructions (== opcode + operand).
 171 */
 172#define STFSM_INSTR(cmd, op)            ((cmd) | ((op) << 4))
 173
 174#define STFSM_INST_CMD1                 STFSM_INSTR(STFSM_OPC_CMD,      1)
 175#define STFSM_INST_CMD2                 STFSM_INSTR(STFSM_OPC_CMD,      2)
 176#define STFSM_INST_CMD3                 STFSM_INSTR(STFSM_OPC_CMD,      3)
 177#define STFSM_INST_CMD4                 STFSM_INSTR(STFSM_OPC_CMD,      4)
 178#define STFSM_INST_CMD5                 STFSM_INSTR(STFSM_OPC_CMD,      5)
 179#define STFSM_INST_ADD1                 STFSM_INSTR(STFSM_OPC_ADD,      1)
 180#define STFSM_INST_ADD2                 STFSM_INSTR(STFSM_OPC_ADD,      2)
 181
 182#define STFSM_INST_DATA_WRITE           STFSM_INSTR(STFSM_OPC_DATA,     1)
 183#define STFSM_INST_DATA_READ            STFSM_INSTR(STFSM_OPC_DATA,     2)
 184
 185#define STFSM_INST_STA_RD1              STFSM_INSTR(STFSM_OPC_STA,      0x1)
 186#define STFSM_INST_STA_WR1              STFSM_INSTR(STFSM_OPC_STA,      0x1)
 187#define STFSM_INST_STA_RD2              STFSM_INSTR(STFSM_OPC_STA,      0x2)
 188#define STFSM_INST_STA_WR1_2            STFSM_INSTR(STFSM_OPC_STA,      0x3)
 189
 190#define STFSM_INST_MODE                 STFSM_INSTR(STFSM_OPC_MODE,     0)
 191#define STFSM_INST_DUMMY                STFSM_INSTR(STFSM_OPC_DUMMY,    0)
 192#define STFSM_INST_WAIT                 STFSM_INSTR(STFSM_OPC_WAIT,     0)
 193#define STFSM_INST_STOP                 STFSM_INSTR(STFSM_OPC_STOP,     0)
 194
 195#define STFSM_DEFAULT_EMI_FREQ 100000000UL                        /* 100 MHz */
 196#define STFSM_DEFAULT_WR_TIME  (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
 197
 198#define STFSM_FLASH_SAFE_FREQ  10000000UL                         /* 10 MHz */
 199
 200#define STFSM_MAX_WAIT_SEQ_MS  1000     /* FSM execution time */
 201
 202/* S25FLxxxS commands */
 203#define S25FL_CMD_WRITE4_1_1_4 0x34
 204#define S25FL_CMD_SE4          0xdc
 205#define S25FL_CMD_CLSR         0x30
 206#define S25FL_CMD_DYBWR                0xe1
 207#define S25FL_CMD_DYBRD                0xe0
 208#define S25FL_CMD_WRITE4       0x12    /* Note, opcode clashes with
 209                                        * 'SPINOR_OP_WRITE_1_4_4'
 210                                        * as found on N25Qxxx devices! */
 211
 212/* Status register */
 213#define FLASH_STATUS_BUSY      0x01
 214#define FLASH_STATUS_WEL       0x02
 215#define FLASH_STATUS_BP0       0x04
 216#define FLASH_STATUS_BP1       0x08
 217#define FLASH_STATUS_BP2       0x10
 218#define FLASH_STATUS_SRWP0     0x80
 219#define FLASH_STATUS_TIMEOUT   0xff
 220/* S25FL Error Flags */
 221#define S25FL_STATUS_E_ERR     0x20
 222#define S25FL_STATUS_P_ERR     0x40
 223
 224#define N25Q_CMD_WRVCR         0x81
 225#define N25Q_CMD_RDVCR         0x85
 226#define N25Q_CMD_RDVECR        0x65
 227#define N25Q_CMD_RDNVCR        0xb5
 228#define N25Q_CMD_WRNVCR        0xb1
 229
 230#define FLASH_PAGESIZE         256                      /* In Bytes    */
 231#define FLASH_PAGESIZE_32      (FLASH_PAGESIZE / 4)     /* In uint32_t */
 232#define FLASH_MAX_BUSY_WAIT    (300 * HZ)       /* Maximum 'CHIPERASE' time */
 233
 234/*
 235 * Flags to tweak operation of default read/write/erase routines
 236 */
 237#define CFG_READ_TOGGLE_32BIT_ADDR     0x00000001
 238#define CFG_WRITE_TOGGLE_32BIT_ADDR    0x00000002
 239#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
 240#define CFG_S25FL_CHECK_ERROR_FLAGS    0x00000010
 241
 242struct stfsm_seq {
 243        uint32_t data_size;
 244        uint32_t addr1;
 245        uint32_t addr2;
 246        uint32_t addr_cfg;
 247        uint32_t seq_opc[5];
 248        uint32_t mode;
 249        uint32_t dummy;
 250        uint32_t status;
 251        uint8_t  seq[16];
 252        uint32_t seq_cfg;
 253} __packed __aligned(4);
 254
 255struct stfsm {
 256        struct device           *dev;
 257        void __iomem            *base;
 258        struct resource         *region;
 259        struct mtd_info         mtd;
 260        struct mutex            lock;
 261        struct flash_info       *info;
 262        struct clk              *clk;
 263
 264        uint32_t                configuration;
 265        uint32_t                fifo_dir_delay;
 266        bool                    booted_from_spi;
 267        bool                    reset_signal;
 268        bool                    reset_por;
 269
 270        struct stfsm_seq stfsm_seq_read;
 271        struct stfsm_seq stfsm_seq_write;
 272        struct stfsm_seq stfsm_seq_en_32bit_addr;
 273};
 274
 275/* Parameters to configure a READ or WRITE FSM sequence */
 276struct seq_rw_config {
 277        uint32_t        flags;          /* flags to support config */
 278        uint8_t         cmd;            /* FLASH command */
 279        int             write;          /* Write Sequence */
 280        uint8_t         addr_pads;      /* No. of addr pads (MODE & DUMMY) */
 281        uint8_t         data_pads;      /* No. of data pads */
 282        uint8_t         mode_data;      /* MODE data */
 283        uint8_t         mode_cycles;    /* No. of MODE cycles */
 284        uint8_t         dummy_cycles;   /* No. of DUMMY cycles */
 285};
 286
 287/* SPI Flash Device Table */
 288struct flash_info {
 289        char            *name;
 290        /*
 291         * JEDEC id zero means "no ID" (most older chips); otherwise it has
 292         * a high byte of zero plus three data bytes: the manufacturer id,
 293         * then a two byte device id.
 294         */
 295        u32             jedec_id;
 296        u16             ext_id;
 297        /*
 298         * The size listed here is what works with SPINOR_OP_SE, which isn't
 299         * necessarily called a "sector" by the vendor.
 300         */
 301        unsigned        sector_size;
 302        u16             n_sectors;
 303        u32             flags;
 304        /*
 305         * Note, where FAST_READ is supported, freq_max specifies the
 306         * FAST_READ frequency, not the READ frequency.
 307         */
 308        u32             max_freq;
 309        int             (*config)(struct stfsm *);
 310};
 311
 312static int stfsm_n25q_config(struct stfsm *fsm);
 313static int stfsm_mx25_config(struct stfsm *fsm);
 314static int stfsm_s25fl_config(struct stfsm *fsm);
 315static int stfsm_w25q_config(struct stfsm *fsm);
 316
 317static struct flash_info flash_types[] = {
 318        /*
 319         * ST Microelectronics/Numonyx --
 320         * (newer production versions may have feature updates
 321         * (eg faster operating frequency)
 322         */
 323#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
 324        { "m25p40",  0x202013, 0,  64 * 1024,   8, M25P_FLAG, 25, NULL },
 325        { "m25p80",  0x202014, 0,  64 * 1024,  16, M25P_FLAG, 25, NULL },
 326        { "m25p16",  0x202015, 0,  64 * 1024,  32, M25P_FLAG, 25, NULL },
 327        { "m25p32",  0x202016, 0,  64 * 1024,  64, M25P_FLAG, 50, NULL },
 328        { "m25p64",  0x202017, 0,  64 * 1024, 128, M25P_FLAG, 50, NULL },
 329        { "m25p128", 0x202018, 0, 256 * 1024,  64, M25P_FLAG, 50, NULL },
 330
 331#define M25PX_FLAG (FLASH_FLAG_READ_WRITE      |        \
 332                    FLASH_FLAG_READ_FAST        |       \
 333                    FLASH_FLAG_READ_1_1_2       |       \
 334                    FLASH_FLAG_WRITE_1_1_2)
 335        { "m25px32", 0x207116, 0,  64 * 1024,  64, M25PX_FLAG, 75, NULL },
 336        { "m25px64", 0x207117, 0,  64 * 1024, 128, M25PX_FLAG, 75, NULL },
 337
 338        /* Macronix MX25xxx
 339         *     - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
 340         *       where operating frequency must be reduced.
 341         */
 342#define MX25_FLAG (FLASH_FLAG_READ_WRITE       |        \
 343                   FLASH_FLAG_READ_FAST         |       \
 344                   FLASH_FLAG_READ_1_1_2        |       \
 345                   FLASH_FLAG_READ_1_2_2        |       \
 346                   FLASH_FLAG_READ_1_1_4        |       \
 347                   FLASH_FLAG_SE_4K             |       \
 348                   FLASH_FLAG_SE_32K)
 349        { "mx25l3255e",  0xc29e16, 0, 64 * 1024, 64,
 350          (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86,
 351          stfsm_mx25_config},
 352        { "mx25l25635e", 0xc22019, 0, 64*1024, 512,
 353          (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
 354          stfsm_mx25_config },
 355        { "mx25l25655e", 0xc22619, 0, 64*1024, 512,
 356          (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
 357          stfsm_mx25_config},
 358
 359#define N25Q_FLAG (FLASH_FLAG_READ_WRITE       |        \
 360                   FLASH_FLAG_READ_FAST         |       \
 361                   FLASH_FLAG_READ_1_1_2        |       \
 362                   FLASH_FLAG_READ_1_2_2        |       \
 363                   FLASH_FLAG_READ_1_1_4        |       \
 364                   FLASH_FLAG_READ_1_4_4        |       \
 365                   FLASH_FLAG_WRITE_1_1_2       |       \
 366                   FLASH_FLAG_WRITE_1_2_2       |       \
 367                   FLASH_FLAG_WRITE_1_1_4       |       \
 368                   FLASH_FLAG_WRITE_1_4_4)
 369        { "n25q128", 0x20ba18, 0, 64 * 1024,  256, N25Q_FLAG, 108,
 370          stfsm_n25q_config },
 371        { "n25q256", 0x20ba19, 0, 64 * 1024,  512,
 372          N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
 373
 374        /*
 375         * Spansion S25FLxxxP
 376         *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
 377         */
 378#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE  |        \
 379                        FLASH_FLAG_READ_1_1_2   |       \
 380                        FLASH_FLAG_READ_1_2_2   |       \
 381                        FLASH_FLAG_READ_1_1_4   |       \
 382                        FLASH_FLAG_READ_1_4_4   |       \
 383                        FLASH_FLAG_WRITE_1_1_4  |       \
 384                        FLASH_FLAG_READ_FAST)
 385        { "s25fl032p",  0x010215, 0x4d00,  64 * 1024,  64, S25FLXXXP_FLAG, 80,
 386          stfsm_s25fl_config},
 387        { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024,  64, S25FLXXXP_FLAG, 80,
 388          stfsm_s25fl_config },
 389        { "s25fl129p1", 0x012018, 0x4d01,  64 * 1024, 256, S25FLXXXP_FLAG, 80,
 390          stfsm_s25fl_config },
 391
 392        /*
 393         * Spansion S25FLxxxS
 394         *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
 395         *     - RESET# signal supported by die but not bristled out on all
 396         *       package types.  The package type is a function of board design,
 397         *       so this information is captured in the board's flags.
 398         *     - Supports 'DYB' sector protection. Depending on variant, sectors
 399         *       may default to locked state on power-on.
 400         */
 401#define S25FLXXXS_FLAG (S25FLXXXP_FLAG         |        \
 402                        FLASH_FLAG_RESET        |       \
 403                        FLASH_FLAG_DYB_LOCKING)
 404        { "s25fl128s0", 0x012018, 0x0300,  256 * 1024, 64, S25FLXXXS_FLAG, 80,
 405          stfsm_s25fl_config },
 406        { "s25fl128s1", 0x012018, 0x0301,  64 * 1024, 256, S25FLXXXS_FLAG, 80,
 407          stfsm_s25fl_config },
 408        { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
 409          S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
 410        { "s25fl256s1", 0x010219, 0x4d01,  64 * 1024, 512,
 411          S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
 412
 413        /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
 414#define W25X_FLAG (FLASH_FLAG_READ_WRITE       |        \
 415                   FLASH_FLAG_READ_FAST         |       \
 416                   FLASH_FLAG_READ_1_1_2        |       \
 417                   FLASH_FLAG_WRITE_1_1_2)
 418        { "w25x40",  0xef3013, 0,  64 * 1024,   8, W25X_FLAG, 75, NULL },
 419        { "w25x80",  0xef3014, 0,  64 * 1024,  16, W25X_FLAG, 75, NULL },
 420        { "w25x16",  0xef3015, 0,  64 * 1024,  32, W25X_FLAG, 75, NULL },
 421        { "w25x32",  0xef3016, 0,  64 * 1024,  64, W25X_FLAG, 75, NULL },
 422        { "w25x64",  0xef3017, 0,  64 * 1024, 128, W25X_FLAG, 75, NULL },
 423
 424        /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
 425#define W25Q_FLAG (FLASH_FLAG_READ_WRITE       |        \
 426                   FLASH_FLAG_READ_FAST         |       \
 427                   FLASH_FLAG_READ_1_1_2        |       \
 428                   FLASH_FLAG_READ_1_2_2        |       \
 429                   FLASH_FLAG_READ_1_1_4        |       \
 430                   FLASH_FLAG_READ_1_4_4        |       \
 431                   FLASH_FLAG_WRITE_1_1_4)
 432        { "w25q80",  0xef4014, 0,  64 * 1024,  16, W25Q_FLAG, 80,
 433          stfsm_w25q_config },
 434        { "w25q16",  0xef4015, 0,  64 * 1024,  32, W25Q_FLAG, 80,
 435          stfsm_w25q_config },
 436        { "w25q32",  0xef4016, 0,  64 * 1024,  64, W25Q_FLAG, 80,
 437          stfsm_w25q_config },
 438        { "w25q64",  0xef4017, 0,  64 * 1024, 128, W25Q_FLAG, 80,
 439          stfsm_w25q_config },
 440
 441        /* Sentinel */
 442        { NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
 443};
 444
 445/*
 446 * FSM message sequence configurations:
 447 *
 448 * All configs are presented in order of preference
 449 */
 450
 451/* Default READ configurations, in order of preference */
 452static struct seq_rw_config default_read_configs[] = {
 453        {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4,   0, 4, 4, 0x00, 2, 4},
 454        {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4,   0, 1, 4, 0x00, 4, 0},
 455        {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2,   0, 2, 2, 0x00, 4, 0},
 456        {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2,   0, 1, 2, 0x00, 0, 8},
 457        {FLASH_FLAG_READ_FAST,  SPINOR_OP_READ_FAST,    0, 1, 1, 0x00, 0, 8},
 458        {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ,         0, 1, 1, 0x00, 0, 0},
 459        {0x00,                  0,                      0, 0, 0, 0x00, 0, 0},
 460};
 461
 462/* Default WRITE configurations */
 463static struct seq_rw_config default_write_configs[] = {
 464        {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
 465        {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
 466        {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
 467        {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
 468        {FLASH_FLAG_READ_WRITE,  SPINOR_OP_WRITE,       1, 1, 1, 0x00, 0, 0},
 469        {0x00,                   0,                     0, 0, 0, 0x00, 0, 0},
 470};
 471
 472/*
 473 * [N25Qxxx] Configuration
 474 */
 475#define N25Q_VCR_DUMMY_CYCLES(x)        (((x) & 0xf) << 4)
 476#define N25Q_VCR_XIP_DISABLED           ((uint8_t)0x1 << 3)
 477#define N25Q_VCR_WRAP_CONT              0x3
 478
 479/* N25Q 3-byte Address READ configurations
 480 *      - 'FAST' variants configured for 8 dummy cycles.
 481 *
 482 * Note, the number of dummy cycles used for 'FAST' READ operations is
 483 * configurable and would normally be tuned according to the READ command and
 484 * operating frequency.  However, this applies universally to all 'FAST' READ
 485 * commands, including those used by the SPIBoot controller, and remains in
 486 * force until the device is power-cycled.  Since the SPIBoot controller is
 487 * hard-wired to use 8 dummy cycles, we must configure the device to also use 8
 488 * cycles.
 489 */
 490static struct seq_rw_config n25q_read3_configs[] = {
 491        {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4,   0, 4, 4, 0x00, 0, 8},
 492        {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4,   0, 1, 4, 0x00, 0, 8},
 493        {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2,   0, 2, 2, 0x00, 0, 8},
 494        {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2,   0, 1, 2, 0x00, 0, 8},
 495        {FLASH_FLAG_READ_FAST,  SPINOR_OP_READ_FAST,    0, 1, 1, 0x00, 0, 8},
 496        {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ,         0, 1, 1, 0x00, 0, 0},
 497        {0x00,                  0,                      0, 0, 0, 0x00, 0, 0},
 498};
 499
 500/* N25Q 4-byte Address READ configurations
 501 *      - use special 4-byte address READ commands (reduces overheads, and
 502 *        reduces risk of hitting watchdog reset issues).
 503 *      - 'FAST' variants configured for 8 dummy cycles (see note above.)
 504 */
 505static struct seq_rw_config n25q_read4_configs[] = {
 506        {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 0, 8},
 507        {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
 508        {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 0, 8},
 509        {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
 510        {FLASH_FLAG_READ_FAST,  SPINOR_OP_READ_FAST_4B,  0, 1, 1, 0x00, 0, 8},
 511        {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B,       0, 1, 1, 0x00, 0, 0},
 512        {0x00,                  0,                       0, 0, 0, 0x00, 0, 0},
 513};
 514
 515/*
 516 * [MX25xxx] Configuration
 517 */
 518#define MX25_STATUS_QE                  (0x1 << 6)
 519
 520static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
 521{
 522        seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
 523                           SEQ_OPC_CYCLES(8) |
 524                           SEQ_OPC_OPCODE(SPINOR_OP_EN4B) |
 525                           SEQ_OPC_CSDEASSERT);
 526
 527        seq->seq[0] = STFSM_INST_CMD1;
 528        seq->seq[1] = STFSM_INST_WAIT;
 529        seq->seq[2] = STFSM_INST_STOP;
 530
 531        seq->seq_cfg = (SEQ_CFG_PADS_1 |
 532                        SEQ_CFG_ERASE |
 533                        SEQ_CFG_READNOTWRITE |
 534                        SEQ_CFG_CSDEASSERT |
 535                        SEQ_CFG_STARTSEQ);
 536
 537        return 0;
 538}
 539
 540/*
 541 * [S25FLxxx] Configuration
 542 */
 543#define STFSM_S25FL_CONFIG_QE           (0x1 << 1)
 544
 545/*
 546 * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
 547 * Register, Extended Address Modes, and a 32-bit address command set.  The
 548 * 32-bit address command set is used here, since it avoids any problems with
 549 * entering a state that is incompatible with the SPIBoot Controller.
 550 */
 551static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
 552        {FLASH_FLAG_READ_1_4_4,  SPINOR_OP_READ_1_4_4_4B,  0, 4, 4, 0x00, 2, 4},
 553        {FLASH_FLAG_READ_1_1_4,  SPINOR_OP_READ_1_1_4_4B,  0, 1, 4, 0x00, 0, 8},
 554        {FLASH_FLAG_READ_1_2_2,  SPINOR_OP_READ_1_2_2_4B,  0, 2, 2, 0x00, 4, 0},
 555        {FLASH_FLAG_READ_1_1_2,  SPINOR_OP_READ_1_1_2_4B,  0, 1, 2, 0x00, 0, 8},
 556        {FLASH_FLAG_READ_FAST,   SPINOR_OP_READ_FAST_4B,   0, 1, 1, 0x00, 0, 8},
 557        {FLASH_FLAG_READ_WRITE,  SPINOR_OP_READ_4B,        0, 1, 1, 0x00, 0, 0},
 558        {0x00,                   0,                        0, 0, 0, 0x00, 0, 0},
 559};
 560
 561static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
 562        {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0},
 563        {FLASH_FLAG_READ_WRITE,  S25FL_CMD_WRITE4,       1, 1, 1, 0x00, 0, 0},
 564        {0x00,                   0,                      0, 0, 0, 0x00, 0, 0},
 565};
 566
 567/*
 568 * [W25Qxxx] Configuration
 569 */
 570#define W25Q_STATUS_QE                  (0x1 << 1)
 571
 572static struct stfsm_seq stfsm_seq_read_jedec = {
 573        .data_size = TRANSFER_SIZE(8),
 574        .seq_opc[0] = (SEQ_OPC_PADS_1 |
 575                       SEQ_OPC_CYCLES(8) |
 576                       SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
 577        .seq = {
 578                STFSM_INST_CMD1,
 579                STFSM_INST_DATA_READ,
 580                STFSM_INST_STOP,
 581        },
 582        .seq_cfg = (SEQ_CFG_PADS_1 |
 583                    SEQ_CFG_READNOTWRITE |
 584                    SEQ_CFG_CSDEASSERT |
 585                    SEQ_CFG_STARTSEQ),
 586};
 587
 588static struct stfsm_seq stfsm_seq_read_status_fifo = {
 589        .data_size = TRANSFER_SIZE(4),
 590        .seq_opc[0] = (SEQ_OPC_PADS_1 |
 591                       SEQ_OPC_CYCLES(8) |
 592                       SEQ_OPC_OPCODE(SPINOR_OP_RDSR)),
 593        .seq = {
 594                STFSM_INST_CMD1,
 595                STFSM_INST_DATA_READ,
 596                STFSM_INST_STOP,
 597        },
 598        .seq_cfg = (SEQ_CFG_PADS_1 |
 599                    SEQ_CFG_READNOTWRITE |
 600                    SEQ_CFG_CSDEASSERT |
 601                    SEQ_CFG_STARTSEQ),
 602};
 603
 604static struct stfsm_seq stfsm_seq_erase_sector = {
 605        /* 'addr_cfg' configured during initialisation */
 606        .seq_opc = {
 607                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 608                 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
 609
 610                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 611                 SEQ_OPC_OPCODE(SPINOR_OP_SE)),
 612        },
 613        .seq = {
 614                STFSM_INST_CMD1,
 615                STFSM_INST_CMD2,
 616                STFSM_INST_ADD1,
 617                STFSM_INST_ADD2,
 618                STFSM_INST_STOP,
 619        },
 620        .seq_cfg = (SEQ_CFG_PADS_1 |
 621                    SEQ_CFG_READNOTWRITE |
 622                    SEQ_CFG_CSDEASSERT |
 623                    SEQ_CFG_STARTSEQ),
 624};
 625
 626static struct stfsm_seq stfsm_seq_erase_chip = {
 627        .seq_opc = {
 628                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 629                 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
 630
 631                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 632                 SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT),
 633        },
 634        .seq = {
 635                STFSM_INST_CMD1,
 636                STFSM_INST_CMD2,
 637                STFSM_INST_WAIT,
 638                STFSM_INST_STOP,
 639        },
 640        .seq_cfg = (SEQ_CFG_PADS_1 |
 641                    SEQ_CFG_ERASE |
 642                    SEQ_CFG_READNOTWRITE |
 643                    SEQ_CFG_CSDEASSERT |
 644                    SEQ_CFG_STARTSEQ),
 645};
 646
 647static struct stfsm_seq stfsm_seq_write_status = {
 648        .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 649                       SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
 650        .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 651                       SEQ_OPC_OPCODE(SPINOR_OP_WRSR)),
 652        .seq = {
 653                STFSM_INST_CMD1,
 654                STFSM_INST_CMD2,
 655                STFSM_INST_STA_WR1,
 656                STFSM_INST_STOP,
 657        },
 658        .seq_cfg = (SEQ_CFG_PADS_1 |
 659                    SEQ_CFG_READNOTWRITE |
 660                    SEQ_CFG_CSDEASSERT |
 661                    SEQ_CFG_STARTSEQ),
 662};
 663
 664/* Dummy sequence to read one byte of data from flash into the FIFO */
 665static const struct stfsm_seq stfsm_seq_load_fifo_byte = {
 666        .data_size = TRANSFER_SIZE(1),
 667        .seq_opc[0] = (SEQ_OPC_PADS_1 |
 668                       SEQ_OPC_CYCLES(8) |
 669                       SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
 670        .seq = {
 671                STFSM_INST_CMD1,
 672                STFSM_INST_DATA_READ,
 673                STFSM_INST_STOP,
 674        },
 675        .seq_cfg = (SEQ_CFG_PADS_1 |
 676                    SEQ_CFG_READNOTWRITE |
 677                    SEQ_CFG_CSDEASSERT |
 678                    SEQ_CFG_STARTSEQ),
 679};
 680
 681static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
 682{
 683        seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 684                           SEQ_OPC_OPCODE(SPINOR_OP_EN4B));
 685        seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 686                           SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
 687                           SEQ_OPC_CSDEASSERT);
 688
 689        seq->seq[0] = STFSM_INST_CMD2;
 690        seq->seq[1] = STFSM_INST_CMD1;
 691        seq->seq[2] = STFSM_INST_WAIT;
 692        seq->seq[3] = STFSM_INST_STOP;
 693
 694        seq->seq_cfg = (SEQ_CFG_PADS_1 |
 695                        SEQ_CFG_ERASE |
 696                        SEQ_CFG_READNOTWRITE |
 697                        SEQ_CFG_CSDEASSERT |
 698                        SEQ_CFG_STARTSEQ);
 699
 700        return 0;
 701}
 702
 703static inline int stfsm_is_idle(struct stfsm *fsm)
 704{
 705        return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
 706}
 707
 708static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
 709{
 710        return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
 711}
 712
 713static inline void stfsm_load_seq(struct stfsm *fsm,
 714                                  const struct stfsm_seq *seq)
 715{
 716        void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
 717        const uint32_t *src = (const uint32_t *)seq;
 718        int words = sizeof(*seq) / sizeof(*src);
 719
 720        BUG_ON(!stfsm_is_idle(fsm));
 721
 722        while (words--) {
 723                writel(*src, dst);
 724                src++;
 725                dst += 4;
 726        }
 727}
 728
 729static void stfsm_wait_seq(struct stfsm *fsm)
 730{
 731        unsigned long deadline;
 732        int timeout = 0;
 733
 734        deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
 735
 736        while (!timeout) {
 737                if (time_after_eq(jiffies, deadline))
 738                        timeout = 1;
 739
 740                if (stfsm_is_idle(fsm))
 741                        return;
 742
 743                cond_resched();
 744        }
 745
 746        dev_err(fsm->dev, "timeout on sequence completion\n");
 747}
 748
 749static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
 750{
 751        uint32_t remaining = size >> 2;
 752        uint32_t avail;
 753        uint32_t words;
 754
 755        dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
 756
 757        BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
 758
 759        while (remaining) {
 760                for (;;) {
 761                        avail = stfsm_fifo_available(fsm);
 762                        if (avail)
 763                                break;
 764                        udelay(1);
 765                }
 766                words = min(avail, remaining);
 767                remaining -= words;
 768
 769                readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
 770                buf += words;
 771        }
 772}
 773
 774/*
 775 * Clear the data FIFO
 776 *
 777 * Typically, this is only required during driver initialisation, where no
 778 * assumptions can be made regarding the state of the FIFO.
 779 *
 780 * The process of clearing the FIFO is complicated by fact that while it is
 781 * possible for the FIFO to contain an arbitrary number of bytes [1], the
 782 * SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words
 783 * present.  Furthermore, data can only be drained from the FIFO by reading
 784 * complete 32-bit words.
 785 *
 786 * With this in mind, a two stage process is used to the clear the FIFO:
 787 *
 788 *     1. Read any complete 32-bit words from the FIFO, as reported by the
 789 *        SPI_FAST_SEQ_STA register.
 790 *
 791 *     2. Mop up any remaining bytes.  At this point, it is not known if there
 792 *        are 0, 1, 2, or 3 bytes in the FIFO.  To handle all cases, a dummy FSM
 793 *        sequence is used to load one byte at a time, until a complete 32-bit
 794 *        word is formed; at most, 4 bytes will need to be loaded.
 795 *
 796 * [1] It is theoretically possible for the FIFO to contain an arbitrary number
 797 *     of bits.  However, since there are no known use-cases that leave
 798 *     incomplete bytes in the FIFO, only words and bytes are considered here.
 799 */
 800static void stfsm_clear_fifo(struct stfsm *fsm)
 801{
 802        const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte;
 803        uint32_t words, i;
 804
 805        /* 1. Clear any 32-bit words */
 806        words = stfsm_fifo_available(fsm);
 807        if (words) {
 808                for (i = 0; i < words; i++)
 809                        readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
 810                dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words);
 811        }
 812
 813        /*
 814         * 2. Clear any remaining bytes
 815         *    - Load the FIFO, one byte at a time, until a complete 32-bit word
 816         *      is available.
 817         */
 818        for (i = 0, words = 0; i < 4 && !words; i++) {
 819                stfsm_load_seq(fsm, seq);
 820                stfsm_wait_seq(fsm);
 821                words = stfsm_fifo_available(fsm);
 822        }
 823
 824        /*    - A single word must be available now */
 825        if (words != 1) {
 826                dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n");
 827                return;
 828        }
 829
 830        /*    - Read the 32-bit word */
 831        readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
 832
 833        dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i);
 834}
 835
 836static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
 837                            uint32_t size)
 838{
 839        uint32_t words = size >> 2;
 840
 841        dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
 842
 843        BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
 844
 845        writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
 846
 847        return size;
 848}
 849
 850static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
 851{
 852        struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
 853        uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
 854
 855        seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
 856                           SEQ_OPC_CYCLES(8) |
 857                           SEQ_OPC_OPCODE(cmd) |
 858                           SEQ_OPC_CSDEASSERT);
 859
 860        stfsm_load_seq(fsm, seq);
 861
 862        stfsm_wait_seq(fsm);
 863
 864        return 0;
 865}
 866
 867static uint8_t stfsm_wait_busy(struct stfsm *fsm)
 868{
 869        struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
 870        unsigned long deadline;
 871        uint32_t status;
 872        int timeout = 0;
 873
 874        /* Use RDRS1 */
 875        seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
 876                           SEQ_OPC_CYCLES(8) |
 877                           SEQ_OPC_OPCODE(SPINOR_OP_RDSR));
 878
 879        /* Load read_status sequence */
 880        stfsm_load_seq(fsm, seq);
 881
 882        /*
 883         * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
 884         */
 885        deadline = jiffies + FLASH_MAX_BUSY_WAIT;
 886        while (!timeout) {
 887                if (time_after_eq(jiffies, deadline))
 888                        timeout = 1;
 889
 890                stfsm_wait_seq(fsm);
 891
 892                stfsm_read_fifo(fsm, &status, 4);
 893
 894                if ((status & FLASH_STATUS_BUSY) == 0)
 895                        return 0;
 896
 897                if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
 898                    ((status & S25FL_STATUS_P_ERR) ||
 899                     (status & S25FL_STATUS_E_ERR)))
 900                        return (uint8_t)(status & 0xff);
 901
 902                if (!timeout)
 903                        /* Restart */
 904                        writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
 905
 906                cond_resched();
 907        }
 908
 909        dev_err(fsm->dev, "timeout on wait_busy\n");
 910
 911        return FLASH_STATUS_TIMEOUT;
 912}
 913
 914static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
 915                             uint8_t *data, int bytes)
 916{
 917        struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
 918        uint32_t tmp;
 919        uint8_t *t = (uint8_t *)&tmp;
 920        int i;
 921
 922        dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n",
 923                cmd, bytes);
 924
 925        BUG_ON(bytes != 1 && bytes != 2);
 926
 927        seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 928                           SEQ_OPC_OPCODE(cmd)),
 929
 930        stfsm_load_seq(fsm, seq);
 931
 932        stfsm_read_fifo(fsm, &tmp, 4);
 933
 934        for (i = 0; i < bytes; i++)
 935                data[i] = t[i];
 936
 937        stfsm_wait_seq(fsm);
 938
 939        return 0;
 940}
 941
 942static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd,
 943                            uint16_t data, int bytes, int wait_busy)
 944{
 945        struct stfsm_seq *seq = &stfsm_seq_write_status;
 946
 947        dev_dbg(fsm->dev,
 948                "write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
 949                " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no");
 950
 951        BUG_ON(bytes != 1 && bytes != 2);
 952
 953        seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 954                           SEQ_OPC_OPCODE(cmd));
 955
 956        seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT;
 957        seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
 958
 959        stfsm_load_seq(fsm, seq);
 960
 961        stfsm_wait_seq(fsm);
 962
 963        if (wait_busy)
 964                stfsm_wait_busy(fsm);
 965
 966        return 0;
 967}
 968
 969/*
 970 * SoC reset on 'boot-from-spi' systems
 971 *
 972 * Certain modes of operation cause the Flash device to enter a particular state
 973 * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
 974 * Addr' commands).  On boot-from-spi systems, it is important to consider what
 975 * happens if a warm reset occurs during this period.  The SPIBoot controller
 976 * assumes that Flash device is in its default reset state, 24-bit address mode,
 977 * and ready to accept commands.  This can be achieved using some form of
 978 * on-board logic/controller to force a device POR in response to a SoC-level
 979 * reset or by making use of the device reset signal if available (limited
 980 * number of devices only).
 981 *
 982 * Failure to take such precautions can cause problems following a warm reset.
 983 * For some operations (e.g. ERASE), there is little that can be done.  For
 984 * other modes of operation (e.g. 32-bit addressing), options are often
 985 * available that can help minimise the window in which a reset could cause a
 986 * problem.
 987 *
 988 */
 989static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
 990{
 991        /* Reset signal is available on the board and supported by the device */
 992        if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
 993                return true;
 994
 995        /* Board-level logic forces a power-on-reset */
 996        if (fsm->reset_por)
 997                return true;
 998
 999        /* Reset is not properly handled and may result in failure to reboot */
1000        return false;
1001}
1002
1003/* Configure 'addr_cfg' according to addressing mode */
1004static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
1005                                       struct stfsm_seq *seq)
1006{
1007        int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
1008
1009        seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
1010                         ADR_CFG_PADS_1_ADD1 |
1011                         ADR_CFG_CYCLES_ADD2(16) |
1012                         ADR_CFG_PADS_1_ADD2 |
1013                         ADR_CFG_CSDEASSERT_ADD2);
1014}
1015
1016/* Search for preferred configuration based on available flags */
1017static struct seq_rw_config *
1018stfsm_search_seq_rw_configs(struct stfsm *fsm,
1019                            struct seq_rw_config cfgs[])
1020{
1021        struct seq_rw_config *config;
1022        int flags = fsm->info->flags;
1023
1024        for (config = cfgs; config->cmd != 0; config++)
1025                if ((config->flags & flags) == config->flags)
1026                        return config;
1027
1028        return NULL;
1029}
1030
1031/* Prepare a READ/WRITE sequence according to configuration parameters */
1032static void stfsm_prepare_rw_seq(struct stfsm *fsm,
1033                                 struct stfsm_seq *seq,
1034                                 struct seq_rw_config *cfg)
1035{
1036        int addr1_cycles, addr2_cycles;
1037        int i = 0;
1038
1039        memset(seq, 0, sizeof(*seq));
1040
1041        /* Add READ/WRITE OPC  */
1042        seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1043                             SEQ_OPC_CYCLES(8) |
1044                             SEQ_OPC_OPCODE(cfg->cmd));
1045
1046        /* Add WREN OPC for a WRITE sequence */
1047        if (cfg->write)
1048                seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1049                                     SEQ_OPC_CYCLES(8) |
1050                                     SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
1051                                     SEQ_OPC_CSDEASSERT);
1052
1053        /* Address configuration (24 or 32-bit addresses) */
1054        addr1_cycles  = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
1055        addr1_cycles /= cfg->addr_pads;
1056        addr2_cycles  = 16 / cfg->addr_pads;
1057        seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 |   /* ADD1 cycles */
1058                         (cfg->addr_pads - 1) << 6 |    /* ADD1 pads */
1059                         (addr2_cycles & 0x3f) << 16 |  /* ADD2 cycles */
1060                         ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
1061
1062        /* Data/Sequence configuration */
1063        seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
1064                        SEQ_CFG_STARTSEQ |
1065                        SEQ_CFG_CSDEASSERT);
1066        if (!cfg->write)
1067                seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
1068
1069        /* Mode configuration (no. of pads taken from addr cfg) */
1070        seq->mode = ((cfg->mode_data & 0xff) << 0 |     /* data */
1071                     (cfg->mode_cycles & 0x3f) << 16 |  /* cycles */
1072                     (cfg->addr_pads - 1) << 22);       /* pads */
1073
1074        /* Dummy configuration (no. of pads taken from addr cfg) */
1075        seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 |        /* cycles */
1076                      (cfg->addr_pads - 1) << 22);              /* pads */
1077
1078
1079        /* Instruction sequence */
1080        i = 0;
1081        if (cfg->write)
1082                seq->seq[i++] = STFSM_INST_CMD2;
1083
1084        seq->seq[i++] = STFSM_INST_CMD1;
1085
1086        seq->seq[i++] = STFSM_INST_ADD1;
1087        seq->seq[i++] = STFSM_INST_ADD2;
1088
1089        if (cfg->mode_cycles)
1090                seq->seq[i++] = STFSM_INST_MODE;
1091
1092        if (cfg->dummy_cycles)
1093                seq->seq[i++] = STFSM_INST_DUMMY;
1094
1095        seq->seq[i++] =
1096                cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
1097        seq->seq[i++] = STFSM_INST_STOP;
1098}
1099
1100static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
1101                                       struct stfsm_seq *seq,
1102                                       struct seq_rw_config *cfgs)
1103{
1104        struct seq_rw_config *config;
1105
1106        config = stfsm_search_seq_rw_configs(fsm, cfgs);
1107        if (!config) {
1108                dev_err(fsm->dev, "failed to find suitable config\n");
1109                return -EINVAL;
1110        }
1111
1112        stfsm_prepare_rw_seq(fsm, seq, config);
1113
1114        return 0;
1115}
1116
1117/* Prepare a READ/WRITE/ERASE 'default' sequences */
1118static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
1119{
1120        uint32_t flags = fsm->info->flags;
1121        int ret;
1122
1123        /* Configure 'READ' sequence */
1124        ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1125                                          default_read_configs);
1126        if (ret) {
1127                dev_err(fsm->dev,
1128                        "failed to prep READ sequence with flags [0x%08x]\n",
1129                        flags);
1130                return ret;
1131        }
1132
1133        /* Configure 'WRITE' sequence */
1134        ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1135                                          default_write_configs);
1136        if (ret) {
1137                dev_err(fsm->dev,
1138                        "failed to prep WRITE sequence with flags [0x%08x]\n",
1139                        flags);
1140                return ret;
1141        }
1142
1143        /* Configure 'ERASE_SECTOR' sequence */
1144        stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1145
1146        return 0;
1147}
1148
1149static int stfsm_mx25_config(struct stfsm *fsm)
1150{
1151        uint32_t flags = fsm->info->flags;
1152        uint32_t data_pads;
1153        uint8_t sta;
1154        int ret;
1155        bool soc_reset;
1156
1157        /*
1158         * Use default READ/WRITE sequences
1159         */
1160        ret = stfsm_prepare_rwe_seqs_default(fsm);
1161        if (ret)
1162                return ret;
1163
1164        /*
1165         * Configure 32-bit Address Support
1166         */
1167        if (flags & FLASH_FLAG_32BIT_ADDR) {
1168                /* Configure 'enter_32bitaddr' FSM sequence */
1169                stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1170
1171                soc_reset = stfsm_can_handle_soc_reset(fsm);
1172                if (soc_reset || !fsm->booted_from_spi)
1173                        /* If we can handle SoC resets, we enable 32-bit address
1174                         * mode pervasively */
1175                        stfsm_enter_32bit_addr(fsm, 1);
1176
1177                else
1178                        /* Else, enable/disable 32-bit addressing before/after
1179                         * each operation */
1180                        fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
1181                                              CFG_WRITE_TOGGLE_32BIT_ADDR |
1182                                              CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1183        }
1184
1185        /* Check status of 'QE' bit, update if required. */
1186        stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1);
1187        data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1188        if (data_pads == 4) {
1189                if (!(sta & MX25_STATUS_QE)) {
1190                        /* Set 'QE' */
1191                        sta |= MX25_STATUS_QE;
1192
1193                        stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
1194                }
1195        } else {
1196                if (sta & MX25_STATUS_QE) {
1197                        /* Clear 'QE' */
1198                        sta &= ~MX25_STATUS_QE;
1199
1200                        stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
1201                }
1202        }
1203
1204        return 0;
1205}
1206
1207static int stfsm_n25q_config(struct stfsm *fsm)
1208{
1209        uint32_t flags = fsm->info->flags;
1210        uint8_t vcr;
1211        int ret = 0;
1212        bool soc_reset;
1213
1214        /* Configure 'READ' sequence */
1215        if (flags & FLASH_FLAG_32BIT_ADDR)
1216                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1217                                                  n25q_read4_configs);
1218        else
1219                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1220                                                  n25q_read3_configs);
1221        if (ret) {
1222                dev_err(fsm->dev,
1223                        "failed to prepare READ sequence with flags [0x%08x]\n",
1224                        flags);
1225                return ret;
1226        }
1227
1228        /* Configure 'WRITE' sequence (default configs) */
1229        ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1230                                          default_write_configs);
1231        if (ret) {
1232                dev_err(fsm->dev,
1233                        "preparing WRITE sequence using flags [0x%08x] failed\n",
1234                        flags);
1235                return ret;
1236        }
1237
1238        /* * Configure 'ERASE_SECTOR' sequence */
1239        stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1240
1241        /* Configure 32-bit address support */
1242        if (flags & FLASH_FLAG_32BIT_ADDR) {
1243                stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1244
1245                soc_reset = stfsm_can_handle_soc_reset(fsm);
1246                if (soc_reset || !fsm->booted_from_spi) {
1247                        /*
1248                         * If we can handle SoC resets, we enable 32-bit
1249                         * address mode pervasively
1250                         */
1251                        stfsm_enter_32bit_addr(fsm, 1);
1252                } else {
1253                        /*
1254                         * If not, enable/disable for WRITE and ERASE
1255                         * operations (READ uses special commands)
1256                         */
1257                        fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
1258                                              CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1259                }
1260        }
1261
1262        /*
1263         * Configure device to use 8 dummy cycles
1264         */
1265        vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
1266               N25Q_VCR_WRAP_CONT);
1267        stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0);
1268
1269        return 0;
1270}
1271
1272static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq)
1273{
1274        seq->seq_opc[1] = (SEQ_OPC_PADS_1 |
1275                           SEQ_OPC_CYCLES(8) |
1276                           SEQ_OPC_OPCODE(S25FL_CMD_SE4));
1277
1278        seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1279                         ADR_CFG_PADS_1_ADD1 |
1280                         ADR_CFG_CYCLES_ADD2(16) |
1281                         ADR_CFG_PADS_1_ADD2 |
1282                         ADR_CFG_CSDEASSERT_ADD2);
1283}
1284
1285static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby)
1286{
1287        uint32_t tmp;
1288        struct stfsm_seq seq = {
1289                .data_size = TRANSFER_SIZE(4),
1290                .seq_opc[0] = (SEQ_OPC_PADS_1 |
1291                               SEQ_OPC_CYCLES(8) |
1292                               SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)),
1293                .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1294                             ADR_CFG_PADS_1_ADD1 |
1295                             ADR_CFG_CYCLES_ADD2(16) |
1296                             ADR_CFG_PADS_1_ADD2),
1297                .addr1 = (offs >> 16) & 0xffff,
1298                .addr2 = offs & 0xffff,
1299                .seq = {
1300                        STFSM_INST_CMD1,
1301                        STFSM_INST_ADD1,
1302                        STFSM_INST_ADD2,
1303                        STFSM_INST_DATA_READ,
1304                        STFSM_INST_STOP,
1305                },
1306                .seq_cfg = (SEQ_CFG_PADS_1 |
1307                            SEQ_CFG_READNOTWRITE |
1308                            SEQ_CFG_CSDEASSERT |
1309                            SEQ_CFG_STARTSEQ),
1310        };
1311
1312        stfsm_load_seq(fsm, &seq);
1313
1314        stfsm_read_fifo(fsm, &tmp, 4);
1315
1316        *dby = (uint8_t)(tmp >> 24);
1317
1318        stfsm_wait_seq(fsm);
1319}
1320
1321static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
1322{
1323        struct stfsm_seq seq = {
1324                .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1325                               SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
1326                               SEQ_OPC_CSDEASSERT),
1327                .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1328                               SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
1329                .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1330                             ADR_CFG_PADS_1_ADD1 |
1331                             ADR_CFG_CYCLES_ADD2(16) |
1332                             ADR_CFG_PADS_1_ADD2),
1333                .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT,
1334                .addr1 = (offs >> 16) & 0xffff,
1335                .addr2 = offs & 0xffff,
1336                .seq = {
1337                        STFSM_INST_CMD1,
1338                        STFSM_INST_CMD2,
1339                        STFSM_INST_ADD1,
1340                        STFSM_INST_ADD2,
1341                        STFSM_INST_STA_WR1,
1342                        STFSM_INST_STOP,
1343                },
1344                .seq_cfg = (SEQ_CFG_PADS_1 |
1345                            SEQ_CFG_READNOTWRITE |
1346                            SEQ_CFG_CSDEASSERT |
1347                            SEQ_CFG_STARTSEQ),
1348        };
1349
1350        stfsm_load_seq(fsm, &seq);
1351        stfsm_wait_seq(fsm);
1352
1353        stfsm_wait_busy(fsm);
1354}
1355
1356static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
1357{
1358        struct stfsm_seq seq = {
1359                .seq_opc[0] = (SEQ_OPC_PADS_1 |
1360                               SEQ_OPC_CYCLES(8) |
1361                               SEQ_OPC_OPCODE(S25FL_CMD_CLSR) |
1362                               SEQ_OPC_CSDEASSERT),
1363                .seq_opc[1] = (SEQ_OPC_PADS_1 |
1364                               SEQ_OPC_CYCLES(8) |
1365                               SEQ_OPC_OPCODE(SPINOR_OP_WRDI) |
1366                               SEQ_OPC_CSDEASSERT),
1367                .seq = {
1368                        STFSM_INST_CMD1,
1369                        STFSM_INST_CMD2,
1370                        STFSM_INST_WAIT,
1371                        STFSM_INST_STOP,
1372                },
1373                .seq_cfg = (SEQ_CFG_PADS_1 |
1374                            SEQ_CFG_ERASE |
1375                            SEQ_CFG_READNOTWRITE |
1376                            SEQ_CFG_CSDEASSERT |
1377                            SEQ_CFG_STARTSEQ),
1378        };
1379
1380        stfsm_load_seq(fsm, &seq);
1381
1382        stfsm_wait_seq(fsm);
1383
1384        return 0;
1385}
1386
1387static int stfsm_s25fl_config(struct stfsm *fsm)
1388{
1389        struct flash_info *info = fsm->info;
1390        uint32_t flags = info->flags;
1391        uint32_t data_pads;
1392        uint32_t offs;
1393        uint16_t sta_wr;
1394        uint8_t sr1, cr1, dyb;
1395        int update_sr = 0;
1396        int ret;
1397
1398        if (flags & FLASH_FLAG_32BIT_ADDR) {
1399                /*
1400                 * Prepare Read/Write/Erase sequences according to S25FLxxx
1401                 * 32-bit address command set
1402                 */
1403                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1404                                                  stfsm_s25fl_read4_configs);
1405                if (ret)
1406                        return ret;
1407
1408                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1409                                                  stfsm_s25fl_write4_configs);
1410                if (ret)
1411                        return ret;
1412
1413                stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector);
1414
1415        } else {
1416                /* Use default configurations for 24-bit addressing */
1417                ret = stfsm_prepare_rwe_seqs_default(fsm);
1418                if (ret)
1419                        return ret;
1420        }
1421
1422        /*
1423         * For devices that support 'DYB' sector locking, check lock status and
1424         * unlock sectors if necessary (some variants power-on with sectors
1425         * locked by default)
1426         */
1427        if (flags & FLASH_FLAG_DYB_LOCKING) {
1428                offs = 0;
1429                for (offs = 0; offs < info->sector_size * info->n_sectors;) {
1430                        stfsm_s25fl_read_dyb(fsm, offs, &dyb);
1431                        if (dyb == 0x00)
1432                                stfsm_s25fl_write_dyb(fsm, offs, 0xff);
1433
1434                        /* Handle bottom/top 4KiB parameter sectors */
1435                        if ((offs < info->sector_size * 2) ||
1436                            (offs >= (info->sector_size - info->n_sectors * 4)))
1437                                offs += 0x1000;
1438                        else
1439                                offs += 0x10000;
1440                }
1441        }
1442
1443        /* Check status of 'QE' bit, update if required. */
1444        stfsm_read_status(fsm, SPINOR_OP_RDCR, &cr1, 1);
1445        data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1446        if (data_pads == 4) {
1447                if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
1448                        /* Set 'QE' */
1449                        cr1 |= STFSM_S25FL_CONFIG_QE;
1450
1451                        update_sr = 1;
1452                }
1453        } else {
1454                if (cr1 & STFSM_S25FL_CONFIG_QE) {
1455                        /* Clear 'QE' */
1456                        cr1 &= ~STFSM_S25FL_CONFIG_QE;
1457
1458                        update_sr = 1;
1459                }
1460        }
1461        if (update_sr) {
1462                stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
1463                sta_wr = ((uint16_t)cr1  << 8) | sr1;
1464                stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1);
1465        }
1466
1467        /*
1468         * S25FLxxx devices support Program and Error error flags.
1469         * Configure driver to check flags and clear if necessary.
1470         */
1471        fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS;
1472
1473        return 0;
1474}
1475
1476static int stfsm_w25q_config(struct stfsm *fsm)
1477{
1478        uint32_t data_pads;
1479        uint8_t sr1, sr2;
1480        uint16_t sr_wr;
1481        int update_sr = 0;
1482        int ret;
1483
1484        ret = stfsm_prepare_rwe_seqs_default(fsm);
1485        if (ret)
1486                return ret;
1487
1488        /* Check status of 'QE' bit, update if required. */
1489        stfsm_read_status(fsm, SPINOR_OP_RDCR, &sr2, 1);
1490        data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1491        if (data_pads == 4) {
1492                if (!(sr2 & W25Q_STATUS_QE)) {
1493                        /* Set 'QE' */
1494                        sr2 |= W25Q_STATUS_QE;
1495                        update_sr = 1;
1496                }
1497        } else {
1498                if (sr2 & W25Q_STATUS_QE) {
1499                        /* Clear 'QE' */
1500                        sr2 &= ~W25Q_STATUS_QE;
1501                        update_sr = 1;
1502                }
1503        }
1504        if (update_sr) {
1505                /* Write status register */
1506                stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
1507                sr_wr = ((uint16_t)sr2 << 8) | sr1;
1508                stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1);
1509        }
1510
1511        return 0;
1512}
1513
1514static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
1515                      uint32_t offset)
1516{
1517        struct stfsm_seq *seq = &fsm->stfsm_seq_read;
1518        uint32_t data_pads;
1519        uint32_t read_mask;
1520        uint32_t size_ub;
1521        uint32_t size_lb;
1522        uint32_t size_mop;
1523        uint32_t tmp[4];
1524        uint32_t page_buf[FLASH_PAGESIZE_32];
1525        uint8_t *p;
1526
1527        dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
1528
1529        /* Enter 32-bit address mode, if required */
1530        if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1531                stfsm_enter_32bit_addr(fsm, 1);
1532
1533        /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
1534        data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1535        read_mask = (data_pads << 2) - 1;
1536
1537        /* Handle non-aligned buf */
1538        p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
1539
1540        /* Handle non-aligned size */
1541        size_ub = (size + read_mask) & ~read_mask;
1542        size_lb = size & ~read_mask;
1543        size_mop = size & read_mask;
1544
1545        seq->data_size = TRANSFER_SIZE(size_ub);
1546        seq->addr1 = (offset >> 16) & 0xffff;
1547        seq->addr2 = offset & 0xffff;
1548
1549        stfsm_load_seq(fsm, seq);
1550
1551        if (size_lb)
1552                stfsm_read_fifo(fsm, (uint32_t *)p, size_lb);
1553
1554        if (size_mop) {
1555                stfsm_read_fifo(fsm, tmp, read_mask + 1);
1556                memcpy(p + size_lb, &tmp, size_mop);
1557        }
1558
1559        /* Handle non-aligned buf */
1560        if ((uintptr_t)buf & 0x3)
1561                memcpy(buf, page_buf, size);
1562
1563        /* Wait for sequence to finish */
1564        stfsm_wait_seq(fsm);
1565
1566        stfsm_clear_fifo(fsm);
1567
1568        /* Exit 32-bit address mode, if required */
1569        if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1570                stfsm_enter_32bit_addr(fsm, 0);
1571
1572        return 0;
1573}
1574
1575static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
1576                       uint32_t size, uint32_t offset)
1577{
1578        struct stfsm_seq *seq = &fsm->stfsm_seq_write;
1579        uint32_t data_pads;
1580        uint32_t write_mask;
1581        uint32_t size_ub;
1582        uint32_t size_lb;
1583        uint32_t size_mop;
1584        uint32_t tmp[4];
1585        uint32_t i;
1586        uint32_t page_buf[FLASH_PAGESIZE_32];
1587        uint8_t *t = (uint8_t *)&tmp;
1588        const uint8_t *p;
1589        int ret;
1590
1591        dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
1592
1593        /* Enter 32-bit address mode, if required */
1594        if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1595                stfsm_enter_32bit_addr(fsm, 1);
1596
1597        /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
1598        data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1599        write_mask = (data_pads << 2) - 1;
1600
1601        /* Handle non-aligned buf */
1602        if ((uintptr_t)buf & 0x3) {
1603                memcpy(page_buf, buf, size);
1604                p = (uint8_t *)page_buf;
1605        } else {
1606                p = buf;
1607        }
1608
1609        /* Handle non-aligned size */
1610        size_ub = (size + write_mask) & ~write_mask;
1611        size_lb = size & ~write_mask;
1612        size_mop = size & write_mask;
1613
1614        seq->data_size = TRANSFER_SIZE(size_ub);
1615        seq->addr1 = (offset >> 16) & 0xffff;
1616        seq->addr2 = offset & 0xffff;
1617
1618        /* Need to set FIFO to write mode, before writing data to FIFO (see
1619         * GNBvb79594)
1620         */
1621        writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
1622
1623        /*
1624         * Before writing data to the FIFO, apply a small delay to allow a
1625         * potential change of FIFO direction to complete.
1626         */
1627        if (fsm->fifo_dir_delay == 0)
1628                readl(fsm->base + SPI_FAST_SEQ_CFG);
1629        else
1630                udelay(fsm->fifo_dir_delay);
1631
1632
1633        /* Write data to FIFO, before starting sequence (see GNBvd79593) */
1634        if (size_lb) {
1635                stfsm_write_fifo(fsm, (uint32_t *)p, size_lb);
1636                p += size_lb;
1637        }
1638
1639        /* Handle non-aligned size */
1640        if (size_mop) {
1641                memset(t, 0xff, write_mask + 1);        /* fill with 0xff's */
1642                for (i = 0; i < size_mop; i++)
1643                        t[i] = *p++;
1644
1645                stfsm_write_fifo(fsm, tmp, write_mask + 1);
1646        }
1647
1648        /* Start sequence */
1649        stfsm_load_seq(fsm, seq);
1650
1651        /* Wait for sequence to finish */
1652        stfsm_wait_seq(fsm);
1653
1654        /* Wait for completion */
1655        ret = stfsm_wait_busy(fsm);
1656        if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1657                stfsm_s25fl_clear_status_reg(fsm);
1658
1659        /* Exit 32-bit address mode, if required */
1660        if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1661                stfsm_enter_32bit_addr(fsm, 0);
1662
1663        return 0;
1664}
1665
1666/*
1667 * Read an address range from the flash chip. The address range
1668 * may be any size provided it is within the physical boundaries.
1669 */
1670static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
1671                          size_t *retlen, u_char *buf)
1672{
1673        struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1674        uint32_t bytes;
1675
1676        dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
1677                __func__, (u32)from, len);
1678
1679        mutex_lock(&fsm->lock);
1680
1681        while (len > 0) {
1682                bytes = min_t(size_t, len, FLASH_PAGESIZE);
1683
1684                stfsm_read(fsm, buf, bytes, from);
1685
1686                buf += bytes;
1687                from += bytes;
1688                len -= bytes;
1689
1690                *retlen += bytes;
1691        }
1692
1693        mutex_unlock(&fsm->lock);
1694
1695        return 0;
1696}
1697
1698static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset)
1699{
1700        struct stfsm_seq *seq = &stfsm_seq_erase_sector;
1701        int ret;
1702
1703        dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
1704
1705        /* Enter 32-bit address mode, if required */
1706        if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1707                stfsm_enter_32bit_addr(fsm, 1);
1708
1709        seq->addr1 = (offset >> 16) & 0xffff;
1710        seq->addr2 = offset & 0xffff;
1711
1712        stfsm_load_seq(fsm, seq);
1713
1714        stfsm_wait_seq(fsm);
1715
1716        /* Wait for completion */
1717        ret = stfsm_wait_busy(fsm);
1718        if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1719                stfsm_s25fl_clear_status_reg(fsm);
1720
1721        /* Exit 32-bit address mode, if required */
1722        if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1723                stfsm_enter_32bit_addr(fsm, 0);
1724
1725        return ret;
1726}
1727
1728static int stfsm_erase_chip(struct stfsm *fsm)
1729{
1730        const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
1731
1732        dev_dbg(fsm->dev, "erasing chip\n");
1733
1734        stfsm_load_seq(fsm, seq);
1735
1736        stfsm_wait_seq(fsm);
1737
1738        return stfsm_wait_busy(fsm);
1739}
1740
1741/*
1742 * Write an address range to the flash chip.  Data must be written in
1743 * FLASH_PAGESIZE chunks.  The address range may be any size provided
1744 * it is within the physical boundaries.
1745 */
1746static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
1747                           size_t *retlen, const u_char *buf)
1748{
1749        struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1750
1751        u32 page_offs;
1752        u32 bytes;
1753        uint8_t *b = (uint8_t *)buf;
1754        int ret = 0;
1755
1756        dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
1757
1758        /* Offset within page */
1759        page_offs = to % FLASH_PAGESIZE;
1760
1761        mutex_lock(&fsm->lock);
1762
1763        while (len) {
1764                /* Write up to page boundary */
1765                bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len);
1766
1767                ret = stfsm_write(fsm, b, bytes, to);
1768                if (ret)
1769                        goto out1;
1770
1771                b += bytes;
1772                len -= bytes;
1773                to += bytes;
1774
1775                /* We are now page-aligned */
1776                page_offs = 0;
1777
1778                *retlen += bytes;
1779
1780        }
1781
1782out1:
1783        mutex_unlock(&fsm->lock);
1784
1785        return ret;
1786}
1787
1788/*
1789 * Erase an address range on the flash chip. The address range may extend
1790 * one or more erase sectors.  Return an error is there is a problem erasing.
1791 */
1792static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1793{
1794        struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1795        u32 addr, len;
1796        int ret;
1797
1798        dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
1799                (long long)instr->addr, (long long)instr->len);
1800
1801        addr = instr->addr;
1802        len = instr->len;
1803
1804        mutex_lock(&fsm->lock);
1805
1806        /* Whole-chip erase? */
1807        if (len == mtd->size) {
1808                ret = stfsm_erase_chip(fsm);
1809                if (ret)
1810                        goto out1;
1811        } else {
1812                while (len) {
1813                        ret = stfsm_erase_sector(fsm, addr);
1814                        if (ret)
1815                                goto out1;
1816
1817                        addr += mtd->erasesize;
1818                        len -= mtd->erasesize;
1819                }
1820        }
1821
1822        mutex_unlock(&fsm->lock);
1823
1824        return 0;
1825
1826out1:
1827        mutex_unlock(&fsm->lock);
1828
1829        return ret;
1830}
1831
1832static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec)
1833{
1834        const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
1835        uint32_t tmp[2];
1836
1837        stfsm_load_seq(fsm, seq);
1838
1839        stfsm_read_fifo(fsm, tmp, 8);
1840
1841        memcpy(jedec, tmp, 5);
1842
1843        stfsm_wait_seq(fsm);
1844}
1845
1846static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
1847{
1848        struct flash_info       *info;
1849        u16                     ext_jedec;
1850        u32                     jedec;
1851        u8                      id[5];
1852
1853        stfsm_read_jedec(fsm, id);
1854
1855        jedec     = id[0] << 16 | id[1] << 8 | id[2];
1856        /*
1857         * JEDEC also defines an optional "extended device information"
1858         * string for after vendor-specific data, after the three bytes
1859         * we use here. Supporting some chips might require using it.
1860         */
1861        ext_jedec = id[3] << 8  | id[4];
1862
1863        dev_dbg(fsm->dev, "JEDEC =  0x%08x [%5ph]\n", jedec, id);
1864
1865        for (info = flash_types; info->name; info++) {
1866                if (info->jedec_id == jedec) {
1867                        if (info->ext_id && info->ext_id != ext_jedec)
1868                                continue;
1869                        return info;
1870                }
1871        }
1872        dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
1873
1874        return NULL;
1875}
1876
1877static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
1878{
1879        int ret, timeout = 10;
1880
1881        /* Wait for controller to accept mode change */
1882        while (--timeout) {
1883                ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
1884                if (ret & 0x1)
1885                        break;
1886                udelay(1);
1887        }
1888
1889        if (!timeout)
1890                return -EBUSY;
1891
1892        writel(mode, fsm->base + SPI_MODESELECT);
1893
1894        return 0;
1895}
1896
1897static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
1898{
1899        uint32_t emi_freq;
1900        uint32_t clk_div;
1901
1902        emi_freq = clk_get_rate(fsm->clk);
1903
1904        /*
1905         * Calculate clk_div - values between 2 and 128
1906         * Multiple of 2, rounded up
1907         */
1908        clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
1909        if (clk_div < 2)
1910                clk_div = 2;
1911        else if (clk_div > 128)
1912                clk_div = 128;
1913
1914        /*
1915         * Determine a suitable delay for the IP to complete a change of
1916         * direction of the FIFO. The required delay is related to the clock
1917         * divider used. The following heuristics are based on empirical tests,
1918         * using a 100MHz EMI clock.
1919         */
1920        if (clk_div <= 4)
1921                fsm->fifo_dir_delay = 0;
1922        else if (clk_div <= 10)
1923                fsm->fifo_dir_delay = 1;
1924        else
1925                fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
1926
1927        dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
1928                emi_freq, spi_freq, clk_div);
1929
1930        writel(clk_div, fsm->base + SPI_CLOCKDIV);
1931}
1932
1933static int stfsm_init(struct stfsm *fsm)
1934{
1935        int ret;
1936
1937        /* Perform a soft reset of the FSM controller */
1938        writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
1939        udelay(1);
1940        writel(0, fsm->base + SPI_FAST_SEQ_CFG);
1941
1942        /* Set clock to 'safe' frequency initially */
1943        stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
1944
1945        /* Switch to FSM */
1946        ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
1947        if (ret)
1948                return ret;
1949
1950        /* Set timing parameters */
1951        writel(SPI_CFG_DEVICE_ST            |
1952               SPI_CFG_DEFAULT_MIN_CS_HIGH  |
1953               SPI_CFG_DEFAULT_CS_SETUPHOLD |
1954               SPI_CFG_DEFAULT_DATA_HOLD,
1955               fsm->base + SPI_CONFIGDATA);
1956        writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
1957
1958        /*
1959         * Set the FSM 'WAIT' delay to the minimum workable value.  Note, for
1960         * our purposes, the WAIT instruction is used purely to achieve
1961         * "sequence validity" rather than actually implement a delay.
1962         */
1963        writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME);
1964
1965        /* Clear FIFO, just in case */
1966        stfsm_clear_fifo(fsm);
1967
1968        return 0;
1969}
1970
1971static void stfsm_fetch_platform_configs(struct platform_device *pdev)
1972{
1973        struct stfsm *fsm = platform_get_drvdata(pdev);
1974        struct device_node *np = pdev->dev.of_node;
1975        struct regmap *regmap;
1976        uint32_t boot_device_reg;
1977        uint32_t boot_device_spi;
1978        uint32_t boot_device;     /* Value we read from *boot_device_reg */
1979        int ret;
1980
1981        /* Booting from SPI NOR Flash is the default */
1982        fsm->booted_from_spi = true;
1983
1984        regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1985        if (IS_ERR(regmap))
1986                goto boot_device_fail;
1987
1988        fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");
1989
1990        fsm->reset_por = of_property_read_bool(np, "st,reset-por");
1991
1992        /* Where in the syscon the boot device information lives */
1993        ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
1994        if (ret)
1995                goto boot_device_fail;
1996
1997        /* Boot device value when booted from SPI NOR */
1998        ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
1999        if (ret)
2000                goto boot_device_fail;
2001
2002        ret = regmap_read(regmap, boot_device_reg, &boot_device);
2003        if (ret)
2004                goto boot_device_fail;
2005
2006        if (boot_device != boot_device_spi)
2007                fsm->booted_from_spi = false;
2008
2009        return;
2010
2011boot_device_fail:
2012        dev_warn(&pdev->dev,
2013                 "failed to fetch boot device, assuming boot from SPI\n");
2014}
2015
2016static int stfsm_probe(struct platform_device *pdev)
2017{
2018        struct device_node *np = pdev->dev.of_node;
2019        struct flash_info *info;
2020        struct resource *res;
2021        struct stfsm *fsm;
2022        int ret;
2023
2024        if (!np) {
2025                dev_err(&pdev->dev, "No DT found\n");
2026                return -EINVAL;
2027        }
2028
2029        fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
2030        if (!fsm)
2031                return -ENOMEM;
2032
2033        fsm->dev = &pdev->dev;
2034
2035        platform_set_drvdata(pdev, fsm);
2036
2037        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2038        if (!res) {
2039                dev_err(&pdev->dev, "Resource not found\n");
2040                return -ENODEV;
2041        }
2042
2043        fsm->base = devm_ioremap_resource(&pdev->dev, res);
2044        if (IS_ERR(fsm->base)) {
2045                dev_err(&pdev->dev,
2046                        "Failed to reserve memory region %pR\n", res);
2047                return PTR_ERR(fsm->base);
2048        }
2049
2050        fsm->clk = devm_clk_get(&pdev->dev, NULL);
2051        if (IS_ERR(fsm->clk)) {
2052                dev_err(fsm->dev, "Couldn't find EMI clock.\n");
2053                return PTR_ERR(fsm->clk);
2054        }
2055
2056        ret = clk_prepare_enable(fsm->clk);
2057        if (ret) {
2058                dev_err(fsm->dev, "Failed to enable EMI clock.\n");
2059                return ret;
2060        }
2061
2062        mutex_init(&fsm->lock);
2063
2064        ret = stfsm_init(fsm);
2065        if (ret) {
2066                dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
2067                goto err_clk_unprepare;
2068        }
2069
2070        stfsm_fetch_platform_configs(pdev);
2071
2072        /* Detect SPI FLASH device */
2073        info = stfsm_jedec_probe(fsm);
2074        if (!info) {
2075                ret = -ENODEV;
2076                goto err_clk_unprepare;
2077        }
2078        fsm->info = info;
2079
2080        /* Use device size to determine address width */
2081        if (info->sector_size * info->n_sectors > 0x1000000)
2082                info->flags |= FLASH_FLAG_32BIT_ADDR;
2083
2084        /*
2085         * Configure READ/WRITE/ERASE sequences according to platform and
2086         * device flags.
2087         */
2088        if (info->config) {
2089                ret = info->config(fsm);
2090                if (ret)
2091                        goto err_clk_unprepare;
2092        } else {
2093                ret = stfsm_prepare_rwe_seqs_default(fsm);
2094                if (ret)
2095                        goto err_clk_unprepare;
2096        }
2097
2098        fsm->mtd.name           = info->name;
2099        fsm->mtd.dev.parent     = &pdev->dev;
2100        mtd_set_of_node(&fsm->mtd, np);
2101        fsm->mtd.type           = MTD_NORFLASH;
2102        fsm->mtd.writesize      = 4;
2103        fsm->mtd.writebufsize   = fsm->mtd.writesize;
2104        fsm->mtd.flags          = MTD_CAP_NORFLASH;
2105        fsm->mtd.size           = info->sector_size * info->n_sectors;
2106        fsm->mtd.erasesize      = info->sector_size;
2107
2108        fsm->mtd._read  = stfsm_mtd_read;
2109        fsm->mtd._write = stfsm_mtd_write;
2110        fsm->mtd._erase = stfsm_mtd_erase;
2111
2112        dev_info(&pdev->dev,
2113                "Found serial flash device: %s\n"
2114                " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
2115                info->name,
2116                (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
2117                fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
2118
2119        return mtd_device_register(&fsm->mtd, NULL, 0);
2120
2121err_clk_unprepare:
2122        clk_disable_unprepare(fsm->clk);
2123        return ret;
2124}
2125
2126static int stfsm_remove(struct platform_device *pdev)
2127{
2128        struct stfsm *fsm = platform_get_drvdata(pdev);
2129
2130        return mtd_device_unregister(&fsm->mtd);
2131}
2132
2133#ifdef CONFIG_PM_SLEEP
2134static int stfsmfsm_suspend(struct device *dev)
2135{
2136        struct stfsm *fsm = dev_get_drvdata(dev);
2137
2138        clk_disable_unprepare(fsm->clk);
2139
2140        return 0;
2141}
2142
2143static int stfsmfsm_resume(struct device *dev)
2144{
2145        struct stfsm *fsm = dev_get_drvdata(dev);
2146
2147        return clk_prepare_enable(fsm->clk);
2148}
2149#endif
2150
2151static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume);
2152
2153static const struct of_device_id stfsm_match[] = {
2154        { .compatible = "st,spi-fsm", },
2155        {},
2156};
2157MODULE_DEVICE_TABLE(of, stfsm_match);
2158
2159static struct platform_driver stfsm_driver = {
2160        .probe          = stfsm_probe,
2161        .remove         = stfsm_remove,
2162        .driver         = {
2163                .name   = "st-spi-fsm",
2164                .of_match_table = stfsm_match,
2165                .pm     = &stfsm_pm_ops,
2166        },
2167};
2168module_platform_driver(stfsm_driver);
2169
2170MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
2171MODULE_DESCRIPTION("ST SPI FSM driver");
2172MODULE_LICENSE("GPL");
2173