linux/drivers/mtd/mtdcore.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core registration and callback routines for MTD
   4 * drivers and users.
   5 *
   6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   7 * Copyright © 2006      Red Hat UK Limited 
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/timer.h>
  16#include <linux/major.h>
  17#include <linux/fs.h>
  18#include <linux/err.h>
  19#include <linux/ioctl.h>
  20#include <linux/init.h>
  21#include <linux/of.h>
  22#include <linux/proc_fs.h>
  23#include <linux/idr.h>
  24#include <linux/backing-dev.h>
  25#include <linux/gfp.h>
  26#include <linux/slab.h>
  27#include <linux/reboot.h>
  28#include <linux/leds.h>
  29#include <linux/debugfs.h>
  30#include <linux/nvmem-provider.h>
  31
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/partitions.h>
  34
  35#include "mtdcore.h"
  36
  37struct backing_dev_info *mtd_bdi;
  38
  39#ifdef CONFIG_PM_SLEEP
  40
  41static int mtd_cls_suspend(struct device *dev)
  42{
  43        struct mtd_info *mtd = dev_get_drvdata(dev);
  44
  45        return mtd ? mtd_suspend(mtd) : 0;
  46}
  47
  48static int mtd_cls_resume(struct device *dev)
  49{
  50        struct mtd_info *mtd = dev_get_drvdata(dev);
  51
  52        if (mtd)
  53                mtd_resume(mtd);
  54        return 0;
  55}
  56
  57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  59#else
  60#define MTD_CLS_PM_OPS NULL
  61#endif
  62
  63static struct class mtd_class = {
  64        .name = "mtd",
  65        .owner = THIS_MODULE,
  66        .pm = MTD_CLS_PM_OPS,
  67};
  68
  69static DEFINE_IDR(mtd_idr);
  70
  71/* These are exported solely for the purpose of mtd_blkdevs.c. You
  72   should not use them for _anything_ else */
  73DEFINE_MUTEX(mtd_table_mutex);
  74EXPORT_SYMBOL_GPL(mtd_table_mutex);
  75
  76struct mtd_info *__mtd_next_device(int i)
  77{
  78        return idr_get_next(&mtd_idr, &i);
  79}
  80EXPORT_SYMBOL_GPL(__mtd_next_device);
  81
  82static LIST_HEAD(mtd_notifiers);
  83
  84
  85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  86
  87/* REVISIT once MTD uses the driver model better, whoever allocates
  88 * the mtd_info will probably want to use the release() hook...
  89 */
  90static void mtd_release(struct device *dev)
  91{
  92        struct mtd_info *mtd = dev_get_drvdata(dev);
  93        dev_t index = MTD_DEVT(mtd->index);
  94
  95        /* remove /dev/mtdXro node */
  96        device_destroy(&mtd_class, index + 1);
  97}
  98
  99static ssize_t mtd_type_show(struct device *dev,
 100                struct device_attribute *attr, char *buf)
 101{
 102        struct mtd_info *mtd = dev_get_drvdata(dev);
 103        char *type;
 104
 105        switch (mtd->type) {
 106        case MTD_ABSENT:
 107                type = "absent";
 108                break;
 109        case MTD_RAM:
 110                type = "ram";
 111                break;
 112        case MTD_ROM:
 113                type = "rom";
 114                break;
 115        case MTD_NORFLASH:
 116                type = "nor";
 117                break;
 118        case MTD_NANDFLASH:
 119                type = "nand";
 120                break;
 121        case MTD_DATAFLASH:
 122                type = "dataflash";
 123                break;
 124        case MTD_UBIVOLUME:
 125                type = "ubi";
 126                break;
 127        case MTD_MLCNANDFLASH:
 128                type = "mlc-nand";
 129                break;
 130        default:
 131                type = "unknown";
 132        }
 133
 134        return snprintf(buf, PAGE_SIZE, "%s\n", type);
 135}
 136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
 137
 138static ssize_t mtd_flags_show(struct device *dev,
 139                struct device_attribute *attr, char *buf)
 140{
 141        struct mtd_info *mtd = dev_get_drvdata(dev);
 142
 143        return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
 144}
 145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
 146
 147static ssize_t mtd_size_show(struct device *dev,
 148                struct device_attribute *attr, char *buf)
 149{
 150        struct mtd_info *mtd = dev_get_drvdata(dev);
 151
 152        return snprintf(buf, PAGE_SIZE, "%llu\n",
 153                (unsigned long long)mtd->size);
 154}
 155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
 156
 157static ssize_t mtd_erasesize_show(struct device *dev,
 158                struct device_attribute *attr, char *buf)
 159{
 160        struct mtd_info *mtd = dev_get_drvdata(dev);
 161
 162        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
 163}
 164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
 165
 166static ssize_t mtd_writesize_show(struct device *dev,
 167                struct device_attribute *attr, char *buf)
 168{
 169        struct mtd_info *mtd = dev_get_drvdata(dev);
 170
 171        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
 172}
 173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
 174
 175static ssize_t mtd_subpagesize_show(struct device *dev,
 176                struct device_attribute *attr, char *buf)
 177{
 178        struct mtd_info *mtd = dev_get_drvdata(dev);
 179        unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 180
 181        return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
 182}
 183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
 184
 185static ssize_t mtd_oobsize_show(struct device *dev,
 186                struct device_attribute *attr, char *buf)
 187{
 188        struct mtd_info *mtd = dev_get_drvdata(dev);
 189
 190        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 191}
 192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
 193
 194static ssize_t mtd_oobavail_show(struct device *dev,
 195                                 struct device_attribute *attr, char *buf)
 196{
 197        struct mtd_info *mtd = dev_get_drvdata(dev);
 198
 199        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
 200}
 201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
 202
 203static ssize_t mtd_numeraseregions_show(struct device *dev,
 204                struct device_attribute *attr, char *buf)
 205{
 206        struct mtd_info *mtd = dev_get_drvdata(dev);
 207
 208        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
 209}
 210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
 211        NULL);
 212
 213static ssize_t mtd_name_show(struct device *dev,
 214                struct device_attribute *attr, char *buf)
 215{
 216        struct mtd_info *mtd = dev_get_drvdata(dev);
 217
 218        return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 219}
 220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 221
 222static ssize_t mtd_ecc_strength_show(struct device *dev,
 223                                     struct device_attribute *attr, char *buf)
 224{
 225        struct mtd_info *mtd = dev_get_drvdata(dev);
 226
 227        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
 228}
 229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
 230
 231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 232                                          struct device_attribute *attr,
 233                                          char *buf)
 234{
 235        struct mtd_info *mtd = dev_get_drvdata(dev);
 236
 237        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
 238}
 239
 240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 241                                           struct device_attribute *attr,
 242                                           const char *buf, size_t count)
 243{
 244        struct mtd_info *mtd = dev_get_drvdata(dev);
 245        unsigned int bitflip_threshold;
 246        int retval;
 247
 248        retval = kstrtouint(buf, 0, &bitflip_threshold);
 249        if (retval)
 250                return retval;
 251
 252        mtd->bitflip_threshold = bitflip_threshold;
 253        return count;
 254}
 255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
 256                   mtd_bitflip_threshold_show,
 257                   mtd_bitflip_threshold_store);
 258
 259static ssize_t mtd_ecc_step_size_show(struct device *dev,
 260                struct device_attribute *attr, char *buf)
 261{
 262        struct mtd_info *mtd = dev_get_drvdata(dev);
 263
 264        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
 265
 266}
 267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
 268
 269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
 270                struct device_attribute *attr, char *buf)
 271{
 272        struct mtd_info *mtd = dev_get_drvdata(dev);
 273        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 274
 275        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
 276}
 277static DEVICE_ATTR(corrected_bits, S_IRUGO,
 278                   mtd_ecc_stats_corrected_show, NULL);
 279
 280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
 281                struct device_attribute *attr, char *buf)
 282{
 283        struct mtd_info *mtd = dev_get_drvdata(dev);
 284        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 285
 286        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
 287}
 288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
 289
 290static ssize_t mtd_badblocks_show(struct device *dev,
 291                struct device_attribute *attr, char *buf)
 292{
 293        struct mtd_info *mtd = dev_get_drvdata(dev);
 294        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 295
 296        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
 297}
 298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
 299
 300static ssize_t mtd_bbtblocks_show(struct device *dev,
 301                struct device_attribute *attr, char *buf)
 302{
 303        struct mtd_info *mtd = dev_get_drvdata(dev);
 304        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 305
 306        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
 307}
 308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
 309
 310static struct attribute *mtd_attrs[] = {
 311        &dev_attr_type.attr,
 312        &dev_attr_flags.attr,
 313        &dev_attr_size.attr,
 314        &dev_attr_erasesize.attr,
 315        &dev_attr_writesize.attr,
 316        &dev_attr_subpagesize.attr,
 317        &dev_attr_oobsize.attr,
 318        &dev_attr_oobavail.attr,
 319        &dev_attr_numeraseregions.attr,
 320        &dev_attr_name.attr,
 321        &dev_attr_ecc_strength.attr,
 322        &dev_attr_ecc_step_size.attr,
 323        &dev_attr_corrected_bits.attr,
 324        &dev_attr_ecc_failures.attr,
 325        &dev_attr_bad_blocks.attr,
 326        &dev_attr_bbt_blocks.attr,
 327        &dev_attr_bitflip_threshold.attr,
 328        NULL,
 329};
 330ATTRIBUTE_GROUPS(mtd);
 331
 332static const struct device_type mtd_devtype = {
 333        .name           = "mtd",
 334        .groups         = mtd_groups,
 335        .release        = mtd_release,
 336};
 337
 338#ifndef CONFIG_MMU
 339unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
 340{
 341        switch (mtd->type) {
 342        case MTD_RAM:
 343                return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 344                        NOMMU_MAP_READ | NOMMU_MAP_WRITE;
 345        case MTD_ROM:
 346                return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 347                        NOMMU_MAP_READ;
 348        default:
 349                return NOMMU_MAP_COPY;
 350        }
 351}
 352EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
 353#endif
 354
 355static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
 356                               void *cmd)
 357{
 358        struct mtd_info *mtd;
 359
 360        mtd = container_of(n, struct mtd_info, reboot_notifier);
 361        mtd->_reboot(mtd);
 362
 363        return NOTIFY_DONE;
 364}
 365
 366/**
 367 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 368 * @mtd: pointer to new MTD device info structure
 369 * @wunit: write unit we are interested in
 370 * @info: returned pairing information
 371 *
 372 * Retrieve pairing information associated to the wunit.
 373 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 374 * paired together, and where programming a page may influence the page it is
 375 * paired with.
 376 * The notion of page is replaced by the term wunit (write-unit) to stay
 377 * consistent with the ->writesize field.
 378 *
 379 * The @wunit argument can be extracted from an absolute offset using
 380 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 381 * to @wunit.
 382 *
 383 * From the pairing info the MTD user can find all the wunits paired with
 384 * @wunit using the following loop:
 385 *
 386 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 387 *      info.pair = i;
 388 *      mtd_pairing_info_to_wunit(mtd, &info);
 389 *      ...
 390 * }
 391 */
 392int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 393                              struct mtd_pairing_info *info)
 394{
 395        int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 396
 397        if (wunit < 0 || wunit >= npairs)
 398                return -EINVAL;
 399
 400        if (mtd->pairing && mtd->pairing->get_info)
 401                return mtd->pairing->get_info(mtd, wunit, info);
 402
 403        info->group = 0;
 404        info->pair = wunit;
 405
 406        return 0;
 407}
 408EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
 409
 410/**
 411 * mtd_pairing_info_to_wunit - get wunit from pairing information
 412 * @mtd: pointer to new MTD device info structure
 413 * @info: pairing information struct
 414 *
 415 * Returns a positive number representing the wunit associated to the info
 416 * struct, or a negative error code.
 417 *
 418 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 419 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 420 * doc).
 421 *
 422 * It can also be used to only program the first page of each pair (i.e.
 423 * page attached to group 0), which allows one to use an MLC NAND in
 424 * software-emulated SLC mode:
 425 *
 426 * info.group = 0;
 427 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 428 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 429 *      wunit = mtd_pairing_info_to_wunit(mtd, &info);
 430 *      mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 431 *                mtd->writesize, &retlen, buf + (i * mtd->writesize));
 432 * }
 433 */
 434int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 435                              const struct mtd_pairing_info *info)
 436{
 437        int ngroups = mtd_pairing_groups(mtd);
 438        int npairs = mtd_wunit_per_eb(mtd) / ngroups;
 439
 440        if (!info || info->pair < 0 || info->pair >= npairs ||
 441            info->group < 0 || info->group >= ngroups)
 442                return -EINVAL;
 443
 444        if (mtd->pairing && mtd->pairing->get_wunit)
 445                return mtd->pairing->get_wunit(mtd, info);
 446
 447        return info->pair;
 448}
 449EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
 450
 451/**
 452 * mtd_pairing_groups - get the number of pairing groups
 453 * @mtd: pointer to new MTD device info structure
 454 *
 455 * Returns the number of pairing groups.
 456 *
 457 * This number is usually equal to the number of bits exposed by a single
 458 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 459 * to iterate over all pages of a given pair.
 460 */
 461int mtd_pairing_groups(struct mtd_info *mtd)
 462{
 463        if (!mtd->pairing || !mtd->pairing->ngroups)
 464                return 1;
 465
 466        return mtd->pairing->ngroups;
 467}
 468EXPORT_SYMBOL_GPL(mtd_pairing_groups);
 469
 470static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
 471                              void *val, size_t bytes)
 472{
 473        struct mtd_info *mtd = priv;
 474        size_t retlen;
 475        int err;
 476
 477        err = mtd_read(mtd, offset, bytes, &retlen, val);
 478        if (err && err != -EUCLEAN)
 479                return err;
 480
 481        return retlen == bytes ? 0 : -EIO;
 482}
 483
 484static int mtd_nvmem_add(struct mtd_info *mtd)
 485{
 486        struct nvmem_config config = {};
 487
 488        config.id = -1;
 489        config.dev = &mtd->dev;
 490        config.name = mtd->name;
 491        config.owner = THIS_MODULE;
 492        config.reg_read = mtd_nvmem_reg_read;
 493        config.size = mtd->size;
 494        config.word_size = 1;
 495        config.stride = 1;
 496        config.read_only = true;
 497        config.root_only = true;
 498        config.no_of_node = true;
 499        config.priv = mtd;
 500
 501        mtd->nvmem = nvmem_register(&config);
 502        if (IS_ERR(mtd->nvmem)) {
 503                /* Just ignore if there is no NVMEM support in the kernel */
 504                if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
 505                        mtd->nvmem = NULL;
 506                } else {
 507                        dev_err(&mtd->dev, "Failed to register NVMEM device\n");
 508                        return PTR_ERR(mtd->nvmem);
 509                }
 510        }
 511
 512        return 0;
 513}
 514
 515static struct dentry *dfs_dir_mtd;
 516
 517/**
 518 *      add_mtd_device - register an MTD device
 519 *      @mtd: pointer to new MTD device info structure
 520 *
 521 *      Add a device to the list of MTD devices present in the system, and
 522 *      notify each currently active MTD 'user' of its arrival. Returns
 523 *      zero on success or non-zero on failure.
 524 */
 525
 526int add_mtd_device(struct mtd_info *mtd)
 527{
 528        struct mtd_notifier *not;
 529        int i, error;
 530
 531        /*
 532         * May occur, for instance, on buggy drivers which call
 533         * mtd_device_parse_register() multiple times on the same master MTD,
 534         * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
 535         */
 536        if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
 537                return -EEXIST;
 538
 539        BUG_ON(mtd->writesize == 0);
 540
 541        /*
 542         * MTD drivers should implement ->_{write,read}() or
 543         * ->_{write,read}_oob(), but not both.
 544         */
 545        if (WARN_ON((mtd->_write && mtd->_write_oob) ||
 546                    (mtd->_read && mtd->_read_oob)))
 547                return -EINVAL;
 548
 549        if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
 550                    !(mtd->flags & MTD_NO_ERASE)))
 551                return -EINVAL;
 552
 553        mutex_lock(&mtd_table_mutex);
 554
 555        i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 556        if (i < 0) {
 557                error = i;
 558                goto fail_locked;
 559        }
 560
 561        mtd->index = i;
 562        mtd->usecount = 0;
 563
 564        /* default value if not set by driver */
 565        if (mtd->bitflip_threshold == 0)
 566                mtd->bitflip_threshold = mtd->ecc_strength;
 567
 568        if (is_power_of_2(mtd->erasesize))
 569                mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 570        else
 571                mtd->erasesize_shift = 0;
 572
 573        if (is_power_of_2(mtd->writesize))
 574                mtd->writesize_shift = ffs(mtd->writesize) - 1;
 575        else
 576                mtd->writesize_shift = 0;
 577
 578        mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 579        mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 580
 581        /* Some chips always power up locked. Unlock them now */
 582        if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 583                error = mtd_unlock(mtd, 0, mtd->size);
 584                if (error && error != -EOPNOTSUPP)
 585                        printk(KERN_WARNING
 586                               "%s: unlock failed, writes may not work\n",
 587                               mtd->name);
 588                /* Ignore unlock failures? */
 589                error = 0;
 590        }
 591
 592        /* Caller should have set dev.parent to match the
 593         * physical device, if appropriate.
 594         */
 595        mtd->dev.type = &mtd_devtype;
 596        mtd->dev.class = &mtd_class;
 597        mtd->dev.devt = MTD_DEVT(i);
 598        dev_set_name(&mtd->dev, "mtd%d", i);
 599        dev_set_drvdata(&mtd->dev, mtd);
 600        of_node_get(mtd_get_of_node(mtd));
 601        error = device_register(&mtd->dev);
 602        if (error)
 603                goto fail_added;
 604
 605        /* Add the nvmem provider */
 606        error = mtd_nvmem_add(mtd);
 607        if (error)
 608                goto fail_nvmem_add;
 609
 610        if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
 611                mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
 612                if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
 613                        pr_debug("mtd device %s won't show data in debugfs\n",
 614                                 dev_name(&mtd->dev));
 615                }
 616        }
 617
 618        device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
 619                      "mtd%dro", i);
 620
 621        pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 622        /* No need to get a refcount on the module containing
 623           the notifier, since we hold the mtd_table_mutex */
 624        list_for_each_entry(not, &mtd_notifiers, list)
 625                not->add(mtd);
 626
 627        mutex_unlock(&mtd_table_mutex);
 628        /* We _know_ we aren't being removed, because
 629           our caller is still holding us here. So none
 630           of this try_ nonsense, and no bitching about it
 631           either. :) */
 632        __module_get(THIS_MODULE);
 633        return 0;
 634
 635fail_nvmem_add:
 636        device_unregister(&mtd->dev);
 637fail_added:
 638        of_node_put(mtd_get_of_node(mtd));
 639        idr_remove(&mtd_idr, i);
 640fail_locked:
 641        mutex_unlock(&mtd_table_mutex);
 642        return error;
 643}
 644
 645/**
 646 *      del_mtd_device - unregister an MTD device
 647 *      @mtd: pointer to MTD device info structure
 648 *
 649 *      Remove a device from the list of MTD devices present in the system,
 650 *      and notify each currently active MTD 'user' of its departure.
 651 *      Returns zero on success or 1 on failure, which currently will happen
 652 *      if the requested device does not appear to be present in the list.
 653 */
 654
 655int del_mtd_device(struct mtd_info *mtd)
 656{
 657        int ret;
 658        struct mtd_notifier *not;
 659
 660        mutex_lock(&mtd_table_mutex);
 661
 662        debugfs_remove_recursive(mtd->dbg.dfs_dir);
 663
 664        if (idr_find(&mtd_idr, mtd->index) != mtd) {
 665                ret = -ENODEV;
 666                goto out_error;
 667        }
 668
 669        /* No need to get a refcount on the module containing
 670                the notifier, since we hold the mtd_table_mutex */
 671        list_for_each_entry(not, &mtd_notifiers, list)
 672                not->remove(mtd);
 673
 674        if (mtd->usecount) {
 675                printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 676                       mtd->index, mtd->name, mtd->usecount);
 677                ret = -EBUSY;
 678        } else {
 679                /* Try to remove the NVMEM provider */
 680                if (mtd->nvmem)
 681                        nvmem_unregister(mtd->nvmem);
 682
 683                device_unregister(&mtd->dev);
 684
 685                idr_remove(&mtd_idr, mtd->index);
 686                of_node_put(mtd_get_of_node(mtd));
 687
 688                module_put(THIS_MODULE);
 689                ret = 0;
 690        }
 691
 692out_error:
 693        mutex_unlock(&mtd_table_mutex);
 694        return ret;
 695}
 696
 697/*
 698 * Set a few defaults based on the parent devices, if not provided by the
 699 * driver
 700 */
 701static void mtd_set_dev_defaults(struct mtd_info *mtd)
 702{
 703        if (mtd->dev.parent) {
 704                if (!mtd->owner && mtd->dev.parent->driver)
 705                        mtd->owner = mtd->dev.parent->driver->owner;
 706                if (!mtd->name)
 707                        mtd->name = dev_name(mtd->dev.parent);
 708        } else {
 709                pr_debug("mtd device won't show a device symlink in sysfs\n");
 710        }
 711
 712        mtd->orig_flags = mtd->flags;
 713}
 714
 715/**
 716 * mtd_device_parse_register - parse partitions and register an MTD device.
 717 *
 718 * @mtd: the MTD device to register
 719 * @types: the list of MTD partition probes to try, see
 720 *         'parse_mtd_partitions()' for more information
 721 * @parser_data: MTD partition parser-specific data
 722 * @parts: fallback partition information to register, if parsing fails;
 723 *         only valid if %nr_parts > %0
 724 * @nr_parts: the number of partitions in parts, if zero then the full
 725 *            MTD device is registered if no partition info is found
 726 *
 727 * This function aggregates MTD partitions parsing (done by
 728 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 729 * basically follows the most common pattern found in many MTD drivers:
 730 *
 731 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
 732 *   registered first.
 733 * * Then It tries to probe partitions on MTD device @mtd using parsers
 734 *   specified in @types (if @types is %NULL, then the default list of parsers
 735 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 736 *   found this functions tries to fallback to information specified in
 737 *   @parts/@nr_parts.
 738 * * If no partitions were found this function just registers the MTD device
 739 *   @mtd and exits.
 740 *
 741 * Returns zero in case of success and a negative error code in case of failure.
 742 */
 743int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 744                              struct mtd_part_parser_data *parser_data,
 745                              const struct mtd_partition *parts,
 746                              int nr_parts)
 747{
 748        int ret;
 749
 750        mtd_set_dev_defaults(mtd);
 751
 752        if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
 753                ret = add_mtd_device(mtd);
 754                if (ret)
 755                        return ret;
 756        }
 757
 758        /* Prefer parsed partitions over driver-provided fallback */
 759        ret = parse_mtd_partitions(mtd, types, parser_data);
 760        if (ret > 0)
 761                ret = 0;
 762        else if (nr_parts)
 763                ret = add_mtd_partitions(mtd, parts, nr_parts);
 764        else if (!device_is_registered(&mtd->dev))
 765                ret = add_mtd_device(mtd);
 766        else
 767                ret = 0;
 768
 769        if (ret)
 770                goto out;
 771
 772        /*
 773         * FIXME: some drivers unfortunately call this function more than once.
 774         * So we have to check if we've already assigned the reboot notifier.
 775         *
 776         * Generally, we can make multiple calls work for most cases, but it
 777         * does cause problems with parse_mtd_partitions() above (e.g.,
 778         * cmdlineparts will register partitions more than once).
 779         */
 780        WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
 781                  "MTD already registered\n");
 782        if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
 783                mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
 784                register_reboot_notifier(&mtd->reboot_notifier);
 785        }
 786
 787out:
 788        if (ret && device_is_registered(&mtd->dev))
 789                del_mtd_device(mtd);
 790
 791        return ret;
 792}
 793EXPORT_SYMBOL_GPL(mtd_device_parse_register);
 794
 795/**
 796 * mtd_device_unregister - unregister an existing MTD device.
 797 *
 798 * @master: the MTD device to unregister.  This will unregister both the master
 799 *          and any partitions if registered.
 800 */
 801int mtd_device_unregister(struct mtd_info *master)
 802{
 803        int err;
 804
 805        if (master->_reboot)
 806                unregister_reboot_notifier(&master->reboot_notifier);
 807
 808        err = del_mtd_partitions(master);
 809        if (err)
 810                return err;
 811
 812        if (!device_is_registered(&master->dev))
 813                return 0;
 814
 815        return del_mtd_device(master);
 816}
 817EXPORT_SYMBOL_GPL(mtd_device_unregister);
 818
 819/**
 820 *      register_mtd_user - register a 'user' of MTD devices.
 821 *      @new: pointer to notifier info structure
 822 *
 823 *      Registers a pair of callbacks function to be called upon addition
 824 *      or removal of MTD devices. Causes the 'add' callback to be immediately
 825 *      invoked for each MTD device currently present in the system.
 826 */
 827void register_mtd_user (struct mtd_notifier *new)
 828{
 829        struct mtd_info *mtd;
 830
 831        mutex_lock(&mtd_table_mutex);
 832
 833        list_add(&new->list, &mtd_notifiers);
 834
 835        __module_get(THIS_MODULE);
 836
 837        mtd_for_each_device(mtd)
 838                new->add(mtd);
 839
 840        mutex_unlock(&mtd_table_mutex);
 841}
 842EXPORT_SYMBOL_GPL(register_mtd_user);
 843
 844/**
 845 *      unregister_mtd_user - unregister a 'user' of MTD devices.
 846 *      @old: pointer to notifier info structure
 847 *
 848 *      Removes a callback function pair from the list of 'users' to be
 849 *      notified upon addition or removal of MTD devices. Causes the
 850 *      'remove' callback to be immediately invoked for each MTD device
 851 *      currently present in the system.
 852 */
 853int unregister_mtd_user (struct mtd_notifier *old)
 854{
 855        struct mtd_info *mtd;
 856
 857        mutex_lock(&mtd_table_mutex);
 858
 859        module_put(THIS_MODULE);
 860
 861        mtd_for_each_device(mtd)
 862                old->remove(mtd);
 863
 864        list_del(&old->list);
 865        mutex_unlock(&mtd_table_mutex);
 866        return 0;
 867}
 868EXPORT_SYMBOL_GPL(unregister_mtd_user);
 869
 870/**
 871 *      get_mtd_device - obtain a validated handle for an MTD device
 872 *      @mtd: last known address of the required MTD device
 873 *      @num: internal device number of the required MTD device
 874 *
 875 *      Given a number and NULL address, return the num'th entry in the device
 876 *      table, if any.  Given an address and num == -1, search the device table
 877 *      for a device with that address and return if it's still present. Given
 878 *      both, return the num'th driver only if its address matches. Return
 879 *      error code if not.
 880 */
 881struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
 882{
 883        struct mtd_info *ret = NULL, *other;
 884        int err = -ENODEV;
 885
 886        mutex_lock(&mtd_table_mutex);
 887
 888        if (num == -1) {
 889                mtd_for_each_device(other) {
 890                        if (other == mtd) {
 891                                ret = mtd;
 892                                break;
 893                        }
 894                }
 895        } else if (num >= 0) {
 896                ret = idr_find(&mtd_idr, num);
 897                if (mtd && mtd != ret)
 898                        ret = NULL;
 899        }
 900
 901        if (!ret) {
 902                ret = ERR_PTR(err);
 903                goto out;
 904        }
 905
 906        err = __get_mtd_device(ret);
 907        if (err)
 908                ret = ERR_PTR(err);
 909out:
 910        mutex_unlock(&mtd_table_mutex);
 911        return ret;
 912}
 913EXPORT_SYMBOL_GPL(get_mtd_device);
 914
 915
 916int __get_mtd_device(struct mtd_info *mtd)
 917{
 918        int err;
 919
 920        if (!try_module_get(mtd->owner))
 921                return -ENODEV;
 922
 923        if (mtd->_get_device) {
 924                err = mtd->_get_device(mtd);
 925
 926                if (err) {
 927                        module_put(mtd->owner);
 928                        return err;
 929                }
 930        }
 931        mtd->usecount++;
 932        return 0;
 933}
 934EXPORT_SYMBOL_GPL(__get_mtd_device);
 935
 936/**
 937 *      get_mtd_device_nm - obtain a validated handle for an MTD device by
 938 *      device name
 939 *      @name: MTD device name to open
 940 *
 941 *      This function returns MTD device description structure in case of
 942 *      success and an error code in case of failure.
 943 */
 944struct mtd_info *get_mtd_device_nm(const char *name)
 945{
 946        int err = -ENODEV;
 947        struct mtd_info *mtd = NULL, *other;
 948
 949        mutex_lock(&mtd_table_mutex);
 950
 951        mtd_for_each_device(other) {
 952                if (!strcmp(name, other->name)) {
 953                        mtd = other;
 954                        break;
 955                }
 956        }
 957
 958        if (!mtd)
 959                goto out_unlock;
 960
 961        err = __get_mtd_device(mtd);
 962        if (err)
 963                goto out_unlock;
 964
 965        mutex_unlock(&mtd_table_mutex);
 966        return mtd;
 967
 968out_unlock:
 969        mutex_unlock(&mtd_table_mutex);
 970        return ERR_PTR(err);
 971}
 972EXPORT_SYMBOL_GPL(get_mtd_device_nm);
 973
 974void put_mtd_device(struct mtd_info *mtd)
 975{
 976        mutex_lock(&mtd_table_mutex);
 977        __put_mtd_device(mtd);
 978        mutex_unlock(&mtd_table_mutex);
 979
 980}
 981EXPORT_SYMBOL_GPL(put_mtd_device);
 982
 983void __put_mtd_device(struct mtd_info *mtd)
 984{
 985        --mtd->usecount;
 986        BUG_ON(mtd->usecount < 0);
 987
 988        if (mtd->_put_device)
 989                mtd->_put_device(mtd);
 990
 991        module_put(mtd->owner);
 992}
 993EXPORT_SYMBOL_GPL(__put_mtd_device);
 994
 995/*
 996 * Erase is an synchronous operation. Device drivers are epected to return a
 997 * negative error code if the operation failed and update instr->fail_addr
 998 * to point the portion that was not properly erased.
 999 */
1000int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1001{
1002        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1003
1004        if (!mtd->erasesize || !mtd->_erase)
1005                return -ENOTSUPP;
1006
1007        if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1008                return -EINVAL;
1009        if (!(mtd->flags & MTD_WRITEABLE))
1010                return -EROFS;
1011
1012        if (!instr->len)
1013                return 0;
1014
1015        ledtrig_mtd_activity();
1016        return mtd->_erase(mtd, instr);
1017}
1018EXPORT_SYMBOL_GPL(mtd_erase);
1019
1020/*
1021 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1022 */
1023int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1024              void **virt, resource_size_t *phys)
1025{
1026        *retlen = 0;
1027        *virt = NULL;
1028        if (phys)
1029                *phys = 0;
1030        if (!mtd->_point)
1031                return -EOPNOTSUPP;
1032        if (from < 0 || from >= mtd->size || len > mtd->size - from)
1033                return -EINVAL;
1034        if (!len)
1035                return 0;
1036        return mtd->_point(mtd, from, len, retlen, virt, phys);
1037}
1038EXPORT_SYMBOL_GPL(mtd_point);
1039
1040/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1041int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1042{
1043        if (!mtd->_unpoint)
1044                return -EOPNOTSUPP;
1045        if (from < 0 || from >= mtd->size || len > mtd->size - from)
1046                return -EINVAL;
1047        if (!len)
1048                return 0;
1049        return mtd->_unpoint(mtd, from, len);
1050}
1051EXPORT_SYMBOL_GPL(mtd_unpoint);
1052
1053/*
1054 * Allow NOMMU mmap() to directly map the device (if not NULL)
1055 * - return the address to which the offset maps
1056 * - return -ENOSYS to indicate refusal to do the mapping
1057 */
1058unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1059                                    unsigned long offset, unsigned long flags)
1060{
1061        size_t retlen;
1062        void *virt;
1063        int ret;
1064
1065        ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1066        if (ret)
1067                return ret;
1068        if (retlen != len) {
1069                mtd_unpoint(mtd, offset, retlen);
1070                return -ENOSYS;
1071        }
1072        return (unsigned long)virt;
1073}
1074EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1075
1076int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1077             u_char *buf)
1078{
1079        struct mtd_oob_ops ops = {
1080                .len = len,
1081                .datbuf = buf,
1082        };
1083        int ret;
1084
1085        ret = mtd_read_oob(mtd, from, &ops);
1086        *retlen = ops.retlen;
1087
1088        return ret;
1089}
1090EXPORT_SYMBOL_GPL(mtd_read);
1091
1092int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1093              const u_char *buf)
1094{
1095        struct mtd_oob_ops ops = {
1096                .len = len,
1097                .datbuf = (u8 *)buf,
1098        };
1099        int ret;
1100
1101        ret = mtd_write_oob(mtd, to, &ops);
1102        *retlen = ops.retlen;
1103
1104        return ret;
1105}
1106EXPORT_SYMBOL_GPL(mtd_write);
1107
1108/*
1109 * In blackbox flight recorder like scenarios we want to make successful writes
1110 * in interrupt context. panic_write() is only intended to be called when its
1111 * known the kernel is about to panic and we need the write to succeed. Since
1112 * the kernel is not going to be running for much longer, this function can
1113 * break locks and delay to ensure the write succeeds (but not sleep).
1114 */
1115int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1116                    const u_char *buf)
1117{
1118        *retlen = 0;
1119        if (!mtd->_panic_write)
1120                return -EOPNOTSUPP;
1121        if (to < 0 || to >= mtd->size || len > mtd->size - to)
1122                return -EINVAL;
1123        if (!(mtd->flags & MTD_WRITEABLE))
1124                return -EROFS;
1125        if (!len)
1126                return 0;
1127        if (!mtd->oops_panic_write)
1128                mtd->oops_panic_write = true;
1129
1130        return mtd->_panic_write(mtd, to, len, retlen, buf);
1131}
1132EXPORT_SYMBOL_GPL(mtd_panic_write);
1133
1134static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1135                             struct mtd_oob_ops *ops)
1136{
1137        /*
1138         * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1139         * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1140         *  this case.
1141         */
1142        if (!ops->datbuf)
1143                ops->len = 0;
1144
1145        if (!ops->oobbuf)
1146                ops->ooblen = 0;
1147
1148        if (offs < 0 || offs + ops->len > mtd->size)
1149                return -EINVAL;
1150
1151        if (ops->ooblen) {
1152                size_t maxooblen;
1153
1154                if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1155                        return -EINVAL;
1156
1157                maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1158                                      mtd_div_by_ws(offs, mtd)) *
1159                             mtd_oobavail(mtd, ops)) - ops->ooboffs;
1160                if (ops->ooblen > maxooblen)
1161                        return -EINVAL;
1162        }
1163
1164        return 0;
1165}
1166
1167int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1168{
1169        int ret_code;
1170        ops->retlen = ops->oobretlen = 0;
1171
1172        ret_code = mtd_check_oob_ops(mtd, from, ops);
1173        if (ret_code)
1174                return ret_code;
1175
1176        ledtrig_mtd_activity();
1177
1178        /* Check the validity of a potential fallback on mtd->_read */
1179        if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1180                return -EOPNOTSUPP;
1181
1182        if (mtd->_read_oob)
1183                ret_code = mtd->_read_oob(mtd, from, ops);
1184        else
1185                ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1186                                      ops->datbuf);
1187
1188        /*
1189         * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1190         * similar to mtd->_read(), returning a non-negative integer
1191         * representing max bitflips. In other cases, mtd->_read_oob() may
1192         * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1193         */
1194        if (unlikely(ret_code < 0))
1195                return ret_code;
1196        if (mtd->ecc_strength == 0)
1197                return 0;       /* device lacks ecc */
1198        return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1199}
1200EXPORT_SYMBOL_GPL(mtd_read_oob);
1201
1202int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1203                                struct mtd_oob_ops *ops)
1204{
1205        int ret;
1206
1207        ops->retlen = ops->oobretlen = 0;
1208
1209        if (!(mtd->flags & MTD_WRITEABLE))
1210                return -EROFS;
1211
1212        ret = mtd_check_oob_ops(mtd, to, ops);
1213        if (ret)
1214                return ret;
1215
1216        ledtrig_mtd_activity();
1217
1218        /* Check the validity of a potential fallback on mtd->_write */
1219        if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1220                return -EOPNOTSUPP;
1221
1222        if (mtd->_write_oob)
1223                return mtd->_write_oob(mtd, to, ops);
1224        else
1225                return mtd->_write(mtd, to, ops->len, &ops->retlen,
1226                                   ops->datbuf);
1227}
1228EXPORT_SYMBOL_GPL(mtd_write_oob);
1229
1230/**
1231 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1232 * @mtd: MTD device structure
1233 * @section: ECC section. Depending on the layout you may have all the ECC
1234 *           bytes stored in a single contiguous section, or one section
1235 *           per ECC chunk (and sometime several sections for a single ECC
1236 *           ECC chunk)
1237 * @oobecc: OOB region struct filled with the appropriate ECC position
1238 *          information
1239 *
1240 * This function returns ECC section information in the OOB area. If you want
1241 * to get all the ECC bytes information, then you should call
1242 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1243 *
1244 * Returns zero on success, a negative error code otherwise.
1245 */
1246int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1247                      struct mtd_oob_region *oobecc)
1248{
1249        memset(oobecc, 0, sizeof(*oobecc));
1250
1251        if (!mtd || section < 0)
1252                return -EINVAL;
1253
1254        if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1255                return -ENOTSUPP;
1256
1257        return mtd->ooblayout->ecc(mtd, section, oobecc);
1258}
1259EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1260
1261/**
1262 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1263 *                      section
1264 * @mtd: MTD device structure
1265 * @section: Free section you are interested in. Depending on the layout
1266 *           you may have all the free bytes stored in a single contiguous
1267 *           section, or one section per ECC chunk plus an extra section
1268 *           for the remaining bytes (or other funky layout).
1269 * @oobfree: OOB region struct filled with the appropriate free position
1270 *           information
1271 *
1272 * This function returns free bytes position in the OOB area. If you want
1273 * to get all the free bytes information, then you should call
1274 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1275 *
1276 * Returns zero on success, a negative error code otherwise.
1277 */
1278int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1279                       struct mtd_oob_region *oobfree)
1280{
1281        memset(oobfree, 0, sizeof(*oobfree));
1282
1283        if (!mtd || section < 0)
1284                return -EINVAL;
1285
1286        if (!mtd->ooblayout || !mtd->ooblayout->free)
1287                return -ENOTSUPP;
1288
1289        return mtd->ooblayout->free(mtd, section, oobfree);
1290}
1291EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1292
1293/**
1294 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1295 * @mtd: mtd info structure
1296 * @byte: the byte we are searching for
1297 * @sectionp: pointer where the section id will be stored
1298 * @oobregion: used to retrieve the ECC position
1299 * @iter: iterator function. Should be either mtd_ooblayout_free or
1300 *        mtd_ooblayout_ecc depending on the region type you're searching for
1301 *
1302 * This function returns the section id and oobregion information of a
1303 * specific byte. For example, say you want to know where the 4th ECC byte is
1304 * stored, you'll use:
1305 *
1306 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1307 *
1308 * Returns zero on success, a negative error code otherwise.
1309 */
1310static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1311                                int *sectionp, struct mtd_oob_region *oobregion,
1312                                int (*iter)(struct mtd_info *,
1313                                            int section,
1314                                            struct mtd_oob_region *oobregion))
1315{
1316        int pos = 0, ret, section = 0;
1317
1318        memset(oobregion, 0, sizeof(*oobregion));
1319
1320        while (1) {
1321                ret = iter(mtd, section, oobregion);
1322                if (ret)
1323                        return ret;
1324
1325                if (pos + oobregion->length > byte)
1326                        break;
1327
1328                pos += oobregion->length;
1329                section++;
1330        }
1331
1332        /*
1333         * Adjust region info to make it start at the beginning at the
1334         * 'start' ECC byte.
1335         */
1336        oobregion->offset += byte - pos;
1337        oobregion->length -= byte - pos;
1338        *sectionp = section;
1339
1340        return 0;
1341}
1342
1343/**
1344 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1345 *                                ECC byte
1346 * @mtd: mtd info structure
1347 * @eccbyte: the byte we are searching for
1348 * @sectionp: pointer where the section id will be stored
1349 * @oobregion: OOB region information
1350 *
1351 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1352 * byte.
1353 *
1354 * Returns zero on success, a negative error code otherwise.
1355 */
1356int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1357                                 int *section,
1358                                 struct mtd_oob_region *oobregion)
1359{
1360        return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1361                                         mtd_ooblayout_ecc);
1362}
1363EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1364
1365/**
1366 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1367 * @mtd: mtd info structure
1368 * @buf: destination buffer to store OOB bytes
1369 * @oobbuf: OOB buffer
1370 * @start: first byte to retrieve
1371 * @nbytes: number of bytes to retrieve
1372 * @iter: section iterator
1373 *
1374 * Extract bytes attached to a specific category (ECC or free)
1375 * from the OOB buffer and copy them into buf.
1376 *
1377 * Returns zero on success, a negative error code otherwise.
1378 */
1379static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1380                                const u8 *oobbuf, int start, int nbytes,
1381                                int (*iter)(struct mtd_info *,
1382                                            int section,
1383                                            struct mtd_oob_region *oobregion))
1384{
1385        struct mtd_oob_region oobregion;
1386        int section, ret;
1387
1388        ret = mtd_ooblayout_find_region(mtd, start, &section,
1389                                        &oobregion, iter);
1390
1391        while (!ret) {
1392                int cnt;
1393
1394                cnt = min_t(int, nbytes, oobregion.length);
1395                memcpy(buf, oobbuf + oobregion.offset, cnt);
1396                buf += cnt;
1397                nbytes -= cnt;
1398
1399                if (!nbytes)
1400                        break;
1401
1402                ret = iter(mtd, ++section, &oobregion);
1403        }
1404
1405        return ret;
1406}
1407
1408/**
1409 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1410 * @mtd: mtd info structure
1411 * @buf: source buffer to get OOB bytes from
1412 * @oobbuf: OOB buffer
1413 * @start: first OOB byte to set
1414 * @nbytes: number of OOB bytes to set
1415 * @iter: section iterator
1416 *
1417 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1418 * is selected by passing the appropriate iterator.
1419 *
1420 * Returns zero on success, a negative error code otherwise.
1421 */
1422static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1423                                u8 *oobbuf, int start, int nbytes,
1424                                int (*iter)(struct mtd_info *,
1425                                            int section,
1426                                            struct mtd_oob_region *oobregion))
1427{
1428        struct mtd_oob_region oobregion;
1429        int section, ret;
1430
1431        ret = mtd_ooblayout_find_region(mtd, start, &section,
1432                                        &oobregion, iter);
1433
1434        while (!ret) {
1435                int cnt;
1436
1437                cnt = min_t(int, nbytes, oobregion.length);
1438                memcpy(oobbuf + oobregion.offset, buf, cnt);
1439                buf += cnt;
1440                nbytes -= cnt;
1441
1442                if (!nbytes)
1443                        break;
1444
1445                ret = iter(mtd, ++section, &oobregion);
1446        }
1447
1448        return ret;
1449}
1450
1451/**
1452 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1453 * @mtd: mtd info structure
1454 * @iter: category iterator
1455 *
1456 * Count the number of bytes in a given category.
1457 *
1458 * Returns a positive value on success, a negative error code otherwise.
1459 */
1460static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1461                                int (*iter)(struct mtd_info *,
1462                                            int section,
1463                                            struct mtd_oob_region *oobregion))
1464{
1465        struct mtd_oob_region oobregion;
1466        int section = 0, ret, nbytes = 0;
1467
1468        while (1) {
1469                ret = iter(mtd, section++, &oobregion);
1470                if (ret) {
1471                        if (ret == -ERANGE)
1472                                ret = nbytes;
1473                        break;
1474                }
1475
1476                nbytes += oobregion.length;
1477        }
1478
1479        return ret;
1480}
1481
1482/**
1483 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1484 * @mtd: mtd info structure
1485 * @eccbuf: destination buffer to store ECC bytes
1486 * @oobbuf: OOB buffer
1487 * @start: first ECC byte to retrieve
1488 * @nbytes: number of ECC bytes to retrieve
1489 *
1490 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1491 *
1492 * Returns zero on success, a negative error code otherwise.
1493 */
1494int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1495                               const u8 *oobbuf, int start, int nbytes)
1496{
1497        return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1498                                       mtd_ooblayout_ecc);
1499}
1500EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1501
1502/**
1503 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1504 * @mtd: mtd info structure
1505 * @eccbuf: source buffer to get ECC bytes from
1506 * @oobbuf: OOB buffer
1507 * @start: first ECC byte to set
1508 * @nbytes: number of ECC bytes to set
1509 *
1510 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1511 *
1512 * Returns zero on success, a negative error code otherwise.
1513 */
1514int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1515                               u8 *oobbuf, int start, int nbytes)
1516{
1517        return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1518                                       mtd_ooblayout_ecc);
1519}
1520EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1521
1522/**
1523 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1524 * @mtd: mtd info structure
1525 * @databuf: destination buffer to store ECC bytes
1526 * @oobbuf: OOB buffer
1527 * @start: first ECC byte to retrieve
1528 * @nbytes: number of ECC bytes to retrieve
1529 *
1530 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1531 *
1532 * Returns zero on success, a negative error code otherwise.
1533 */
1534int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1535                                const u8 *oobbuf, int start, int nbytes)
1536{
1537        return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1538                                       mtd_ooblayout_free);
1539}
1540EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1541
1542/**
1543 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1544 * @mtd: mtd info structure
1545 * @databuf: source buffer to get data bytes from
1546 * @oobbuf: OOB buffer
1547 * @start: first ECC byte to set
1548 * @nbytes: number of ECC bytes to set
1549 *
1550 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1551 *
1552 * Returns zero on success, a negative error code otherwise.
1553 */
1554int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1555                                u8 *oobbuf, int start, int nbytes)
1556{
1557        return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1558                                       mtd_ooblayout_free);
1559}
1560EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1561
1562/**
1563 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1564 * @mtd: mtd info structure
1565 *
1566 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1567 *
1568 * Returns zero on success, a negative error code otherwise.
1569 */
1570int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1571{
1572        return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1573}
1574EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1575
1576/**
1577 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1578 * @mtd: mtd info structure
1579 *
1580 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1581 *
1582 * Returns zero on success, a negative error code otherwise.
1583 */
1584int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1585{
1586        return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1587}
1588EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1589
1590/*
1591 * Method to access the protection register area, present in some flash
1592 * devices. The user data is one time programmable but the factory data is read
1593 * only.
1594 */
1595int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1596                           struct otp_info *buf)
1597{
1598        if (!mtd->_get_fact_prot_info)
1599                return -EOPNOTSUPP;
1600        if (!len)
1601                return 0;
1602        return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1603}
1604EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1605
1606int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1607                           size_t *retlen, u_char *buf)
1608{
1609        *retlen = 0;
1610        if (!mtd->_read_fact_prot_reg)
1611                return -EOPNOTSUPP;
1612        if (!len)
1613                return 0;
1614        return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1615}
1616EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1617
1618int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1619                           struct otp_info *buf)
1620{
1621        if (!mtd->_get_user_prot_info)
1622                return -EOPNOTSUPP;
1623        if (!len)
1624                return 0;
1625        return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1626}
1627EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1628
1629int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1630                           size_t *retlen, u_char *buf)
1631{
1632        *retlen = 0;
1633        if (!mtd->_read_user_prot_reg)
1634                return -EOPNOTSUPP;
1635        if (!len)
1636                return 0;
1637        return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1638}
1639EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1640
1641int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1642                            size_t *retlen, u_char *buf)
1643{
1644        int ret;
1645
1646        *retlen = 0;
1647        if (!mtd->_write_user_prot_reg)
1648                return -EOPNOTSUPP;
1649        if (!len)
1650                return 0;
1651        ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1652        if (ret)
1653                return ret;
1654
1655        /*
1656         * If no data could be written at all, we are out of memory and
1657         * must return -ENOSPC.
1658         */
1659        return (*retlen) ? 0 : -ENOSPC;
1660}
1661EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1662
1663int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1664{
1665        if (!mtd->_lock_user_prot_reg)
1666                return -EOPNOTSUPP;
1667        if (!len)
1668                return 0;
1669        return mtd->_lock_user_prot_reg(mtd, from, len);
1670}
1671EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1672
1673/* Chip-supported device locking */
1674int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1675{
1676        if (!mtd->_lock)
1677                return -EOPNOTSUPP;
1678        if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1679                return -EINVAL;
1680        if (!len)
1681                return 0;
1682        return mtd->_lock(mtd, ofs, len);
1683}
1684EXPORT_SYMBOL_GPL(mtd_lock);
1685
1686int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1687{
1688        if (!mtd->_unlock)
1689                return -EOPNOTSUPP;
1690        if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1691                return -EINVAL;
1692        if (!len)
1693                return 0;
1694        return mtd->_unlock(mtd, ofs, len);
1695}
1696EXPORT_SYMBOL_GPL(mtd_unlock);
1697
1698int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1699{
1700        if (!mtd->_is_locked)
1701                return -EOPNOTSUPP;
1702        if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1703                return -EINVAL;
1704        if (!len)
1705                return 0;
1706        return mtd->_is_locked(mtd, ofs, len);
1707}
1708EXPORT_SYMBOL_GPL(mtd_is_locked);
1709
1710int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1711{
1712        if (ofs < 0 || ofs >= mtd->size)
1713                return -EINVAL;
1714        if (!mtd->_block_isreserved)
1715                return 0;
1716        return mtd->_block_isreserved(mtd, ofs);
1717}
1718EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1719
1720int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1721{
1722        if (ofs < 0 || ofs >= mtd->size)
1723                return -EINVAL;
1724        if (!mtd->_block_isbad)
1725                return 0;
1726        return mtd->_block_isbad(mtd, ofs);
1727}
1728EXPORT_SYMBOL_GPL(mtd_block_isbad);
1729
1730int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1731{
1732        if (!mtd->_block_markbad)
1733                return -EOPNOTSUPP;
1734        if (ofs < 0 || ofs >= mtd->size)
1735                return -EINVAL;
1736        if (!(mtd->flags & MTD_WRITEABLE))
1737                return -EROFS;
1738        return mtd->_block_markbad(mtd, ofs);
1739}
1740EXPORT_SYMBOL_GPL(mtd_block_markbad);
1741
1742/*
1743 * default_mtd_writev - the default writev method
1744 * @mtd: mtd device description object pointer
1745 * @vecs: the vectors to write
1746 * @count: count of vectors in @vecs
1747 * @to: the MTD device offset to write to
1748 * @retlen: on exit contains the count of bytes written to the MTD device.
1749 *
1750 * This function returns zero in case of success and a negative error code in
1751 * case of failure.
1752 */
1753static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1754                              unsigned long count, loff_t to, size_t *retlen)
1755{
1756        unsigned long i;
1757        size_t totlen = 0, thislen;
1758        int ret = 0;
1759
1760        for (i = 0; i < count; i++) {
1761                if (!vecs[i].iov_len)
1762                        continue;
1763                ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1764                                vecs[i].iov_base);
1765                totlen += thislen;
1766                if (ret || thislen != vecs[i].iov_len)
1767                        break;
1768                to += vecs[i].iov_len;
1769        }
1770        *retlen = totlen;
1771        return ret;
1772}
1773
1774/*
1775 * mtd_writev - the vector-based MTD write method
1776 * @mtd: mtd device description object pointer
1777 * @vecs: the vectors to write
1778 * @count: count of vectors in @vecs
1779 * @to: the MTD device offset to write to
1780 * @retlen: on exit contains the count of bytes written to the MTD device.
1781 *
1782 * This function returns zero in case of success and a negative error code in
1783 * case of failure.
1784 */
1785int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1786               unsigned long count, loff_t to, size_t *retlen)
1787{
1788        *retlen = 0;
1789        if (!(mtd->flags & MTD_WRITEABLE))
1790                return -EROFS;
1791        if (!mtd->_writev)
1792                return default_mtd_writev(mtd, vecs, count, to, retlen);
1793        return mtd->_writev(mtd, vecs, count, to, retlen);
1794}
1795EXPORT_SYMBOL_GPL(mtd_writev);
1796
1797/**
1798 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1799 * @mtd: mtd device description object pointer
1800 * @size: a pointer to the ideal or maximum size of the allocation, points
1801 *        to the actual allocation size on success.
1802 *
1803 * This routine attempts to allocate a contiguous kernel buffer up to
1804 * the specified size, backing off the size of the request exponentially
1805 * until the request succeeds or until the allocation size falls below
1806 * the system page size. This attempts to make sure it does not adversely
1807 * impact system performance, so when allocating more than one page, we
1808 * ask the memory allocator to avoid re-trying, swapping, writing back
1809 * or performing I/O.
1810 *
1811 * Note, this function also makes sure that the allocated buffer is aligned to
1812 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1813 *
1814 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1815 * to handle smaller (i.e. degraded) buffer allocations under low- or
1816 * fragmented-memory situations where such reduced allocations, from a
1817 * requested ideal, are allowed.
1818 *
1819 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1820 */
1821void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1822{
1823        gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1824        size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1825        void *kbuf;
1826
1827        *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1828
1829        while (*size > min_alloc) {
1830                kbuf = kmalloc(*size, flags);
1831                if (kbuf)
1832                        return kbuf;
1833
1834                *size >>= 1;
1835                *size = ALIGN(*size, mtd->writesize);
1836        }
1837
1838        /*
1839         * For the last resort allocation allow 'kmalloc()' to do all sorts of
1840         * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1841         */
1842        return kmalloc(*size, GFP_KERNEL);
1843}
1844EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1845
1846#ifdef CONFIG_PROC_FS
1847
1848/*====================================================================*/
1849/* Support for /proc/mtd */
1850
1851static int mtd_proc_show(struct seq_file *m, void *v)
1852{
1853        struct mtd_info *mtd;
1854
1855        seq_puts(m, "dev:    size   erasesize  name\n");
1856        mutex_lock(&mtd_table_mutex);
1857        mtd_for_each_device(mtd) {
1858                seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1859                           mtd->index, (unsigned long long)mtd->size,
1860                           mtd->erasesize, mtd->name);
1861        }
1862        mutex_unlock(&mtd_table_mutex);
1863        return 0;
1864}
1865#endif /* CONFIG_PROC_FS */
1866
1867/*====================================================================*/
1868/* Init code */
1869
1870static struct backing_dev_info * __init mtd_bdi_init(char *name)
1871{
1872        struct backing_dev_info *bdi;
1873        int ret;
1874
1875        bdi = bdi_alloc(GFP_KERNEL);
1876        if (!bdi)
1877                return ERR_PTR(-ENOMEM);
1878
1879        bdi->name = name;
1880        /*
1881         * We put '-0' suffix to the name to get the same name format as we
1882         * used to get. Since this is called only once, we get a unique name. 
1883         */
1884        ret = bdi_register(bdi, "%.28s-0", name);
1885        if (ret)
1886                bdi_put(bdi);
1887
1888        return ret ? ERR_PTR(ret) : bdi;
1889}
1890
1891static struct proc_dir_entry *proc_mtd;
1892
1893static int __init init_mtd(void)
1894{
1895        int ret;
1896
1897        ret = class_register(&mtd_class);
1898        if (ret)
1899                goto err_reg;
1900
1901        mtd_bdi = mtd_bdi_init("mtd");
1902        if (IS_ERR(mtd_bdi)) {
1903                ret = PTR_ERR(mtd_bdi);
1904                goto err_bdi;
1905        }
1906
1907        proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1908
1909        ret = init_mtdchar();
1910        if (ret)
1911                goto out_procfs;
1912
1913        dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1914
1915        return 0;
1916
1917out_procfs:
1918        if (proc_mtd)
1919                remove_proc_entry("mtd", NULL);
1920        bdi_put(mtd_bdi);
1921err_bdi:
1922        class_unregister(&mtd_class);
1923err_reg:
1924        pr_err("Error registering mtd class or bdi: %d\n", ret);
1925        return ret;
1926}
1927
1928static void __exit cleanup_mtd(void)
1929{
1930        debugfs_remove_recursive(dfs_dir_mtd);
1931        cleanup_mtdchar();
1932        if (proc_mtd)
1933                remove_proc_entry("mtd", NULL);
1934        class_unregister(&mtd_class);
1935        bdi_put(mtd_bdi);
1936        idr_destroy(&mtd_idr);
1937}
1938
1939module_init(init_mtd);
1940module_exit(cleanup_mtd);
1941
1942MODULE_LICENSE("GPL");
1943MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1944MODULE_DESCRIPTION("Core MTD registration and access routines");
1945