linux/drivers/mtd/nand/onenand/onenand_base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright © 2005-2009 Samsung Electronics
   4 *  Copyright © 2007 Nokia Corporation
   5 *
   6 *  Kyungmin Park <kyungmin.park@samsung.com>
   7 *
   8 *  Credits:
   9 *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
  10 *      auto-placement support, read-while load support, various fixes
  11 *
  12 *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
  13 *      Flex-OneNAND support
  14 *      Amul Kumar Saha <amul.saha at samsung.com>
  15 *      OTP support
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/moduleparam.h>
  21#include <linux/slab.h>
  22#include <linux/sched.h>
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/jiffies.h>
  26#include <linux/mtd/mtd.h>
  27#include <linux/mtd/onenand.h>
  28#include <linux/mtd/partitions.h>
  29
  30#include <asm/io.h>
  31
  32/*
  33 * Multiblock erase if number of blocks to erase is 2 or more.
  34 * Maximum number of blocks for simultaneous erase is 64.
  35 */
  36#define MB_ERASE_MIN_BLK_COUNT 2
  37#define MB_ERASE_MAX_BLK_COUNT 64
  38
  39/* Default Flex-OneNAND boundary and lock respectively */
  40static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
  41
  42module_param_array(flex_bdry, int, NULL, 0400);
  43MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
  44                                "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
  45                                "DIE_BDRY: SLC boundary of the die"
  46                                "LOCK: Locking information for SLC boundary"
  47                                "    : 0->Set boundary in unlocked status"
  48                                "    : 1->Set boundary in locked status");
  49
  50/* Default OneNAND/Flex-OneNAND OTP options*/
  51static int otp;
  52
  53module_param(otp, int, 0400);
  54MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
  55                        "Syntax : otp=LOCK_TYPE"
  56                        "LOCK_TYPE : Keys issued, for specific OTP Lock type"
  57                        "          : 0 -> Default (No Blocks Locked)"
  58                        "          : 1 -> OTP Block lock"
  59                        "          : 2 -> 1st Block lock"
  60                        "          : 3 -> BOTH OTP Block and 1st Block lock");
  61
  62/*
  63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
  64 * For now, we expose only 64 out of 80 ecc bytes
  65 */
  66static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
  67                                     struct mtd_oob_region *oobregion)
  68{
  69        if (section > 7)
  70                return -ERANGE;
  71
  72        oobregion->offset = (section * 16) + 6;
  73        oobregion->length = 10;
  74
  75        return 0;
  76}
  77
  78static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
  79                                      struct mtd_oob_region *oobregion)
  80{
  81        if (section > 7)
  82                return -ERANGE;
  83
  84        oobregion->offset = (section * 16) + 2;
  85        oobregion->length = 4;
  86
  87        return 0;
  88}
  89
  90static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
  91        .ecc = flexonenand_ooblayout_ecc,
  92        .free = flexonenand_ooblayout_free,
  93};
  94
  95/*
  96 * onenand_oob_128 - oob info for OneNAND with 4KB page
  97 *
  98 * Based on specification:
  99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
 100 *
 101 */
 102static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
 103                                     struct mtd_oob_region *oobregion)
 104{
 105        if (section > 7)
 106                return -ERANGE;
 107
 108        oobregion->offset = (section * 16) + 7;
 109        oobregion->length = 9;
 110
 111        return 0;
 112}
 113
 114static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
 115                                      struct mtd_oob_region *oobregion)
 116{
 117        if (section >= 8)
 118                return -ERANGE;
 119
 120        /*
 121         * free bytes are using the spare area fields marked as
 122         * "Managed by internal ECC logic for Logical Sector Number area"
 123         */
 124        oobregion->offset = (section * 16) + 2;
 125        oobregion->length = 3;
 126
 127        return 0;
 128}
 129
 130static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
 131        .ecc = onenand_ooblayout_128_ecc,
 132        .free = onenand_ooblayout_128_free,
 133};
 134
 135/**
 136 * onenand_oob_32_64 - oob info for large (2KB) page
 137 */
 138static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
 139                                       struct mtd_oob_region *oobregion)
 140{
 141        if (section > 3)
 142                return -ERANGE;
 143
 144        oobregion->offset = (section * 16) + 8;
 145        oobregion->length = 5;
 146
 147        return 0;
 148}
 149
 150static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
 151                                        struct mtd_oob_region *oobregion)
 152{
 153        int sections = (mtd->oobsize / 32) * 2;
 154
 155        if (section >= sections)
 156                return -ERANGE;
 157
 158        if (section & 1) {
 159                oobregion->offset = ((section - 1) * 16) + 14;
 160                oobregion->length = 2;
 161        } else  {
 162                oobregion->offset = (section * 16) + 2;
 163                oobregion->length = 3;
 164        }
 165
 166        return 0;
 167}
 168
 169static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
 170        .ecc = onenand_ooblayout_32_64_ecc,
 171        .free = onenand_ooblayout_32_64_free,
 172};
 173
 174static const unsigned char ffchars[] = {
 175        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 176        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
 177        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 178        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
 179        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 180        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
 181        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 182        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
 183        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 184        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
 185        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 186        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
 187        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 188        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
 189        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 190        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
 191};
 192
 193/**
 194 * onenand_readw - [OneNAND Interface] Read OneNAND register
 195 * @param addr          address to read
 196 *
 197 * Read OneNAND register
 198 */
 199static unsigned short onenand_readw(void __iomem *addr)
 200{
 201        return readw(addr);
 202}
 203
 204/**
 205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 206 * @param value         value to write
 207 * @param addr          address to write
 208 *
 209 * Write OneNAND register with value
 210 */
 211static void onenand_writew(unsigned short value, void __iomem *addr)
 212{
 213        writew(value, addr);
 214}
 215
 216/**
 217 * onenand_block_address - [DEFAULT] Get block address
 218 * @param this          onenand chip data structure
 219 * @param block         the block
 220 * @return              translated block address if DDP, otherwise same
 221 *
 222 * Setup Start Address 1 Register (F100h)
 223 */
 224static int onenand_block_address(struct onenand_chip *this, int block)
 225{
 226        /* Device Flash Core select, NAND Flash Block Address */
 227        if (block & this->density_mask)
 228                return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
 229
 230        return block;
 231}
 232
 233/**
 234 * onenand_bufferram_address - [DEFAULT] Get bufferram address
 235 * @param this          onenand chip data structure
 236 * @param block         the block
 237 * @return              set DBS value if DDP, otherwise 0
 238 *
 239 * Setup Start Address 2 Register (F101h) for DDP
 240 */
 241static int onenand_bufferram_address(struct onenand_chip *this, int block)
 242{
 243        /* Device BufferRAM Select */
 244        if (block & this->density_mask)
 245                return ONENAND_DDP_CHIP1;
 246
 247        return ONENAND_DDP_CHIP0;
 248}
 249
 250/**
 251 * onenand_page_address - [DEFAULT] Get page address
 252 * @param page          the page address
 253 * @param sector        the sector address
 254 * @return              combined page and sector address
 255 *
 256 * Setup Start Address 8 Register (F107h)
 257 */
 258static int onenand_page_address(int page, int sector)
 259{
 260        /* Flash Page Address, Flash Sector Address */
 261        int fpa, fsa;
 262
 263        fpa = page & ONENAND_FPA_MASK;
 264        fsa = sector & ONENAND_FSA_MASK;
 265
 266        return ((fpa << ONENAND_FPA_SHIFT) | fsa);
 267}
 268
 269/**
 270 * onenand_buffer_address - [DEFAULT] Get buffer address
 271 * @param dataram1      DataRAM index
 272 * @param sectors       the sector address
 273 * @param count         the number of sectors
 274 * @return              the start buffer value
 275 *
 276 * Setup Start Buffer Register (F200h)
 277 */
 278static int onenand_buffer_address(int dataram1, int sectors, int count)
 279{
 280        int bsa, bsc;
 281
 282        /* BufferRAM Sector Address */
 283        bsa = sectors & ONENAND_BSA_MASK;
 284
 285        if (dataram1)
 286                bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
 287        else
 288                bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
 289
 290        /* BufferRAM Sector Count */
 291        bsc = count & ONENAND_BSC_MASK;
 292
 293        return ((bsa << ONENAND_BSA_SHIFT) | bsc);
 294}
 295
 296/**
 297 * flexonenand_block- For given address return block number
 298 * @param this         - OneNAND device structure
 299 * @param addr          - Address for which block number is needed
 300 */
 301static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
 302{
 303        unsigned boundary, blk, die = 0;
 304
 305        if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
 306                die = 1;
 307                addr -= this->diesize[0];
 308        }
 309
 310        boundary = this->boundary[die];
 311
 312        blk = addr >> (this->erase_shift - 1);
 313        if (blk > boundary)
 314                blk = (blk + boundary + 1) >> 1;
 315
 316        blk += die ? this->density_mask : 0;
 317        return blk;
 318}
 319
 320inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
 321{
 322        if (!FLEXONENAND(this))
 323                return addr >> this->erase_shift;
 324        return flexonenand_block(this, addr);
 325}
 326
 327/**
 328 * flexonenand_addr - Return address of the block
 329 * @this:               OneNAND device structure
 330 * @block:              Block number on Flex-OneNAND
 331 *
 332 * Return address of the block
 333 */
 334static loff_t flexonenand_addr(struct onenand_chip *this, int block)
 335{
 336        loff_t ofs = 0;
 337        int die = 0, boundary;
 338
 339        if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
 340                block -= this->density_mask;
 341                die = 1;
 342                ofs = this->diesize[0];
 343        }
 344
 345        boundary = this->boundary[die];
 346        ofs += (loff_t)block << (this->erase_shift - 1);
 347        if (block > (boundary + 1))
 348                ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
 349        return ofs;
 350}
 351
 352loff_t onenand_addr(struct onenand_chip *this, int block)
 353{
 354        if (!FLEXONENAND(this))
 355                return (loff_t)block << this->erase_shift;
 356        return flexonenand_addr(this, block);
 357}
 358EXPORT_SYMBOL(onenand_addr);
 359
 360/**
 361 * onenand_get_density - [DEFAULT] Get OneNAND density
 362 * @param dev_id        OneNAND device ID
 363 *
 364 * Get OneNAND density from device ID
 365 */
 366static inline int onenand_get_density(int dev_id)
 367{
 368        int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
 369        return (density & ONENAND_DEVICE_DENSITY_MASK);
 370}
 371
 372/**
 373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
 374 * @param mtd           MTD device structure
 375 * @param addr          address whose erase region needs to be identified
 376 */
 377int flexonenand_region(struct mtd_info *mtd, loff_t addr)
 378{
 379        int i;
 380
 381        for (i = 0; i < mtd->numeraseregions; i++)
 382                if (addr < mtd->eraseregions[i].offset)
 383                        break;
 384        return i - 1;
 385}
 386EXPORT_SYMBOL(flexonenand_region);
 387
 388/**
 389 * onenand_command - [DEFAULT] Send command to OneNAND device
 390 * @param mtd           MTD device structure
 391 * @param cmd           the command to be sent
 392 * @param addr          offset to read from or write to
 393 * @param len           number of bytes to read or write
 394 *
 395 * Send command to OneNAND device. This function is used for middle/large page
 396 * devices (1KB/2KB Bytes per page)
 397 */
 398static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
 399{
 400        struct onenand_chip *this = mtd->priv;
 401        int value, block, page;
 402
 403        /* Address translation */
 404        switch (cmd) {
 405        case ONENAND_CMD_UNLOCK:
 406        case ONENAND_CMD_LOCK:
 407        case ONENAND_CMD_LOCK_TIGHT:
 408        case ONENAND_CMD_UNLOCK_ALL:
 409                block = -1;
 410                page = -1;
 411                break;
 412
 413        case FLEXONENAND_CMD_PI_ACCESS:
 414                /* addr contains die index */
 415                block = addr * this->density_mask;
 416                page = -1;
 417                break;
 418
 419        case ONENAND_CMD_ERASE:
 420        case ONENAND_CMD_MULTIBLOCK_ERASE:
 421        case ONENAND_CMD_ERASE_VERIFY:
 422        case ONENAND_CMD_BUFFERRAM:
 423        case ONENAND_CMD_OTP_ACCESS:
 424                block = onenand_block(this, addr);
 425                page = -1;
 426                break;
 427
 428        case FLEXONENAND_CMD_READ_PI:
 429                cmd = ONENAND_CMD_READ;
 430                block = addr * this->density_mask;
 431                page = 0;
 432                break;
 433
 434        default:
 435                block = onenand_block(this, addr);
 436                if (FLEXONENAND(this))
 437                        page = (int) (addr - onenand_addr(this, block))>>\
 438                                this->page_shift;
 439                else
 440                        page = (int) (addr >> this->page_shift);
 441                if (ONENAND_IS_2PLANE(this)) {
 442                        /* Make the even block number */
 443                        block &= ~1;
 444                        /* Is it the odd plane? */
 445                        if (addr & this->writesize)
 446                                block++;
 447                        page >>= 1;
 448                }
 449                page &= this->page_mask;
 450                break;
 451        }
 452
 453        /* NOTE: The setting order of the registers is very important! */
 454        if (cmd == ONENAND_CMD_BUFFERRAM) {
 455                /* Select DataRAM for DDP */
 456                value = onenand_bufferram_address(this, block);
 457                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 458
 459                if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
 460                        /* It is always BufferRAM0 */
 461                        ONENAND_SET_BUFFERRAM0(this);
 462                else
 463                        /* Switch to the next data buffer */
 464                        ONENAND_SET_NEXT_BUFFERRAM(this);
 465
 466                return 0;
 467        }
 468
 469        if (block != -1) {
 470                /* Write 'DFS, FBA' of Flash */
 471                value = onenand_block_address(this, block);
 472                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
 473
 474                /* Select DataRAM for DDP */
 475                value = onenand_bufferram_address(this, block);
 476                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 477        }
 478
 479        if (page != -1) {
 480                /* Now we use page size operation */
 481                int sectors = 0, count = 0;
 482                int dataram;
 483
 484                switch (cmd) {
 485                case FLEXONENAND_CMD_RECOVER_LSB:
 486                case ONENAND_CMD_READ:
 487                case ONENAND_CMD_READOOB:
 488                        if (ONENAND_IS_4KB_PAGE(this))
 489                                /* It is always BufferRAM0 */
 490                                dataram = ONENAND_SET_BUFFERRAM0(this);
 491                        else
 492                                dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
 493                        break;
 494
 495                default:
 496                        if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
 497                                cmd = ONENAND_CMD_2X_PROG;
 498                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
 499                        break;
 500                }
 501
 502                /* Write 'FPA, FSA' of Flash */
 503                value = onenand_page_address(page, sectors);
 504                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
 505
 506                /* Write 'BSA, BSC' of DataRAM */
 507                value = onenand_buffer_address(dataram, sectors, count);
 508                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
 509        }
 510
 511        /* Interrupt clear */
 512        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
 513
 514        /* Write command */
 515        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
 516
 517        return 0;
 518}
 519
 520/**
 521 * onenand_read_ecc - return ecc status
 522 * @param this          onenand chip structure
 523 */
 524static inline int onenand_read_ecc(struct onenand_chip *this)
 525{
 526        int ecc, i, result = 0;
 527
 528        if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
 529                return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
 530
 531        for (i = 0; i < 4; i++) {
 532                ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
 533                if (likely(!ecc))
 534                        continue;
 535                if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
 536                        return ONENAND_ECC_2BIT_ALL;
 537                else
 538                        result = ONENAND_ECC_1BIT_ALL;
 539        }
 540
 541        return result;
 542}
 543
 544/**
 545 * onenand_wait - [DEFAULT] wait until the command is done
 546 * @param mtd           MTD device structure
 547 * @param state         state to select the max. timeout value
 548 *
 549 * Wait for command done. This applies to all OneNAND command
 550 * Read can take up to 30us, erase up to 2ms and program up to 350us
 551 * according to general OneNAND specs
 552 */
 553static int onenand_wait(struct mtd_info *mtd, int state)
 554{
 555        struct onenand_chip * this = mtd->priv;
 556        unsigned long timeout;
 557        unsigned int flags = ONENAND_INT_MASTER;
 558        unsigned int interrupt = 0;
 559        unsigned int ctrl;
 560
 561        /* The 20 msec is enough */
 562        timeout = jiffies + msecs_to_jiffies(20);
 563        while (time_before(jiffies, timeout)) {
 564                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 565
 566                if (interrupt & flags)
 567                        break;
 568
 569                if (state != FL_READING && state != FL_PREPARING_ERASE)
 570                        cond_resched();
 571        }
 572        /* To get correct interrupt status in timeout case */
 573        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 574
 575        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
 576
 577        /*
 578         * In the Spec. it checks the controller status first
 579         * However if you get the correct information in case of
 580         * power off recovery (POR) test, it should read ECC status first
 581         */
 582        if (interrupt & ONENAND_INT_READ) {
 583                int ecc = onenand_read_ecc(this);
 584                if (ecc) {
 585                        if (ecc & ONENAND_ECC_2BIT_ALL) {
 586                                printk(KERN_ERR "%s: ECC error = 0x%04x\n",
 587                                        __func__, ecc);
 588                                mtd->ecc_stats.failed++;
 589                                return -EBADMSG;
 590                        } else if (ecc & ONENAND_ECC_1BIT_ALL) {
 591                                printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
 592                                        __func__, ecc);
 593                                mtd->ecc_stats.corrected++;
 594                        }
 595                }
 596        } else if (state == FL_READING) {
 597                printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
 598                        __func__, ctrl, interrupt);
 599                return -EIO;
 600        }
 601
 602        if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
 603                printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
 604                       __func__, ctrl, interrupt);
 605                return -EIO;
 606        }
 607
 608        if (!(interrupt & ONENAND_INT_MASTER)) {
 609                printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
 610                       __func__, ctrl, interrupt);
 611                return -EIO;
 612        }
 613
 614        /* If there's controller error, it's a real error */
 615        if (ctrl & ONENAND_CTRL_ERROR) {
 616                printk(KERN_ERR "%s: controller error = 0x%04x\n",
 617                        __func__, ctrl);
 618                if (ctrl & ONENAND_CTRL_LOCK)
 619                        printk(KERN_ERR "%s: it's locked error.\n", __func__);
 620                return -EIO;
 621        }
 622
 623        return 0;
 624}
 625
 626/*
 627 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 628 * @param irq           onenand interrupt number
 629 * @param dev_id        interrupt data
 630 *
 631 * complete the work
 632 */
 633static irqreturn_t onenand_interrupt(int irq, void *data)
 634{
 635        struct onenand_chip *this = data;
 636
 637        /* To handle shared interrupt */
 638        if (!this->complete.done)
 639                complete(&this->complete);
 640
 641        return IRQ_HANDLED;
 642}
 643
 644/*
 645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 646 * @param mtd           MTD device structure
 647 * @param state         state to select the max. timeout value
 648 *
 649 * Wait for command done.
 650 */
 651static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
 652{
 653        struct onenand_chip *this = mtd->priv;
 654
 655        wait_for_completion(&this->complete);
 656
 657        return onenand_wait(mtd, state);
 658}
 659
 660/*
 661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 662 * @param mtd           MTD device structure
 663 * @param state         state to select the max. timeout value
 664 *
 665 * Try interrupt based wait (It is used one-time)
 666 */
 667static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
 668{
 669        struct onenand_chip *this = mtd->priv;
 670        unsigned long remain, timeout;
 671
 672        /* We use interrupt wait first */
 673        this->wait = onenand_interrupt_wait;
 674
 675        timeout = msecs_to_jiffies(100);
 676        remain = wait_for_completion_timeout(&this->complete, timeout);
 677        if (!remain) {
 678                printk(KERN_INFO "OneNAND: There's no interrupt. "
 679                                "We use the normal wait\n");
 680
 681                /* Release the irq */
 682                free_irq(this->irq, this);
 683
 684                this->wait = onenand_wait;
 685        }
 686
 687        return onenand_wait(mtd, state);
 688}
 689
 690/*
 691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 692 * @param mtd           MTD device structure
 693 *
 694 * There's two method to wait onenand work
 695 * 1. polling - read interrupt status register
 696 * 2. interrupt - use the kernel interrupt method
 697 */
 698static void onenand_setup_wait(struct mtd_info *mtd)
 699{
 700        struct onenand_chip *this = mtd->priv;
 701        int syscfg;
 702
 703        init_completion(&this->complete);
 704
 705        if (this->irq <= 0) {
 706                this->wait = onenand_wait;
 707                return;
 708        }
 709
 710        if (request_irq(this->irq, &onenand_interrupt,
 711                                IRQF_SHARED, "onenand", this)) {
 712                /* If we can't get irq, use the normal wait */
 713                this->wait = onenand_wait;
 714                return;
 715        }
 716
 717        /* Enable interrupt */
 718        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
 719        syscfg |= ONENAND_SYS_CFG1_IOBE;
 720        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
 721
 722        this->wait = onenand_try_interrupt_wait;
 723}
 724
 725/**
 726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 727 * @param mtd           MTD data structure
 728 * @param area          BufferRAM area
 729 * @return              offset given area
 730 *
 731 * Return BufferRAM offset given area
 732 */
 733static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
 734{
 735        struct onenand_chip *this = mtd->priv;
 736
 737        if (ONENAND_CURRENT_BUFFERRAM(this)) {
 738                /* Note: the 'this->writesize' is a real page size */
 739                if (area == ONENAND_DATARAM)
 740                        return this->writesize;
 741                if (area == ONENAND_SPARERAM)
 742                        return mtd->oobsize;
 743        }
 744
 745        return 0;
 746}
 747
 748/**
 749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 750 * @param mtd           MTD data structure
 751 * @param area          BufferRAM area
 752 * @param buffer        the databuffer to put/get data
 753 * @param offset        offset to read from or write to
 754 * @param count         number of bytes to read/write
 755 *
 756 * Read the BufferRAM area
 757 */
 758static int onenand_read_bufferram(struct mtd_info *mtd, int area,
 759                unsigned char *buffer, int offset, size_t count)
 760{
 761        struct onenand_chip *this = mtd->priv;
 762        void __iomem *bufferram;
 763
 764        bufferram = this->base + area;
 765
 766        bufferram += onenand_bufferram_offset(mtd, area);
 767
 768        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 769                unsigned short word;
 770
 771                /* Align with word(16-bit) size */
 772                count--;
 773
 774                /* Read word and save byte */
 775                word = this->read_word(bufferram + offset + count);
 776                buffer[count] = (word & 0xff);
 777        }
 778
 779        memcpy(buffer, bufferram + offset, count);
 780
 781        return 0;
 782}
 783
 784/**
 785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 786 * @param mtd           MTD data structure
 787 * @param area          BufferRAM area
 788 * @param buffer        the databuffer to put/get data
 789 * @param offset        offset to read from or write to
 790 * @param count         number of bytes to read/write
 791 *
 792 * Read the BufferRAM area with Sync. Burst Mode
 793 */
 794static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
 795                unsigned char *buffer, int offset, size_t count)
 796{
 797        struct onenand_chip *this = mtd->priv;
 798        void __iomem *bufferram;
 799
 800        bufferram = this->base + area;
 801
 802        bufferram += onenand_bufferram_offset(mtd, area);
 803
 804        this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
 805
 806        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 807                unsigned short word;
 808
 809                /* Align with word(16-bit) size */
 810                count--;
 811
 812                /* Read word and save byte */
 813                word = this->read_word(bufferram + offset + count);
 814                buffer[count] = (word & 0xff);
 815        }
 816
 817        memcpy(buffer, bufferram + offset, count);
 818
 819        this->mmcontrol(mtd, 0);
 820
 821        return 0;
 822}
 823
 824/**
 825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 826 * @param mtd           MTD data structure
 827 * @param area          BufferRAM area
 828 * @param buffer        the databuffer to put/get data
 829 * @param offset        offset to read from or write to
 830 * @param count         number of bytes to read/write
 831 *
 832 * Write the BufferRAM area
 833 */
 834static int onenand_write_bufferram(struct mtd_info *mtd, int area,
 835                const unsigned char *buffer, int offset, size_t count)
 836{
 837        struct onenand_chip *this = mtd->priv;
 838        void __iomem *bufferram;
 839
 840        bufferram = this->base + area;
 841
 842        bufferram += onenand_bufferram_offset(mtd, area);
 843
 844        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 845                unsigned short word;
 846                int byte_offset;
 847
 848                /* Align with word(16-bit) size */
 849                count--;
 850
 851                /* Calculate byte access offset */
 852                byte_offset = offset + count;
 853
 854                /* Read word and save byte */
 855                word = this->read_word(bufferram + byte_offset);
 856                word = (word & ~0xff) | buffer[count];
 857                this->write_word(word, bufferram + byte_offset);
 858        }
 859
 860        memcpy(bufferram + offset, buffer, count);
 861
 862        return 0;
 863}
 864
 865/**
 866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 867 * @param mtd           MTD data structure
 868 * @param addr          address to check
 869 * @return              blockpage address
 870 *
 871 * Get blockpage address at 2x program mode
 872 */
 873static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
 874{
 875        struct onenand_chip *this = mtd->priv;
 876        int blockpage, block, page;
 877
 878        /* Calculate the even block number */
 879        block = (int) (addr >> this->erase_shift) & ~1;
 880        /* Is it the odd plane? */
 881        if (addr & this->writesize)
 882                block++;
 883        page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
 884        blockpage = (block << 7) | page;
 885
 886        return blockpage;
 887}
 888
 889/**
 890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 891 * @param mtd           MTD data structure
 892 * @param addr          address to check
 893 * @return              1 if there are valid data, otherwise 0
 894 *
 895 * Check bufferram if there is data we required
 896 */
 897static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
 898{
 899        struct onenand_chip *this = mtd->priv;
 900        int blockpage, found = 0;
 901        unsigned int i;
 902
 903        if (ONENAND_IS_2PLANE(this))
 904                blockpage = onenand_get_2x_blockpage(mtd, addr);
 905        else
 906                blockpage = (int) (addr >> this->page_shift);
 907
 908        /* Is there valid data? */
 909        i = ONENAND_CURRENT_BUFFERRAM(this);
 910        if (this->bufferram[i].blockpage == blockpage)
 911                found = 1;
 912        else {
 913                /* Check another BufferRAM */
 914                i = ONENAND_NEXT_BUFFERRAM(this);
 915                if (this->bufferram[i].blockpage == blockpage) {
 916                        ONENAND_SET_NEXT_BUFFERRAM(this);
 917                        found = 1;
 918                }
 919        }
 920
 921        if (found && ONENAND_IS_DDP(this)) {
 922                /* Select DataRAM for DDP */
 923                int block = onenand_block(this, addr);
 924                int value = onenand_bufferram_address(this, block);
 925                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 926        }
 927
 928        return found;
 929}
 930
 931/**
 932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 933 * @param mtd           MTD data structure
 934 * @param addr          address to update
 935 * @param valid         valid flag
 936 *
 937 * Update BufferRAM information
 938 */
 939static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
 940                int valid)
 941{
 942        struct onenand_chip *this = mtd->priv;
 943        int blockpage;
 944        unsigned int i;
 945
 946        if (ONENAND_IS_2PLANE(this))
 947                blockpage = onenand_get_2x_blockpage(mtd, addr);
 948        else
 949                blockpage = (int) (addr >> this->page_shift);
 950
 951        /* Invalidate another BufferRAM */
 952        i = ONENAND_NEXT_BUFFERRAM(this);
 953        if (this->bufferram[i].blockpage == blockpage)
 954                this->bufferram[i].blockpage = -1;
 955
 956        /* Update BufferRAM */
 957        i = ONENAND_CURRENT_BUFFERRAM(this);
 958        if (valid)
 959                this->bufferram[i].blockpage = blockpage;
 960        else
 961                this->bufferram[i].blockpage = -1;
 962}
 963
 964/**
 965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 966 * @param mtd           MTD data structure
 967 * @param addr          start address to invalidate
 968 * @param len           length to invalidate
 969 *
 970 * Invalidate BufferRAM information
 971 */
 972static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
 973                unsigned int len)
 974{
 975        struct onenand_chip *this = mtd->priv;
 976        int i;
 977        loff_t end_addr = addr + len;
 978
 979        /* Invalidate BufferRAM */
 980        for (i = 0; i < MAX_BUFFERRAM; i++) {
 981                loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
 982                if (buf_addr >= addr && buf_addr < end_addr)
 983                        this->bufferram[i].blockpage = -1;
 984        }
 985}
 986
 987/**
 988 * onenand_get_device - [GENERIC] Get chip for selected access
 989 * @param mtd           MTD device structure
 990 * @param new_state     the state which is requested
 991 *
 992 * Get the device and lock it for exclusive access
 993 */
 994static int onenand_get_device(struct mtd_info *mtd, int new_state)
 995{
 996        struct onenand_chip *this = mtd->priv;
 997        DECLARE_WAITQUEUE(wait, current);
 998
 999        /*
1000         * Grab the lock and see if the device is available
1001         */
1002        while (1) {
1003                spin_lock(&this->chip_lock);
1004                if (this->state == FL_READY) {
1005                        this->state = new_state;
1006                        spin_unlock(&this->chip_lock);
1007                        if (new_state != FL_PM_SUSPENDED && this->enable)
1008                                this->enable(mtd);
1009                        break;
1010                }
1011                if (new_state == FL_PM_SUSPENDED) {
1012                        spin_unlock(&this->chip_lock);
1013                        return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014                }
1015                set_current_state(TASK_UNINTERRUPTIBLE);
1016                add_wait_queue(&this->wq, &wait);
1017                spin_unlock(&this->chip_lock);
1018                schedule();
1019                remove_wait_queue(&this->wq, &wait);
1020        }
1021
1022        return 0;
1023}
1024
1025/**
1026 * onenand_release_device - [GENERIC] release chip
1027 * @param mtd           MTD device structure
1028 *
1029 * Deselect, release chip lock and wake up anyone waiting on the device
1030 */
1031static void onenand_release_device(struct mtd_info *mtd)
1032{
1033        struct onenand_chip *this = mtd->priv;
1034
1035        if (this->state != FL_PM_SUSPENDED && this->disable)
1036                this->disable(mtd);
1037        /* Release the chip */
1038        spin_lock(&this->chip_lock);
1039        this->state = FL_READY;
1040        wake_up(&this->wq);
1041        spin_unlock(&this->chip_lock);
1042}
1043
1044/**
1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046 * @param mtd           MTD device structure
1047 * @param buf           destination address
1048 * @param column        oob offset to read from
1049 * @param thislen       oob length to read
1050 */
1051static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052                                int thislen)
1053{
1054        struct onenand_chip *this = mtd->priv;
1055        int ret;
1056
1057        this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1058                             mtd->oobsize);
1059        ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1060                                          column, thislen);
1061        if (ret)
1062                return ret;
1063
1064        return 0;
1065}
1066
1067/**
1068 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1069 * @param mtd           MTD device structure
1070 * @param addr          address to recover
1071 * @param status        return value from onenand_wait / onenand_bbt_wait
1072 *
1073 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1074 * lower page address and MSB page has higher page address in paired pages.
1075 * If power off occurs during MSB page program, the paired LSB page data can
1076 * become corrupt. LSB page recovery read is a way to read LSB page though page
1077 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1078 * read after power up, issue LSB page recovery read.
1079 */
1080static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1081{
1082        struct onenand_chip *this = mtd->priv;
1083        int i;
1084
1085        /* Recovery is only for Flex-OneNAND */
1086        if (!FLEXONENAND(this))
1087                return status;
1088
1089        /* check if we failed due to uncorrectable error */
1090        if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1091                return status;
1092
1093        /* check if address lies in MLC region */
1094        i = flexonenand_region(mtd, addr);
1095        if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1096                return status;
1097
1098        /* We are attempting to reread, so decrement stats.failed
1099         * which was incremented by onenand_wait due to read failure
1100         */
1101        printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1102                __func__);
1103        mtd->ecc_stats.failed--;
1104
1105        /* Issue the LSB page recovery command */
1106        this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1107        return this->wait(mtd, FL_READING);
1108}
1109
1110/**
1111 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1112 * @param mtd           MTD device structure
1113 * @param from          offset to read from
1114 * @param ops:          oob operation description structure
1115 *
1116 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1117 * So, read-while-load is not present.
1118 */
1119static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1120                                struct mtd_oob_ops *ops)
1121{
1122        struct onenand_chip *this = mtd->priv;
1123        struct mtd_ecc_stats stats;
1124        size_t len = ops->len;
1125        size_t ooblen = ops->ooblen;
1126        u_char *buf = ops->datbuf;
1127        u_char *oobbuf = ops->oobbuf;
1128        int read = 0, column, thislen;
1129        int oobread = 0, oobcolumn, thisooblen, oobsize;
1130        int ret = 0;
1131        int writesize = this->writesize;
1132
1133        pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1134                        (int)len);
1135
1136        oobsize = mtd_oobavail(mtd, ops);
1137        oobcolumn = from & (mtd->oobsize - 1);
1138
1139        /* Do not allow reads past end of device */
1140        if (from + len > mtd->size) {
1141                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1142                        __func__);
1143                ops->retlen = 0;
1144                ops->oobretlen = 0;
1145                return -EINVAL;
1146        }
1147
1148        stats = mtd->ecc_stats;
1149
1150        while (read < len) {
1151                cond_resched();
1152
1153                thislen = min_t(int, writesize, len - read);
1154
1155                column = from & (writesize - 1);
1156                if (column + thislen > writesize)
1157                        thislen = writesize - column;
1158
1159                if (!onenand_check_bufferram(mtd, from)) {
1160                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1161
1162                        ret = this->wait(mtd, FL_READING);
1163                        if (unlikely(ret))
1164                                ret = onenand_recover_lsb(mtd, from, ret);
1165                        onenand_update_bufferram(mtd, from, !ret);
1166                        if (mtd_is_eccerr(ret))
1167                                ret = 0;
1168                        if (ret)
1169                                break;
1170                }
1171
1172                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1173                if (oobbuf) {
1174                        thisooblen = oobsize - oobcolumn;
1175                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1176
1177                        if (ops->mode == MTD_OPS_AUTO_OOB)
1178                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1179                        else
1180                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1181                        oobread += thisooblen;
1182                        oobbuf += thisooblen;
1183                        oobcolumn = 0;
1184                }
1185
1186                read += thislen;
1187                if (read == len)
1188                        break;
1189
1190                from += thislen;
1191                buf += thislen;
1192        }
1193
1194        /*
1195         * Return success, if no ECC failures, else -EBADMSG
1196         * fs driver will take care of that, because
1197         * retlen == desired len and result == -EBADMSG
1198         */
1199        ops->retlen = read;
1200        ops->oobretlen = oobread;
1201
1202        if (ret)
1203                return ret;
1204
1205        if (mtd->ecc_stats.failed - stats.failed)
1206                return -EBADMSG;
1207
1208        /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1209        return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1210}
1211
1212/**
1213 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1214 * @param mtd           MTD device structure
1215 * @param from          offset to read from
1216 * @param ops:          oob operation description structure
1217 *
1218 * OneNAND read main and/or out-of-band data
1219 */
1220static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1221                                struct mtd_oob_ops *ops)
1222{
1223        struct onenand_chip *this = mtd->priv;
1224        struct mtd_ecc_stats stats;
1225        size_t len = ops->len;
1226        size_t ooblen = ops->ooblen;
1227        u_char *buf = ops->datbuf;
1228        u_char *oobbuf = ops->oobbuf;
1229        int read = 0, column, thislen;
1230        int oobread = 0, oobcolumn, thisooblen, oobsize;
1231        int ret = 0, boundary = 0;
1232        int writesize = this->writesize;
1233
1234        pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1235                        (int)len);
1236
1237        oobsize = mtd_oobavail(mtd, ops);
1238        oobcolumn = from & (mtd->oobsize - 1);
1239
1240        /* Do not allow reads past end of device */
1241        if ((from + len) > mtd->size) {
1242                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1243                        __func__);
1244                ops->retlen = 0;
1245                ops->oobretlen = 0;
1246                return -EINVAL;
1247        }
1248
1249        stats = mtd->ecc_stats;
1250
1251        /* Read-while-load method */
1252
1253        /* Do first load to bufferRAM */
1254        if (read < len) {
1255                if (!onenand_check_bufferram(mtd, from)) {
1256                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1257                        ret = this->wait(mtd, FL_READING);
1258                        onenand_update_bufferram(mtd, from, !ret);
1259                        if (mtd_is_eccerr(ret))
1260                                ret = 0;
1261                }
1262        }
1263
1264        thislen = min_t(int, writesize, len - read);
1265        column = from & (writesize - 1);
1266        if (column + thislen > writesize)
1267                thislen = writesize - column;
1268
1269        while (!ret) {
1270                /* If there is more to load then start next load */
1271                from += thislen;
1272                if (read + thislen < len) {
1273                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1274                        /*
1275                         * Chip boundary handling in DDP
1276                         * Now we issued chip 1 read and pointed chip 1
1277                         * bufferram so we have to point chip 0 bufferram.
1278                         */
1279                        if (ONENAND_IS_DDP(this) &&
1280                            unlikely(from == (this->chipsize >> 1))) {
1281                                this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1282                                boundary = 1;
1283                        } else
1284                                boundary = 0;
1285                        ONENAND_SET_PREV_BUFFERRAM(this);
1286                }
1287                /* While load is going, read from last bufferRAM */
1288                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1289
1290                /* Read oob area if needed */
1291                if (oobbuf) {
1292                        thisooblen = oobsize - oobcolumn;
1293                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1294
1295                        if (ops->mode == MTD_OPS_AUTO_OOB)
1296                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1297                        else
1298                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1299                        oobread += thisooblen;
1300                        oobbuf += thisooblen;
1301                        oobcolumn = 0;
1302                }
1303
1304                /* See if we are done */
1305                read += thislen;
1306                if (read == len)
1307                        break;
1308                /* Set up for next read from bufferRAM */
1309                if (unlikely(boundary))
1310                        this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1311                ONENAND_SET_NEXT_BUFFERRAM(this);
1312                buf += thislen;
1313                thislen = min_t(int, writesize, len - read);
1314                column = 0;
1315                cond_resched();
1316                /* Now wait for load */
1317                ret = this->wait(mtd, FL_READING);
1318                onenand_update_bufferram(mtd, from, !ret);
1319                if (mtd_is_eccerr(ret))
1320                        ret = 0;
1321        }
1322
1323        /*
1324         * Return success, if no ECC failures, else -EBADMSG
1325         * fs driver will take care of that, because
1326         * retlen == desired len and result == -EBADMSG
1327         */
1328        ops->retlen = read;
1329        ops->oobretlen = oobread;
1330
1331        if (ret)
1332                return ret;
1333
1334        if (mtd->ecc_stats.failed - stats.failed)
1335                return -EBADMSG;
1336
1337        /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1338        return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1339}
1340
1341/**
1342 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1343 * @param mtd           MTD device structure
1344 * @param from          offset to read from
1345 * @param ops:          oob operation description structure
1346 *
1347 * OneNAND read out-of-band data from the spare area
1348 */
1349static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1350                        struct mtd_oob_ops *ops)
1351{
1352        struct onenand_chip *this = mtd->priv;
1353        struct mtd_ecc_stats stats;
1354        int read = 0, thislen, column, oobsize;
1355        size_t len = ops->ooblen;
1356        unsigned int mode = ops->mode;
1357        u_char *buf = ops->oobbuf;
1358        int ret = 0, readcmd;
1359
1360        from += ops->ooboffs;
1361
1362        pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1363                        (int)len);
1364
1365        /* Initialize return length value */
1366        ops->oobretlen = 0;
1367
1368        if (mode == MTD_OPS_AUTO_OOB)
1369                oobsize = mtd->oobavail;
1370        else
1371                oobsize = mtd->oobsize;
1372
1373        column = from & (mtd->oobsize - 1);
1374
1375        if (unlikely(column >= oobsize)) {
1376                printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1377                        __func__);
1378                return -EINVAL;
1379        }
1380
1381        stats = mtd->ecc_stats;
1382
1383        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1384
1385        while (read < len) {
1386                cond_resched();
1387
1388                thislen = oobsize - column;
1389                thislen = min_t(int, thislen, len);
1390
1391                this->command(mtd, readcmd, from, mtd->oobsize);
1392
1393                onenand_update_bufferram(mtd, from, 0);
1394
1395                ret = this->wait(mtd, FL_READING);
1396                if (unlikely(ret))
1397                        ret = onenand_recover_lsb(mtd, from, ret);
1398
1399                if (ret && !mtd_is_eccerr(ret)) {
1400                        printk(KERN_ERR "%s: read failed = 0x%x\n",
1401                                __func__, ret);
1402                        break;
1403                }
1404
1405                if (mode == MTD_OPS_AUTO_OOB)
1406                        onenand_transfer_auto_oob(mtd, buf, column, thislen);
1407                else
1408                        this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1409
1410                read += thislen;
1411
1412                if (read == len)
1413                        break;
1414
1415                buf += thislen;
1416
1417                /* Read more? */
1418                if (read < len) {
1419                        /* Page size */
1420                        from += mtd->writesize;
1421                        column = 0;
1422                }
1423        }
1424
1425        ops->oobretlen = read;
1426
1427        if (ret)
1428                return ret;
1429
1430        if (mtd->ecc_stats.failed - stats.failed)
1431                return -EBADMSG;
1432
1433        return 0;
1434}
1435
1436/**
1437 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1438 * @param mtd:          MTD device structure
1439 * @param from:         offset to read from
1440 * @param ops:          oob operation description structure
1441
1442 * Read main and/or out-of-band
1443 */
1444static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1445                            struct mtd_oob_ops *ops)
1446{
1447        struct onenand_chip *this = mtd->priv;
1448        int ret;
1449
1450        switch (ops->mode) {
1451        case MTD_OPS_PLACE_OOB:
1452        case MTD_OPS_AUTO_OOB:
1453                break;
1454        case MTD_OPS_RAW:
1455                /* Not implemented yet */
1456        default:
1457                return -EINVAL;
1458        }
1459
1460        onenand_get_device(mtd, FL_READING);
1461        if (ops->datbuf)
1462                ret = ONENAND_IS_4KB_PAGE(this) ?
1463                        onenand_mlc_read_ops_nolock(mtd, from, ops) :
1464                        onenand_read_ops_nolock(mtd, from, ops);
1465        else
1466                ret = onenand_read_oob_nolock(mtd, from, ops);
1467        onenand_release_device(mtd);
1468
1469        return ret;
1470}
1471
1472/**
1473 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1474 * @param mtd           MTD device structure
1475 * @param state         state to select the max. timeout value
1476 *
1477 * Wait for command done.
1478 */
1479static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1480{
1481        struct onenand_chip *this = mtd->priv;
1482        unsigned long timeout;
1483        unsigned int interrupt, ctrl, ecc, addr1, addr8;
1484
1485        /* The 20 msec is enough */
1486        timeout = jiffies + msecs_to_jiffies(20);
1487        while (time_before(jiffies, timeout)) {
1488                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1489                if (interrupt & ONENAND_INT_MASTER)
1490                        break;
1491        }
1492        /* To get correct interrupt status in timeout case */
1493        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1494        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1495        addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1496        addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1497
1498        if (interrupt & ONENAND_INT_READ) {
1499                ecc = onenand_read_ecc(this);
1500                if (ecc & ONENAND_ECC_2BIT_ALL) {
1501                        printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1502                               "intr 0x%04x addr1 %#x addr8 %#x\n",
1503                               __func__, ecc, ctrl, interrupt, addr1, addr8);
1504                        return ONENAND_BBT_READ_ECC_ERROR;
1505                }
1506        } else {
1507                printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1508                       "intr 0x%04x addr1 %#x addr8 %#x\n",
1509                       __func__, ctrl, interrupt, addr1, addr8);
1510                return ONENAND_BBT_READ_FATAL_ERROR;
1511        }
1512
1513        /* Initial bad block case: 0x2400 or 0x0400 */
1514        if (ctrl & ONENAND_CTRL_ERROR) {
1515                printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1516                       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1517                return ONENAND_BBT_READ_ERROR;
1518        }
1519
1520        return 0;
1521}
1522
1523/**
1524 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1525 * @param mtd           MTD device structure
1526 * @param from          offset to read from
1527 * @param ops           oob operation description structure
1528 *
1529 * OneNAND read out-of-band data from the spare area for bbt scan
1530 */
1531int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1532                            struct mtd_oob_ops *ops)
1533{
1534        struct onenand_chip *this = mtd->priv;
1535        int read = 0, thislen, column;
1536        int ret = 0, readcmd;
1537        size_t len = ops->ooblen;
1538        u_char *buf = ops->oobbuf;
1539
1540        pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1541                        len);
1542
1543        /* Initialize return value */
1544        ops->oobretlen = 0;
1545
1546        /* Do not allow reads past end of device */
1547        if (unlikely((from + len) > mtd->size)) {
1548                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1549                        __func__);
1550                return ONENAND_BBT_READ_FATAL_ERROR;
1551        }
1552
1553        /* Grab the lock and see if the device is available */
1554        onenand_get_device(mtd, FL_READING);
1555
1556        column = from & (mtd->oobsize - 1);
1557
1558        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1559
1560        while (read < len) {
1561                cond_resched();
1562
1563                thislen = mtd->oobsize - column;
1564                thislen = min_t(int, thislen, len);
1565
1566                this->command(mtd, readcmd, from, mtd->oobsize);
1567
1568                onenand_update_bufferram(mtd, from, 0);
1569
1570                ret = this->bbt_wait(mtd, FL_READING);
1571                if (unlikely(ret))
1572                        ret = onenand_recover_lsb(mtd, from, ret);
1573
1574                if (ret)
1575                        break;
1576
1577                this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1578                read += thislen;
1579                if (read == len)
1580                        break;
1581
1582                buf += thislen;
1583
1584                /* Read more? */
1585                if (read < len) {
1586                        /* Update Page size */
1587                        from += this->writesize;
1588                        column = 0;
1589                }
1590        }
1591
1592        /* Deselect and wake up anyone waiting on the device */
1593        onenand_release_device(mtd);
1594
1595        ops->oobretlen = read;
1596        return ret;
1597}
1598
1599#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1600/**
1601 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1602 * @param mtd           MTD device structure
1603 * @param buf           the databuffer to verify
1604 * @param to            offset to read from
1605 */
1606static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1607{
1608        struct onenand_chip *this = mtd->priv;
1609        u_char *oob_buf = this->oob_buf;
1610        int status, i, readcmd;
1611
1612        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1613
1614        this->command(mtd, readcmd, to, mtd->oobsize);
1615        onenand_update_bufferram(mtd, to, 0);
1616        status = this->wait(mtd, FL_READING);
1617        if (status)
1618                return status;
1619
1620        this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1621        for (i = 0; i < mtd->oobsize; i++)
1622                if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1623                        return -EBADMSG;
1624
1625        return 0;
1626}
1627
1628/**
1629 * onenand_verify - [GENERIC] verify the chip contents after a write
1630 * @param mtd          MTD device structure
1631 * @param buf          the databuffer to verify
1632 * @param addr         offset to read from
1633 * @param len          number of bytes to read and compare
1634 */
1635static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1636{
1637        struct onenand_chip *this = mtd->priv;
1638        int ret = 0;
1639        int thislen, column;
1640
1641        column = addr & (this->writesize - 1);
1642
1643        while (len != 0) {
1644                thislen = min_t(int, this->writesize - column, len);
1645
1646                this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1647
1648                onenand_update_bufferram(mtd, addr, 0);
1649
1650                ret = this->wait(mtd, FL_READING);
1651                if (ret)
1652                        return ret;
1653
1654                onenand_update_bufferram(mtd, addr, 1);
1655
1656                this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1657
1658                if (memcmp(buf, this->verify_buf + column, thislen))
1659                        return -EBADMSG;
1660
1661                len -= thislen;
1662                buf += thislen;
1663                addr += thislen;
1664                column = 0;
1665        }
1666
1667        return 0;
1668}
1669#else
1670#define onenand_verify(...)             (0)
1671#define onenand_verify_oob(...)         (0)
1672#endif
1673
1674#define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1675
1676static void onenand_panic_wait(struct mtd_info *mtd)
1677{
1678        struct onenand_chip *this = mtd->priv;
1679        unsigned int interrupt;
1680        int i;
1681        
1682        for (i = 0; i < 2000; i++) {
1683                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1684                if (interrupt & ONENAND_INT_MASTER)
1685                        break;
1686                udelay(10);
1687        }
1688}
1689
1690/**
1691 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1692 * @param mtd           MTD device structure
1693 * @param to            offset to write to
1694 * @param len           number of bytes to write
1695 * @param retlen        pointer to variable to store the number of written bytes
1696 * @param buf           the data to write
1697 *
1698 * Write with ECC
1699 */
1700static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1701                         size_t *retlen, const u_char *buf)
1702{
1703        struct onenand_chip *this = mtd->priv;
1704        int column, subpage;
1705        int written = 0;
1706
1707        if (this->state == FL_PM_SUSPENDED)
1708                return -EBUSY;
1709
1710        /* Wait for any existing operation to clear */
1711        onenand_panic_wait(mtd);
1712
1713        pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1714                        (int)len);
1715
1716        /* Reject writes, which are not page aligned */
1717        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1718                printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1719                        __func__);
1720                return -EINVAL;
1721        }
1722
1723        column = to & (mtd->writesize - 1);
1724
1725        /* Loop until all data write */
1726        while (written < len) {
1727                int thislen = min_t(int, mtd->writesize - column, len - written);
1728                u_char *wbuf = (u_char *) buf;
1729
1730                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1731
1732                /* Partial page write */
1733                subpage = thislen < mtd->writesize;
1734                if (subpage) {
1735                        memset(this->page_buf, 0xff, mtd->writesize);
1736                        memcpy(this->page_buf + column, buf, thislen);
1737                        wbuf = this->page_buf;
1738                }
1739
1740                this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1741                this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1742
1743                this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1744
1745                onenand_panic_wait(mtd);
1746
1747                /* In partial page write we don't update bufferram */
1748                onenand_update_bufferram(mtd, to, !subpage);
1749                if (ONENAND_IS_2PLANE(this)) {
1750                        ONENAND_SET_BUFFERRAM1(this);
1751                        onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1752                }
1753
1754                written += thislen;
1755
1756                if (written == len)
1757                        break;
1758
1759                column = 0;
1760                to += thislen;
1761                buf += thislen;
1762        }
1763
1764        *retlen = written;
1765        return 0;
1766}
1767
1768/**
1769 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1770 * @param mtd           MTD device structure
1771 * @param oob_buf       oob buffer
1772 * @param buf           source address
1773 * @param column        oob offset to write to
1774 * @param thislen       oob length to write
1775 */
1776static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1777                                  const u_char *buf, int column, int thislen)
1778{
1779        return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1780}
1781
1782/**
1783 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1784 * @param mtd           MTD device structure
1785 * @param to            offset to write to
1786 * @param ops           oob operation description structure
1787 *
1788 * Write main and/or oob with ECC
1789 */
1790static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1791                                struct mtd_oob_ops *ops)
1792{
1793        struct onenand_chip *this = mtd->priv;
1794        int written = 0, column, thislen = 0, subpage = 0;
1795        int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1796        int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1797        size_t len = ops->len;
1798        size_t ooblen = ops->ooblen;
1799        const u_char *buf = ops->datbuf;
1800        const u_char *oob = ops->oobbuf;
1801        u_char *oobbuf;
1802        int ret = 0, cmd;
1803
1804        pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1805                        (int)len);
1806
1807        /* Initialize retlen, in case of early exit */
1808        ops->retlen = 0;
1809        ops->oobretlen = 0;
1810
1811        /* Reject writes, which are not page aligned */
1812        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1813                printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1814                        __func__);
1815                return -EINVAL;
1816        }
1817
1818        /* Check zero length */
1819        if (!len)
1820                return 0;
1821        oobsize = mtd_oobavail(mtd, ops);
1822        oobcolumn = to & (mtd->oobsize - 1);
1823
1824        column = to & (mtd->writesize - 1);
1825
1826        /* Loop until all data write */
1827        while (1) {
1828                if (written < len) {
1829                        u_char *wbuf = (u_char *) buf;
1830
1831                        thislen = min_t(int, mtd->writesize - column, len - written);
1832                        thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1833
1834                        cond_resched();
1835
1836                        this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1837
1838                        /* Partial page write */
1839                        subpage = thislen < mtd->writesize;
1840                        if (subpage) {
1841                                memset(this->page_buf, 0xff, mtd->writesize);
1842                                memcpy(this->page_buf + column, buf, thislen);
1843                                wbuf = this->page_buf;
1844                        }
1845
1846                        this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1847
1848                        if (oob) {
1849                                oobbuf = this->oob_buf;
1850
1851                                /* We send data to spare ram with oobsize
1852                                 * to prevent byte access */
1853                                memset(oobbuf, 0xff, mtd->oobsize);
1854                                if (ops->mode == MTD_OPS_AUTO_OOB)
1855                                        onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1856                                else
1857                                        memcpy(oobbuf + oobcolumn, oob, thisooblen);
1858
1859                                oobwritten += thisooblen;
1860                                oob += thisooblen;
1861                                oobcolumn = 0;
1862                        } else
1863                                oobbuf = (u_char *) ffchars;
1864
1865                        this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1866                } else
1867                        ONENAND_SET_NEXT_BUFFERRAM(this);
1868
1869                /*
1870                 * 2 PLANE, MLC, and Flex-OneNAND do not support
1871                 * write-while-program feature.
1872                 */
1873                if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1874                        ONENAND_SET_PREV_BUFFERRAM(this);
1875
1876                        ret = this->wait(mtd, FL_WRITING);
1877
1878                        /* In partial page write we don't update bufferram */
1879                        onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1880                        if (ret) {
1881                                written -= prevlen;
1882                                printk(KERN_ERR "%s: write failed %d\n",
1883                                        __func__, ret);
1884                                break;
1885                        }
1886
1887                        if (written == len) {
1888                                /* Only check verify write turn on */
1889                                ret = onenand_verify(mtd, buf - len, to - len, len);
1890                                if (ret)
1891                                        printk(KERN_ERR "%s: verify failed %d\n",
1892                                                __func__, ret);
1893                                break;
1894                        }
1895
1896                        ONENAND_SET_NEXT_BUFFERRAM(this);
1897                }
1898
1899                this->ongoing = 0;
1900                cmd = ONENAND_CMD_PROG;
1901
1902                /* Exclude 1st OTP and OTP blocks for cache program feature */
1903                if (ONENAND_IS_CACHE_PROGRAM(this) &&
1904                    likely(onenand_block(this, to) != 0) &&
1905                    ONENAND_IS_4KB_PAGE(this) &&
1906                    ((written + thislen) < len)) {
1907                        cmd = ONENAND_CMD_2X_CACHE_PROG;
1908                        this->ongoing = 1;
1909                }
1910
1911                this->command(mtd, cmd, to, mtd->writesize);
1912
1913                /*
1914                 * 2 PLANE, MLC, and Flex-OneNAND wait here
1915                 */
1916                if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1917                        ret = this->wait(mtd, FL_WRITING);
1918
1919                        /* In partial page write we don't update bufferram */
1920                        onenand_update_bufferram(mtd, to, !ret && !subpage);
1921                        if (ret) {
1922                                printk(KERN_ERR "%s: write failed %d\n",
1923                                        __func__, ret);
1924                                break;
1925                        }
1926
1927                        /* Only check verify write turn on */
1928                        ret = onenand_verify(mtd, buf, to, thislen);
1929                        if (ret) {
1930                                printk(KERN_ERR "%s: verify failed %d\n",
1931                                        __func__, ret);
1932                                break;
1933                        }
1934
1935                        written += thislen;
1936
1937                        if (written == len)
1938                                break;
1939
1940                } else
1941                        written += thislen;
1942
1943                column = 0;
1944                prev_subpage = subpage;
1945                prev = to;
1946                prevlen = thislen;
1947                to += thislen;
1948                buf += thislen;
1949                first = 0;
1950        }
1951
1952        /* In error case, clear all bufferrams */
1953        if (written != len)
1954                onenand_invalidate_bufferram(mtd, 0, -1);
1955
1956        ops->retlen = written;
1957        ops->oobretlen = oobwritten;
1958
1959        return ret;
1960}
1961
1962
1963/**
1964 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1965 * @param mtd           MTD device structure
1966 * @param to            offset to write to
1967 * @param len           number of bytes to write
1968 * @param retlen        pointer to variable to store the number of written bytes
1969 * @param buf           the data to write
1970 * @param mode          operation mode
1971 *
1972 * OneNAND write out-of-band
1973 */
1974static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1975                                    struct mtd_oob_ops *ops)
1976{
1977        struct onenand_chip *this = mtd->priv;
1978        int column, ret = 0, oobsize;
1979        int written = 0, oobcmd;
1980        u_char *oobbuf;
1981        size_t len = ops->ooblen;
1982        const u_char *buf = ops->oobbuf;
1983        unsigned int mode = ops->mode;
1984
1985        to += ops->ooboffs;
1986
1987        pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1988                        (int)len);
1989
1990        /* Initialize retlen, in case of early exit */
1991        ops->oobretlen = 0;
1992
1993        if (mode == MTD_OPS_AUTO_OOB)
1994                oobsize = mtd->oobavail;
1995        else
1996                oobsize = mtd->oobsize;
1997
1998        column = to & (mtd->oobsize - 1);
1999
2000        if (unlikely(column >= oobsize)) {
2001                printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2002                        __func__);
2003                return -EINVAL;
2004        }
2005
2006        /* For compatibility with NAND: Do not allow write past end of page */
2007        if (unlikely(column + len > oobsize)) {
2008                printk(KERN_ERR "%s: Attempt to write past end of page\n",
2009                        __func__);
2010                return -EINVAL;
2011        }
2012
2013        oobbuf = this->oob_buf;
2014
2015        oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2016
2017        /* Loop until all data write */
2018        while (written < len) {
2019                int thislen = min_t(int, oobsize, len - written);
2020
2021                cond_resched();
2022
2023                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2024
2025                /* We send data to spare ram with oobsize
2026                 * to prevent byte access */
2027                memset(oobbuf, 0xff, mtd->oobsize);
2028                if (mode == MTD_OPS_AUTO_OOB)
2029                        onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2030                else
2031                        memcpy(oobbuf + column, buf, thislen);
2032                this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2033
2034                if (ONENAND_IS_4KB_PAGE(this)) {
2035                        /* Set main area of DataRAM to 0xff*/
2036                        memset(this->page_buf, 0xff, mtd->writesize);
2037                        this->write_bufferram(mtd, ONENAND_DATARAM,
2038                                         this->page_buf, 0, mtd->writesize);
2039                }
2040
2041                this->command(mtd, oobcmd, to, mtd->oobsize);
2042
2043                onenand_update_bufferram(mtd, to, 0);
2044                if (ONENAND_IS_2PLANE(this)) {
2045                        ONENAND_SET_BUFFERRAM1(this);
2046                        onenand_update_bufferram(mtd, to + this->writesize, 0);
2047                }
2048
2049                ret = this->wait(mtd, FL_WRITING);
2050                if (ret) {
2051                        printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2052                        break;
2053                }
2054
2055                ret = onenand_verify_oob(mtd, oobbuf, to);
2056                if (ret) {
2057                        printk(KERN_ERR "%s: verify failed %d\n",
2058                                __func__, ret);
2059                        break;
2060                }
2061
2062                written += thislen;
2063                if (written == len)
2064                        break;
2065
2066                to += mtd->writesize;
2067                buf += thislen;
2068                column = 0;
2069        }
2070
2071        ops->oobretlen = written;
2072
2073        return ret;
2074}
2075
2076/**
2077 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2078 * @param mtd:          MTD device structure
2079 * @param to:           offset to write
2080 * @param ops:          oob operation description structure
2081 */
2082static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2083                             struct mtd_oob_ops *ops)
2084{
2085        int ret;
2086
2087        switch (ops->mode) {
2088        case MTD_OPS_PLACE_OOB:
2089        case MTD_OPS_AUTO_OOB:
2090                break;
2091        case MTD_OPS_RAW:
2092                /* Not implemented yet */
2093        default:
2094                return -EINVAL;
2095        }
2096
2097        onenand_get_device(mtd, FL_WRITING);
2098        if (ops->datbuf)
2099                ret = onenand_write_ops_nolock(mtd, to, ops);
2100        else
2101                ret = onenand_write_oob_nolock(mtd, to, ops);
2102        onenand_release_device(mtd);
2103
2104        return ret;
2105}
2106
2107/**
2108 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2109 * @param mtd           MTD device structure
2110 * @param ofs           offset from device start
2111 * @param allowbbt      1, if its allowed to access the bbt area
2112 *
2113 * Check, if the block is bad. Either by reading the bad block table or
2114 * calling of the scan function.
2115 */
2116static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2117{
2118        struct onenand_chip *this = mtd->priv;
2119        struct bbm_info *bbm = this->bbm;
2120
2121        /* Return info from the table */
2122        return bbm->isbad_bbt(mtd, ofs, allowbbt);
2123}
2124
2125
2126static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2127                                           struct erase_info *instr)
2128{
2129        struct onenand_chip *this = mtd->priv;
2130        loff_t addr = instr->addr;
2131        int len = instr->len;
2132        unsigned int block_size = (1 << this->erase_shift);
2133        int ret = 0;
2134
2135        while (len) {
2136                this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2137                ret = this->wait(mtd, FL_VERIFYING_ERASE);
2138                if (ret) {
2139                        printk(KERN_ERR "%s: Failed verify, block %d\n",
2140                               __func__, onenand_block(this, addr));
2141                        instr->fail_addr = addr;
2142                        return -1;
2143                }
2144                len -= block_size;
2145                addr += block_size;
2146        }
2147        return 0;
2148}
2149
2150/**
2151 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2152 * @param mtd           MTD device structure
2153 * @param instr         erase instruction
2154 * @param region        erase region
2155 *
2156 * Erase one or more blocks up to 64 block at a time
2157 */
2158static int onenand_multiblock_erase(struct mtd_info *mtd,
2159                                    struct erase_info *instr,
2160                                    unsigned int block_size)
2161{
2162        struct onenand_chip *this = mtd->priv;
2163        loff_t addr = instr->addr;
2164        int len = instr->len;
2165        int eb_count = 0;
2166        int ret = 0;
2167        int bdry_block = 0;
2168
2169        if (ONENAND_IS_DDP(this)) {
2170                loff_t bdry_addr = this->chipsize >> 1;
2171                if (addr < bdry_addr && (addr + len) > bdry_addr)
2172                        bdry_block = bdry_addr >> this->erase_shift;
2173        }
2174
2175        /* Pre-check bbs */
2176        while (len) {
2177                /* Check if we have a bad block, we do not erase bad blocks */
2178                if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2179                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2180                               "at addr 0x%012llx\n",
2181                               __func__, (unsigned long long) addr);
2182                        return -EIO;
2183                }
2184                len -= block_size;
2185                addr += block_size;
2186        }
2187
2188        len = instr->len;
2189        addr = instr->addr;
2190
2191        /* loop over 64 eb batches */
2192        while (len) {
2193                struct erase_info verify_instr = *instr;
2194                int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2195
2196                verify_instr.addr = addr;
2197                verify_instr.len = 0;
2198
2199                /* do not cross chip boundary */
2200                if (bdry_block) {
2201                        int this_block = (addr >> this->erase_shift);
2202
2203                        if (this_block < bdry_block) {
2204                                max_eb_count = min(max_eb_count,
2205                                                   (bdry_block - this_block));
2206                        }
2207                }
2208
2209                eb_count = 0;
2210
2211                while (len > block_size && eb_count < (max_eb_count - 1)) {
2212                        this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2213                                      addr, block_size);
2214                        onenand_invalidate_bufferram(mtd, addr, block_size);
2215
2216                        ret = this->wait(mtd, FL_PREPARING_ERASE);
2217                        if (ret) {
2218                                printk(KERN_ERR "%s: Failed multiblock erase, "
2219                                       "block %d\n", __func__,
2220                                       onenand_block(this, addr));
2221                                instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2222                                return -EIO;
2223                        }
2224
2225                        len -= block_size;
2226                        addr += block_size;
2227                        eb_count++;
2228                }
2229
2230                /* last block of 64-eb series */
2231                cond_resched();
2232                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2233                onenand_invalidate_bufferram(mtd, addr, block_size);
2234
2235                ret = this->wait(mtd, FL_ERASING);
2236                /* Check if it is write protected */
2237                if (ret) {
2238                        printk(KERN_ERR "%s: Failed erase, block %d\n",
2239                               __func__, onenand_block(this, addr));
2240                        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2241                        return -EIO;
2242                }
2243
2244                len -= block_size;
2245                addr += block_size;
2246                eb_count++;
2247
2248                /* verify */
2249                verify_instr.len = eb_count * block_size;
2250                if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2251                        instr->fail_addr = verify_instr.fail_addr;
2252                        return -EIO;
2253                }
2254
2255        }
2256        return 0;
2257}
2258
2259
2260/**
2261 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2262 * @param mtd           MTD device structure
2263 * @param instr         erase instruction
2264 * @param region        erase region
2265 * @param block_size    erase block size
2266 *
2267 * Erase one or more blocks one block at a time
2268 */
2269static int onenand_block_by_block_erase(struct mtd_info *mtd,
2270                                        struct erase_info *instr,
2271                                        struct mtd_erase_region_info *region,
2272                                        unsigned int block_size)
2273{
2274        struct onenand_chip *this = mtd->priv;
2275        loff_t addr = instr->addr;
2276        int len = instr->len;
2277        loff_t region_end = 0;
2278        int ret = 0;
2279
2280        if (region) {
2281                /* region is set for Flex-OneNAND */
2282                region_end = region->offset + region->erasesize * region->numblocks;
2283        }
2284
2285        /* Loop through the blocks */
2286        while (len) {
2287                cond_resched();
2288
2289                /* Check if we have a bad block, we do not erase bad blocks */
2290                if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2291                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2292                                        "at addr 0x%012llx\n",
2293                                        __func__, (unsigned long long) addr);
2294                        return -EIO;
2295                }
2296
2297                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2298
2299                onenand_invalidate_bufferram(mtd, addr, block_size);
2300
2301                ret = this->wait(mtd, FL_ERASING);
2302                /* Check, if it is write protected */
2303                if (ret) {
2304                        printk(KERN_ERR "%s: Failed erase, block %d\n",
2305                                __func__, onenand_block(this, addr));
2306                        instr->fail_addr = addr;
2307                        return -EIO;
2308                }
2309
2310                len -= block_size;
2311                addr += block_size;
2312
2313                if (region && addr == region_end) {
2314                        if (!len)
2315                                break;
2316                        region++;
2317
2318                        block_size = region->erasesize;
2319                        region_end = region->offset + region->erasesize * region->numblocks;
2320
2321                        if (len & (block_size - 1)) {
2322                                /* FIXME: This should be handled at MTD partitioning level. */
2323                                printk(KERN_ERR "%s: Unaligned address\n",
2324                                        __func__);
2325                                return -EIO;
2326                        }
2327                }
2328        }
2329        return 0;
2330}
2331
2332/**
2333 * onenand_erase - [MTD Interface] erase block(s)
2334 * @param mtd           MTD device structure
2335 * @param instr         erase instruction
2336 *
2337 * Erase one or more blocks
2338 */
2339static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2340{
2341        struct onenand_chip *this = mtd->priv;
2342        unsigned int block_size;
2343        loff_t addr = instr->addr;
2344        loff_t len = instr->len;
2345        int ret = 0;
2346        struct mtd_erase_region_info *region = NULL;
2347        loff_t region_offset = 0;
2348
2349        pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2350                        (unsigned long long)instr->addr,
2351                        (unsigned long long)instr->len);
2352
2353        if (FLEXONENAND(this)) {
2354                /* Find the eraseregion of this address */
2355                int i = flexonenand_region(mtd, addr);
2356
2357                region = &mtd->eraseregions[i];
2358                block_size = region->erasesize;
2359
2360                /* Start address within region must align on block boundary.
2361                 * Erase region's start offset is always block start address.
2362                 */
2363                region_offset = region->offset;
2364        } else
2365                block_size = 1 << this->erase_shift;
2366
2367        /* Start address must align on block boundary */
2368        if (unlikely((addr - region_offset) & (block_size - 1))) {
2369                printk(KERN_ERR "%s: Unaligned address\n", __func__);
2370                return -EINVAL;
2371        }
2372
2373        /* Length must align on block boundary */
2374        if (unlikely(len & (block_size - 1))) {
2375                printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2376                return -EINVAL;
2377        }
2378
2379        /* Grab the lock and see if the device is available */
2380        onenand_get_device(mtd, FL_ERASING);
2381
2382        if (ONENAND_IS_4KB_PAGE(this) || region ||
2383            instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2384                /* region is set for Flex-OneNAND (no mb erase) */
2385                ret = onenand_block_by_block_erase(mtd, instr,
2386                                                   region, block_size);
2387        } else {
2388                ret = onenand_multiblock_erase(mtd, instr, block_size);
2389        }
2390
2391        /* Deselect and wake up anyone waiting on the device */
2392        onenand_release_device(mtd);
2393
2394        return ret;
2395}
2396
2397/**
2398 * onenand_sync - [MTD Interface] sync
2399 * @param mtd           MTD device structure
2400 *
2401 * Sync is actually a wait for chip ready function
2402 */
2403static void onenand_sync(struct mtd_info *mtd)
2404{
2405        pr_debug("%s: called\n", __func__);
2406
2407        /* Grab the lock and see if the device is available */
2408        onenand_get_device(mtd, FL_SYNCING);
2409
2410        /* Release it and go back */
2411        onenand_release_device(mtd);
2412}
2413
2414/**
2415 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2416 * @param mtd           MTD device structure
2417 * @param ofs           offset relative to mtd start
2418 *
2419 * Check whether the block is bad
2420 */
2421static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2422{
2423        int ret;
2424
2425        onenand_get_device(mtd, FL_READING);
2426        ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2427        onenand_release_device(mtd);
2428        return ret;
2429}
2430
2431/**
2432 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2433 * @param mtd           MTD device structure
2434 * @param ofs           offset from device start
2435 *
2436 * This is the default implementation, which can be overridden by
2437 * a hardware specific driver.
2438 */
2439static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2440{
2441        struct onenand_chip *this = mtd->priv;
2442        struct bbm_info *bbm = this->bbm;
2443        u_char buf[2] = {0, 0};
2444        struct mtd_oob_ops ops = {
2445                .mode = MTD_OPS_PLACE_OOB,
2446                .ooblen = 2,
2447                .oobbuf = buf,
2448                .ooboffs = 0,
2449        };
2450        int block;
2451
2452        /* Get block number */
2453        block = onenand_block(this, ofs);
2454        if (bbm->bbt)
2455                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2456
2457        /* We write two bytes, so we don't have to mess with 16-bit access */
2458        ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2459        /* FIXME : What to do when marking SLC block in partition
2460         *         with MLC erasesize? For now, it is not advisable to
2461         *         create partitions containing both SLC and MLC regions.
2462         */
2463        return onenand_write_oob_nolock(mtd, ofs, &ops);
2464}
2465
2466/**
2467 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2468 * @param mtd           MTD device structure
2469 * @param ofs           offset relative to mtd start
2470 *
2471 * Mark the block as bad
2472 */
2473static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2474{
2475        struct onenand_chip *this = mtd->priv;
2476        int ret;
2477
2478        ret = onenand_block_isbad(mtd, ofs);
2479        if (ret) {
2480                /* If it was bad already, return success and do nothing */
2481                if (ret > 0)
2482                        return 0;
2483                return ret;
2484        }
2485
2486        onenand_get_device(mtd, FL_WRITING);
2487        ret = this->block_markbad(mtd, ofs);
2488        onenand_release_device(mtd);
2489        return ret;
2490}
2491
2492/**
2493 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2494 * @param mtd           MTD device structure
2495 * @param ofs           offset relative to mtd start
2496 * @param len           number of bytes to lock or unlock
2497 * @param cmd           lock or unlock command
2498 *
2499 * Lock or unlock one or more blocks
2500 */
2501static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2502{
2503        struct onenand_chip *this = mtd->priv;
2504        int start, end, block, value, status;
2505        int wp_status_mask;
2506
2507        start = onenand_block(this, ofs);
2508        end = onenand_block(this, ofs + len) - 1;
2509
2510        if (cmd == ONENAND_CMD_LOCK)
2511                wp_status_mask = ONENAND_WP_LS;
2512        else
2513                wp_status_mask = ONENAND_WP_US;
2514
2515        /* Continuous lock scheme */
2516        if (this->options & ONENAND_HAS_CONT_LOCK) {
2517                /* Set start block address */
2518                this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2519                /* Set end block address */
2520                this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2521                /* Write lock command */
2522                this->command(mtd, cmd, 0, 0);
2523
2524                /* There's no return value */
2525                this->wait(mtd, FL_LOCKING);
2526
2527                /* Sanity check */
2528                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2529                    & ONENAND_CTRL_ONGO)
2530                        continue;
2531
2532                /* Check lock status */
2533                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2534                if (!(status & wp_status_mask))
2535                        printk(KERN_ERR "%s: wp status = 0x%x\n",
2536                                __func__, status);
2537
2538                return 0;
2539        }
2540
2541        /* Block lock scheme */
2542        for (block = start; block < end + 1; block++) {
2543                /* Set block address */
2544                value = onenand_block_address(this, block);
2545                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2546                /* Select DataRAM for DDP */
2547                value = onenand_bufferram_address(this, block);
2548                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2549                /* Set start block address */
2550                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2551                /* Write lock command */
2552                this->command(mtd, cmd, 0, 0);
2553
2554                /* There's no return value */
2555                this->wait(mtd, FL_LOCKING);
2556
2557                /* Sanity check */
2558                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2559                    & ONENAND_CTRL_ONGO)
2560                        continue;
2561
2562                /* Check lock status */
2563                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2564                if (!(status & wp_status_mask))
2565                        printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2566                                __func__, block, status);
2567        }
2568
2569        return 0;
2570}
2571
2572/**
2573 * onenand_lock - [MTD Interface] Lock block(s)
2574 * @param mtd           MTD device structure
2575 * @param ofs           offset relative to mtd start
2576 * @param len           number of bytes to unlock
2577 *
2578 * Lock one or more blocks
2579 */
2580static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2581{
2582        int ret;
2583
2584        onenand_get_device(mtd, FL_LOCKING);
2585        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2586        onenand_release_device(mtd);
2587        return ret;
2588}
2589
2590/**
2591 * onenand_unlock - [MTD Interface] Unlock block(s)
2592 * @param mtd           MTD device structure
2593 * @param ofs           offset relative to mtd start
2594 * @param len           number of bytes to unlock
2595 *
2596 * Unlock one or more blocks
2597 */
2598static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2599{
2600        int ret;
2601
2602        onenand_get_device(mtd, FL_LOCKING);
2603        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2604        onenand_release_device(mtd);
2605        return ret;
2606}
2607
2608/**
2609 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2610 * @param this          onenand chip data structure
2611 *
2612 * Check lock status
2613 */
2614static int onenand_check_lock_status(struct onenand_chip *this)
2615{
2616        unsigned int value, block, status;
2617        unsigned int end;
2618
2619        end = this->chipsize >> this->erase_shift;
2620        for (block = 0; block < end; block++) {
2621                /* Set block address */
2622                value = onenand_block_address(this, block);
2623                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2624                /* Select DataRAM for DDP */
2625                value = onenand_bufferram_address(this, block);
2626                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2627                /* Set start block address */
2628                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2629
2630                /* Check lock status */
2631                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2632                if (!(status & ONENAND_WP_US)) {
2633                        printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2634                                __func__, block, status);
2635                        return 0;
2636                }
2637        }
2638
2639        return 1;
2640}
2641
2642/**
2643 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2644 * @param mtd           MTD device structure
2645 *
2646 * Unlock all blocks
2647 */
2648static void onenand_unlock_all(struct mtd_info *mtd)
2649{
2650        struct onenand_chip *this = mtd->priv;
2651        loff_t ofs = 0;
2652        loff_t len = mtd->size;
2653
2654        if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2655                /* Set start block address */
2656                this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2657                /* Write unlock command */
2658                this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2659
2660                /* There's no return value */
2661                this->wait(mtd, FL_LOCKING);
2662
2663                /* Sanity check */
2664                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2665                    & ONENAND_CTRL_ONGO)
2666                        continue;
2667
2668                /* Don't check lock status */
2669                if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2670                        return;
2671
2672                /* Check lock status */
2673                if (onenand_check_lock_status(this))
2674                        return;
2675
2676                /* Workaround for all block unlock in DDP */
2677                if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2678                        /* All blocks on another chip */
2679                        ofs = this->chipsize >> 1;
2680                        len = this->chipsize >> 1;
2681                }
2682        }
2683
2684        onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2685}
2686
2687#ifdef CONFIG_MTD_ONENAND_OTP
2688
2689/**
2690 * onenand_otp_command - Send OTP specific command to OneNAND device
2691 * @param mtd    MTD device structure
2692 * @param cmd    the command to be sent
2693 * @param addr   offset to read from or write to
2694 * @param len    number of bytes to read or write
2695 */
2696static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2697                                size_t len)
2698{
2699        struct onenand_chip *this = mtd->priv;
2700        int value, block, page;
2701
2702        /* Address translation */
2703        switch (cmd) {
2704        case ONENAND_CMD_OTP_ACCESS:
2705                block = (int) (addr >> this->erase_shift);
2706                page = -1;
2707                break;
2708
2709        default:
2710                block = (int) (addr >> this->erase_shift);
2711                page = (int) (addr >> this->page_shift);
2712
2713                if (ONENAND_IS_2PLANE(this)) {
2714                        /* Make the even block number */
2715                        block &= ~1;
2716                        /* Is it the odd plane? */
2717                        if (addr & this->writesize)
2718                                block++;
2719                        page >>= 1;
2720                }
2721                page &= this->page_mask;
2722                break;
2723        }
2724
2725        if (block != -1) {
2726                /* Write 'DFS, FBA' of Flash */
2727                value = onenand_block_address(this, block);
2728                this->write_word(value, this->base +
2729                                ONENAND_REG_START_ADDRESS1);
2730        }
2731
2732        if (page != -1) {
2733                /* Now we use page size operation */
2734                int sectors = 4, count = 4;
2735                int dataram;
2736
2737                switch (cmd) {
2738                default:
2739                        if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2740                                cmd = ONENAND_CMD_2X_PROG;
2741                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
2742                        break;
2743                }
2744
2745                /* Write 'FPA, FSA' of Flash */
2746                value = onenand_page_address(page, sectors);
2747                this->write_word(value, this->base +
2748                                ONENAND_REG_START_ADDRESS8);
2749
2750                /* Write 'BSA, BSC' of DataRAM */
2751                value = onenand_buffer_address(dataram, sectors, count);
2752                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2753        }
2754
2755        /* Interrupt clear */
2756        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2757
2758        /* Write command */
2759        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2760
2761        return 0;
2762}
2763
2764/**
2765 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2766 * @param mtd           MTD device structure
2767 * @param to            offset to write to
2768 * @param len           number of bytes to write
2769 * @param retlen        pointer to variable to store the number of written bytes
2770 * @param buf           the data to write
2771 *
2772 * OneNAND write out-of-band only for OTP
2773 */
2774static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2775                                    struct mtd_oob_ops *ops)
2776{
2777        struct onenand_chip *this = mtd->priv;
2778        int column, ret = 0, oobsize;
2779        int written = 0;
2780        u_char *oobbuf;
2781        size_t len = ops->ooblen;
2782        const u_char *buf = ops->oobbuf;
2783        int block, value, status;
2784
2785        to += ops->ooboffs;
2786
2787        /* Initialize retlen, in case of early exit */
2788        ops->oobretlen = 0;
2789
2790        oobsize = mtd->oobsize;
2791
2792        column = to & (mtd->oobsize - 1);
2793
2794        oobbuf = this->oob_buf;
2795
2796        /* Loop until all data write */
2797        while (written < len) {
2798                int thislen = min_t(int, oobsize, len - written);
2799
2800                cond_resched();
2801
2802                block = (int) (to >> this->erase_shift);
2803                /*
2804                 * Write 'DFS, FBA' of Flash
2805                 * Add: F100h DQ=DFS, FBA
2806                 */
2807
2808                value = onenand_block_address(this, block);
2809                this->write_word(value, this->base +
2810                                ONENAND_REG_START_ADDRESS1);
2811
2812                /*
2813                 * Select DataRAM for DDP
2814                 * Add: F101h DQ=DBS
2815                 */
2816
2817                value = onenand_bufferram_address(this, block);
2818                this->write_word(value, this->base +
2819                                ONENAND_REG_START_ADDRESS2);
2820                ONENAND_SET_NEXT_BUFFERRAM(this);
2821
2822                /*
2823                 * Enter OTP access mode
2824                 */
2825                this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2826                this->wait(mtd, FL_OTPING);
2827
2828                /* We send data to spare ram with oobsize
2829                 * to prevent byte access */
2830                memcpy(oobbuf + column, buf, thislen);
2831
2832                /*
2833                 * Write Data into DataRAM
2834                 * Add: 8th Word
2835                 * in sector0/spare/page0
2836                 * DQ=XXFCh
2837                 */
2838                this->write_bufferram(mtd, ONENAND_SPARERAM,
2839                                        oobbuf, 0, mtd->oobsize);
2840
2841                onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2842                onenand_update_bufferram(mtd, to, 0);
2843                if (ONENAND_IS_2PLANE(this)) {
2844                        ONENAND_SET_BUFFERRAM1(this);
2845                        onenand_update_bufferram(mtd, to + this->writesize, 0);
2846                }
2847
2848                ret = this->wait(mtd, FL_WRITING);
2849                if (ret) {
2850                        printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2851                        break;
2852                }
2853
2854                /* Exit OTP access mode */
2855                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2856                this->wait(mtd, FL_RESETING);
2857
2858                status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2859                status &= 0x60;
2860
2861                if (status == 0x60) {
2862                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2863                        printk(KERN_DEBUG "1st Block\tLOCKED\n");
2864                        printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2865                } else if (status == 0x20) {
2866                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2867                        printk(KERN_DEBUG "1st Block\tLOCKED\n");
2868                        printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2869                } else if (status == 0x40) {
2870                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2871                        printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2872                        printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2873                } else {
2874                        printk(KERN_DEBUG "Reboot to check\n");
2875                }
2876
2877                written += thislen;
2878                if (written == len)
2879                        break;
2880
2881                to += mtd->writesize;
2882                buf += thislen;
2883                column = 0;
2884        }
2885
2886        ops->oobretlen = written;
2887
2888        return ret;
2889}
2890
2891/* Internal OTP operation */
2892typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2893                size_t *retlen, u_char *buf);
2894
2895/**
2896 * do_otp_read - [DEFAULT] Read OTP block area
2897 * @param mtd           MTD device structure
2898 * @param from          The offset to read
2899 * @param len           number of bytes to read
2900 * @param retlen        pointer to variable to store the number of readbytes
2901 * @param buf           the databuffer to put/get data
2902 *
2903 * Read OTP block area.
2904 */
2905static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2906                size_t *retlen, u_char *buf)
2907{
2908        struct onenand_chip *this = mtd->priv;
2909        struct mtd_oob_ops ops = {
2910                .len    = len,
2911                .ooblen = 0,
2912                .datbuf = buf,
2913                .oobbuf = NULL,
2914        };
2915        int ret;
2916
2917        /* Enter OTP access mode */
2918        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2919        this->wait(mtd, FL_OTPING);
2920
2921        ret = ONENAND_IS_4KB_PAGE(this) ?
2922                onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2923                onenand_read_ops_nolock(mtd, from, &ops);
2924
2925        /* Exit OTP access mode */
2926        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2927        this->wait(mtd, FL_RESETING);
2928
2929        return ret;
2930}
2931
2932/**
2933 * do_otp_write - [DEFAULT] Write OTP block area
2934 * @param mtd           MTD device structure
2935 * @param to            The offset to write
2936 * @param len           number of bytes to write
2937 * @param retlen        pointer to variable to store the number of write bytes
2938 * @param buf           the databuffer to put/get data
2939 *
2940 * Write OTP block area.
2941 */
2942static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2943                size_t *retlen, u_char *buf)
2944{
2945        struct onenand_chip *this = mtd->priv;
2946        unsigned char *pbuf = buf;
2947        int ret;
2948        struct mtd_oob_ops ops;
2949
2950        /* Force buffer page aligned */
2951        if (len < mtd->writesize) {
2952                memcpy(this->page_buf, buf, len);
2953                memset(this->page_buf + len, 0xff, mtd->writesize - len);
2954                pbuf = this->page_buf;
2955                len = mtd->writesize;
2956        }
2957
2958        /* Enter OTP access mode */
2959        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2960        this->wait(mtd, FL_OTPING);
2961
2962        ops.len = len;
2963        ops.ooblen = 0;
2964        ops.datbuf = pbuf;
2965        ops.oobbuf = NULL;
2966        ret = onenand_write_ops_nolock(mtd, to, &ops);
2967        *retlen = ops.retlen;
2968
2969        /* Exit OTP access mode */
2970        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2971        this->wait(mtd, FL_RESETING);
2972
2973        return ret;
2974}
2975
2976/**
2977 * do_otp_lock - [DEFAULT] Lock OTP block area
2978 * @param mtd           MTD device structure
2979 * @param from          The offset to lock
2980 * @param len           number of bytes to lock
2981 * @param retlen        pointer to variable to store the number of lock bytes
2982 * @param buf           the databuffer to put/get data
2983 *
2984 * Lock OTP block area.
2985 */
2986static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2987                size_t *retlen, u_char *buf)
2988{
2989        struct onenand_chip *this = mtd->priv;
2990        struct mtd_oob_ops ops;
2991        int ret;
2992
2993        if (FLEXONENAND(this)) {
2994
2995                /* Enter OTP access mode */
2996                this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2997                this->wait(mtd, FL_OTPING);
2998                /*
2999                 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3000                 * main area of page 49.
3001                 */
3002                ops.len = mtd->writesize;
3003                ops.ooblen = 0;
3004                ops.datbuf = buf;
3005                ops.oobbuf = NULL;
3006                ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3007                *retlen = ops.retlen;
3008
3009                /* Exit OTP access mode */
3010                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3011                this->wait(mtd, FL_RESETING);
3012        } else {
3013                ops.mode = MTD_OPS_PLACE_OOB;
3014                ops.ooblen = len;
3015                ops.oobbuf = buf;
3016                ops.ooboffs = 0;
3017                ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3018                *retlen = ops.oobretlen;
3019        }
3020
3021        return ret;
3022}
3023
3024/**
3025 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3026 * @param mtd           MTD device structure
3027 * @param from          The offset to read/write
3028 * @param len           number of bytes to read/write
3029 * @param retlen        pointer to variable to store the number of read bytes
3030 * @param buf           the databuffer to put/get data
3031 * @param action        do given action
3032 * @param mode          specify user and factory
3033 *
3034 * Handle OTP operation.
3035 */
3036static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3037                        size_t *retlen, u_char *buf,
3038                        otp_op_t action, int mode)
3039{
3040        struct onenand_chip *this = mtd->priv;
3041        int otp_pages;
3042        int density;
3043        int ret = 0;
3044
3045        *retlen = 0;
3046
3047        density = onenand_get_density(this->device_id);
3048        if (density < ONENAND_DEVICE_DENSITY_512Mb)
3049                otp_pages = 20;
3050        else
3051                otp_pages = 50;
3052
3053        if (mode == MTD_OTP_FACTORY) {
3054                from += mtd->writesize * otp_pages;
3055                otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3056        }
3057
3058        /* Check User/Factory boundary */
3059        if (mode == MTD_OTP_USER) {
3060                if (mtd->writesize * otp_pages < from + len)
3061                        return 0;
3062        } else {
3063                if (mtd->writesize * otp_pages <  len)
3064                        return 0;
3065        }
3066
3067        onenand_get_device(mtd, FL_OTPING);
3068        while (len > 0 && otp_pages > 0) {
3069                if (!action) {  /* OTP Info functions */
3070                        struct otp_info *otpinfo;
3071
3072                        len -= sizeof(struct otp_info);
3073                        if (len <= 0) {
3074                                ret = -ENOSPC;
3075                                break;
3076                        }
3077
3078                        otpinfo = (struct otp_info *) buf;
3079                        otpinfo->start = from;
3080                        otpinfo->length = mtd->writesize;
3081                        otpinfo->locked = 0;
3082
3083                        from += mtd->writesize;
3084                        buf += sizeof(struct otp_info);
3085                        *retlen += sizeof(struct otp_info);
3086                } else {
3087                        size_t tmp_retlen;
3088
3089                        ret = action(mtd, from, len, &tmp_retlen, buf);
3090                        if (ret)
3091                                break;
3092
3093                        buf += tmp_retlen;
3094                        len -= tmp_retlen;
3095                        *retlen += tmp_retlen;
3096
3097                }
3098                otp_pages--;
3099        }
3100        onenand_release_device(mtd);
3101
3102        return ret;
3103}
3104
3105/**
3106 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3107 * @param mtd           MTD device structure
3108 * @param len           number of bytes to read
3109 * @param retlen        pointer to variable to store the number of read bytes
3110 * @param buf           the databuffer to put/get data
3111 *
3112 * Read factory OTP info.
3113 */
3114static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3115                                      size_t *retlen, struct otp_info *buf)
3116{
3117        return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3118                                MTD_OTP_FACTORY);
3119}
3120
3121/**
3122 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3123 * @param mtd           MTD device structure
3124 * @param from          The offset to read
3125 * @param len           number of bytes to read
3126 * @param retlen        pointer to variable to store the number of read bytes
3127 * @param buf           the databuffer to put/get data
3128 *
3129 * Read factory OTP area.
3130 */
3131static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3132                        size_t len, size_t *retlen, u_char *buf)
3133{
3134        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3135}
3136
3137/**
3138 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3139 * @param mtd           MTD device structure
3140 * @param retlen        pointer to variable to store the number of read bytes
3141 * @param len           number of bytes to read
3142 * @param buf           the databuffer to put/get data
3143 *
3144 * Read user OTP info.
3145 */
3146static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3147                                      size_t *retlen, struct otp_info *buf)
3148{
3149        return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3150                                MTD_OTP_USER);
3151}
3152
3153/**
3154 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3155 * @param mtd           MTD device structure
3156 * @param from          The offset to read
3157 * @param len           number of bytes to read
3158 * @param retlen        pointer to variable to store the number of read bytes
3159 * @param buf           the databuffer to put/get data
3160 *
3161 * Read user OTP area.
3162 */
3163static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3164                        size_t len, size_t *retlen, u_char *buf)
3165{
3166        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3167}
3168
3169/**
3170 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3171 * @param mtd           MTD device structure
3172 * @param from          The offset to write
3173 * @param len           number of bytes to write
3174 * @param retlen        pointer to variable to store the number of write bytes
3175 * @param buf           the databuffer to put/get data
3176 *
3177 * Write user OTP area.
3178 */
3179static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3180                        size_t len, size_t *retlen, u_char *buf)
3181{
3182        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3183}
3184
3185/**
3186 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3187 * @param mtd           MTD device structure
3188 * @param from          The offset to lock
3189 * @param len           number of bytes to unlock
3190 *
3191 * Write lock mark on spare area in page 0 in OTP block
3192 */
3193static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3194                        size_t len)
3195{
3196        struct onenand_chip *this = mtd->priv;
3197        u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3198        size_t retlen;
3199        int ret;
3200        unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3201
3202        memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3203                                                 : mtd->oobsize);
3204        /*
3205         * Write lock mark to 8th word of sector0 of page0 of the spare0.
3206         * We write 16 bytes spare area instead of 2 bytes.
3207         * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3208         * main area of page 49.
3209         */
3210
3211        from = 0;
3212        len = FLEXONENAND(this) ? mtd->writesize : 16;
3213
3214        /*
3215         * Note: OTP lock operation
3216         *       OTP block : 0xXXFC                     XX 1111 1100
3217         *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3218         *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3219         */
3220        if (FLEXONENAND(this))
3221                otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3222
3223        /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3224        if (otp == 1)
3225                buf[otp_lock_offset] = 0xFC;
3226        else if (otp == 2)
3227                buf[otp_lock_offset] = 0xF3;
3228        else if (otp == 3)
3229                buf[otp_lock_offset] = 0xF0;
3230        else if (otp != 0)
3231                printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3232
3233        ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3234
3235        return ret ? : retlen;
3236}
3237
3238#endif  /* CONFIG_MTD_ONENAND_OTP */
3239
3240/**
3241 * onenand_check_features - Check and set OneNAND features
3242 * @param mtd           MTD data structure
3243 *
3244 * Check and set OneNAND features
3245 * - lock scheme
3246 * - two plane
3247 */
3248static void onenand_check_features(struct mtd_info *mtd)
3249{
3250        struct onenand_chip *this = mtd->priv;
3251        unsigned int density, process, numbufs;
3252
3253        /* Lock scheme depends on density and process */
3254        density = onenand_get_density(this->device_id);
3255        process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3256        numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3257
3258        /* Lock scheme */
3259        switch (density) {
3260        case ONENAND_DEVICE_DENSITY_8Gb:
3261                this->options |= ONENAND_HAS_NOP_1;
3262                /* fall through */
3263        case ONENAND_DEVICE_DENSITY_4Gb:
3264                if (ONENAND_IS_DDP(this))
3265                        this->options |= ONENAND_HAS_2PLANE;
3266                else if (numbufs == 1) {
3267                        this->options |= ONENAND_HAS_4KB_PAGE;
3268                        this->options |= ONENAND_HAS_CACHE_PROGRAM;
3269                        /*
3270                         * There are two different 4KiB pagesize chips
3271                         * and no way to detect it by H/W config values.
3272                         *
3273                         * To detect the correct NOP for each chips,
3274                         * It should check the version ID as workaround.
3275                         *
3276                         * Now it has as following
3277                         * KFM4G16Q4M has NOP 4 with version ID 0x0131
3278                         * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3279                         */
3280                        if ((this->version_id & 0xf) == 0xe)
3281                                this->options |= ONENAND_HAS_NOP_1;
3282                }
3283                this->options |= ONENAND_HAS_UNLOCK_ALL;
3284                break;
3285
3286        case ONENAND_DEVICE_DENSITY_2Gb:
3287                /* 2Gb DDP does not have 2 plane */
3288                if (!ONENAND_IS_DDP(this))
3289                        this->options |= ONENAND_HAS_2PLANE;
3290                this->options |= ONENAND_HAS_UNLOCK_ALL;
3291                break;
3292
3293        case ONENAND_DEVICE_DENSITY_1Gb:
3294                /* A-Die has all block unlock */
3295                if (process)
3296                        this->options |= ONENAND_HAS_UNLOCK_ALL;
3297                break;
3298
3299        default:
3300                /* Some OneNAND has continuous lock scheme */
3301                if (!process)
3302                        this->options |= ONENAND_HAS_CONT_LOCK;
3303                break;
3304        }
3305
3306        /* The MLC has 4KiB pagesize. */
3307        if (ONENAND_IS_MLC(this))
3308                this->options |= ONENAND_HAS_4KB_PAGE;
3309
3310        if (ONENAND_IS_4KB_PAGE(this))
3311                this->options &= ~ONENAND_HAS_2PLANE;
3312
3313        if (FLEXONENAND(this)) {
3314                this->options &= ~ONENAND_HAS_CONT_LOCK;
3315                this->options |= ONENAND_HAS_UNLOCK_ALL;
3316        }
3317
3318        if (this->options & ONENAND_HAS_CONT_LOCK)
3319                printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3320        if (this->options & ONENAND_HAS_UNLOCK_ALL)
3321                printk(KERN_DEBUG "Chip support all block unlock\n");
3322        if (this->options & ONENAND_HAS_2PLANE)
3323                printk(KERN_DEBUG "Chip has 2 plane\n");
3324        if (this->options & ONENAND_HAS_4KB_PAGE)
3325                printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3326        if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3327                printk(KERN_DEBUG "Chip has cache program feature\n");
3328}
3329
3330/**
3331 * onenand_print_device_info - Print device & version ID
3332 * @param device        device ID
3333 * @param version       version ID
3334 *
3335 * Print device & version ID
3336 */
3337static void onenand_print_device_info(int device, int version)
3338{
3339        int vcc, demuxed, ddp, density, flexonenand;
3340
3341        vcc = device & ONENAND_DEVICE_VCC_MASK;
3342        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3343        ddp = device & ONENAND_DEVICE_IS_DDP;
3344        density = onenand_get_density(device);
3345        flexonenand = device & DEVICE_IS_FLEXONENAND;
3346        printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3347                demuxed ? "" : "Muxed ",
3348                flexonenand ? "Flex-" : "",
3349                ddp ? "(DDP)" : "",
3350                (16 << density),
3351                vcc ? "2.65/3.3" : "1.8",
3352                device);
3353        printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3354}
3355
3356static const struct onenand_manufacturers onenand_manuf_ids[] = {
3357        {ONENAND_MFR_SAMSUNG, "Samsung"},
3358        {ONENAND_MFR_NUMONYX, "Numonyx"},
3359};
3360
3361/**
3362 * onenand_check_maf - Check manufacturer ID
3363 * @param manuf         manufacturer ID
3364 *
3365 * Check manufacturer ID
3366 */
3367static int onenand_check_maf(int manuf)
3368{
3369        int size = ARRAY_SIZE(onenand_manuf_ids);
3370        char *name;
3371        int i;
3372
3373        for (i = 0; i < size; i++)
3374                if (manuf == onenand_manuf_ids[i].id)
3375                        break;
3376
3377        if (i < size)
3378                name = onenand_manuf_ids[i].name;
3379        else
3380                name = "Unknown";
3381
3382        printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3383
3384        return (i == size);
3385}
3386
3387/**
3388* flexonenand_get_boundary      - Reads the SLC boundary
3389* @param onenand_info           - onenand info structure
3390**/
3391static int flexonenand_get_boundary(struct mtd_info *mtd)
3392{
3393        struct onenand_chip *this = mtd->priv;
3394        unsigned die, bdry;
3395        int syscfg, locked;
3396
3397        /* Disable ECC */
3398        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3399        this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3400
3401        for (die = 0; die < this->dies; die++) {
3402                this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3403                this->wait(mtd, FL_SYNCING);
3404
3405                this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3406                this->wait(mtd, FL_READING);
3407
3408                bdry = this->read_word(this->base + ONENAND_DATARAM);
3409                if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3410                        locked = 0;
3411                else
3412                        locked = 1;
3413                this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3414
3415                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3416                this->wait(mtd, FL_RESETING);
3417
3418                printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3419                       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3420        }
3421
3422        /* Enable ECC */
3423        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3424        return 0;
3425}
3426
3427/**
3428 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3429 *                        boundary[], diesize[], mtd->size, mtd->erasesize
3430 * @param mtd           - MTD device structure
3431 */
3432static void flexonenand_get_size(struct mtd_info *mtd)
3433{
3434        struct onenand_chip *this = mtd->priv;
3435        int die, i, eraseshift, density;
3436        int blksperdie, maxbdry;
3437        loff_t ofs;
3438
3439        density = onenand_get_density(this->device_id);
3440        blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3441        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3442        maxbdry = blksperdie - 1;
3443        eraseshift = this->erase_shift - 1;
3444
3445        mtd->numeraseregions = this->dies << 1;
3446
3447        /* This fills up the device boundary */
3448        flexonenand_get_boundary(mtd);
3449        die = ofs = 0;
3450        i = -1;
3451        for (; die < this->dies; die++) {
3452                if (!die || this->boundary[die-1] != maxbdry) {
3453                        i++;
3454                        mtd->eraseregions[i].offset = ofs;
3455                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3456                        mtd->eraseregions[i].numblocks =
3457                                                        this->boundary[die] + 1;
3458                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3459                        eraseshift++;
3460                } else {
3461                        mtd->numeraseregions -= 1;
3462                        mtd->eraseregions[i].numblocks +=
3463                                                        this->boundary[die] + 1;
3464                        ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3465                }
3466                if (this->boundary[die] != maxbdry) {
3467                        i++;
3468                        mtd->eraseregions[i].offset = ofs;
3469                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3470                        mtd->eraseregions[i].numblocks = maxbdry ^
3471                                                         this->boundary[die];
3472                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3473                        eraseshift--;
3474                } else
3475                        mtd->numeraseregions -= 1;
3476        }
3477
3478        /* Expose MLC erase size except when all blocks are SLC */
3479        mtd->erasesize = 1 << this->erase_shift;
3480        if (mtd->numeraseregions == 1)
3481                mtd->erasesize >>= 1;
3482
3483        printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3484        for (i = 0; i < mtd->numeraseregions; i++)
3485                printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3486                        " numblocks: %04u]\n",
3487                        (unsigned int) mtd->eraseregions[i].offset,
3488                        mtd->eraseregions[i].erasesize,
3489                        mtd->eraseregions[i].numblocks);
3490
3491        for (die = 0, mtd->size = 0; die < this->dies; die++) {
3492                this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3493                this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3494                                                 << (this->erase_shift - 1);
3495                mtd->size += this->diesize[die];
3496        }
3497}
3498
3499/**
3500 * flexonenand_check_blocks_erased - Check if blocks are erased
3501 * @param mtd_info      - mtd info structure
3502 * @param start         - first erase block to check
3503 * @param end           - last erase block to check
3504 *
3505 * Converting an unerased block from MLC to SLC
3506 * causes byte values to change. Since both data and its ECC
3507 * have changed, reads on the block give uncorrectable error.
3508 * This might lead to the block being detected as bad.
3509 *
3510 * Avoid this by ensuring that the block to be converted is
3511 * erased.
3512 */
3513static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3514{
3515        struct onenand_chip *this = mtd->priv;
3516        int i, ret;
3517        int block;
3518        struct mtd_oob_ops ops = {
3519                .mode = MTD_OPS_PLACE_OOB,
3520                .ooboffs = 0,
3521                .ooblen = mtd->oobsize,
3522                .datbuf = NULL,
3523                .oobbuf = this->oob_buf,
3524        };
3525        loff_t addr;
3526
3527        printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3528
3529        for (block = start; block <= end; block++) {
3530                addr = flexonenand_addr(this, block);
3531                if (onenand_block_isbad_nolock(mtd, addr, 0))
3532                        continue;
3533
3534                /*
3535                 * Since main area write results in ECC write to spare,
3536                 * it is sufficient to check only ECC bytes for change.
3537                 */
3538                ret = onenand_read_oob_nolock(mtd, addr, &ops);
3539                if (ret)
3540                        return ret;
3541
3542                for (i = 0; i < mtd->oobsize; i++)
3543                        if (this->oob_buf[i] != 0xff)
3544                                break;
3545
3546                if (i != mtd->oobsize) {
3547                        printk(KERN_WARNING "%s: Block %d not erased.\n",
3548                                __func__, block);
3549                        return 1;
3550                }
3551        }
3552
3553        return 0;
3554}
3555
3556/**
3557 * flexonenand_set_boundary     - Writes the SLC boundary
3558 * @param mtd                   - mtd info structure
3559 */
3560static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3561                                    int boundary, int lock)
3562{
3563        struct onenand_chip *this = mtd->priv;
3564        int ret, density, blksperdie, old, new, thisboundary;
3565        loff_t addr;
3566
3567        /* Change only once for SDP Flex-OneNAND */
3568        if (die && (!ONENAND_IS_DDP(this)))
3569                return 0;
3570
3571        /* boundary value of -1 indicates no required change */
3572        if (boundary < 0 || boundary == this->boundary[die])
3573                return 0;
3574
3575        density = onenand_get_density(this->device_id);
3576        blksperdie = ((16 << density) << 20) >> this->erase_shift;
3577        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3578
3579        if (boundary >= blksperdie) {
3580                printk(KERN_ERR "%s: Invalid boundary value. "
3581                                "Boundary not changed.\n", __func__);
3582                return -EINVAL;
3583        }
3584
3585        /* Check if converting blocks are erased */
3586        old = this->boundary[die] + (die * this->density_mask);
3587        new = boundary + (die * this->density_mask);
3588        ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3589        if (ret) {
3590                printk(KERN_ERR "%s: Please erase blocks "
3591                                "before boundary change\n", __func__);
3592                return ret;
3593        }
3594
3595        this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3596        this->wait(mtd, FL_SYNCING);
3597
3598        /* Check is boundary is locked */
3599        this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3600        this->wait(mtd, FL_READING);
3601
3602        thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3603        if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3604                printk(KERN_ERR "%s: boundary locked\n", __func__);
3605                ret = 1;
3606                goto out;
3607        }
3608
3609        printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3610                        die, boundary, lock ? "(Locked)" : "(Unlocked)");
3611
3612        addr = die ? this->diesize[0] : 0;
3613
3614        boundary &= FLEXONENAND_PI_MASK;
3615        boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3616
3617        this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3618        ret = this->wait(mtd, FL_ERASING);
3619        if (ret) {
3620                printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3621                       __func__, die);
3622                goto out;
3623        }
3624
3625        this->write_word(boundary, this->base + ONENAND_DATARAM);
3626        this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3627        ret = this->wait(mtd, FL_WRITING);
3628        if (ret) {
3629                printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3630                        __func__, die);
3631                goto out;
3632        }
3633
3634        this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3635        ret = this->wait(mtd, FL_WRITING);
3636out:
3637        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3638        this->wait(mtd, FL_RESETING);
3639        if (!ret)
3640                /* Recalculate device size on boundary change*/
3641                flexonenand_get_size(mtd);
3642
3643        return ret;
3644}
3645
3646/**
3647 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3648 * @param mtd           MTD device structure
3649 *
3650 * OneNAND detection method:
3651 *   Compare the values from command with ones from register
3652 */
3653static int onenand_chip_probe(struct mtd_info *mtd)
3654{
3655        struct onenand_chip *this = mtd->priv;
3656        int bram_maf_id, bram_dev_id, maf_id, dev_id;
3657        int syscfg;
3658
3659        /* Save system configuration 1 */
3660        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3661        /* Clear Sync. Burst Read mode to read BootRAM */
3662        this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3663
3664        /* Send the command for reading device ID from BootRAM */
3665        this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3666
3667        /* Read manufacturer and device IDs from BootRAM */
3668        bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3669        bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3670
3671        /* Reset OneNAND to read default register values */
3672        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3673        /* Wait reset */
3674        this->wait(mtd, FL_RESETING);
3675
3676        /* Restore system configuration 1 */
3677        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3678
3679        /* Check manufacturer ID */
3680        if (onenand_check_maf(bram_maf_id))
3681                return -ENXIO;
3682
3683        /* Read manufacturer and device IDs from Register */
3684        maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3685        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3686
3687        /* Check OneNAND device */
3688        if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3689                return -ENXIO;
3690
3691        return 0;
3692}
3693
3694/**
3695 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3696 * @param mtd           MTD device structure
3697 */
3698static int onenand_probe(struct mtd_info *mtd)
3699{
3700        struct onenand_chip *this = mtd->priv;
3701        int dev_id, ver_id;
3702        int density;
3703        int ret;
3704
3705        ret = this->chip_probe(mtd);
3706        if (ret)
3707                return ret;
3708
3709        /* Device and version IDs from Register */
3710        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3711        ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3712        this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3713
3714        /* Flash device information */
3715        onenand_print_device_info(dev_id, ver_id);
3716        this->device_id = dev_id;
3717        this->version_id = ver_id;
3718
3719        /* Check OneNAND features */
3720        onenand_check_features(mtd);
3721
3722        density = onenand_get_density(dev_id);
3723        if (FLEXONENAND(this)) {
3724                this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3725                /* Maximum possible erase regions */
3726                mtd->numeraseregions = this->dies << 1;
3727                mtd->eraseregions =
3728                        kcalloc(this->dies << 1,
3729                                sizeof(struct mtd_erase_region_info),
3730                                GFP_KERNEL);
3731                if (!mtd->eraseregions)
3732                        return -ENOMEM;
3733        }
3734
3735        /*
3736         * For Flex-OneNAND, chipsize represents maximum possible device size.
3737         * mtd->size represents the actual device size.
3738         */
3739        this->chipsize = (16 << density) << 20;
3740
3741        /* OneNAND page size & block size */
3742        /* The data buffer size is equal to page size */
3743        mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3744        /* We use the full BufferRAM */
3745        if (ONENAND_IS_4KB_PAGE(this))
3746                mtd->writesize <<= 1;
3747
3748        mtd->oobsize = mtd->writesize >> 5;
3749        /* Pages per a block are always 64 in OneNAND */
3750        mtd->erasesize = mtd->writesize << 6;
3751        /*
3752         * Flex-OneNAND SLC area has 64 pages per block.
3753         * Flex-OneNAND MLC area has 128 pages per block.
3754         * Expose MLC erase size to find erase_shift and page_mask.
3755         */
3756        if (FLEXONENAND(this))
3757                mtd->erasesize <<= 1;
3758
3759        this->erase_shift = ffs(mtd->erasesize) - 1;
3760        this->page_shift = ffs(mtd->writesize) - 1;
3761        this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3762        /* Set density mask. it is used for DDP */
3763        if (ONENAND_IS_DDP(this))
3764                this->density_mask = this->chipsize >> (this->erase_shift + 1);
3765        /* It's real page size */
3766        this->writesize = mtd->writesize;
3767
3768        /* REVISIT: Multichip handling */
3769
3770        if (FLEXONENAND(this))
3771                flexonenand_get_size(mtd);
3772        else
3773                mtd->size = this->chipsize;
3774
3775        /*
3776         * We emulate the 4KiB page and 256KiB erase block size
3777         * But oobsize is still 64 bytes.
3778         * It is only valid if you turn on 2X program support,
3779         * Otherwise it will be ignored by compiler.
3780         */
3781        if (ONENAND_IS_2PLANE(this)) {
3782                mtd->writesize <<= 1;
3783                mtd->erasesize <<= 1;
3784        }
3785
3786        return 0;
3787}
3788
3789/**
3790 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3791 * @param mtd           MTD device structure
3792 */
3793static int onenand_suspend(struct mtd_info *mtd)
3794{
3795        return onenand_get_device(mtd, FL_PM_SUSPENDED);
3796}
3797
3798/**
3799 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3800 * @param mtd           MTD device structure
3801 */
3802static void onenand_resume(struct mtd_info *mtd)
3803{
3804        struct onenand_chip *this = mtd->priv;
3805
3806        if (this->state == FL_PM_SUSPENDED)
3807                onenand_release_device(mtd);
3808        else
3809                printk(KERN_ERR "%s: resume() called for the chip which is not "
3810                                "in suspended state\n", __func__);
3811}
3812
3813/**
3814 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3815 * @param mtd           MTD device structure
3816 * @param maxchips      Number of chips to scan for
3817 *
3818 * This fills out all the not initialized function pointers
3819 * with the defaults.
3820 * The flash ID is read and the mtd/chip structures are
3821 * filled with the appropriate values.
3822 */
3823int onenand_scan(struct mtd_info *mtd, int maxchips)
3824{
3825        int i, ret;
3826        struct onenand_chip *this = mtd->priv;
3827
3828        if (!this->read_word)
3829                this->read_word = onenand_readw;
3830        if (!this->write_word)
3831                this->write_word = onenand_writew;
3832
3833        if (!this->command)
3834                this->command = onenand_command;
3835        if (!this->wait)
3836                onenand_setup_wait(mtd);
3837        if (!this->bbt_wait)
3838                this->bbt_wait = onenand_bbt_wait;
3839        if (!this->unlock_all)
3840                this->unlock_all = onenand_unlock_all;
3841
3842        if (!this->chip_probe)
3843                this->chip_probe = onenand_chip_probe;
3844
3845        if (!this->read_bufferram)
3846                this->read_bufferram = onenand_read_bufferram;
3847        if (!this->write_bufferram)
3848                this->write_bufferram = onenand_write_bufferram;
3849
3850        if (!this->block_markbad)
3851                this->block_markbad = onenand_default_block_markbad;
3852        if (!this->scan_bbt)
3853                this->scan_bbt = onenand_default_bbt;
3854
3855        if (onenand_probe(mtd))
3856                return -ENXIO;
3857
3858        /* Set Sync. Burst Read after probing */
3859        if (this->mmcontrol) {
3860                printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3861                this->read_bufferram = onenand_sync_read_bufferram;
3862        }
3863
3864        /* Allocate buffers, if necessary */
3865        if (!this->page_buf) {
3866                this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3867                if (!this->page_buf)
3868                        return -ENOMEM;
3869#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3870                this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3871                if (!this->verify_buf) {
3872                        kfree(this->page_buf);
3873                        return -ENOMEM;
3874                }
3875#endif
3876                this->options |= ONENAND_PAGEBUF_ALLOC;
3877        }
3878        if (!this->oob_buf) {
3879                this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3880                if (!this->oob_buf) {
3881                        if (this->options & ONENAND_PAGEBUF_ALLOC) {
3882                                this->options &= ~ONENAND_PAGEBUF_ALLOC;
3883                                kfree(this->page_buf);
3884                        }
3885                        return -ENOMEM;
3886                }
3887                this->options |= ONENAND_OOBBUF_ALLOC;
3888        }
3889
3890        this->state = FL_READY;
3891        init_waitqueue_head(&this->wq);
3892        spin_lock_init(&this->chip_lock);
3893
3894        /*
3895         * Allow subpage writes up to oobsize.
3896         */
3897        switch (mtd->oobsize) {
3898        case 128:
3899                if (FLEXONENAND(this)) {
3900                        mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3901                        mtd->subpage_sft = 0;
3902                } else {
3903                        mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3904                        mtd->subpage_sft = 2;
3905                }
3906                if (ONENAND_IS_NOP_1(this))
3907                        mtd->subpage_sft = 0;
3908                break;
3909        case 64:
3910                mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3911                mtd->subpage_sft = 2;
3912                break;
3913
3914        case 32:
3915                mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3916                mtd->subpage_sft = 1;
3917                break;
3918
3919        default:
3920                printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3921                        __func__, mtd->oobsize);
3922                mtd->subpage_sft = 0;
3923                /* To prevent kernel oops */
3924                mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3925                break;
3926        }
3927
3928        this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3929
3930        /*
3931         * The number of bytes available for a client to place data into
3932         * the out of band area
3933         */
3934        ret = mtd_ooblayout_count_freebytes(mtd);
3935        if (ret < 0)
3936                ret = 0;
3937
3938        mtd->oobavail = ret;
3939
3940        mtd->ecc_strength = 1;
3941
3942        /* Fill in remaining MTD driver data */
3943        mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3944        mtd->flags = MTD_CAP_NANDFLASH;
3945        mtd->_erase = onenand_erase;
3946        mtd->_point = NULL;
3947        mtd->_unpoint = NULL;
3948        mtd->_read_oob = onenand_read_oob;
3949        mtd->_write_oob = onenand_write_oob;
3950        mtd->_panic_write = onenand_panic_write;
3951#ifdef CONFIG_MTD_ONENAND_OTP
3952        mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3953        mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3954        mtd->_get_user_prot_info = onenand_get_user_prot_info;
3955        mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3956        mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3957        mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3958#endif
3959        mtd->_sync = onenand_sync;
3960        mtd->_lock = onenand_lock;
3961        mtd->_unlock = onenand_unlock;
3962        mtd->_suspend = onenand_suspend;
3963        mtd->_resume = onenand_resume;
3964        mtd->_block_isbad = onenand_block_isbad;
3965        mtd->_block_markbad = onenand_block_markbad;
3966        mtd->owner = THIS_MODULE;
3967        mtd->writebufsize = mtd->writesize;
3968
3969        /* Unlock whole block */
3970        if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3971                this->unlock_all(mtd);
3972
3973        /* Set the bad block marker position */
3974        this->badblockpos = ONENAND_BADBLOCK_POS;
3975
3976        ret = this->scan_bbt(mtd);
3977        if ((!FLEXONENAND(this)) || ret)
3978                return ret;
3979
3980        /* Change Flex-OneNAND boundaries if required */
3981        for (i = 0; i < MAX_DIES; i++)
3982                flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3983                                                 flex_bdry[(2 * i) + 1]);
3984
3985        return 0;
3986}
3987
3988/**
3989 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3990 * @param mtd           MTD device structure
3991 */
3992void onenand_release(struct mtd_info *mtd)
3993{
3994        struct onenand_chip *this = mtd->priv;
3995
3996        /* Deregister partitions */
3997        mtd_device_unregister(mtd);
3998
3999        /* Free bad block table memory, if allocated */
4000        if (this->bbm) {
4001                struct bbm_info *bbm = this->bbm;
4002                kfree(bbm->bbt);
4003                kfree(this->bbm);
4004        }
4005        /* Buffers allocated by onenand_scan */
4006        if (this->options & ONENAND_PAGEBUF_ALLOC) {
4007                kfree(this->page_buf);
4008#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4009                kfree(this->verify_buf);
4010#endif
4011        }
4012        if (this->options & ONENAND_OOBBUF_ALLOC)
4013                kfree(this->oob_buf);
4014        kfree(mtd->eraseregions);
4015}
4016
4017EXPORT_SYMBOL_GPL(onenand_scan);
4018EXPORT_SYMBOL_GPL(onenand_release);
4019
4020MODULE_LICENSE("GPL");
4021MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4022MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4023