linux/drivers/mtd/nand/raw/au1550nd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2004 Embedded Edge, LLC
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/module.h>
   8#include <linux/interrupt.h>
   9#include <linux/mtd/mtd.h>
  10#include <linux/mtd/rawnand.h>
  11#include <linux/mtd/partitions.h>
  12#include <linux/platform_device.h>
  13#include <asm/io.h>
  14#include <asm/mach-au1x00/au1000.h>
  15#include <asm/mach-au1x00/au1550nd.h>
  16
  17
  18struct au1550nd_ctx {
  19        struct nand_chip chip;
  20
  21        int cs;
  22        void __iomem *base;
  23        void (*write_byte)(struct nand_chip *, u_char);
  24};
  25
  26/**
  27 * au_read_byte -  read one byte from the chip
  28 * @this:       NAND chip object
  29 *
  30 * read function for 8bit buswidth
  31 */
  32static u_char au_read_byte(struct nand_chip *this)
  33{
  34        u_char ret = readb(this->legacy.IO_ADDR_R);
  35        wmb(); /* drain writebuffer */
  36        return ret;
  37}
  38
  39/**
  40 * au_write_byte -  write one byte to the chip
  41 * @this:       NAND chip object
  42 * @byte:       pointer to data byte to write
  43 *
  44 * write function for 8it buswidth
  45 */
  46static void au_write_byte(struct nand_chip *this, u_char byte)
  47{
  48        writeb(byte, this->legacy.IO_ADDR_W);
  49        wmb(); /* drain writebuffer */
  50}
  51
  52/**
  53 * au_read_byte16 -  read one byte endianness aware from the chip
  54 * @this:       NAND chip object
  55 *
  56 * read function for 16bit buswidth with endianness conversion
  57 */
  58static u_char au_read_byte16(struct nand_chip *this)
  59{
  60        u_char ret = (u_char) cpu_to_le16(readw(this->legacy.IO_ADDR_R));
  61        wmb(); /* drain writebuffer */
  62        return ret;
  63}
  64
  65/**
  66 * au_write_byte16 -  write one byte endianness aware to the chip
  67 * @this:       NAND chip object
  68 * @byte:       pointer to data byte to write
  69 *
  70 * write function for 16bit buswidth with endianness conversion
  71 */
  72static void au_write_byte16(struct nand_chip *this, u_char byte)
  73{
  74        writew(le16_to_cpu((u16) byte), this->legacy.IO_ADDR_W);
  75        wmb(); /* drain writebuffer */
  76}
  77
  78/**
  79 * au_write_buf -  write buffer to chip
  80 * @this:       NAND chip object
  81 * @buf:        data buffer
  82 * @len:        number of bytes to write
  83 *
  84 * write function for 8bit buswidth
  85 */
  86static void au_write_buf(struct nand_chip *this, const u_char *buf, int len)
  87{
  88        int i;
  89
  90        for (i = 0; i < len; i++) {
  91                writeb(buf[i], this->legacy.IO_ADDR_W);
  92                wmb(); /* drain writebuffer */
  93        }
  94}
  95
  96/**
  97 * au_read_buf -  read chip data into buffer
  98 * @this:       NAND chip object
  99 * @buf:        buffer to store date
 100 * @len:        number of bytes to read
 101 *
 102 * read function for 8bit buswidth
 103 */
 104static void au_read_buf(struct nand_chip *this, u_char *buf, int len)
 105{
 106        int i;
 107
 108        for (i = 0; i < len; i++) {
 109                buf[i] = readb(this->legacy.IO_ADDR_R);
 110                wmb(); /* drain writebuffer */
 111        }
 112}
 113
 114/**
 115 * au_write_buf16 -  write buffer to chip
 116 * @this:       NAND chip object
 117 * @buf:        data buffer
 118 * @len:        number of bytes to write
 119 *
 120 * write function for 16bit buswidth
 121 */
 122static void au_write_buf16(struct nand_chip *this, const u_char *buf, int len)
 123{
 124        int i;
 125        u16 *p = (u16 *) buf;
 126        len >>= 1;
 127
 128        for (i = 0; i < len; i++) {
 129                writew(p[i], this->legacy.IO_ADDR_W);
 130                wmb(); /* drain writebuffer */
 131        }
 132
 133}
 134
 135/**
 136 * au_read_buf16 -  read chip data into buffer
 137 * @mtd:        MTD device structure
 138 * @buf:        buffer to store date
 139 * @len:        number of bytes to read
 140 *
 141 * read function for 16bit buswidth
 142 */
 143static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 144{
 145        int i;
 146        struct nand_chip *this = mtd_to_nand(mtd);
 147        u16 *p = (u16 *) buf;
 148        len >>= 1;
 149
 150        for (i = 0; i < len; i++) {
 151                p[i] = readw(this->legacy.IO_ADDR_R);
 152                wmb(); /* drain writebuffer */
 153        }
 154}
 155
 156/* Select the chip by setting nCE to low */
 157#define NAND_CTL_SETNCE         1
 158/* Deselect the chip by setting nCE to high */
 159#define NAND_CTL_CLRNCE         2
 160/* Select the command latch by setting CLE to high */
 161#define NAND_CTL_SETCLE         3
 162/* Deselect the command latch by setting CLE to low */
 163#define NAND_CTL_CLRCLE         4
 164/* Select the address latch by setting ALE to high */
 165#define NAND_CTL_SETALE         5
 166/* Deselect the address latch by setting ALE to low */
 167#define NAND_CTL_CLRALE         6
 168
 169static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
 170{
 171        struct nand_chip *this = mtd_to_nand(mtd);
 172        struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
 173                                                chip);
 174
 175        switch (cmd) {
 176
 177        case NAND_CTL_SETCLE:
 178                this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
 179                break;
 180
 181        case NAND_CTL_CLRCLE:
 182                this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
 183                break;
 184
 185        case NAND_CTL_SETALE:
 186                this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
 187                break;
 188
 189        case NAND_CTL_CLRALE:
 190                this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
 191                /* FIXME: Nobody knows why this is necessary,
 192                 * but it works only that way */
 193                udelay(1);
 194                break;
 195
 196        case NAND_CTL_SETNCE:
 197                /* assert (force assert) chip enable */
 198                alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
 199                break;
 200
 201        case NAND_CTL_CLRNCE:
 202                /* deassert chip enable */
 203                alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
 204                break;
 205        }
 206
 207        this->legacy.IO_ADDR_R = this->legacy.IO_ADDR_W;
 208
 209        wmb(); /* Drain the writebuffer */
 210}
 211
 212int au1550_device_ready(struct nand_chip *this)
 213{
 214        return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
 215}
 216
 217/**
 218 * au1550_select_chip - control -CE line
 219 *      Forbid driving -CE manually permitting the NAND controller to do this.
 220 *      Keeping -CE asserted during the whole sector reads interferes with the
 221 *      NOR flash and PCMCIA drivers as it causes contention on the static bus.
 222 *      We only have to hold -CE low for the NAND read commands since the flash
 223 *      chip needs it to be asserted during chip not ready time but the NAND
 224 *      controller keeps it released.
 225 *
 226 * @this:       NAND chip object
 227 * @chip:       chipnumber to select, -1 for deselect
 228 */
 229static void au1550_select_chip(struct nand_chip *this, int chip)
 230{
 231}
 232
 233/**
 234 * au1550_command - Send command to NAND device
 235 * @this:       NAND chip object
 236 * @command:    the command to be sent
 237 * @column:     the column address for this command, -1 if none
 238 * @page_addr:  the page address for this command, -1 if none
 239 */
 240static void au1550_command(struct nand_chip *this, unsigned command,
 241                           int column, int page_addr)
 242{
 243        struct mtd_info *mtd = nand_to_mtd(this);
 244        struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
 245                                                chip);
 246        int ce_override = 0, i;
 247        unsigned long flags = 0;
 248
 249        /* Begin command latch cycle */
 250        au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
 251        /*
 252         * Write out the command to the device.
 253         */
 254        if (command == NAND_CMD_SEQIN) {
 255                int readcmd;
 256
 257                if (column >= mtd->writesize) {
 258                        /* OOB area */
 259                        column -= mtd->writesize;
 260                        readcmd = NAND_CMD_READOOB;
 261                } else if (column < 256) {
 262                        /* First 256 bytes --> READ0 */
 263                        readcmd = NAND_CMD_READ0;
 264                } else {
 265                        column -= 256;
 266                        readcmd = NAND_CMD_READ1;
 267                }
 268                ctx->write_byte(this, readcmd);
 269        }
 270        ctx->write_byte(this, command);
 271
 272        /* Set ALE and clear CLE to start address cycle */
 273        au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
 274
 275        if (column != -1 || page_addr != -1) {
 276                au1550_hwcontrol(mtd, NAND_CTL_SETALE);
 277
 278                /* Serially input address */
 279                if (column != -1) {
 280                        /* Adjust columns for 16 bit buswidth */
 281                        if (this->options & NAND_BUSWIDTH_16 &&
 282                                        !nand_opcode_8bits(command))
 283                                column >>= 1;
 284                        ctx->write_byte(this, column);
 285                }
 286                if (page_addr != -1) {
 287                        ctx->write_byte(this, (u8)(page_addr & 0xff));
 288
 289                        if (command == NAND_CMD_READ0 ||
 290                            command == NAND_CMD_READ1 ||
 291                            command == NAND_CMD_READOOB) {
 292                                /*
 293                                 * NAND controller will release -CE after
 294                                 * the last address byte is written, so we'll
 295                                 * have to forcibly assert it. No interrupts
 296                                 * are allowed while we do this as we don't
 297                                 * want the NOR flash or PCMCIA drivers to
 298                                 * steal our precious bytes of data...
 299                                 */
 300                                ce_override = 1;
 301                                local_irq_save(flags);
 302                                au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
 303                        }
 304
 305                        ctx->write_byte(this, (u8)(page_addr >> 8));
 306
 307                        if (this->options & NAND_ROW_ADDR_3)
 308                                ctx->write_byte(this,
 309                                                ((page_addr >> 16) & 0x0f));
 310                }
 311                /* Latch in address */
 312                au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
 313        }
 314
 315        /*
 316         * Program and erase have their own busy handlers.
 317         * Status and sequential in need no delay.
 318         */
 319        switch (command) {
 320
 321        case NAND_CMD_PAGEPROG:
 322        case NAND_CMD_ERASE1:
 323        case NAND_CMD_ERASE2:
 324        case NAND_CMD_SEQIN:
 325        case NAND_CMD_STATUS:
 326                return;
 327
 328        case NAND_CMD_RESET:
 329                break;
 330
 331        case NAND_CMD_READ0:
 332        case NAND_CMD_READ1:
 333        case NAND_CMD_READOOB:
 334                /* Check if we're really driving -CE low (just in case) */
 335                if (unlikely(!ce_override))
 336                        break;
 337
 338                /* Apply a short delay always to ensure that we do wait tWB. */
 339                ndelay(100);
 340                /* Wait for a chip to become ready... */
 341                for (i = this->legacy.chip_delay;
 342                     !this->legacy.dev_ready(this) && i > 0; --i)
 343                        udelay(1);
 344
 345                /* Release -CE and re-enable interrupts. */
 346                au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
 347                local_irq_restore(flags);
 348                return;
 349        }
 350        /* Apply this short delay always to ensure that we do wait tWB. */
 351        ndelay(100);
 352
 353        while(!this->legacy.dev_ready(this));
 354}
 355
 356static int find_nand_cs(unsigned long nand_base)
 357{
 358        void __iomem *base =
 359                        (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
 360        unsigned long addr, staddr, start, mask, end;
 361        int i;
 362
 363        for (i = 0; i < 4; i++) {
 364                addr = 0x1000 + (i * 0x10);                     /* CSx */
 365                staddr = __raw_readl(base + addr + 0x08);       /* STADDRx */
 366                /* figure out the decoded range of this CS */
 367                start = (staddr << 4) & 0xfffc0000;
 368                mask = (staddr << 18) & 0xfffc0000;
 369                end = (start | (start - 1)) & ~(start ^ mask);
 370                if ((nand_base >= start) && (nand_base < end))
 371                        return i;
 372        }
 373
 374        return -ENODEV;
 375}
 376
 377static int au1550nd_probe(struct platform_device *pdev)
 378{
 379        struct au1550nd_platdata *pd;
 380        struct au1550nd_ctx *ctx;
 381        struct nand_chip *this;
 382        struct mtd_info *mtd;
 383        struct resource *r;
 384        int ret, cs;
 385
 386        pd = dev_get_platdata(&pdev->dev);
 387        if (!pd) {
 388                dev_err(&pdev->dev, "missing platform data\n");
 389                return -ENODEV;
 390        }
 391
 392        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 393        if (!ctx)
 394                return -ENOMEM;
 395
 396        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 397        if (!r) {
 398                dev_err(&pdev->dev, "no NAND memory resource\n");
 399                ret = -ENODEV;
 400                goto out1;
 401        }
 402        if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
 403                dev_err(&pdev->dev, "cannot claim NAND memory area\n");
 404                ret = -ENOMEM;
 405                goto out1;
 406        }
 407
 408        ctx->base = ioremap_nocache(r->start, 0x1000);
 409        if (!ctx->base) {
 410                dev_err(&pdev->dev, "cannot remap NAND memory area\n");
 411                ret = -ENODEV;
 412                goto out2;
 413        }
 414
 415        this = &ctx->chip;
 416        mtd = nand_to_mtd(this);
 417        mtd->dev.parent = &pdev->dev;
 418
 419        /* figure out which CS# r->start belongs to */
 420        cs = find_nand_cs(r->start);
 421        if (cs < 0) {
 422                dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
 423                ret = -ENODEV;
 424                goto out3;
 425        }
 426        ctx->cs = cs;
 427
 428        this->legacy.dev_ready = au1550_device_ready;
 429        this->legacy.select_chip = au1550_select_chip;
 430        this->legacy.cmdfunc = au1550_command;
 431
 432        /* 30 us command delay time */
 433        this->legacy.chip_delay = 30;
 434        this->ecc.mode = NAND_ECC_SOFT;
 435        this->ecc.algo = NAND_ECC_HAMMING;
 436
 437        if (pd->devwidth)
 438                this->options |= NAND_BUSWIDTH_16;
 439
 440        this->legacy.read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
 441        ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
 442        this->legacy.write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
 443        this->legacy.read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
 444
 445        ret = nand_scan(this, 1);
 446        if (ret) {
 447                dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
 448                goto out3;
 449        }
 450
 451        mtd_device_register(mtd, pd->parts, pd->num_parts);
 452
 453        platform_set_drvdata(pdev, ctx);
 454
 455        return 0;
 456
 457out3:
 458        iounmap(ctx->base);
 459out2:
 460        release_mem_region(r->start, resource_size(r));
 461out1:
 462        kfree(ctx);
 463        return ret;
 464}
 465
 466static int au1550nd_remove(struct platform_device *pdev)
 467{
 468        struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
 469        struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 470
 471        nand_release(&ctx->chip);
 472        iounmap(ctx->base);
 473        release_mem_region(r->start, 0x1000);
 474        kfree(ctx);
 475        return 0;
 476}
 477
 478static struct platform_driver au1550nd_driver = {
 479        .driver = {
 480                .name   = "au1550-nand",
 481        },
 482        .probe          = au1550nd_probe,
 483        .remove         = au1550nd_remove,
 484};
 485
 486module_platform_driver(au1550nd_driver);
 487
 488MODULE_LICENSE("GPL");
 489MODULE_AUTHOR("Embedded Edge, LLC");
 490MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
 491