linux/drivers/mtd/nand/raw/vf610_nfc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
   4 *
   5 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
   6 * Jason ported to M54418TWR and MVFA5 (VF610).
   7 * Authors: Stefan Agner <stefan.agner@toradex.com>
   8 *          Bill Pringlemeir <bpringlemeir@nbsps.com>
   9 *          Shaohui Xie <b21989@freescale.com>
  10 *          Jason Jin <Jason.jin@freescale.com>
  11 *
  12 * Based on original driver mpc5121_nfc.c.
  13 *
  14 * Limitations:
  15 * - Untested on MPC5125 and M54418.
  16 * - DMA and pipelining not used.
  17 * - 2K pages or less.
  18 * - HW ECC: Only 2K page with 64+ OOB.
  19 * - HW ECC: Only 24 and 32-bit error correction implemented.
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/bitops.h>
  24#include <linux/clk.h>
  25#include <linux/delay.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/io.h>
  29#include <linux/mtd/mtd.h>
  30#include <linux/mtd/rawnand.h>
  31#include <linux/mtd/partitions.h>
  32#include <linux/of_device.h>
  33#include <linux/platform_device.h>
  34#include <linux/slab.h>
  35#include <linux/swab.h>
  36
  37#define DRV_NAME                "vf610_nfc"
  38
  39/* Register Offsets */
  40#define NFC_FLASH_CMD1                  0x3F00
  41#define NFC_FLASH_CMD2                  0x3F04
  42#define NFC_COL_ADDR                    0x3F08
  43#define NFC_ROW_ADDR                    0x3F0c
  44#define NFC_ROW_ADDR_INC                0x3F14
  45#define NFC_FLASH_STATUS1               0x3F18
  46#define NFC_FLASH_STATUS2               0x3F1c
  47#define NFC_CACHE_SWAP                  0x3F28
  48#define NFC_SECTOR_SIZE                 0x3F2c
  49#define NFC_FLASH_CONFIG                0x3F30
  50#define NFC_IRQ_STATUS                  0x3F38
  51
  52/* Addresses for NFC MAIN RAM BUFFER areas */
  53#define NFC_MAIN_AREA(n)                ((n) *  0x1000)
  54
  55#define PAGE_2K                         0x0800
  56#define OOB_64                          0x0040
  57#define OOB_MAX                         0x0100
  58
  59/* NFC_CMD2[CODE] controller cycle bit masks */
  60#define COMMAND_CMD_BYTE1               BIT(14)
  61#define COMMAND_CAR_BYTE1               BIT(13)
  62#define COMMAND_CAR_BYTE2               BIT(12)
  63#define COMMAND_RAR_BYTE1               BIT(11)
  64#define COMMAND_RAR_BYTE2               BIT(10)
  65#define COMMAND_RAR_BYTE3               BIT(9)
  66#define COMMAND_NADDR_BYTES(x)          GENMASK(13, 13 - (x) + 1)
  67#define COMMAND_WRITE_DATA              BIT(8)
  68#define COMMAND_CMD_BYTE2               BIT(7)
  69#define COMMAND_RB_HANDSHAKE            BIT(6)
  70#define COMMAND_READ_DATA               BIT(5)
  71#define COMMAND_CMD_BYTE3               BIT(4)
  72#define COMMAND_READ_STATUS             BIT(3)
  73#define COMMAND_READ_ID                 BIT(2)
  74
  75/* NFC ECC mode define */
  76#define ECC_BYPASS                      0
  77#define ECC_45_BYTE                     6
  78#define ECC_60_BYTE                     7
  79
  80/*** Register Mask and bit definitions */
  81
  82/* NFC_FLASH_CMD1 Field */
  83#define CMD_BYTE2_MASK                          0xFF000000
  84#define CMD_BYTE2_SHIFT                         24
  85
  86/* NFC_FLASH_CM2 Field */
  87#define CMD_BYTE1_MASK                          0xFF000000
  88#define CMD_BYTE1_SHIFT                         24
  89#define CMD_CODE_MASK                           0x00FFFF00
  90#define CMD_CODE_SHIFT                          8
  91#define BUFNO_MASK                              0x00000006
  92#define BUFNO_SHIFT                             1
  93#define START_BIT                               BIT(0)
  94
  95/* NFC_COL_ADDR Field */
  96#define COL_ADDR_MASK                           0x0000FFFF
  97#define COL_ADDR_SHIFT                          0
  98#define COL_ADDR(pos, val)                      (((val) & 0xFF) << (8 * (pos)))
  99
 100/* NFC_ROW_ADDR Field */
 101#define ROW_ADDR_MASK                           0x00FFFFFF
 102#define ROW_ADDR_SHIFT                          0
 103#define ROW_ADDR(pos, val)                      (((val) & 0xFF) << (8 * (pos)))
 104
 105#define ROW_ADDR_CHIP_SEL_RB_MASK               0xF0000000
 106#define ROW_ADDR_CHIP_SEL_RB_SHIFT              28
 107#define ROW_ADDR_CHIP_SEL_MASK                  0x0F000000
 108#define ROW_ADDR_CHIP_SEL_SHIFT                 24
 109
 110/* NFC_FLASH_STATUS2 Field */
 111#define STATUS_BYTE1_MASK                       0x000000FF
 112
 113/* NFC_FLASH_CONFIG Field */
 114#define CONFIG_ECC_SRAM_ADDR_MASK               0x7FC00000
 115#define CONFIG_ECC_SRAM_ADDR_SHIFT              22
 116#define CONFIG_ECC_SRAM_REQ_BIT                 BIT(21)
 117#define CONFIG_DMA_REQ_BIT                      BIT(20)
 118#define CONFIG_ECC_MODE_MASK                    0x000E0000
 119#define CONFIG_ECC_MODE_SHIFT                   17
 120#define CONFIG_FAST_FLASH_BIT                   BIT(16)
 121#define CONFIG_16BIT                            BIT(7)
 122#define CONFIG_BOOT_MODE_BIT                    BIT(6)
 123#define CONFIG_ADDR_AUTO_INCR_BIT               BIT(5)
 124#define CONFIG_BUFNO_AUTO_INCR_BIT              BIT(4)
 125#define CONFIG_PAGE_CNT_MASK                    0xF
 126#define CONFIG_PAGE_CNT_SHIFT                   0
 127
 128/* NFC_IRQ_STATUS Field */
 129#define IDLE_IRQ_BIT                            BIT(29)
 130#define IDLE_EN_BIT                             BIT(20)
 131#define CMD_DONE_CLEAR_BIT                      BIT(18)
 132#define IDLE_CLEAR_BIT                          BIT(17)
 133
 134/*
 135 * ECC status - seems to consume 8 bytes (double word). The documented
 136 * status byte is located in the lowest byte of the second word (which is
 137 * the 4th or 7th byte depending on endianness).
 138 * Calculate an offset to store the ECC status at the end of the buffer.
 139 */
 140#define ECC_SRAM_ADDR           (PAGE_2K + OOB_MAX - 8)
 141
 142#define ECC_STATUS              0x4
 143#define ECC_STATUS_MASK         0x80
 144#define ECC_STATUS_ERR_COUNT    0x3F
 145
 146enum vf610_nfc_variant {
 147        NFC_VFC610 = 1,
 148};
 149
 150struct vf610_nfc {
 151        struct nand_controller base;
 152        struct nand_chip chip;
 153        struct device *dev;
 154        void __iomem *regs;
 155        struct completion cmd_done;
 156        /* Status and ID are in alternate locations. */
 157        enum vf610_nfc_variant variant;
 158        struct clk *clk;
 159        /*
 160         * Indicate that user data is accessed (full page/oob). This is
 161         * useful to indicate the driver whether to swap byte endianness.
 162         * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
 163         */
 164        bool data_access;
 165        u32 ecc_mode;
 166};
 167
 168static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
 169{
 170        return container_of(chip, struct vf610_nfc, chip);
 171}
 172
 173static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
 174{
 175        return readl(nfc->regs + reg);
 176}
 177
 178static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
 179{
 180        writel(val, nfc->regs + reg);
 181}
 182
 183static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
 184{
 185        vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
 186}
 187
 188static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
 189{
 190        vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
 191}
 192
 193static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
 194                                       u32 mask, u32 shift, u32 val)
 195{
 196        vf610_nfc_write(nfc, reg,
 197                        (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
 198}
 199
 200static inline bool vf610_nfc_kernel_is_little_endian(void)
 201{
 202#ifdef __LITTLE_ENDIAN
 203        return true;
 204#else
 205        return false;
 206#endif
 207}
 208
 209/**
 210 * Read accessor for internal SRAM buffer
 211 * @dst: destination address in regular memory
 212 * @src: source address in SRAM buffer
 213 * @len: bytes to copy
 214 * @fix_endian: Fix endianness if required
 215 *
 216 * Use this accessor for the internal SRAM buffers. On the ARM
 217 * Freescale Vybrid SoC it's known that the driver can treat
 218 * the SRAM buffer as if it's memory. Other platform might need
 219 * to treat the buffers differently.
 220 *
 221 * The controller stores bytes from the NAND chip internally in big
 222 * endianness. On little endian platforms such as Vybrid this leads
 223 * to reversed byte order.
 224 * For performance reason (and earlier probably due to unawareness)
 225 * the driver avoids correcting endianness where it has control over
 226 * write and read side (e.g. page wise data access).
 227 */
 228static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
 229                                          size_t len, bool fix_endian)
 230{
 231        if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
 232                unsigned int i;
 233
 234                for (i = 0; i < len; i += 4) {
 235                        u32 val = swab32(__raw_readl(src + i));
 236
 237                        memcpy(dst + i, &val, min(sizeof(val), len - i));
 238                }
 239        } else {
 240                memcpy_fromio(dst, src, len);
 241        }
 242}
 243
 244/**
 245 * Write accessor for internal SRAM buffer
 246 * @dst: destination address in SRAM buffer
 247 * @src: source address in regular memory
 248 * @len: bytes to copy
 249 * @fix_endian: Fix endianness if required
 250 *
 251 * Use this accessor for the internal SRAM buffers. On the ARM
 252 * Freescale Vybrid SoC it's known that the driver can treat
 253 * the SRAM buffer as if it's memory. Other platform might need
 254 * to treat the buffers differently.
 255 *
 256 * The controller stores bytes from the NAND chip internally in big
 257 * endianness. On little endian platforms such as Vybrid this leads
 258 * to reversed byte order.
 259 * For performance reason (and earlier probably due to unawareness)
 260 * the driver avoids correcting endianness where it has control over
 261 * write and read side (e.g. page wise data access).
 262 */
 263static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
 264                                        size_t len, bool fix_endian)
 265{
 266        if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
 267                unsigned int i;
 268
 269                for (i = 0; i < len; i += 4) {
 270                        u32 val;
 271
 272                        memcpy(&val, src + i, min(sizeof(val), len - i));
 273                        __raw_writel(swab32(val), dst + i);
 274                }
 275        } else {
 276                memcpy_toio(dst, src, len);
 277        }
 278}
 279
 280/* Clear flags for upcoming command */
 281static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
 282{
 283        u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
 284
 285        tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
 286        vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
 287}
 288
 289static void vf610_nfc_done(struct vf610_nfc *nfc)
 290{
 291        unsigned long timeout = msecs_to_jiffies(100);
 292
 293        /*
 294         * Barrier is needed after this write. This write need
 295         * to be done before reading the next register the first
 296         * time.
 297         * vf610_nfc_set implicates such a barrier by using writel
 298         * to write to the register.
 299         */
 300        vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
 301        vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
 302
 303        if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
 304                dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
 305
 306        vf610_nfc_clear_status(nfc);
 307}
 308
 309static irqreturn_t vf610_nfc_irq(int irq, void *data)
 310{
 311        struct vf610_nfc *nfc = data;
 312
 313        vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
 314        complete(&nfc->cmd_done);
 315
 316        return IRQ_HANDLED;
 317}
 318
 319static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
 320{
 321        vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
 322                            CONFIG_ECC_MODE_MASK,
 323                            CONFIG_ECC_MODE_SHIFT, ecc_mode);
 324}
 325
 326static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
 327{
 328        vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
 329}
 330
 331static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
 332                                 u32 cmd1, u32 cmd2, u32 trfr_sz)
 333{
 334        vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
 335                            COL_ADDR_SHIFT, col);
 336
 337        vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
 338                            ROW_ADDR_SHIFT, row);
 339
 340        vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
 341        vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
 342        vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
 343
 344        dev_dbg(nfc->dev,
 345                "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
 346                col, row, cmd1, cmd2, trfr_sz);
 347
 348        vf610_nfc_done(nfc);
 349}
 350
 351static inline const struct nand_op_instr *
 352vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
 353{
 354        if (*op_id + 1 >= subop->ninstrs)
 355                return NULL;
 356
 357        (*op_id)++;
 358
 359        return &subop->instrs[*op_id];
 360}
 361
 362static int vf610_nfc_cmd(struct nand_chip *chip,
 363                         const struct nand_subop *subop)
 364{
 365        const struct nand_op_instr *instr;
 366        struct vf610_nfc *nfc = chip_to_nfc(chip);
 367        int op_id = -1, trfr_sz = 0, offset = 0;
 368        u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
 369        bool force8bit = false;
 370
 371        /*
 372         * Some ops are optional, but the hardware requires the operations
 373         * to be in this exact order.
 374         * The op parser enforces the order and makes sure that there isn't
 375         * a read and write element in a single operation.
 376         */
 377        instr = vf610_get_next_instr(subop, &op_id);
 378        if (!instr)
 379                return -EINVAL;
 380
 381        if (instr && instr->type == NAND_OP_CMD_INSTR) {
 382                cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
 383                code |= COMMAND_CMD_BYTE1;
 384
 385                instr = vf610_get_next_instr(subop, &op_id);
 386        }
 387
 388        if (instr && instr->type == NAND_OP_ADDR_INSTR) {
 389                int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
 390                int i = nand_subop_get_addr_start_off(subop, op_id);
 391
 392                for (; i < naddrs; i++) {
 393                        u8 val = instr->ctx.addr.addrs[i];
 394
 395                        if (i < 2)
 396                                col |= COL_ADDR(i, val);
 397                        else
 398                                row |= ROW_ADDR(i - 2, val);
 399                }
 400                code |= COMMAND_NADDR_BYTES(naddrs);
 401
 402                instr = vf610_get_next_instr(subop, &op_id);
 403        }
 404
 405        if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
 406                trfr_sz = nand_subop_get_data_len(subop, op_id);
 407                offset = nand_subop_get_data_start_off(subop, op_id);
 408                force8bit = instr->ctx.data.force_8bit;
 409
 410                /*
 411                 * Don't fix endianness on page access for historical reasons.
 412                 * See comment in vf610_nfc_wr_to_sram
 413                 */
 414                vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
 415                                     instr->ctx.data.buf.out + offset,
 416                                     trfr_sz, !nfc->data_access);
 417                code |= COMMAND_WRITE_DATA;
 418
 419                instr = vf610_get_next_instr(subop, &op_id);
 420        }
 421
 422        if (instr && instr->type == NAND_OP_CMD_INSTR) {
 423                cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
 424                code |= COMMAND_CMD_BYTE2;
 425
 426                instr = vf610_get_next_instr(subop, &op_id);
 427        }
 428
 429        if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
 430                code |= COMMAND_RB_HANDSHAKE;
 431
 432                instr = vf610_get_next_instr(subop, &op_id);
 433        }
 434
 435        if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
 436                trfr_sz = nand_subop_get_data_len(subop, op_id);
 437                offset = nand_subop_get_data_start_off(subop, op_id);
 438                force8bit = instr->ctx.data.force_8bit;
 439
 440                code |= COMMAND_READ_DATA;
 441        }
 442
 443        if (force8bit && (chip->options & NAND_BUSWIDTH_16))
 444                vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 445
 446        cmd2 |= code << CMD_CODE_SHIFT;
 447
 448        vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
 449
 450        if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
 451                /*
 452                 * Don't fix endianness on page access for historical reasons.
 453                 * See comment in vf610_nfc_rd_from_sram
 454                 */
 455                vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
 456                                       nfc->regs + NFC_MAIN_AREA(0) + offset,
 457                                       trfr_sz, !nfc->data_access);
 458        }
 459
 460        if (force8bit && (chip->options & NAND_BUSWIDTH_16))
 461                vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 462
 463        return 0;
 464}
 465
 466static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
 467        NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
 468                NAND_OP_PARSER_PAT_CMD_ELEM(true),
 469                NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
 470                NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
 471                NAND_OP_PARSER_PAT_CMD_ELEM(true),
 472                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
 473        NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
 474                NAND_OP_PARSER_PAT_CMD_ELEM(true),
 475                NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
 476                NAND_OP_PARSER_PAT_CMD_ELEM(true),
 477                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
 478                NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
 479        );
 480
 481/*
 482 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
 483 */
 484static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
 485{
 486        struct vf610_nfc *nfc = chip_to_nfc(chip);
 487        u32 tmp;
 488
 489        /* Vybrid only (MPC5125 would have full RB and four CS) */
 490        if (nfc->variant != NFC_VFC610)
 491                return;
 492
 493        tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
 494        tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
 495        tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
 496        tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
 497
 498        vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
 499}
 500
 501static int vf610_nfc_exec_op(struct nand_chip *chip,
 502                             const struct nand_operation *op,
 503                             bool check_only)
 504{
 505        vf610_nfc_select_target(chip, op->cs);
 506        return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
 507                                      check_only);
 508}
 509
 510static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
 511                                         uint8_t *oob, int page)
 512{
 513        struct vf610_nfc *nfc = chip_to_nfc(chip);
 514        struct mtd_info *mtd = nand_to_mtd(chip);
 515        u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
 516        u8 ecc_status;
 517        u8 ecc_count;
 518        int flips_threshold = nfc->chip.ecc.strength / 2;
 519
 520        ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
 521        ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
 522
 523        if (!(ecc_status & ECC_STATUS_MASK))
 524                return ecc_count;
 525
 526        nfc->data_access = true;
 527        nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
 528        nfc->data_access = false;
 529
 530        /*
 531         * On an erased page, bit count (including OOB) should be zero or
 532         * at least less then half of the ECC strength.
 533         */
 534        return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
 535                                           mtd->oobsize, NULL, 0,
 536                                           flips_threshold);
 537}
 538
 539static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
 540                               u32 *row)
 541{
 542        *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
 543        *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
 544
 545        if (chip->options & NAND_ROW_ADDR_3) {
 546                *row |= ROW_ADDR(2, page >> 16);
 547                *code |= COMMAND_RAR_BYTE3;
 548        }
 549}
 550
 551static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
 552                               int oob_required, int page)
 553{
 554        struct vf610_nfc *nfc = chip_to_nfc(chip);
 555        struct mtd_info *mtd = nand_to_mtd(chip);
 556        int trfr_sz = mtd->writesize + mtd->oobsize;
 557        u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
 558        int stat;
 559
 560        vf610_nfc_select_target(chip, chip->cur_cs);
 561
 562        cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
 563        code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
 564
 565        vf610_nfc_fill_row(chip, page, &code, &row);
 566
 567        cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
 568        code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
 569
 570        cmd2 |= code << CMD_CODE_SHIFT;
 571
 572        vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
 573        vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
 574        vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
 575
 576        /*
 577         * Don't fix endianness on page access for historical reasons.
 578         * See comment in vf610_nfc_rd_from_sram
 579         */
 580        vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
 581                               mtd->writesize, false);
 582        if (oob_required)
 583                vf610_nfc_rd_from_sram(chip->oob_poi,
 584                                       nfc->regs + NFC_MAIN_AREA(0) +
 585                                                   mtd->writesize,
 586                                       mtd->oobsize, false);
 587
 588        stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
 589
 590        if (stat < 0) {
 591                mtd->ecc_stats.failed++;
 592                return 0;
 593        } else {
 594                mtd->ecc_stats.corrected += stat;
 595                return stat;
 596        }
 597}
 598
 599static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
 600                                int oob_required, int page)
 601{
 602        struct vf610_nfc *nfc = chip_to_nfc(chip);
 603        struct mtd_info *mtd = nand_to_mtd(chip);
 604        int trfr_sz = mtd->writesize + mtd->oobsize;
 605        u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
 606        u8 status;
 607        int ret;
 608
 609        vf610_nfc_select_target(chip, chip->cur_cs);
 610
 611        cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
 612        code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
 613
 614        vf610_nfc_fill_row(chip, page, &code, &row);
 615
 616        cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
 617        code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
 618
 619        /*
 620         * Don't fix endianness on page access for historical reasons.
 621         * See comment in vf610_nfc_wr_to_sram
 622         */
 623        vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
 624                             mtd->writesize, false);
 625
 626        code |= COMMAND_RB_HANDSHAKE;
 627        cmd2 |= code << CMD_CODE_SHIFT;
 628
 629        vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
 630        vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
 631        vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
 632
 633        ret = nand_status_op(chip, &status);
 634        if (ret)
 635                return ret;
 636
 637        if (status & NAND_STATUS_FAIL)
 638                return -EIO;
 639
 640        return 0;
 641}
 642
 643static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
 644                                   int oob_required, int page)
 645{
 646        struct vf610_nfc *nfc = chip_to_nfc(chip);
 647        int ret;
 648
 649        nfc->data_access = true;
 650        ret = nand_read_page_raw(chip, buf, oob_required, page);
 651        nfc->data_access = false;
 652
 653        return ret;
 654}
 655
 656static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
 657                                    int oob_required, int page)
 658{
 659        struct vf610_nfc *nfc = chip_to_nfc(chip);
 660        struct mtd_info *mtd = nand_to_mtd(chip);
 661        int ret;
 662
 663        nfc->data_access = true;
 664        ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 665        if (!ret && oob_required)
 666                ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
 667                                         false);
 668        nfc->data_access = false;
 669
 670        if (ret)
 671                return ret;
 672
 673        return nand_prog_page_end_op(chip);
 674}
 675
 676static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
 677{
 678        struct vf610_nfc *nfc = chip_to_nfc(chip);
 679        int ret;
 680
 681        nfc->data_access = true;
 682        ret = nand_read_oob_std(chip, page);
 683        nfc->data_access = false;
 684
 685        return ret;
 686}
 687
 688static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
 689{
 690        struct mtd_info *mtd = nand_to_mtd(chip);
 691        struct vf610_nfc *nfc = chip_to_nfc(chip);
 692        int ret;
 693
 694        nfc->data_access = true;
 695        ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
 696                                      chip->oob_poi, mtd->oobsize);
 697        nfc->data_access = false;
 698
 699        if (ret)
 700                return ret;
 701
 702        return nand_prog_page_end_op(chip);
 703}
 704
 705static const struct of_device_id vf610_nfc_dt_ids[] = {
 706        { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
 707        { /* sentinel */ }
 708};
 709MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
 710
 711static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
 712{
 713        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 714        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
 715        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
 716        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
 717        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
 718        vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
 719        vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
 720
 721        /* Disable virtual pages, only one elementary transfer unit */
 722        vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
 723                            CONFIG_PAGE_CNT_SHIFT, 1);
 724}
 725
 726static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
 727{
 728        if (nfc->chip.options & NAND_BUSWIDTH_16)
 729                vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 730        else
 731                vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 732
 733        if (nfc->chip.ecc.mode == NAND_ECC_HW) {
 734                /* Set ECC status offset in SRAM */
 735                vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
 736                                    CONFIG_ECC_SRAM_ADDR_MASK,
 737                                    CONFIG_ECC_SRAM_ADDR_SHIFT,
 738                                    ECC_SRAM_ADDR >> 3);
 739
 740                /* Enable ECC status in SRAM */
 741                vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
 742        }
 743}
 744
 745static int vf610_nfc_attach_chip(struct nand_chip *chip)
 746{
 747        struct mtd_info *mtd = nand_to_mtd(chip);
 748        struct vf610_nfc *nfc = chip_to_nfc(chip);
 749
 750        vf610_nfc_init_controller(nfc);
 751
 752        /* Bad block options. */
 753        if (chip->bbt_options & NAND_BBT_USE_FLASH)
 754                chip->bbt_options |= NAND_BBT_NO_OOB;
 755
 756        /* Single buffer only, max 256 OOB minus ECC status */
 757        if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
 758                dev_err(nfc->dev, "Unsupported flash page size\n");
 759                return -ENXIO;
 760        }
 761
 762        if (chip->ecc.mode != NAND_ECC_HW)
 763                return 0;
 764
 765        if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
 766                dev_err(nfc->dev, "Unsupported flash with hwecc\n");
 767                return -ENXIO;
 768        }
 769
 770        if (chip->ecc.size != mtd->writesize) {
 771                dev_err(nfc->dev, "Step size needs to be page size\n");
 772                return -ENXIO;
 773        }
 774
 775        /* Only 64 byte ECC layouts known */
 776        if (mtd->oobsize > 64)
 777                mtd->oobsize = 64;
 778
 779        /* Use default large page ECC layout defined in NAND core */
 780        mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
 781        if (chip->ecc.strength == 32) {
 782                nfc->ecc_mode = ECC_60_BYTE;
 783                chip->ecc.bytes = 60;
 784        } else if (chip->ecc.strength == 24) {
 785                nfc->ecc_mode = ECC_45_BYTE;
 786                chip->ecc.bytes = 45;
 787        } else {
 788                dev_err(nfc->dev, "Unsupported ECC strength\n");
 789                return -ENXIO;
 790        }
 791
 792        chip->ecc.read_page = vf610_nfc_read_page;
 793        chip->ecc.write_page = vf610_nfc_write_page;
 794        chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
 795        chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
 796        chip->ecc.read_oob = vf610_nfc_read_oob;
 797        chip->ecc.write_oob = vf610_nfc_write_oob;
 798
 799        chip->ecc.size = PAGE_2K;
 800
 801        return 0;
 802}
 803
 804static const struct nand_controller_ops vf610_nfc_controller_ops = {
 805        .attach_chip = vf610_nfc_attach_chip,
 806        .exec_op = vf610_nfc_exec_op,
 807
 808};
 809
 810static int vf610_nfc_probe(struct platform_device *pdev)
 811{
 812        struct vf610_nfc *nfc;
 813        struct resource *res;
 814        struct mtd_info *mtd;
 815        struct nand_chip *chip;
 816        struct device_node *child;
 817        const struct of_device_id *of_id;
 818        int err;
 819        int irq;
 820
 821        nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
 822        if (!nfc)
 823                return -ENOMEM;
 824
 825        nfc->dev = &pdev->dev;
 826        chip = &nfc->chip;
 827        mtd = nand_to_mtd(chip);
 828
 829        mtd->owner = THIS_MODULE;
 830        mtd->dev.parent = nfc->dev;
 831        mtd->name = DRV_NAME;
 832
 833        irq = platform_get_irq(pdev, 0);
 834        if (irq <= 0)
 835                return -EINVAL;
 836
 837        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 838        nfc->regs = devm_ioremap_resource(nfc->dev, res);
 839        if (IS_ERR(nfc->regs))
 840                return PTR_ERR(nfc->regs);
 841
 842        nfc->clk = devm_clk_get(&pdev->dev, NULL);
 843        if (IS_ERR(nfc->clk))
 844                return PTR_ERR(nfc->clk);
 845
 846        err = clk_prepare_enable(nfc->clk);
 847        if (err) {
 848                dev_err(nfc->dev, "Unable to enable clock!\n");
 849                return err;
 850        }
 851
 852        of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
 853        if (!of_id)
 854                return -ENODEV;
 855
 856        nfc->variant = (enum vf610_nfc_variant)of_id->data;
 857
 858        for_each_available_child_of_node(nfc->dev->of_node, child) {
 859                if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
 860
 861                        if (nand_get_flash_node(chip)) {
 862                                dev_err(nfc->dev,
 863                                        "Only one NAND chip supported!\n");
 864                                err = -EINVAL;
 865                                goto err_disable_clk;
 866                        }
 867
 868                        nand_set_flash_node(chip, child);
 869                }
 870        }
 871
 872        if (!nand_get_flash_node(chip)) {
 873                dev_err(nfc->dev, "NAND chip sub-node missing!\n");
 874                err = -ENODEV;
 875                goto err_disable_clk;
 876        }
 877
 878        chip->options |= NAND_NO_SUBPAGE_WRITE;
 879
 880        init_completion(&nfc->cmd_done);
 881
 882        err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
 883        if (err) {
 884                dev_err(nfc->dev, "Error requesting IRQ!\n");
 885                goto err_disable_clk;
 886        }
 887
 888        vf610_nfc_preinit_controller(nfc);
 889
 890        nand_controller_init(&nfc->base);
 891        nfc->base.ops = &vf610_nfc_controller_ops;
 892        chip->controller = &nfc->base;
 893
 894        /* Scan the NAND chip */
 895        err = nand_scan(chip, 1);
 896        if (err)
 897                goto err_disable_clk;
 898
 899        platform_set_drvdata(pdev, nfc);
 900
 901        /* Register device in MTD */
 902        err = mtd_device_register(mtd, NULL, 0);
 903        if (err)
 904                goto err_cleanup_nand;
 905        return 0;
 906
 907err_cleanup_nand:
 908        nand_cleanup(chip);
 909err_disable_clk:
 910        clk_disable_unprepare(nfc->clk);
 911        return err;
 912}
 913
 914static int vf610_nfc_remove(struct platform_device *pdev)
 915{
 916        struct vf610_nfc *nfc = platform_get_drvdata(pdev);
 917
 918        nand_release(&nfc->chip);
 919        clk_disable_unprepare(nfc->clk);
 920        return 0;
 921}
 922
 923#ifdef CONFIG_PM_SLEEP
 924static int vf610_nfc_suspend(struct device *dev)
 925{
 926        struct vf610_nfc *nfc = dev_get_drvdata(dev);
 927
 928        clk_disable_unprepare(nfc->clk);
 929        return 0;
 930}
 931
 932static int vf610_nfc_resume(struct device *dev)
 933{
 934        struct vf610_nfc *nfc = dev_get_drvdata(dev);
 935        int err;
 936
 937        err = clk_prepare_enable(nfc->clk);
 938        if (err)
 939                return err;
 940
 941        vf610_nfc_preinit_controller(nfc);
 942        vf610_nfc_init_controller(nfc);
 943        return 0;
 944}
 945#endif
 946
 947static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
 948
 949static struct platform_driver vf610_nfc_driver = {
 950        .driver         = {
 951                .name   = DRV_NAME,
 952                .of_match_table = vf610_nfc_dt_ids,
 953                .pm     = &vf610_nfc_pm_ops,
 954        },
 955        .probe          = vf610_nfc_probe,
 956        .remove         = vf610_nfc_remove,
 957};
 958
 959module_platform_driver(vf610_nfc_driver);
 960
 961MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
 962MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
 963MODULE_LICENSE("GPL");
 964