linux/drivers/net/can/rcar/rcar_canfd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Renesas R-Car CAN FD device driver
   3 *
   4 * Copyright (C) 2015 Renesas Electronics Corp.
   5 */
   6
   7/* The R-Car CAN FD controller can operate in either one of the below two modes
   8 *  - CAN FD only mode
   9 *  - Classical CAN (CAN 2.0) only mode
  10 *
  11 * This driver puts the controller in CAN FD only mode by default. In this
  12 * mode, the controller acts as a CAN FD node that can also interoperate with
  13 * CAN 2.0 nodes.
  14 *
  15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
  16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
  17 * also required to switch modes.
  18 *
  19 * Note: The h/w manual register naming convention is clumsy and not acceptable
  20 * to use as it is in the driver. However, those names are added as comments
  21 * wherever it is modified to a readable name.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/kernel.h>
  27#include <linux/types.h>
  28#include <linux/interrupt.h>
  29#include <linux/errno.h>
  30#include <linux/netdevice.h>
  31#include <linux/platform_device.h>
  32#include <linux/can/led.h>
  33#include <linux/can/dev.h>
  34#include <linux/clk.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37#include <linux/bitmap.h>
  38#include <linux/bitops.h>
  39#include <linux/iopoll.h>
  40
  41#define RCANFD_DRV_NAME                 "rcar_canfd"
  42
  43/* Global register bits */
  44
  45/* RSCFDnCFDGRMCFG */
  46#define RCANFD_GRMCFG_RCMC              BIT(0)
  47
  48/* RSCFDnCFDGCFG / RSCFDnGCFG */
  49#define RCANFD_GCFG_EEFE                BIT(6)
  50#define RCANFD_GCFG_CMPOC               BIT(5)  /* CAN FD only */
  51#define RCANFD_GCFG_DCS                 BIT(4)
  52#define RCANFD_GCFG_DCE                 BIT(1)
  53#define RCANFD_GCFG_TPRI                BIT(0)
  54
  55/* RSCFDnCFDGCTR / RSCFDnGCTR */
  56#define RCANFD_GCTR_TSRST               BIT(16)
  57#define RCANFD_GCTR_CFMPOFIE            BIT(11) /* CAN FD only */
  58#define RCANFD_GCTR_THLEIE              BIT(10)
  59#define RCANFD_GCTR_MEIE                BIT(9)
  60#define RCANFD_GCTR_DEIE                BIT(8)
  61#define RCANFD_GCTR_GSLPR               BIT(2)
  62#define RCANFD_GCTR_GMDC_MASK           (0x3)
  63#define RCANFD_GCTR_GMDC_GOPM           (0x0)
  64#define RCANFD_GCTR_GMDC_GRESET         (0x1)
  65#define RCANFD_GCTR_GMDC_GTEST          (0x2)
  66
  67/* RSCFDnCFDGSTS / RSCFDnGSTS */
  68#define RCANFD_GSTS_GRAMINIT            BIT(3)
  69#define RCANFD_GSTS_GSLPSTS             BIT(2)
  70#define RCANFD_GSTS_GHLTSTS             BIT(1)
  71#define RCANFD_GSTS_GRSTSTS             BIT(0)
  72/* Non-operational status */
  73#define RCANFD_GSTS_GNOPM               (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  74
  75/* RSCFDnCFDGERFL / RSCFDnGERFL */
  76#define RCANFD_GERFL_EEF1               BIT(17)
  77#define RCANFD_GERFL_EEF0               BIT(16)
  78#define RCANFD_GERFL_CMPOF              BIT(3)  /* CAN FD only */
  79#define RCANFD_GERFL_THLES              BIT(2)
  80#define RCANFD_GERFL_MES                BIT(1)
  81#define RCANFD_GERFL_DEF                BIT(0)
  82
  83#define RCANFD_GERFL_ERR(gpriv, x)      ((x) & (RCANFD_GERFL_EEF1 |\
  84                                        RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\
  85                                        (gpriv->fdmode ?\
  86                                         RCANFD_GERFL_CMPOF : 0)))
  87
  88/* AFL Rx rules registers */
  89
  90/* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
  91#define RCANFD_GAFLCFG_SETRNC(n, x)     (((x) & 0xff) << (24 - n * 8))
  92#define RCANFD_GAFLCFG_GETRNC(n, x)     (((x) >> (24 - n * 8)) & 0xff)
  93
  94/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
  95#define RCANFD_GAFLECTR_AFLDAE          BIT(8)
  96#define RCANFD_GAFLECTR_AFLPN(x)        ((x) & 0x1f)
  97
  98/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
  99#define RCANFD_GAFLID_GAFLLB            BIT(29)
 100
 101/* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
 102#define RCANFD_GAFLP1_GAFLFDP(x)        (1 << (x))
 103
 104/* Channel register bits */
 105
 106/* RSCFDnCmCFG - Classical CAN only */
 107#define RCANFD_CFG_SJW(x)               (((x) & 0x3) << 24)
 108#define RCANFD_CFG_TSEG2(x)             (((x) & 0x7) << 20)
 109#define RCANFD_CFG_TSEG1(x)             (((x) & 0xf) << 16)
 110#define RCANFD_CFG_BRP(x)               (((x) & 0x3ff) << 0)
 111
 112/* RSCFDnCFDCmNCFG - CAN FD only */
 113#define RCANFD_NCFG_NTSEG2(x)           (((x) & 0x1f) << 24)
 114#define RCANFD_NCFG_NTSEG1(x)           (((x) & 0x7f) << 16)
 115#define RCANFD_NCFG_NSJW(x)             (((x) & 0x1f) << 11)
 116#define RCANFD_NCFG_NBRP(x)             (((x) & 0x3ff) << 0)
 117
 118/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
 119#define RCANFD_CCTR_CTME                BIT(24)
 120#define RCANFD_CCTR_ERRD                BIT(23)
 121#define RCANFD_CCTR_BOM_MASK            (0x3 << 21)
 122#define RCANFD_CCTR_BOM_ISO             (0x0 << 21)
 123#define RCANFD_CCTR_BOM_BENTRY          (0x1 << 21)
 124#define RCANFD_CCTR_BOM_BEND            (0x2 << 21)
 125#define RCANFD_CCTR_TDCVFIE             BIT(19)
 126#define RCANFD_CCTR_SOCOIE              BIT(18)
 127#define RCANFD_CCTR_EOCOIE              BIT(17)
 128#define RCANFD_CCTR_TAIE                BIT(16)
 129#define RCANFD_CCTR_ALIE                BIT(15)
 130#define RCANFD_CCTR_BLIE                BIT(14)
 131#define RCANFD_CCTR_OLIE                BIT(13)
 132#define RCANFD_CCTR_BORIE               BIT(12)
 133#define RCANFD_CCTR_BOEIE               BIT(11)
 134#define RCANFD_CCTR_EPIE                BIT(10)
 135#define RCANFD_CCTR_EWIE                BIT(9)
 136#define RCANFD_CCTR_BEIE                BIT(8)
 137#define RCANFD_CCTR_CSLPR               BIT(2)
 138#define RCANFD_CCTR_CHMDC_MASK          (0x3)
 139#define RCANFD_CCTR_CHDMC_COPM          (0x0)
 140#define RCANFD_CCTR_CHDMC_CRESET        (0x1)
 141#define RCANFD_CCTR_CHDMC_CHLT          (0x2)
 142
 143/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
 144#define RCANFD_CSTS_COMSTS              BIT(7)
 145#define RCANFD_CSTS_RECSTS              BIT(6)
 146#define RCANFD_CSTS_TRMSTS              BIT(5)
 147#define RCANFD_CSTS_BOSTS               BIT(4)
 148#define RCANFD_CSTS_EPSTS               BIT(3)
 149#define RCANFD_CSTS_SLPSTS              BIT(2)
 150#define RCANFD_CSTS_HLTSTS              BIT(1)
 151#define RCANFD_CSTS_CRSTSTS             BIT(0)
 152
 153#define RCANFD_CSTS_TECCNT(x)           (((x) >> 24) & 0xff)
 154#define RCANFD_CSTS_RECCNT(x)           (((x) >> 16) & 0xff)
 155
 156/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
 157#define RCANFD_CERFL_ADERR              BIT(14)
 158#define RCANFD_CERFL_B0ERR              BIT(13)
 159#define RCANFD_CERFL_B1ERR              BIT(12)
 160#define RCANFD_CERFL_CERR               BIT(11)
 161#define RCANFD_CERFL_AERR               BIT(10)
 162#define RCANFD_CERFL_FERR               BIT(9)
 163#define RCANFD_CERFL_SERR               BIT(8)
 164#define RCANFD_CERFL_ALF                BIT(7)
 165#define RCANFD_CERFL_BLF                BIT(6)
 166#define RCANFD_CERFL_OVLF               BIT(5)
 167#define RCANFD_CERFL_BORF               BIT(4)
 168#define RCANFD_CERFL_BOEF               BIT(3)
 169#define RCANFD_CERFL_EPF                BIT(2)
 170#define RCANFD_CERFL_EWF                BIT(1)
 171#define RCANFD_CERFL_BEF                BIT(0)
 172
 173#define RCANFD_CERFL_ERR(x)             ((x) & (0x7fff)) /* above bits 14:0 */
 174
 175/* RSCFDnCFDCmDCFG */
 176#define RCANFD_DCFG_DSJW(x)             (((x) & 0x7) << 24)
 177#define RCANFD_DCFG_DTSEG2(x)           (((x) & 0x7) << 20)
 178#define RCANFD_DCFG_DTSEG1(x)           (((x) & 0xf) << 16)
 179#define RCANFD_DCFG_DBRP(x)             (((x) & 0xff) << 0)
 180
 181/* RSCFDnCFDCmFDCFG */
 182#define RCANFD_FDCFG_TDCE               BIT(9)
 183#define RCANFD_FDCFG_TDCOC              BIT(8)
 184#define RCANFD_FDCFG_TDCO(x)            (((x) & 0x7f) >> 16)
 185
 186/* RSCFDnCFDRFCCx */
 187#define RCANFD_RFCC_RFIM                BIT(12)
 188#define RCANFD_RFCC_RFDC(x)             (((x) & 0x7) << 8)
 189#define RCANFD_RFCC_RFPLS(x)            (((x) & 0x7) << 4)
 190#define RCANFD_RFCC_RFIE                BIT(1)
 191#define RCANFD_RFCC_RFE                 BIT(0)
 192
 193/* RSCFDnCFDRFSTSx */
 194#define RCANFD_RFSTS_RFIF               BIT(3)
 195#define RCANFD_RFSTS_RFMLT              BIT(2)
 196#define RCANFD_RFSTS_RFFLL              BIT(1)
 197#define RCANFD_RFSTS_RFEMP              BIT(0)
 198
 199/* RSCFDnCFDRFIDx */
 200#define RCANFD_RFID_RFIDE               BIT(31)
 201#define RCANFD_RFID_RFRTR               BIT(30)
 202
 203/* RSCFDnCFDRFPTRx */
 204#define RCANFD_RFPTR_RFDLC(x)           (((x) >> 28) & 0xf)
 205#define RCANFD_RFPTR_RFPTR(x)           (((x) >> 16) & 0xfff)
 206#define RCANFD_RFPTR_RFTS(x)            (((x) >> 0) & 0xffff)
 207
 208/* RSCFDnCFDRFFDSTSx */
 209#define RCANFD_RFFDSTS_RFFDF            BIT(2)
 210#define RCANFD_RFFDSTS_RFBRS            BIT(1)
 211#define RCANFD_RFFDSTS_RFESI            BIT(0)
 212
 213/* Common FIFO bits */
 214
 215/* RSCFDnCFDCFCCk */
 216#define RCANFD_CFCC_CFTML(x)            (((x) & 0xf) << 20)
 217#define RCANFD_CFCC_CFM(x)              (((x) & 0x3) << 16)
 218#define RCANFD_CFCC_CFIM                BIT(12)
 219#define RCANFD_CFCC_CFDC(x)             (((x) & 0x7) << 8)
 220#define RCANFD_CFCC_CFPLS(x)            (((x) & 0x7) << 4)
 221#define RCANFD_CFCC_CFTXIE              BIT(2)
 222#define RCANFD_CFCC_CFE                 BIT(0)
 223
 224/* RSCFDnCFDCFSTSk */
 225#define RCANFD_CFSTS_CFMC(x)            (((x) >> 8) & 0xff)
 226#define RCANFD_CFSTS_CFTXIF             BIT(4)
 227#define RCANFD_CFSTS_CFMLT              BIT(2)
 228#define RCANFD_CFSTS_CFFLL              BIT(1)
 229#define RCANFD_CFSTS_CFEMP              BIT(0)
 230
 231/* RSCFDnCFDCFIDk */
 232#define RCANFD_CFID_CFIDE               BIT(31)
 233#define RCANFD_CFID_CFRTR               BIT(30)
 234#define RCANFD_CFID_CFID_MASK(x)        ((x) & 0x1fffffff)
 235
 236/* RSCFDnCFDCFPTRk */
 237#define RCANFD_CFPTR_CFDLC(x)           (((x) & 0xf) << 28)
 238#define RCANFD_CFPTR_CFPTR(x)           (((x) & 0xfff) << 16)
 239#define RCANFD_CFPTR_CFTS(x)            (((x) & 0xff) << 0)
 240
 241/* RSCFDnCFDCFFDCSTSk */
 242#define RCANFD_CFFDCSTS_CFFDF           BIT(2)
 243#define RCANFD_CFFDCSTS_CFBRS           BIT(1)
 244#define RCANFD_CFFDCSTS_CFESI           BIT(0)
 245
 246/* This controller supports either Classical CAN only mode or CAN FD only mode.
 247 * These modes are supported in two separate set of register maps & names.
 248 * However, some of the register offsets are common for both modes. Those
 249 * offsets are listed below as Common registers.
 250 *
 251 * The CAN FD only mode specific registers & Classical CAN only mode specific
 252 * registers are listed separately. Their register names starts with
 253 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
 254 */
 255
 256/* Common registers */
 257
 258/* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
 259#define RCANFD_CCFG(m)                  (0x0000 + (0x10 * (m)))
 260/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
 261#define RCANFD_CCTR(m)                  (0x0004 + (0x10 * (m)))
 262/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
 263#define RCANFD_CSTS(m)                  (0x0008 + (0x10 * (m)))
 264/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
 265#define RCANFD_CERFL(m)                 (0x000C + (0x10 * (m)))
 266
 267/* RSCFDnCFDGCFG / RSCFDnGCFG */
 268#define RCANFD_GCFG                     (0x0084)
 269/* RSCFDnCFDGCTR / RSCFDnGCTR */
 270#define RCANFD_GCTR                     (0x0088)
 271/* RSCFDnCFDGCTS / RSCFDnGCTS */
 272#define RCANFD_GSTS                     (0x008c)
 273/* RSCFDnCFDGERFL / RSCFDnGERFL */
 274#define RCANFD_GERFL                    (0x0090)
 275/* RSCFDnCFDGTSC / RSCFDnGTSC */
 276#define RCANFD_GTSC                     (0x0094)
 277/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
 278#define RCANFD_GAFLECTR                 (0x0098)
 279/* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
 280#define RCANFD_GAFLCFG0                 (0x009c)
 281/* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */
 282#define RCANFD_GAFLCFG1                 (0x00a0)
 283/* RSCFDnCFDRMNB / RSCFDnRMNB */
 284#define RCANFD_RMNB                     (0x00a4)
 285/* RSCFDnCFDRMND / RSCFDnRMND */
 286#define RCANFD_RMND(y)                  (0x00a8 + (0x04 * (y)))
 287
 288/* RSCFDnCFDRFCCx / RSCFDnRFCCx */
 289#define RCANFD_RFCC(x)                  (0x00b8 + (0x04 * (x)))
 290/* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
 291#define RCANFD_RFSTS(x)                 (0x00d8 + (0x04 * (x)))
 292/* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
 293#define RCANFD_RFPCTR(x)                (0x00f8 + (0x04 * (x)))
 294
 295/* Common FIFO Control registers */
 296
 297/* RSCFDnCFDCFCCx / RSCFDnCFCCx */
 298#define RCANFD_CFCC(ch, idx)            (0x0118 + (0x0c * (ch)) + \
 299                                         (0x04 * (idx)))
 300/* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
 301#define RCANFD_CFSTS(ch, idx)           (0x0178 + (0x0c * (ch)) + \
 302                                         (0x04 * (idx)))
 303/* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
 304#define RCANFD_CFPCTR(ch, idx)          (0x01d8 + (0x0c * (ch)) + \
 305                                         (0x04 * (idx)))
 306
 307/* RSCFDnCFDFESTS / RSCFDnFESTS */
 308#define RCANFD_FESTS                    (0x0238)
 309/* RSCFDnCFDFFSTS / RSCFDnFFSTS */
 310#define RCANFD_FFSTS                    (0x023c)
 311/* RSCFDnCFDFMSTS / RSCFDnFMSTS */
 312#define RCANFD_FMSTS                    (0x0240)
 313/* RSCFDnCFDRFISTS / RSCFDnRFISTS */
 314#define RCANFD_RFISTS                   (0x0244)
 315/* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
 316#define RCANFD_CFRISTS                  (0x0248)
 317/* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
 318#define RCANFD_CFTISTS                  (0x024c)
 319
 320/* RSCFDnCFDTMCp / RSCFDnTMCp */
 321#define RCANFD_TMC(p)                   (0x0250 + (0x01 * (p)))
 322/* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
 323#define RCANFD_TMSTS(p)                 (0x02d0 + (0x01 * (p)))
 324
 325/* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
 326#define RCANFD_TMTRSTS(y)               (0x0350 + (0x04 * (y)))
 327/* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
 328#define RCANFD_TMTARSTS(y)              (0x0360 + (0x04 * (y)))
 329/* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
 330#define RCANFD_TMTCSTS(y)               (0x0370 + (0x04 * (y)))
 331/* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
 332#define RCANFD_TMTASTS(y)               (0x0380 + (0x04 * (y)))
 333/* RSCFDnCFDTMIECy / RSCFDnTMIECy */
 334#define RCANFD_TMIEC(y)                 (0x0390 + (0x04 * (y)))
 335
 336/* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
 337#define RCANFD_TXQCC(m)                 (0x03a0 + (0x04 * (m)))
 338/* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
 339#define RCANFD_TXQSTS(m)                (0x03c0 + (0x04 * (m)))
 340/* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
 341#define RCANFD_TXQPCTR(m)               (0x03e0 + (0x04 * (m)))
 342
 343/* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
 344#define RCANFD_THLCC(m)                 (0x0400 + (0x04 * (m)))
 345/* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
 346#define RCANFD_THLSTS(m)                (0x0420 + (0x04 * (m)))
 347/* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
 348#define RCANFD_THLPCTR(m)               (0x0440 + (0x04 * (m)))
 349
 350/* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
 351#define RCANFD_GTINTSTS0                (0x0460)
 352/* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
 353#define RCANFD_GTINTSTS1                (0x0464)
 354/* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
 355#define RCANFD_GTSTCFG                  (0x0468)
 356/* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
 357#define RCANFD_GTSTCTR                  (0x046c)
 358/* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
 359#define RCANFD_GLOCKK                   (0x047c)
 360/* RSCFDnCFDGRMCFG */
 361#define RCANFD_GRMCFG                   (0x04fc)
 362
 363/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
 364#define RCANFD_GAFLID(offset, j)        ((offset) + (0x10 * (j)))
 365/* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
 366#define RCANFD_GAFLM(offset, j)         ((offset) + 0x04 + (0x10 * (j)))
 367/* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
 368#define RCANFD_GAFLP0(offset, j)        ((offset) + 0x08 + (0x10 * (j)))
 369/* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
 370#define RCANFD_GAFLP1(offset, j)        ((offset) + 0x0c + (0x10 * (j)))
 371
 372/* Classical CAN only mode register map */
 373
 374/* RSCFDnGAFLXXXj offset */
 375#define RCANFD_C_GAFL_OFFSET            (0x0500)
 376
 377/* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
 378#define RCANFD_C_RMID(q)                (0x0600 + (0x10 * (q)))
 379#define RCANFD_C_RMPTR(q)               (0x0604 + (0x10 * (q)))
 380#define RCANFD_C_RMDF0(q)               (0x0608 + (0x10 * (q)))
 381#define RCANFD_C_RMDF1(q)               (0x060c + (0x10 * (q)))
 382
 383/* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
 384#define RCANFD_C_RFOFFSET               (0x0e00)
 385#define RCANFD_C_RFID(x)                (RCANFD_C_RFOFFSET + (0x10 * (x)))
 386#define RCANFD_C_RFPTR(x)               (RCANFD_C_RFOFFSET + 0x04 + \
 387                                         (0x10 * (x)))
 388#define RCANFD_C_RFDF(x, df)            (RCANFD_C_RFOFFSET + 0x08 + \
 389                                         (0x10 * (x)) + (0x04 * (df)))
 390
 391/* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
 392#define RCANFD_C_CFOFFSET               (0x0e80)
 393#define RCANFD_C_CFID(ch, idx)          (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \
 394                                         (0x10 * (idx)))
 395#define RCANFD_C_CFPTR(ch, idx)         (RCANFD_C_CFOFFSET + 0x04 + \
 396                                         (0x30 * (ch)) + (0x10 * (idx)))
 397#define RCANFD_C_CFDF(ch, idx, df)      (RCANFD_C_CFOFFSET + 0x08 + \
 398                                         (0x30 * (ch)) + (0x10 * (idx)) + \
 399                                         (0x04 * (df)))
 400
 401/* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
 402#define RCANFD_C_TMID(p)                (0x1000 + (0x10 * (p)))
 403#define RCANFD_C_TMPTR(p)               (0x1004 + (0x10 * (p)))
 404#define RCANFD_C_TMDF0(p)               (0x1008 + (0x10 * (p)))
 405#define RCANFD_C_TMDF1(p)               (0x100c + (0x10 * (p)))
 406
 407/* RSCFDnTHLACCm */
 408#define RCANFD_C_THLACC(m)              (0x1800 + (0x04 * (m)))
 409/* RSCFDnRPGACCr */
 410#define RCANFD_C_RPGACC(r)              (0x1900 + (0x04 * (r)))
 411
 412/* CAN FD mode specific register map */
 413
 414/* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
 415#define RCANFD_F_DCFG(m)                (0x0500 + (0x20 * (m)))
 416#define RCANFD_F_CFDCFG(m)              (0x0504 + (0x20 * (m)))
 417#define RCANFD_F_CFDCTR(m)              (0x0508 + (0x20 * (m)))
 418#define RCANFD_F_CFDSTS(m)              (0x050c + (0x20 * (m)))
 419#define RCANFD_F_CFDCRC(m)              (0x0510 + (0x20 * (m)))
 420
 421/* RSCFDnCFDGAFLXXXj offset */
 422#define RCANFD_F_GAFL_OFFSET            (0x1000)
 423
 424/* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
 425#define RCANFD_F_RMID(q)                (0x2000 + (0x20 * (q)))
 426#define RCANFD_F_RMPTR(q)               (0x2004 + (0x20 * (q)))
 427#define RCANFD_F_RMFDSTS(q)             (0x2008 + (0x20 * (q)))
 428#define RCANFD_F_RMDF(q, b)             (0x200c + (0x04 * (b)) + (0x20 * (q)))
 429
 430/* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
 431#define RCANFD_F_RFOFFSET               (0x3000)
 432#define RCANFD_F_RFID(x)                (RCANFD_F_RFOFFSET + (0x80 * (x)))
 433#define RCANFD_F_RFPTR(x)               (RCANFD_F_RFOFFSET + 0x04 + \
 434                                         (0x80 * (x)))
 435#define RCANFD_F_RFFDSTS(x)             (RCANFD_F_RFOFFSET + 0x08 + \
 436                                         (0x80 * (x)))
 437#define RCANFD_F_RFDF(x, df)            (RCANFD_F_RFOFFSET + 0x0c + \
 438                                         (0x80 * (x)) + (0x04 * (df)))
 439
 440/* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
 441#define RCANFD_F_CFOFFSET               (0x3400)
 442#define RCANFD_F_CFID(ch, idx)          (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \
 443                                         (0x80 * (idx)))
 444#define RCANFD_F_CFPTR(ch, idx)         (RCANFD_F_CFOFFSET + 0x04 + \
 445                                         (0x180 * (ch)) + (0x80 * (idx)))
 446#define RCANFD_F_CFFDCSTS(ch, idx)      (RCANFD_F_CFOFFSET + 0x08 + \
 447                                         (0x180 * (ch)) + (0x80 * (idx)))
 448#define RCANFD_F_CFDF(ch, idx, df)      (RCANFD_F_CFOFFSET + 0x0c + \
 449                                         (0x180 * (ch)) + (0x80 * (idx)) + \
 450                                         (0x04 * (df)))
 451
 452/* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
 453#define RCANFD_F_TMID(p)                (0x4000 + (0x20 * (p)))
 454#define RCANFD_F_TMPTR(p)               (0x4004 + (0x20 * (p)))
 455#define RCANFD_F_TMFDCTR(p)             (0x4008 + (0x20 * (p)))
 456#define RCANFD_F_TMDF(p, b)             (0x400c + (0x20 * (p)) + (0x04 * (b)))
 457
 458/* RSCFDnCFDTHLACCm */
 459#define RCANFD_F_THLACC(m)              (0x6000 + (0x04 * (m)))
 460/* RSCFDnCFDRPGACCr */
 461#define RCANFD_F_RPGACC(r)              (0x6400 + (0x04 * (r)))
 462
 463/* Constants */
 464#define RCANFD_FIFO_DEPTH               8       /* Tx FIFO depth */
 465#define RCANFD_NAPI_WEIGHT              8       /* Rx poll quota */
 466
 467#define RCANFD_NUM_CHANNELS             2       /* Two channels max */
 468#define RCANFD_CHANNELS_MASK            BIT((RCANFD_NUM_CHANNELS) - 1)
 469
 470#define RCANFD_GAFL_PAGENUM(entry)      ((entry) / 16)
 471#define RCANFD_CHANNEL_NUMRULES         1       /* only one rule per channel */
 472
 473/* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
 474 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
 475 * number is added to RFFIFO index.
 476 */
 477#define RCANFD_RFFIFO_IDX               0
 478
 479/* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
 480 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
 481 */
 482#define RCANFD_CFFIFO_IDX               0
 483
 484/* fCAN clock select register settings */
 485enum rcar_canfd_fcanclk {
 486        RCANFD_CANFDCLK = 0,            /* CANFD clock */
 487        RCANFD_EXTCLK,                  /* Externally input clock */
 488};
 489
 490struct rcar_canfd_global;
 491
 492/* Channel priv data */
 493struct rcar_canfd_channel {
 494        struct can_priv can;                    /* Must be the first member */
 495        struct net_device *ndev;
 496        struct rcar_canfd_global *gpriv;        /* Controller reference */
 497        void __iomem *base;                     /* Register base address */
 498        struct napi_struct napi;
 499        u8  tx_len[RCANFD_FIFO_DEPTH];          /* For net stats */
 500        u32 tx_head;                            /* Incremented on xmit */
 501        u32 tx_tail;                            /* Incremented on xmit done */
 502        u32 channel;                            /* Channel number */
 503        spinlock_t tx_lock;                     /* To protect tx path */
 504};
 505
 506/* Global priv data */
 507struct rcar_canfd_global {
 508        struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
 509        void __iomem *base;             /* Register base address */
 510        struct platform_device *pdev;   /* Respective platform device */
 511        struct clk *clkp;               /* Peripheral clock */
 512        struct clk *can_clk;            /* fCAN clock */
 513        enum rcar_canfd_fcanclk fcan;   /* CANFD or Ext clock */
 514        unsigned long channels_mask;    /* Enabled channels mask */
 515        bool fdmode;                    /* CAN FD or Classical CAN only mode */
 516};
 517
 518/* CAN FD mode nominal rate constants */
 519static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
 520        .name = RCANFD_DRV_NAME,
 521        .tseg1_min = 2,
 522        .tseg1_max = 128,
 523        .tseg2_min = 2,
 524        .tseg2_max = 32,
 525        .sjw_max = 32,
 526        .brp_min = 1,
 527        .brp_max = 1024,
 528        .brp_inc = 1,
 529};
 530
 531/* CAN FD mode data rate constants */
 532static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
 533        .name = RCANFD_DRV_NAME,
 534        .tseg1_min = 2,
 535        .tseg1_max = 16,
 536        .tseg2_min = 2,
 537        .tseg2_max = 8,
 538        .sjw_max = 8,
 539        .brp_min = 1,
 540        .brp_max = 256,
 541        .brp_inc = 1,
 542};
 543
 544/* Classical CAN mode bitrate constants */
 545static const struct can_bittiming_const rcar_canfd_bittiming_const = {
 546        .name = RCANFD_DRV_NAME,
 547        .tseg1_min = 4,
 548        .tseg1_max = 16,
 549        .tseg2_min = 2,
 550        .tseg2_max = 8,
 551        .sjw_max = 4,
 552        .brp_min = 1,
 553        .brp_max = 1024,
 554        .brp_inc = 1,
 555};
 556
 557/* Helper functions */
 558static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
 559{
 560        u32 data = readl(reg);
 561
 562        data &= ~mask;
 563        data |= (val & mask);
 564        writel(data, reg);
 565}
 566
 567static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
 568{
 569        return readl(base + (offset));
 570}
 571
 572static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
 573{
 574        writel(val, base + (offset));
 575}
 576
 577static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
 578{
 579        rcar_canfd_update(val, val, base + (reg));
 580}
 581
 582static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
 583{
 584        rcar_canfd_update(val, 0, base + (reg));
 585}
 586
 587static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
 588                                  u32 mask, u32 val)
 589{
 590        rcar_canfd_update(mask, val, base + (reg));
 591}
 592
 593static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
 594                                struct canfd_frame *cf, u32 off)
 595{
 596        u32 i, lwords;
 597
 598        lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
 599        for (i = 0; i < lwords; i++)
 600                *((u32 *)cf->data + i) =
 601                        rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
 602}
 603
 604static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
 605                                struct canfd_frame *cf, u32 off)
 606{
 607        u32 i, lwords;
 608
 609        lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
 610        for (i = 0; i < lwords; i++)
 611                rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
 612                                 *((u32 *)cf->data + i));
 613}
 614
 615static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
 616{
 617        u32 i;
 618
 619        for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
 620                can_free_echo_skb(ndev, i);
 621}
 622
 623static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
 624{
 625        u32 sts, ch;
 626        int err;
 627
 628        /* Check RAMINIT flag as CAN RAM initialization takes place
 629         * after the MCU reset
 630         */
 631        err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
 632                                 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
 633        if (err) {
 634                dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
 635                return err;
 636        }
 637
 638        /* Transition to Global Reset mode */
 639        rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
 640        rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
 641                              RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
 642
 643        /* Ensure Global reset mode */
 644        err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
 645                                 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
 646        if (err) {
 647                dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
 648                return err;
 649        }
 650
 651        /* Reset Global error flags */
 652        rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
 653
 654        /* Set the controller into appropriate mode */
 655        if (gpriv->fdmode)
 656                rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
 657                                   RCANFD_GRMCFG_RCMC);
 658        else
 659                rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
 660                                     RCANFD_GRMCFG_RCMC);
 661
 662        /* Transition all Channels to reset mode */
 663        for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
 664                rcar_canfd_clear_bit(gpriv->base,
 665                                     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
 666
 667                rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
 668                                      RCANFD_CCTR_CHMDC_MASK,
 669                                      RCANFD_CCTR_CHDMC_CRESET);
 670
 671                /* Ensure Channel reset mode */
 672                err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
 673                                         (sts & RCANFD_CSTS_CRSTSTS),
 674                                         2, 500000);
 675                if (err) {
 676                        dev_dbg(&gpriv->pdev->dev,
 677                                "channel %u reset failed\n", ch);
 678                        return err;
 679                }
 680        }
 681        return 0;
 682}
 683
 684static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
 685{
 686        u32 cfg, ch;
 687
 688        /* Global configuration settings */
 689
 690        /* ECC Error flag Enable */
 691        cfg = RCANFD_GCFG_EEFE;
 692
 693        if (gpriv->fdmode)
 694                /* Truncate payload to configured message size RFPLS */
 695                cfg |= RCANFD_GCFG_CMPOC;
 696
 697        /* Set External Clock if selected */
 698        if (gpriv->fcan != RCANFD_CANFDCLK)
 699                cfg |= RCANFD_GCFG_DCS;
 700
 701        rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
 702
 703        /* Channel configuration settings */
 704        for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
 705                rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
 706                                   RCANFD_CCTR_ERRD);
 707                rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
 708                                      RCANFD_CCTR_BOM_MASK,
 709                                      RCANFD_CCTR_BOM_BENTRY);
 710        }
 711}
 712
 713static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
 714                                           u32 ch)
 715{
 716        u32 cfg;
 717        int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
 718        u32 ridx = ch + RCANFD_RFFIFO_IDX;
 719
 720        if (ch == 0) {
 721                start = 0; /* Channel 0 always starts from 0th rule */
 722        } else {
 723                /* Get number of Channel 0 rules and adjust */
 724                cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0);
 725                start = RCANFD_GAFLCFG_GETRNC(0, cfg);
 726        }
 727
 728        /* Enable write access to entry */
 729        page = RCANFD_GAFL_PAGENUM(start);
 730        rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
 731                           (RCANFD_GAFLECTR_AFLPN(page) |
 732                            RCANFD_GAFLECTR_AFLDAE));
 733
 734        /* Write number of rules for channel */
 735        rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0,
 736                           RCANFD_GAFLCFG_SETRNC(ch, num_rules));
 737        if (gpriv->fdmode)
 738                offset = RCANFD_F_GAFL_OFFSET;
 739        else
 740                offset = RCANFD_C_GAFL_OFFSET;
 741
 742        /* Accept all IDs */
 743        rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
 744        /* IDE or RTR is not considered for matching */
 745        rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
 746        /* Any data length accepted */
 747        rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
 748        /* Place the msg in corresponding Rx FIFO entry */
 749        rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start),
 750                         RCANFD_GAFLP1_GAFLFDP(ridx));
 751
 752        /* Disable write access to page */
 753        rcar_canfd_clear_bit(gpriv->base,
 754                             RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
 755}
 756
 757static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
 758{
 759        /* Rx FIFO is used for reception */
 760        u32 cfg;
 761        u16 rfdc, rfpls;
 762
 763        /* Select Rx FIFO based on channel */
 764        u32 ridx = ch + RCANFD_RFFIFO_IDX;
 765
 766        rfdc = 2;               /* b010 - 8 messages Rx FIFO depth */
 767        if (gpriv->fdmode)
 768                rfpls = 7;      /* b111 - Max 64 bytes payload */
 769        else
 770                rfpls = 0;      /* b000 - Max 8 bytes payload */
 771
 772        cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
 773                RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
 774        rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg);
 775}
 776
 777static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
 778{
 779        /* Tx/Rx(Common) FIFO configured in Tx mode is
 780         * used for transmission
 781         *
 782         * Each channel has 3 Common FIFO dedicated to them.
 783         * Use the 1st (index 0) out of 3
 784         */
 785        u32 cfg;
 786        u16 cftml, cfm, cfdc, cfpls;
 787
 788        cftml = 0;              /* 0th buffer */
 789        cfm = 1;                /* b01 - Transmit mode */
 790        cfdc = 2;               /* b010 - 8 messages Tx FIFO depth */
 791        if (gpriv->fdmode)
 792                cfpls = 7;      /* b111 - Max 64 bytes payload */
 793        else
 794                cfpls = 0;      /* b000 - Max 8 bytes payload */
 795
 796        cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) |
 797                RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) |
 798                RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
 799        rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg);
 800
 801        if (gpriv->fdmode)
 802                /* Clear FD mode specific control/status register */
 803                rcar_canfd_write(gpriv->base,
 804                                 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0);
 805}
 806
 807static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
 808{
 809        u32 ctr;
 810
 811        /* Clear any stray error interrupt flags */
 812        rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
 813
 814        /* Global interrupts setup */
 815        ctr = RCANFD_GCTR_MEIE;
 816        if (gpriv->fdmode)
 817                ctr |= RCANFD_GCTR_CFMPOFIE;
 818
 819        rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
 820}
 821
 822static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
 823                                                 *gpriv)
 824{
 825        /* Disable all interrupts */
 826        rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
 827
 828        /* Clear any stray error interrupt flags */
 829        rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
 830}
 831
 832static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
 833                                                 *priv)
 834{
 835        u32 ctr, ch = priv->channel;
 836
 837        /* Clear any stray error flags */
 838        rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
 839
 840        /* Channel interrupts setup */
 841        ctr = (RCANFD_CCTR_TAIE |
 842               RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
 843               RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
 844               RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
 845               RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
 846        rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
 847}
 848
 849static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
 850                                                  *priv)
 851{
 852        u32 ctr, ch = priv->channel;
 853
 854        ctr = (RCANFD_CCTR_TAIE |
 855               RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
 856               RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
 857               RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
 858               RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
 859        rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
 860
 861        /* Clear any stray error flags */
 862        rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
 863}
 864
 865static void rcar_canfd_global_error(struct net_device *ndev)
 866{
 867        struct rcar_canfd_channel *priv = netdev_priv(ndev);
 868        struct rcar_canfd_global *gpriv = priv->gpriv;
 869        struct net_device_stats *stats = &ndev->stats;
 870        u32 ch = priv->channel;
 871        u32 gerfl, sts;
 872        u32 ridx = ch + RCANFD_RFFIFO_IDX;
 873
 874        gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
 875        if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
 876                netdev_dbg(ndev, "Ch0: ECC Error flag\n");
 877                stats->tx_dropped++;
 878        }
 879        if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
 880                netdev_dbg(ndev, "Ch1: ECC Error flag\n");
 881                stats->tx_dropped++;
 882        }
 883        if (gerfl & RCANFD_GERFL_MES) {
 884                sts = rcar_canfd_read(priv->base,
 885                                      RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
 886                if (sts & RCANFD_CFSTS_CFMLT) {
 887                        netdev_dbg(ndev, "Tx Message Lost flag\n");
 888                        stats->tx_dropped++;
 889                        rcar_canfd_write(priv->base,
 890                                         RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
 891                                         sts & ~RCANFD_CFSTS_CFMLT);
 892                }
 893
 894                sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
 895                if (sts & RCANFD_RFSTS_RFMLT) {
 896                        netdev_dbg(ndev, "Rx Message Lost flag\n");
 897                        stats->rx_dropped++;
 898                        rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
 899                                         sts & ~RCANFD_RFSTS_RFMLT);
 900                }
 901        }
 902        if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
 903                /* Message Lost flag will be set for respective channel
 904                 * when this condition happens with counters and flags
 905                 * already updated.
 906                 */
 907                netdev_dbg(ndev, "global payload overflow interrupt\n");
 908        }
 909
 910        /* Clear all global error interrupts. Only affected channels bits
 911         * get cleared
 912         */
 913        rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
 914}
 915
 916static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
 917                             u16 txerr, u16 rxerr)
 918{
 919        struct rcar_canfd_channel *priv = netdev_priv(ndev);
 920        struct net_device_stats *stats = &ndev->stats;
 921        struct can_frame *cf;
 922        struct sk_buff *skb;
 923        u32 ch = priv->channel;
 924
 925        netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
 926
 927        /* Propagate the error condition to the CAN stack */
 928        skb = alloc_can_err_skb(ndev, &cf);
 929        if (!skb) {
 930                stats->rx_dropped++;
 931                return;
 932        }
 933
 934        /* Channel error interrupts */
 935        if (cerfl & RCANFD_CERFL_BEF) {
 936                netdev_dbg(ndev, "Bus error\n");
 937                cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
 938                cf->data[2] = CAN_ERR_PROT_UNSPEC;
 939                priv->can.can_stats.bus_error++;
 940        }
 941        if (cerfl & RCANFD_CERFL_ADERR) {
 942                netdev_dbg(ndev, "ACK Delimiter Error\n");
 943                stats->tx_errors++;
 944                cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
 945        }
 946        if (cerfl & RCANFD_CERFL_B0ERR) {
 947                netdev_dbg(ndev, "Bit Error (dominant)\n");
 948                stats->tx_errors++;
 949                cf->data[2] |= CAN_ERR_PROT_BIT0;
 950        }
 951        if (cerfl & RCANFD_CERFL_B1ERR) {
 952                netdev_dbg(ndev, "Bit Error (recessive)\n");
 953                stats->tx_errors++;
 954                cf->data[2] |= CAN_ERR_PROT_BIT1;
 955        }
 956        if (cerfl & RCANFD_CERFL_CERR) {
 957                netdev_dbg(ndev, "CRC Error\n");
 958                stats->rx_errors++;
 959                cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
 960        }
 961        if (cerfl & RCANFD_CERFL_AERR) {
 962                netdev_dbg(ndev, "ACK Error\n");
 963                stats->tx_errors++;
 964                cf->can_id |= CAN_ERR_ACK;
 965                cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
 966        }
 967        if (cerfl & RCANFD_CERFL_FERR) {
 968                netdev_dbg(ndev, "Form Error\n");
 969                stats->rx_errors++;
 970                cf->data[2] |= CAN_ERR_PROT_FORM;
 971        }
 972        if (cerfl & RCANFD_CERFL_SERR) {
 973                netdev_dbg(ndev, "Stuff Error\n");
 974                stats->rx_errors++;
 975                cf->data[2] |= CAN_ERR_PROT_STUFF;
 976        }
 977        if (cerfl & RCANFD_CERFL_ALF) {
 978                netdev_dbg(ndev, "Arbitration lost Error\n");
 979                priv->can.can_stats.arbitration_lost++;
 980                cf->can_id |= CAN_ERR_LOSTARB;
 981                cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
 982        }
 983        if (cerfl & RCANFD_CERFL_BLF) {
 984                netdev_dbg(ndev, "Bus Lock Error\n");
 985                stats->rx_errors++;
 986                cf->can_id |= CAN_ERR_BUSERROR;
 987        }
 988        if (cerfl & RCANFD_CERFL_EWF) {
 989                netdev_dbg(ndev, "Error warning interrupt\n");
 990                priv->can.state = CAN_STATE_ERROR_WARNING;
 991                priv->can.can_stats.error_warning++;
 992                cf->can_id |= CAN_ERR_CRTL;
 993                cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
 994                        CAN_ERR_CRTL_RX_WARNING;
 995                cf->data[6] = txerr;
 996                cf->data[7] = rxerr;
 997        }
 998        if (cerfl & RCANFD_CERFL_EPF) {
 999                netdev_dbg(ndev, "Error passive interrupt\n");
1000                priv->can.state = CAN_STATE_ERROR_PASSIVE;
1001                priv->can.can_stats.error_passive++;
1002                cf->can_id |= CAN_ERR_CRTL;
1003                cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1004                        CAN_ERR_CRTL_RX_PASSIVE;
1005                cf->data[6] = txerr;
1006                cf->data[7] = rxerr;
1007        }
1008        if (cerfl & RCANFD_CERFL_BOEF) {
1009                netdev_dbg(ndev, "Bus-off entry interrupt\n");
1010                rcar_canfd_tx_failure_cleanup(ndev);
1011                priv->can.state = CAN_STATE_BUS_OFF;
1012                priv->can.can_stats.bus_off++;
1013                can_bus_off(ndev);
1014                cf->can_id |= CAN_ERR_BUSOFF;
1015        }
1016        if (cerfl & RCANFD_CERFL_OVLF) {
1017                netdev_dbg(ndev,
1018                           "Overload Frame Transmission error interrupt\n");
1019                stats->tx_errors++;
1020                cf->can_id |= CAN_ERR_PROT;
1021                cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1022        }
1023
1024        /* Clear channel error interrupts that are handled */
1025        rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1026                         RCANFD_CERFL_ERR(~cerfl));
1027        stats->rx_packets++;
1028        stats->rx_bytes += cf->can_dlc;
1029        netif_rx(skb);
1030}
1031
1032static void rcar_canfd_tx_done(struct net_device *ndev)
1033{
1034        struct rcar_canfd_channel *priv = netdev_priv(ndev);
1035        struct net_device_stats *stats = &ndev->stats;
1036        u32 sts;
1037        unsigned long flags;
1038        u32 ch = priv->channel;
1039
1040        do {
1041                u8 unsent, sent;
1042
1043                sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1044                stats->tx_packets++;
1045                stats->tx_bytes += priv->tx_len[sent];
1046                priv->tx_len[sent] = 0;
1047                can_get_echo_skb(ndev, sent);
1048
1049                spin_lock_irqsave(&priv->tx_lock, flags);
1050                priv->tx_tail++;
1051                sts = rcar_canfd_read(priv->base,
1052                                      RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1053                unsent = RCANFD_CFSTS_CFMC(sts);
1054
1055                /* Wake producer only when there is room */
1056                if (unsent != RCANFD_FIFO_DEPTH)
1057                        netif_wake_queue(ndev);
1058
1059                if (priv->tx_head - priv->tx_tail <= unsent) {
1060                        spin_unlock_irqrestore(&priv->tx_lock, flags);
1061                        break;
1062                }
1063                spin_unlock_irqrestore(&priv->tx_lock, flags);
1064
1065        } while (1);
1066
1067        /* Clear interrupt */
1068        rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
1069                         sts & ~RCANFD_CFSTS_CFTXIF);
1070        can_led_event(ndev, CAN_LED_EVENT_TX);
1071}
1072
1073static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1074{
1075        struct rcar_canfd_global *gpriv = dev_id;
1076        struct net_device *ndev;
1077        struct rcar_canfd_channel *priv;
1078        u32 sts, gerfl;
1079        u32 ch, ridx;
1080
1081        /* Global error interrupts still indicate a condition specific
1082         * to a channel. RxFIFO interrupt is a global interrupt.
1083         */
1084        for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1085                priv = gpriv->ch[ch];
1086                ndev = priv->ndev;
1087                ridx = ch + RCANFD_RFFIFO_IDX;
1088
1089                /* Global error interrupts */
1090                gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1091                if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1092                        rcar_canfd_global_error(ndev);
1093
1094                /* Handle Rx interrupts */
1095                sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1096                if (likely(sts & RCANFD_RFSTS_RFIF)) {
1097                        if (napi_schedule_prep(&priv->napi)) {
1098                                /* Disable Rx FIFO interrupts */
1099                                rcar_canfd_clear_bit(priv->base,
1100                                                     RCANFD_RFCC(ridx),
1101                                                     RCANFD_RFCC_RFIE);
1102                                __napi_schedule(&priv->napi);
1103                        }
1104                }
1105        }
1106        return IRQ_HANDLED;
1107}
1108
1109static void rcar_canfd_state_change(struct net_device *ndev,
1110                                    u16 txerr, u16 rxerr)
1111{
1112        struct rcar_canfd_channel *priv = netdev_priv(ndev);
1113        struct net_device_stats *stats = &ndev->stats;
1114        enum can_state rx_state, tx_state, state = priv->can.state;
1115        struct can_frame *cf;
1116        struct sk_buff *skb;
1117
1118        /* Handle transition from error to normal states */
1119        if (txerr < 96 && rxerr < 96)
1120                state = CAN_STATE_ERROR_ACTIVE;
1121        else if (txerr < 128 && rxerr < 128)
1122                state = CAN_STATE_ERROR_WARNING;
1123
1124        if (state != priv->can.state) {
1125                netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1126                           state, priv->can.state, txerr, rxerr);
1127                skb = alloc_can_err_skb(ndev, &cf);
1128                if (!skb) {
1129                        stats->rx_dropped++;
1130                        return;
1131                }
1132                tx_state = txerr >= rxerr ? state : 0;
1133                rx_state = txerr <= rxerr ? state : 0;
1134
1135                can_change_state(ndev, cf, tx_state, rx_state);
1136                stats->rx_packets++;
1137                stats->rx_bytes += cf->can_dlc;
1138                netif_rx(skb);
1139        }
1140}
1141
1142static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1143{
1144        struct rcar_canfd_global *gpriv = dev_id;
1145        struct net_device *ndev;
1146        struct rcar_canfd_channel *priv;
1147        u32 sts, ch, cerfl;
1148        u16 txerr, rxerr;
1149
1150        /* Common FIFO is a per channel resource */
1151        for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1152                priv = gpriv->ch[ch];
1153                ndev = priv->ndev;
1154
1155                /* Channel error interrupts */
1156                cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1157                sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1158                txerr = RCANFD_CSTS_TECCNT(sts);
1159                rxerr = RCANFD_CSTS_RECCNT(sts);
1160                if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1161                        rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1162
1163                /* Handle state change to lower states */
1164                if (unlikely((priv->can.state != CAN_STATE_ERROR_ACTIVE) &&
1165                             (priv->can.state != CAN_STATE_BUS_OFF)))
1166                        rcar_canfd_state_change(ndev, txerr, rxerr);
1167
1168                /* Handle Tx interrupts */
1169                sts = rcar_canfd_read(priv->base,
1170                                      RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1171                if (likely(sts & RCANFD_CFSTS_CFTXIF))
1172                        rcar_canfd_tx_done(ndev);
1173        }
1174        return IRQ_HANDLED;
1175}
1176
1177static void rcar_canfd_set_bittiming(struct net_device *dev)
1178{
1179        struct rcar_canfd_channel *priv = netdev_priv(dev);
1180        const struct can_bittiming *bt = &priv->can.bittiming;
1181        const struct can_bittiming *dbt = &priv->can.data_bittiming;
1182        u16 brp, sjw, tseg1, tseg2;
1183        u32 cfg;
1184        u32 ch = priv->channel;
1185
1186        /* Nominal bit timing settings */
1187        brp = bt->brp - 1;
1188        sjw = bt->sjw - 1;
1189        tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1190        tseg2 = bt->phase_seg2 - 1;
1191
1192        if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1193                /* CAN FD only mode */
1194                cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) |
1195                       RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2));
1196
1197                rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1198                netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1199                           brp, sjw, tseg1, tseg2);
1200
1201                /* Data bit timing settings */
1202                brp = dbt->brp - 1;
1203                sjw = dbt->sjw - 1;
1204                tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1205                tseg2 = dbt->phase_seg2 - 1;
1206
1207                cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) |
1208                       RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2));
1209
1210                rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1211                netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1212                           brp, sjw, tseg1, tseg2);
1213        } else {
1214                /* Classical CAN only mode */
1215                cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
1216                        RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
1217
1218                rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1219                netdev_dbg(priv->ndev,
1220                           "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1221                           brp, sjw, tseg1, tseg2);
1222        }
1223}
1224
1225static int rcar_canfd_start(struct net_device *ndev)
1226{
1227        struct rcar_canfd_channel *priv = netdev_priv(ndev);
1228        int err = -EOPNOTSUPP;
1229        u32 sts, ch = priv->channel;
1230        u32 ridx = ch + RCANFD_RFFIFO_IDX;
1231
1232        rcar_canfd_set_bittiming(ndev);
1233
1234        rcar_canfd_enable_channel_interrupts(priv);
1235
1236        /* Set channel to Operational mode */
1237        rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1238                              RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1239
1240        /* Verify channel mode change */
1241        err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1242                                 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1243        if (err) {
1244                netdev_err(ndev, "channel %u communication state failed\n", ch);
1245                goto fail_mode_change;
1246        }
1247
1248        /* Enable Common & Rx FIFO */
1249        rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1250                           RCANFD_CFCC_CFE);
1251        rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1252
1253        priv->can.state = CAN_STATE_ERROR_ACTIVE;
1254        return 0;
1255
1256fail_mode_change:
1257        rcar_canfd_disable_channel_interrupts(priv);
1258        return err;
1259}
1260
1261static int rcar_canfd_open(struct net_device *ndev)
1262{
1263        struct rcar_canfd_channel *priv = netdev_priv(ndev);
1264        struct rcar_canfd_global *gpriv = priv->gpriv;
1265        int err;
1266
1267        /* Peripheral clock is already enabled in probe */
1268        err = clk_prepare_enable(gpriv->can_clk);
1269        if (err) {
1270                netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1271                goto out_clock;
1272        }
1273
1274        err = open_candev(ndev);
1275        if (err) {
1276                netdev_err(ndev, "open_candev() failed, error %d\n", err);
1277                goto out_can_clock;
1278        }
1279
1280        napi_enable(&priv->napi);
1281        err = rcar_canfd_start(ndev);
1282        if (err)
1283                goto out_close;
1284        netif_start_queue(ndev);
1285        can_led_event(ndev, CAN_LED_EVENT_OPEN);
1286        return 0;
1287out_close:
1288        napi_disable(&priv->napi);
1289        close_candev(ndev);
1290out_can_clock:
1291        clk_disable_unprepare(gpriv->can_clk);
1292out_clock:
1293        return err;
1294}
1295
1296static void rcar_canfd_stop(struct net_device *ndev)
1297{
1298        struct rcar_canfd_channel *priv = netdev_priv(ndev);
1299        int err;
1300        u32 sts, ch = priv->channel;
1301        u32 ridx = ch + RCANFD_RFFIFO_IDX;
1302
1303        /* Transition to channel reset mode  */
1304        rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1305                              RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1306
1307        /* Check Channel reset mode */
1308        err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1309                                 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1310        if (err)
1311                netdev_err(ndev, "channel %u reset failed\n", ch);
1312
1313        rcar_canfd_disable_channel_interrupts(priv);
1314
1315        /* Disable Common & Rx FIFO */
1316        rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1317                             RCANFD_CFCC_CFE);
1318        rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1319
1320        /* Set the state as STOPPED */
1321        priv->can.state = CAN_STATE_STOPPED;
1322}
1323
1324static int rcar_canfd_close(struct net_device *ndev)
1325{
1326        struct rcar_canfd_channel *priv = netdev_priv(ndev);
1327        struct rcar_canfd_global *gpriv = priv->gpriv;
1328
1329        netif_stop_queue(ndev);
1330        rcar_canfd_stop(ndev);
1331        napi_disable(&priv->napi);
1332        clk_disable_unprepare(gpriv->can_clk);
1333        close_candev(ndev);
1334        can_led_event(ndev, CAN_LED_EVENT_STOP);
1335        return 0;
1336}
1337
1338static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1339                                         struct net_device *ndev)
1340{
1341        struct rcar_canfd_channel *priv = netdev_priv(ndev);
1342        struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1343        u32 sts = 0, id, dlc;
1344        unsigned long flags;
1345        u32 ch = priv->channel;
1346
1347        if (can_dropped_invalid_skb(ndev, skb))
1348                return NETDEV_TX_OK;
1349
1350        if (cf->can_id & CAN_EFF_FLAG) {
1351                id = cf->can_id & CAN_EFF_MASK;
1352                id |= RCANFD_CFID_CFIDE;
1353        } else {
1354                id = cf->can_id & CAN_SFF_MASK;
1355        }
1356
1357        if (cf->can_id & CAN_RTR_FLAG)
1358                id |= RCANFD_CFID_CFRTR;
1359
1360        dlc = RCANFD_CFPTR_CFDLC(can_len2dlc(cf->len));
1361
1362        if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1363                rcar_canfd_write(priv->base,
1364                                 RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id);
1365                rcar_canfd_write(priv->base,
1366                                 RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1367
1368                if (can_is_canfd_skb(skb)) {
1369                        /* CAN FD frame format */
1370                        sts |= RCANFD_CFFDCSTS_CFFDF;
1371                        if (cf->flags & CANFD_BRS)
1372                                sts |= RCANFD_CFFDCSTS_CFBRS;
1373
1374                        if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1375                                sts |= RCANFD_CFFDCSTS_CFESI;
1376                }
1377
1378                rcar_canfd_write(priv->base,
1379                                 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts);
1380
1381                rcar_canfd_put_data(priv, cf,
1382                                    RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1383        } else {
1384                rcar_canfd_write(priv->base,
1385                                 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1386                rcar_canfd_write(priv->base,
1387                                 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1388                rcar_canfd_put_data(priv, cf,
1389                                    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1390        }
1391
1392        priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len;
1393        can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH);
1394
1395        spin_lock_irqsave(&priv->tx_lock, flags);
1396        priv->tx_head++;
1397
1398        /* Stop the queue if we've filled all FIFO entries */
1399        if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1400                netif_stop_queue(ndev);
1401
1402        /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1403         * pointer for the Common FIFO
1404         */
1405        rcar_canfd_write(priv->base,
1406                         RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff);
1407
1408        spin_unlock_irqrestore(&priv->tx_lock, flags);
1409        return NETDEV_TX_OK;
1410}
1411
1412static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1413{
1414        struct net_device_stats *stats = &priv->ndev->stats;
1415        struct canfd_frame *cf;
1416        struct sk_buff *skb;
1417        u32 sts = 0, id, dlc;
1418        u32 ch = priv->channel;
1419        u32 ridx = ch + RCANFD_RFFIFO_IDX;
1420
1421        if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1422                id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx));
1423                dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx));
1424
1425                sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx));
1426                if (sts & RCANFD_RFFDSTS_RFFDF)
1427                        skb = alloc_canfd_skb(priv->ndev, &cf);
1428                else
1429                        skb = alloc_can_skb(priv->ndev,
1430                                            (struct can_frame **)&cf);
1431        } else {
1432                id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1433                dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1434                skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1435        }
1436
1437        if (!skb) {
1438                stats->rx_dropped++;
1439                return;
1440        }
1441
1442        if (id & RCANFD_RFID_RFIDE)
1443                cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1444        else
1445                cf->can_id = id & CAN_SFF_MASK;
1446
1447        if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1448                if (sts & RCANFD_RFFDSTS_RFFDF)
1449                        cf->len = can_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1450                else
1451                        cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
1452
1453                if (sts & RCANFD_RFFDSTS_RFESI) {
1454                        cf->flags |= CANFD_ESI;
1455                        netdev_dbg(priv->ndev, "ESI Error\n");
1456                }
1457
1458                if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1459                        cf->can_id |= CAN_RTR_FLAG;
1460                } else {
1461                        if (sts & RCANFD_RFFDSTS_RFBRS)
1462                                cf->flags |= CANFD_BRS;
1463
1464                        rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0));
1465                }
1466        } else {
1467                cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
1468                if (id & RCANFD_RFID_RFRTR)
1469                        cf->can_id |= CAN_RTR_FLAG;
1470                else
1471                        rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1472        }
1473
1474        /* Write 0xff to RFPC to increment the CPU-side
1475         * pointer of the Rx FIFO
1476         */
1477        rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff);
1478
1479        can_led_event(priv->ndev, CAN_LED_EVENT_RX);
1480
1481        stats->rx_bytes += cf->len;
1482        stats->rx_packets++;
1483        netif_receive_skb(skb);
1484}
1485
1486static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1487{
1488        struct rcar_canfd_channel *priv =
1489                container_of(napi, struct rcar_canfd_channel, napi);
1490        int num_pkts;
1491        u32 sts;
1492        u32 ch = priv->channel;
1493        u32 ridx = ch + RCANFD_RFFIFO_IDX;
1494
1495        for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1496                sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1497                /* Check FIFO empty condition */
1498                if (sts & RCANFD_RFSTS_RFEMP)
1499                        break;
1500
1501                rcar_canfd_rx_pkt(priv);
1502
1503                /* Clear interrupt bit */
1504                if (sts & RCANFD_RFSTS_RFIF)
1505                        rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
1506                                         sts & ~RCANFD_RFSTS_RFIF);
1507        }
1508
1509        /* All packets processed */
1510        if (num_pkts < quota) {
1511                if (napi_complete_done(napi, num_pkts)) {
1512                        /* Enable Rx FIFO interrupts */
1513                        rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx),
1514                                           RCANFD_RFCC_RFIE);
1515                }
1516        }
1517        return num_pkts;
1518}
1519
1520static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1521{
1522        int err;
1523
1524        switch (mode) {
1525        case CAN_MODE_START:
1526                err = rcar_canfd_start(ndev);
1527                if (err)
1528                        return err;
1529                netif_wake_queue(ndev);
1530                return 0;
1531        default:
1532                return -EOPNOTSUPP;
1533        }
1534}
1535
1536static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1537                                       struct can_berr_counter *bec)
1538{
1539        struct rcar_canfd_channel *priv = netdev_priv(dev);
1540        u32 val, ch = priv->channel;
1541
1542        /* Peripheral clock is already enabled in probe */
1543        val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1544        bec->txerr = RCANFD_CSTS_TECCNT(val);
1545        bec->rxerr = RCANFD_CSTS_RECCNT(val);
1546        return 0;
1547}
1548
1549static const struct net_device_ops rcar_canfd_netdev_ops = {
1550        .ndo_open = rcar_canfd_open,
1551        .ndo_stop = rcar_canfd_close,
1552        .ndo_start_xmit = rcar_canfd_start_xmit,
1553        .ndo_change_mtu = can_change_mtu,
1554};
1555
1556static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1557                                    u32 fcan_freq)
1558{
1559        struct platform_device *pdev = gpriv->pdev;
1560        struct rcar_canfd_channel *priv;
1561        struct net_device *ndev;
1562        int err = -ENODEV;
1563
1564        ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1565        if (!ndev) {
1566                dev_err(&pdev->dev, "alloc_candev() failed\n");
1567                err = -ENOMEM;
1568                goto fail;
1569        }
1570        priv = netdev_priv(ndev);
1571
1572        ndev->netdev_ops = &rcar_canfd_netdev_ops;
1573        ndev->flags |= IFF_ECHO;
1574        priv->ndev = ndev;
1575        priv->base = gpriv->base;
1576        priv->channel = ch;
1577        priv->can.clock.freq = fcan_freq;
1578        dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1579
1580        if (gpriv->fdmode) {
1581                priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1582                priv->can.data_bittiming_const =
1583                        &rcar_canfd_data_bittiming_const;
1584
1585                /* Controller starts in CAN FD only mode */
1586                can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1587                priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1588        } else {
1589                /* Controller starts in Classical CAN only mode */
1590                priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1591                priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1592        }
1593
1594        priv->can.do_set_mode = rcar_canfd_do_set_mode;
1595        priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1596        priv->gpriv = gpriv;
1597        SET_NETDEV_DEV(ndev, &pdev->dev);
1598
1599        netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll,
1600                       RCANFD_NAPI_WEIGHT);
1601        err = register_candev(ndev);
1602        if (err) {
1603                dev_err(&pdev->dev,
1604                        "register_candev() failed, error %d\n", err);
1605                goto fail_candev;
1606        }
1607        spin_lock_init(&priv->tx_lock);
1608        devm_can_led_init(ndev);
1609        gpriv->ch[priv->channel] = priv;
1610        dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1611        return 0;
1612
1613fail_candev:
1614        netif_napi_del(&priv->napi);
1615        free_candev(ndev);
1616fail:
1617        return err;
1618}
1619
1620static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1621{
1622        struct rcar_canfd_channel *priv = gpriv->ch[ch];
1623
1624        if (priv) {
1625                unregister_candev(priv->ndev);
1626                netif_napi_del(&priv->napi);
1627                free_candev(priv->ndev);
1628        }
1629}
1630
1631static int rcar_canfd_probe(struct platform_device *pdev)
1632{
1633        struct resource *mem;
1634        void __iomem *addr;
1635        u32 sts, ch, fcan_freq;
1636        struct rcar_canfd_global *gpriv;
1637        struct device_node *of_child;
1638        unsigned long channels_mask = 0;
1639        int err, ch_irq, g_irq;
1640        bool fdmode = true;                     /* CAN FD only mode - default */
1641
1642        if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1643                fdmode = false;                 /* Classical CAN only mode */
1644
1645        of_child = of_get_child_by_name(pdev->dev.of_node, "channel0");
1646        if (of_child && of_device_is_available(of_child))
1647                channels_mask |= BIT(0);        /* Channel 0 */
1648
1649        of_child = of_get_child_by_name(pdev->dev.of_node, "channel1");
1650        if (of_child && of_device_is_available(of_child))
1651                channels_mask |= BIT(1);        /* Channel 1 */
1652
1653        ch_irq = platform_get_irq(pdev, 0);
1654        if (ch_irq < 0) {
1655                dev_err(&pdev->dev, "no Channel IRQ resource\n");
1656                err = ch_irq;
1657                goto fail_dev;
1658        }
1659
1660        g_irq = platform_get_irq(pdev, 1);
1661        if (g_irq < 0) {
1662                dev_err(&pdev->dev, "no Global IRQ resource\n");
1663                err = g_irq;
1664                goto fail_dev;
1665        }
1666
1667        /* Global controller context */
1668        gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1669        if (!gpriv) {
1670                err = -ENOMEM;
1671                goto fail_dev;
1672        }
1673        gpriv->pdev = pdev;
1674        gpriv->channels_mask = channels_mask;
1675        gpriv->fdmode = fdmode;
1676
1677        /* Peripheral clock */
1678        gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1679        if (IS_ERR(gpriv->clkp)) {
1680                err = PTR_ERR(gpriv->clkp);
1681                dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
1682                        err);
1683                goto fail_dev;
1684        }
1685
1686        /* fCAN clock: Pick External clock. If not available fallback to
1687         * CANFD clock
1688         */
1689        gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1690        if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1691                gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1692                if (IS_ERR(gpriv->can_clk)) {
1693                        err = PTR_ERR(gpriv->can_clk);
1694                        dev_err(&pdev->dev,
1695                                "cannot get canfd clock, error %d\n", err);
1696                        goto fail_dev;
1697                }
1698                gpriv->fcan = RCANFD_CANFDCLK;
1699
1700        } else {
1701                gpriv->fcan = RCANFD_EXTCLK;
1702        }
1703        fcan_freq = clk_get_rate(gpriv->can_clk);
1704
1705        if (gpriv->fcan == RCANFD_CANFDCLK)
1706                /* CANFD clock is further divided by (1/2) within the IP */
1707                fcan_freq /= 2;
1708
1709        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1710        addr = devm_ioremap_resource(&pdev->dev, mem);
1711        if (IS_ERR(addr)) {
1712                err = PTR_ERR(addr);
1713                goto fail_dev;
1714        }
1715        gpriv->base = addr;
1716
1717        /* Request IRQ that's common for both channels */
1718        err = devm_request_irq(&pdev->dev, ch_irq,
1719                               rcar_canfd_channel_interrupt, 0,
1720                               "canfd.chn", gpriv);
1721        if (err) {
1722                dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1723                        ch_irq, err);
1724                goto fail_dev;
1725        }
1726        err = devm_request_irq(&pdev->dev, g_irq,
1727                               rcar_canfd_global_interrupt, 0,
1728                               "canfd.gbl", gpriv);
1729        if (err) {
1730                dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1731                        g_irq, err);
1732                goto fail_dev;
1733        }
1734
1735        /* Enable peripheral clock for register access */
1736        err = clk_prepare_enable(gpriv->clkp);
1737        if (err) {
1738                dev_err(&pdev->dev,
1739                        "failed to enable peripheral clock, error %d\n", err);
1740                goto fail_dev;
1741        }
1742
1743        err = rcar_canfd_reset_controller(gpriv);
1744        if (err) {
1745                dev_err(&pdev->dev, "reset controller failed\n");
1746                goto fail_clk;
1747        }
1748
1749        /* Controller in Global reset & Channel reset mode */
1750        rcar_canfd_configure_controller(gpriv);
1751
1752        /* Configure per channel attributes */
1753        for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1754                /* Configure Channel's Rx fifo */
1755                rcar_canfd_configure_rx(gpriv, ch);
1756
1757                /* Configure Channel's Tx (Common) fifo */
1758                rcar_canfd_configure_tx(gpriv, ch);
1759
1760                /* Configure receive rules */
1761                rcar_canfd_configure_afl_rules(gpriv, ch);
1762        }
1763
1764        /* Configure common interrupts */
1765        rcar_canfd_enable_global_interrupts(gpriv);
1766
1767        /* Start Global operation mode */
1768        rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
1769                              RCANFD_GCTR_GMDC_GOPM);
1770
1771        /* Verify mode change */
1772        err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
1773                                 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
1774        if (err) {
1775                dev_err(&pdev->dev, "global operational mode failed\n");
1776                goto fail_mode;
1777        }
1778
1779        for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1780                err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
1781                if (err)
1782                        goto fail_channel;
1783        }
1784
1785        platform_set_drvdata(pdev, gpriv);
1786        dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
1787                 gpriv->fcan, gpriv->fdmode);
1788        return 0;
1789
1790fail_channel:
1791        for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
1792                rcar_canfd_channel_remove(gpriv, ch);
1793fail_mode:
1794        rcar_canfd_disable_global_interrupts(gpriv);
1795fail_clk:
1796        clk_disable_unprepare(gpriv->clkp);
1797fail_dev:
1798        return err;
1799}
1800
1801static int rcar_canfd_remove(struct platform_device *pdev)
1802{
1803        struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
1804        u32 ch;
1805
1806        rcar_canfd_reset_controller(gpriv);
1807        rcar_canfd_disable_global_interrupts(gpriv);
1808
1809        for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1810                rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
1811                rcar_canfd_channel_remove(gpriv, ch);
1812        }
1813
1814        /* Enter global sleep mode */
1815        rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
1816        clk_disable_unprepare(gpriv->clkp);
1817        return 0;
1818}
1819
1820static int __maybe_unused rcar_canfd_suspend(struct device *dev)
1821{
1822        return 0;
1823}
1824
1825static int __maybe_unused rcar_canfd_resume(struct device *dev)
1826{
1827        return 0;
1828}
1829
1830static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
1831                         rcar_canfd_resume);
1832
1833static const struct of_device_id rcar_canfd_of_table[] = {
1834        { .compatible = "renesas,rcar-gen3-canfd" },
1835        { }
1836};
1837
1838MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
1839
1840static struct platform_driver rcar_canfd_driver = {
1841        .driver = {
1842                .name = RCANFD_DRV_NAME,
1843                .of_match_table = of_match_ptr(rcar_canfd_of_table),
1844                .pm = &rcar_canfd_pm_ops,
1845        },
1846        .probe = rcar_canfd_probe,
1847        .remove = rcar_canfd_remove,
1848};
1849
1850module_platform_driver(rcar_canfd_driver);
1851
1852MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
1853MODULE_LICENSE("GPL");
1854MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
1855MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
1856