linux/drivers/net/can/xilinx_can.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2014 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/errno.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/netdevice.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/platform_device.h>
  23#include <linux/skbuff.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/types.h>
  27#include <linux/can/dev.h>
  28#include <linux/can/error.h>
  29#include <linux/can/led.h>
  30#include <linux/pm_runtime.h>
  31
  32#define DRIVER_NAME     "xilinx_can"
  33
  34/* CAN registers set */
  35enum xcan_reg {
  36        XCAN_SRR_OFFSET         = 0x00, /* Software reset */
  37        XCAN_MSR_OFFSET         = 0x04, /* Mode select */
  38        XCAN_BRPR_OFFSET        = 0x08, /* Baud rate prescaler */
  39        XCAN_BTR_OFFSET         = 0x0C, /* Bit timing */
  40        XCAN_ECR_OFFSET         = 0x10, /* Error counter */
  41        XCAN_ESR_OFFSET         = 0x14, /* Error status */
  42        XCAN_SR_OFFSET          = 0x18, /* Status */
  43        XCAN_ISR_OFFSET         = 0x1C, /* Interrupt status */
  44        XCAN_IER_OFFSET         = 0x20, /* Interrupt enable */
  45        XCAN_ICR_OFFSET         = 0x24, /* Interrupt clear */
  46
  47        /* not on CAN FD cores */
  48        XCAN_TXFIFO_OFFSET      = 0x30, /* TX FIFO base */
  49        XCAN_RXFIFO_OFFSET      = 0x50, /* RX FIFO base */
  50        XCAN_AFR_OFFSET         = 0x60, /* Acceptance Filter */
  51
  52        /* only on CAN FD cores */
  53        XCAN_TRR_OFFSET         = 0x0090, /* TX Buffer Ready Request */
  54        XCAN_AFR_EXT_OFFSET     = 0x00E0, /* Acceptance Filter */
  55        XCAN_FSR_OFFSET         = 0x00E8, /* RX FIFO Status */
  56        XCAN_TXMSG_BASE_OFFSET  = 0x0100, /* TX Message Space */
  57        XCAN_RXMSG_BASE_OFFSET  = 0x1100, /* RX Message Space */
  58        XCAN_RXMSG_2_BASE_OFFSET        = 0x2100, /* RX Message Space */
  59};
  60
  61#define XCAN_FRAME_ID_OFFSET(frame_base)        ((frame_base) + 0x00)
  62#define XCAN_FRAME_DLC_OFFSET(frame_base)       ((frame_base) + 0x04)
  63#define XCAN_FRAME_DW1_OFFSET(frame_base)       ((frame_base) + 0x08)
  64#define XCAN_FRAME_DW2_OFFSET(frame_base)       ((frame_base) + 0x0C)
  65
  66#define XCAN_CANFD_FRAME_SIZE           0x48
  67#define XCAN_TXMSG_FRAME_OFFSET(n)      (XCAN_TXMSG_BASE_OFFSET + \
  68                                         XCAN_CANFD_FRAME_SIZE * (n))
  69#define XCAN_RXMSG_FRAME_OFFSET(n)      (XCAN_RXMSG_BASE_OFFSET + \
  70                                         XCAN_CANFD_FRAME_SIZE * (n))
  71#define XCAN_RXMSG_2_FRAME_OFFSET(n)    (XCAN_RXMSG_2_BASE_OFFSET + \
  72                                         XCAN_CANFD_FRAME_SIZE * (n))
  73
  74/* the single TX mailbox used by this driver on CAN FD HW */
  75#define XCAN_TX_MAILBOX_IDX             0
  76
  77/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  78#define XCAN_SRR_CEN_MASK               0x00000002 /* CAN enable */
  79#define XCAN_SRR_RESET_MASK             0x00000001 /* Soft Reset the CAN core */
  80#define XCAN_MSR_LBACK_MASK             0x00000002 /* Loop back mode select */
  81#define XCAN_MSR_SLEEP_MASK             0x00000001 /* Sleep mode select */
  82#define XCAN_BRPR_BRP_MASK              0x000000FF /* Baud rate prescaler */
  83#define XCAN_BTR_SJW_MASK               0x00000180 /* Synchronous jump width */
  84#define XCAN_BTR_TS2_MASK               0x00000070 /* Time segment 2 */
  85#define XCAN_BTR_TS1_MASK               0x0000000F /* Time segment 1 */
  86#define XCAN_BTR_SJW_MASK_CANFD         0x000F0000 /* Synchronous jump width */
  87#define XCAN_BTR_TS2_MASK_CANFD         0x00000F00 /* Time segment 2 */
  88#define XCAN_BTR_TS1_MASK_CANFD         0x0000003F /* Time segment 1 */
  89#define XCAN_ECR_REC_MASK               0x0000FF00 /* Receive error counter */
  90#define XCAN_ECR_TEC_MASK               0x000000FF /* Transmit error counter */
  91#define XCAN_ESR_ACKER_MASK             0x00000010 /* ACK error */
  92#define XCAN_ESR_BERR_MASK              0x00000008 /* Bit error */
  93#define XCAN_ESR_STER_MASK              0x00000004 /* Stuff error */
  94#define XCAN_ESR_FMER_MASK              0x00000002 /* Form error */
  95#define XCAN_ESR_CRCER_MASK             0x00000001 /* CRC error */
  96#define XCAN_SR_TXFLL_MASK              0x00000400 /* TX FIFO is full */
  97#define XCAN_SR_ESTAT_MASK              0x00000180 /* Error status */
  98#define XCAN_SR_ERRWRN_MASK             0x00000040 /* Error warning */
  99#define XCAN_SR_NORMAL_MASK             0x00000008 /* Normal mode */
 100#define XCAN_SR_LBACK_MASK              0x00000002 /* Loop back mode */
 101#define XCAN_SR_CONFIG_MASK             0x00000001 /* Configuration mode */
 102#define XCAN_IXR_RXMNF_MASK             0x00020000 /* RX match not finished */
 103#define XCAN_IXR_TXFEMP_MASK            0x00004000 /* TX FIFO Empty */
 104#define XCAN_IXR_WKUP_MASK              0x00000800 /* Wake up interrupt */
 105#define XCAN_IXR_SLP_MASK               0x00000400 /* Sleep interrupt */
 106#define XCAN_IXR_BSOFF_MASK             0x00000200 /* Bus off interrupt */
 107#define XCAN_IXR_ERROR_MASK             0x00000100 /* Error interrupt */
 108#define XCAN_IXR_RXNEMP_MASK            0x00000080 /* RX FIFO NotEmpty intr */
 109#define XCAN_IXR_RXOFLW_MASK            0x00000040 /* RX FIFO Overflow intr */
 110#define XCAN_IXR_RXOK_MASK              0x00000010 /* Message received intr */
 111#define XCAN_IXR_TXFLL_MASK             0x00000004 /* Tx FIFO Full intr */
 112#define XCAN_IXR_TXOK_MASK              0x00000002 /* TX successful intr */
 113#define XCAN_IXR_ARBLST_MASK            0x00000001 /* Arbitration lost intr */
 114#define XCAN_IDR_ID1_MASK               0xFFE00000 /* Standard msg identifier */
 115#define XCAN_IDR_SRR_MASK               0x00100000 /* Substitute remote TXreq */
 116#define XCAN_IDR_IDE_MASK               0x00080000 /* Identifier extension */
 117#define XCAN_IDR_ID2_MASK               0x0007FFFE /* Extended message ident */
 118#define XCAN_IDR_RTR_MASK               0x00000001 /* Remote TX request */
 119#define XCAN_DLCR_DLC_MASK              0xF0000000 /* Data length code */
 120#define XCAN_FSR_FL_MASK                0x00003F00 /* RX Fill Level */
 121#define XCAN_FSR_IRI_MASK               0x00000080 /* RX Increment Read Index */
 122#define XCAN_FSR_RI_MASK                0x0000001F /* RX Read Index */
 123
 124/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 125#define XCAN_BTR_SJW_SHIFT              7  /* Synchronous jump width */
 126#define XCAN_BTR_TS2_SHIFT              4  /* Time segment 2 */
 127#define XCAN_BTR_SJW_SHIFT_CANFD        16 /* Synchronous jump width */
 128#define XCAN_BTR_TS2_SHIFT_CANFD        8  /* Time segment 2 */
 129#define XCAN_IDR_ID1_SHIFT              21 /* Standard Messg Identifier */
 130#define XCAN_IDR_ID2_SHIFT              1  /* Extended Message Identifier */
 131#define XCAN_DLCR_DLC_SHIFT             28 /* Data length code */
 132#define XCAN_ESR_REC_SHIFT              8  /* Rx Error Count */
 133
 134/* CAN frame length constants */
 135#define XCAN_FRAME_MAX_DATA_LEN         8
 136#define XCAN_TIMEOUT                    (1 * HZ)
 137
 138/* TX-FIFO-empty interrupt available */
 139#define XCAN_FLAG_TXFEMP        0x0001
 140/* RX Match Not Finished interrupt available */
 141#define XCAN_FLAG_RXMNF         0x0002
 142/* Extended acceptance filters with control at 0xE0 */
 143#define XCAN_FLAG_EXT_FILTERS   0x0004
 144/* TX mailboxes instead of TX FIFO */
 145#define XCAN_FLAG_TX_MAILBOXES  0x0008
 146/* RX FIFO with each buffer in separate registers at 0x1100
 147 * instead of the regular FIFO at 0x50
 148 */
 149#define XCAN_FLAG_RX_FIFO_MULTI 0x0010
 150#define XCAN_FLAG_CANFD_2       0x0020
 151
 152struct xcan_devtype_data {
 153        unsigned int flags;
 154        const struct can_bittiming_const *bittiming_const;
 155        const char *bus_clk_name;
 156        unsigned int btr_ts2_shift;
 157        unsigned int btr_sjw_shift;
 158};
 159
 160/**
 161 * struct xcan_priv - This definition define CAN driver instance
 162 * @can:                        CAN private data structure.
 163 * @tx_lock:                    Lock for synchronizing TX interrupt handling
 164 * @tx_head:                    Tx CAN packets ready to send on the queue
 165 * @tx_tail:                    Tx CAN packets successfully sended on the queue
 166 * @tx_max:                     Maximum number packets the driver can send
 167 * @napi:                       NAPI structure
 168 * @read_reg:                   For reading data from CAN registers
 169 * @write_reg:                  For writing data to CAN registers
 170 * @dev:                        Network device data structure
 171 * @reg_base:                   Ioremapped address to registers
 172 * @irq_flags:                  For request_irq()
 173 * @bus_clk:                    Pointer to struct clk
 174 * @can_clk:                    Pointer to struct clk
 175 * @devtype:                    Device type specific constants
 176 */
 177struct xcan_priv {
 178        struct can_priv can;
 179        spinlock_t tx_lock;
 180        unsigned int tx_head;
 181        unsigned int tx_tail;
 182        unsigned int tx_max;
 183        struct napi_struct napi;
 184        u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 185        void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 186                        u32 val);
 187        struct device *dev;
 188        void __iomem *reg_base;
 189        unsigned long irq_flags;
 190        struct clk *bus_clk;
 191        struct clk *can_clk;
 192        struct xcan_devtype_data devtype;
 193};
 194
 195/* CAN Bittiming constants as per Xilinx CAN specs */
 196static const struct can_bittiming_const xcan_bittiming_const = {
 197        .name = DRIVER_NAME,
 198        .tseg1_min = 1,
 199        .tseg1_max = 16,
 200        .tseg2_min = 1,
 201        .tseg2_max = 8,
 202        .sjw_max = 4,
 203        .brp_min = 1,
 204        .brp_max = 256,
 205        .brp_inc = 1,
 206};
 207
 208static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 209        .name = DRIVER_NAME,
 210        .tseg1_min = 1,
 211        .tseg1_max = 64,
 212        .tseg2_min = 1,
 213        .tseg2_max = 16,
 214        .sjw_max = 16,
 215        .brp_min = 1,
 216        .brp_max = 256,
 217        .brp_inc = 1,
 218};
 219
 220static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 221        .name = DRIVER_NAME,
 222        .tseg1_min = 1,
 223        .tseg1_max = 256,
 224        .tseg2_min = 1,
 225        .tseg2_max = 128,
 226        .sjw_max = 128,
 227        .brp_min = 1,
 228        .brp_max = 256,
 229        .brp_inc = 1,
 230};
 231
 232/**
 233 * xcan_write_reg_le - Write a value to the device register little endian
 234 * @priv:       Driver private data structure
 235 * @reg:        Register offset
 236 * @val:        Value to write at the Register offset
 237 *
 238 * Write data to the paricular CAN register
 239 */
 240static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 241                        u32 val)
 242{
 243        iowrite32(val, priv->reg_base + reg);
 244}
 245
 246/**
 247 * xcan_read_reg_le - Read a value from the device register little endian
 248 * @priv:       Driver private data structure
 249 * @reg:        Register offset
 250 *
 251 * Read data from the particular CAN register
 252 * Return: value read from the CAN register
 253 */
 254static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 255{
 256        return ioread32(priv->reg_base + reg);
 257}
 258
 259/**
 260 * xcan_write_reg_be - Write a value to the device register big endian
 261 * @priv:       Driver private data structure
 262 * @reg:        Register offset
 263 * @val:        Value to write at the Register offset
 264 *
 265 * Write data to the paricular CAN register
 266 */
 267static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 268                        u32 val)
 269{
 270        iowrite32be(val, priv->reg_base + reg);
 271}
 272
 273/**
 274 * xcan_read_reg_be - Read a value from the device register big endian
 275 * @priv:       Driver private data structure
 276 * @reg:        Register offset
 277 *
 278 * Read data from the particular CAN register
 279 * Return: value read from the CAN register
 280 */
 281static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 282{
 283        return ioread32be(priv->reg_base + reg);
 284}
 285
 286/**
 287 * xcan_rx_int_mask - Get the mask for the receive interrupt
 288 * @priv:       Driver private data structure
 289 *
 290 * Return: The receive interrupt mask used by the driver on this HW
 291 */
 292static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 293{
 294        /* RXNEMP is better suited for our use case as it cannot be cleared
 295         * while the FIFO is non-empty, but CAN FD HW does not have it
 296         */
 297        if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 298                return XCAN_IXR_RXOK_MASK;
 299        else
 300                return XCAN_IXR_RXNEMP_MASK;
 301}
 302
 303/**
 304 * set_reset_mode - Resets the CAN device mode
 305 * @ndev:       Pointer to net_device structure
 306 *
 307 * This is the driver reset mode routine.The driver
 308 * enters into configuration mode.
 309 *
 310 * Return: 0 on success and failure value on error
 311 */
 312static int set_reset_mode(struct net_device *ndev)
 313{
 314        struct xcan_priv *priv = netdev_priv(ndev);
 315        unsigned long timeout;
 316
 317        priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 318
 319        timeout = jiffies + XCAN_TIMEOUT;
 320        while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 321                if (time_after(jiffies, timeout)) {
 322                        netdev_warn(ndev, "timed out for config mode\n");
 323                        return -ETIMEDOUT;
 324                }
 325                usleep_range(500, 10000);
 326        }
 327
 328        /* reset clears FIFOs */
 329        priv->tx_head = 0;
 330        priv->tx_tail = 0;
 331
 332        return 0;
 333}
 334
 335/**
 336 * xcan_set_bittiming - CAN set bit timing routine
 337 * @ndev:       Pointer to net_device structure
 338 *
 339 * This is the driver set bittiming  routine.
 340 * Return: 0 on success and failure value on error
 341 */
 342static int xcan_set_bittiming(struct net_device *ndev)
 343{
 344        struct xcan_priv *priv = netdev_priv(ndev);
 345        struct can_bittiming *bt = &priv->can.bittiming;
 346        u32 btr0, btr1;
 347        u32 is_config_mode;
 348
 349        /* Check whether Xilinx CAN is in configuration mode.
 350         * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 351         */
 352        is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 353                                XCAN_SR_CONFIG_MASK;
 354        if (!is_config_mode) {
 355                netdev_alert(ndev,
 356                     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 357                return -EPERM;
 358        }
 359
 360        /* Setting Baud Rate prescalar value in BRPR Register */
 361        btr0 = (bt->brp - 1);
 362
 363        /* Setting Time Segment 1 in BTR Register */
 364        btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 365
 366        /* Setting Time Segment 2 in BTR Register */
 367        btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 368
 369        /* Setting Synchronous jump width in BTR Register */
 370        btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 371
 372        priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 373        priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 374
 375        netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 376                        priv->read_reg(priv, XCAN_BRPR_OFFSET),
 377                        priv->read_reg(priv, XCAN_BTR_OFFSET));
 378
 379        return 0;
 380}
 381
 382/**
 383 * xcan_chip_start - This the drivers start routine
 384 * @ndev:       Pointer to net_device structure
 385 *
 386 * This is the drivers start routine.
 387 * Based on the State of the CAN device it puts
 388 * the CAN device into a proper mode.
 389 *
 390 * Return: 0 on success and failure value on error
 391 */
 392static int xcan_chip_start(struct net_device *ndev)
 393{
 394        struct xcan_priv *priv = netdev_priv(ndev);
 395        u32 reg_msr, reg_sr_mask;
 396        int err;
 397        unsigned long timeout;
 398        u32 ier;
 399
 400        /* Check if it is in reset mode */
 401        err = set_reset_mode(ndev);
 402        if (err < 0)
 403                return err;
 404
 405        err = xcan_set_bittiming(ndev);
 406        if (err < 0)
 407                return err;
 408
 409        /* Enable interrupts */
 410        ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 411                XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 412                XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 413                XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 414
 415        if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 416                ier |= XCAN_IXR_RXMNF_MASK;
 417
 418        priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 419
 420        /* Check whether it is loopback mode or normal mode  */
 421        if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 422                reg_msr = XCAN_MSR_LBACK_MASK;
 423                reg_sr_mask = XCAN_SR_LBACK_MASK;
 424        } else {
 425                reg_msr = 0x0;
 426                reg_sr_mask = XCAN_SR_NORMAL_MASK;
 427        }
 428
 429        /* enable the first extended filter, if any, as cores with extended
 430         * filtering default to non-receipt if all filters are disabled
 431         */
 432        if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 433                priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 434
 435        priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 436        priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 437
 438        timeout = jiffies + XCAN_TIMEOUT;
 439        while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
 440                if (time_after(jiffies, timeout)) {
 441                        netdev_warn(ndev,
 442                                "timed out for correct mode\n");
 443                        return -ETIMEDOUT;
 444                }
 445        }
 446        netdev_dbg(ndev, "status:#x%08x\n",
 447                        priv->read_reg(priv, XCAN_SR_OFFSET));
 448
 449        priv->can.state = CAN_STATE_ERROR_ACTIVE;
 450        return 0;
 451}
 452
 453/**
 454 * xcan_do_set_mode - This sets the mode of the driver
 455 * @ndev:       Pointer to net_device structure
 456 * @mode:       Tells the mode of the driver
 457 *
 458 * This check the drivers state and calls the
 459 * the corresponding modes to set.
 460 *
 461 * Return: 0 on success and failure value on error
 462 */
 463static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 464{
 465        int ret;
 466
 467        switch (mode) {
 468        case CAN_MODE_START:
 469                ret = xcan_chip_start(ndev);
 470                if (ret < 0) {
 471                        netdev_err(ndev, "xcan_chip_start failed!\n");
 472                        return ret;
 473                }
 474                netif_wake_queue(ndev);
 475                break;
 476        default:
 477                ret = -EOPNOTSUPP;
 478                break;
 479        }
 480
 481        return ret;
 482}
 483
 484/**
 485 * xcan_write_frame - Write a frame to HW
 486 * @skb:                sk_buff pointer that contains data to be Txed
 487 * @frame_offset:       Register offset to write the frame to
 488 */
 489static void xcan_write_frame(struct xcan_priv *priv, struct sk_buff *skb,
 490                             int frame_offset)
 491{
 492        u32 id, dlc, data[2] = {0, 0};
 493        struct can_frame *cf = (struct can_frame *)skb->data;
 494
 495        /* Watch carefully on the bit sequence */
 496        if (cf->can_id & CAN_EFF_FLAG) {
 497                /* Extended CAN ID format */
 498                id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 499                        XCAN_IDR_ID2_MASK;
 500                id |= (((cf->can_id & CAN_EFF_MASK) >>
 501                        (CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
 502                        XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 503
 504                /* The substibute remote TX request bit should be "1"
 505                 * for extended frames as in the Xilinx CAN datasheet
 506                 */
 507                id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 508
 509                if (cf->can_id & CAN_RTR_FLAG)
 510                        /* Extended frames remote TX request */
 511                        id |= XCAN_IDR_RTR_MASK;
 512        } else {
 513                /* Standard CAN ID format */
 514                id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 515                        XCAN_IDR_ID1_MASK;
 516
 517                if (cf->can_id & CAN_RTR_FLAG)
 518                        /* Standard frames remote TX request */
 519                        id |= XCAN_IDR_SRR_MASK;
 520        }
 521
 522        dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
 523
 524        if (cf->can_dlc > 0)
 525                data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 526        if (cf->can_dlc > 4)
 527                data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 528
 529        priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 530        /* If the CAN frame is RTR frame this write triggers transmission
 531         * (not on CAN FD)
 532         */
 533        priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 534        if (!(cf->can_id & CAN_RTR_FLAG)) {
 535                priv->write_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_offset),
 536                                data[0]);
 537                /* If the CAN frame is Standard/Extended frame this
 538                 * write triggers transmission (not on CAN FD)
 539                 */
 540                priv->write_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_offset),
 541                                data[1]);
 542        }
 543}
 544
 545/**
 546 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 547 *
 548 * Return: 0 on success, -ENOSPC if FIFO is full.
 549 */
 550static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 551{
 552        struct xcan_priv *priv = netdev_priv(ndev);
 553        unsigned long flags;
 554
 555        /* Check if the TX buffer is full */
 556        if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 557                        XCAN_SR_TXFLL_MASK))
 558                return -ENOSPC;
 559
 560        can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
 561
 562        spin_lock_irqsave(&priv->tx_lock, flags);
 563
 564        priv->tx_head++;
 565
 566        xcan_write_frame(priv, skb, XCAN_TXFIFO_OFFSET);
 567
 568        /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 569        if (priv->tx_max > 1)
 570                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 571
 572        /* Check if the TX buffer is full */
 573        if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 574                netif_stop_queue(ndev);
 575
 576        spin_unlock_irqrestore(&priv->tx_lock, flags);
 577
 578        return 0;
 579}
 580
 581/**
 582 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 583 *
 584 * Return: 0 on success, -ENOSPC if there is no space
 585 */
 586static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 587{
 588        struct xcan_priv *priv = netdev_priv(ndev);
 589        unsigned long flags;
 590
 591        if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 592                     BIT(XCAN_TX_MAILBOX_IDX)))
 593                return -ENOSPC;
 594
 595        can_put_echo_skb(skb, ndev, 0);
 596
 597        spin_lock_irqsave(&priv->tx_lock, flags);
 598
 599        priv->tx_head++;
 600
 601        xcan_write_frame(priv, skb,
 602                         XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 603
 604        /* Mark buffer as ready for transmit */
 605        priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 606
 607        netif_stop_queue(ndev);
 608
 609        spin_unlock_irqrestore(&priv->tx_lock, flags);
 610
 611        return 0;
 612}
 613
 614/**
 615 * xcan_start_xmit - Starts the transmission
 616 * @skb:        sk_buff pointer that contains data to be Txed
 617 * @ndev:       Pointer to net_device structure
 618 *
 619 * This function is invoked from upper layers to initiate transmission.
 620 *
 621 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 622 */
 623static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 624{
 625        struct xcan_priv *priv = netdev_priv(ndev);
 626        int ret;
 627
 628        if (can_dropped_invalid_skb(ndev, skb))
 629                return NETDEV_TX_OK;
 630
 631        if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 632                ret = xcan_start_xmit_mailbox(skb, ndev);
 633        else
 634                ret = xcan_start_xmit_fifo(skb, ndev);
 635
 636        if (ret < 0) {
 637                netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 638                netif_stop_queue(ndev);
 639                return NETDEV_TX_BUSY;
 640        }
 641
 642        return NETDEV_TX_OK;
 643}
 644
 645/**
 646 * xcan_rx -  Is called from CAN isr to complete the received
 647 *              frame  processing
 648 * @ndev:       Pointer to net_device structure
 649 * @frame_base: Register offset to the frame to be read
 650 *
 651 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 652 * does minimal processing and invokes "netif_receive_skb" to complete further
 653 * processing.
 654 * Return: 1 on success and 0 on failure.
 655 */
 656static int xcan_rx(struct net_device *ndev, int frame_base)
 657{
 658        struct xcan_priv *priv = netdev_priv(ndev);
 659        struct net_device_stats *stats = &ndev->stats;
 660        struct can_frame *cf;
 661        struct sk_buff *skb;
 662        u32 id_xcan, dlc, data[2] = {0, 0};
 663
 664        skb = alloc_can_skb(ndev, &cf);
 665        if (unlikely(!skb)) {
 666                stats->rx_dropped++;
 667                return 0;
 668        }
 669
 670        /* Read a frame from Xilinx zynq CANPS */
 671        id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 672        dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 673                                   XCAN_DLCR_DLC_SHIFT;
 674
 675        /* Change Xilinx CAN data length format to socketCAN data format */
 676        cf->can_dlc = get_can_dlc(dlc);
 677
 678        /* Change Xilinx CAN ID format to socketCAN ID format */
 679        if (id_xcan & XCAN_IDR_IDE_MASK) {
 680                /* The received frame is an Extended format frame */
 681                cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 682                cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 683                                XCAN_IDR_ID2_SHIFT;
 684                cf->can_id |= CAN_EFF_FLAG;
 685                if (id_xcan & XCAN_IDR_RTR_MASK)
 686                        cf->can_id |= CAN_RTR_FLAG;
 687        } else {
 688                /* The received frame is a standard format frame */
 689                cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 690                                XCAN_IDR_ID1_SHIFT;
 691                if (id_xcan & XCAN_IDR_SRR_MASK)
 692                        cf->can_id |= CAN_RTR_FLAG;
 693        }
 694
 695        /* DW1/DW2 must always be read to remove message from RXFIFO */
 696        data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 697        data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 698
 699        if (!(cf->can_id & CAN_RTR_FLAG)) {
 700                /* Change Xilinx CAN data format to socketCAN data format */
 701                if (cf->can_dlc > 0)
 702                        *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 703                if (cf->can_dlc > 4)
 704                        *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 705        }
 706
 707        stats->rx_bytes += cf->can_dlc;
 708        stats->rx_packets++;
 709        netif_receive_skb(skb);
 710
 711        return 1;
 712}
 713
 714/**
 715 * xcan_current_error_state - Get current error state from HW
 716 * @ndev:       Pointer to net_device structure
 717 *
 718 * Checks the current CAN error state from the HW. Note that this
 719 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 720 *
 721 * Return:
 722 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 723 * otherwise.
 724 */
 725static enum can_state xcan_current_error_state(struct net_device *ndev)
 726{
 727        struct xcan_priv *priv = netdev_priv(ndev);
 728        u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 729
 730        if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 731                return CAN_STATE_ERROR_PASSIVE;
 732        else if (status & XCAN_SR_ERRWRN_MASK)
 733                return CAN_STATE_ERROR_WARNING;
 734        else
 735                return CAN_STATE_ERROR_ACTIVE;
 736}
 737
 738/**
 739 * xcan_set_error_state - Set new CAN error state
 740 * @ndev:       Pointer to net_device structure
 741 * @new_state:  The new CAN state to be set
 742 * @cf:         Error frame to be populated or NULL
 743 *
 744 * Set new CAN error state for the device, updating statistics and
 745 * populating the error frame if given.
 746 */
 747static void xcan_set_error_state(struct net_device *ndev,
 748                                 enum can_state new_state,
 749                                 struct can_frame *cf)
 750{
 751        struct xcan_priv *priv = netdev_priv(ndev);
 752        u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 753        u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 754        u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 755        enum can_state tx_state = txerr >= rxerr ? new_state : 0;
 756        enum can_state rx_state = txerr <= rxerr ? new_state : 0;
 757
 758        /* non-ERROR states are handled elsewhere */
 759        if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
 760                return;
 761
 762        can_change_state(ndev, cf, tx_state, rx_state);
 763
 764        if (cf) {
 765                cf->data[6] = txerr;
 766                cf->data[7] = rxerr;
 767        }
 768}
 769
 770/**
 771 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 772 * @ndev:       Pointer to net_device structure
 773 *
 774 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 775 * the performed RX/TX has caused it to drop to a lesser state and set
 776 * the interface state accordingly.
 777 */
 778static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 779{
 780        struct xcan_priv *priv = netdev_priv(ndev);
 781        enum can_state old_state = priv->can.state;
 782        enum can_state new_state;
 783
 784        /* changing error state due to successful frame RX/TX can only
 785         * occur from these states
 786         */
 787        if (old_state != CAN_STATE_ERROR_WARNING &&
 788            old_state != CAN_STATE_ERROR_PASSIVE)
 789                return;
 790
 791        new_state = xcan_current_error_state(ndev);
 792
 793        if (new_state != old_state) {
 794                struct sk_buff *skb;
 795                struct can_frame *cf;
 796
 797                skb = alloc_can_err_skb(ndev, &cf);
 798
 799                xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
 800
 801                if (skb) {
 802                        struct net_device_stats *stats = &ndev->stats;
 803
 804                        stats->rx_packets++;
 805                        stats->rx_bytes += cf->can_dlc;
 806                        netif_rx(skb);
 807                }
 808        }
 809}
 810
 811/**
 812 * xcan_err_interrupt - error frame Isr
 813 * @ndev:       net_device pointer
 814 * @isr:        interrupt status register value
 815 *
 816 * This is the CAN error interrupt and it will
 817 * check the the type of error and forward the error
 818 * frame to upper layers.
 819 */
 820static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
 821{
 822        struct xcan_priv *priv = netdev_priv(ndev);
 823        struct net_device_stats *stats = &ndev->stats;
 824        struct can_frame *cf;
 825        struct sk_buff *skb;
 826        u32 err_status;
 827
 828        skb = alloc_can_err_skb(ndev, &cf);
 829
 830        err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
 831        priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
 832
 833        if (isr & XCAN_IXR_BSOFF_MASK) {
 834                priv->can.state = CAN_STATE_BUS_OFF;
 835                priv->can.can_stats.bus_off++;
 836                /* Leave device in Config Mode in bus-off state */
 837                priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 838                can_bus_off(ndev);
 839                if (skb)
 840                        cf->can_id |= CAN_ERR_BUSOFF;
 841        } else {
 842                enum can_state new_state = xcan_current_error_state(ndev);
 843
 844                if (new_state != priv->can.state)
 845                        xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
 846        }
 847
 848        /* Check for Arbitration lost interrupt */
 849        if (isr & XCAN_IXR_ARBLST_MASK) {
 850                priv->can.can_stats.arbitration_lost++;
 851                if (skb) {
 852                        cf->can_id |= CAN_ERR_LOSTARB;
 853                        cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
 854                }
 855        }
 856
 857        /* Check for RX FIFO Overflow interrupt */
 858        if (isr & XCAN_IXR_RXOFLW_MASK) {
 859                stats->rx_over_errors++;
 860                stats->rx_errors++;
 861                if (skb) {
 862                        cf->can_id |= CAN_ERR_CRTL;
 863                        cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
 864                }
 865        }
 866
 867        /* Check for RX Match Not Finished interrupt */
 868        if (isr & XCAN_IXR_RXMNF_MASK) {
 869                stats->rx_dropped++;
 870                stats->rx_errors++;
 871                netdev_err(ndev, "RX match not finished, frame discarded\n");
 872                if (skb) {
 873                        cf->can_id |= CAN_ERR_CRTL;
 874                        cf->data[1] |= CAN_ERR_CRTL_UNSPEC;
 875                }
 876        }
 877
 878        /* Check for error interrupt */
 879        if (isr & XCAN_IXR_ERROR_MASK) {
 880                if (skb)
 881                        cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 882
 883                /* Check for Ack error interrupt */
 884                if (err_status & XCAN_ESR_ACKER_MASK) {
 885                        stats->tx_errors++;
 886                        if (skb) {
 887                                cf->can_id |= CAN_ERR_ACK;
 888                                cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 889                        }
 890                }
 891
 892                /* Check for Bit error interrupt */
 893                if (err_status & XCAN_ESR_BERR_MASK) {
 894                        stats->tx_errors++;
 895                        if (skb) {
 896                                cf->can_id |= CAN_ERR_PROT;
 897                                cf->data[2] = CAN_ERR_PROT_BIT;
 898                        }
 899                }
 900
 901                /* Check for Stuff error interrupt */
 902                if (err_status & XCAN_ESR_STER_MASK) {
 903                        stats->rx_errors++;
 904                        if (skb) {
 905                                cf->can_id |= CAN_ERR_PROT;
 906                                cf->data[2] = CAN_ERR_PROT_STUFF;
 907                        }
 908                }
 909
 910                /* Check for Form error interrupt */
 911                if (err_status & XCAN_ESR_FMER_MASK) {
 912                        stats->rx_errors++;
 913                        if (skb) {
 914                                cf->can_id |= CAN_ERR_PROT;
 915                                cf->data[2] = CAN_ERR_PROT_FORM;
 916                        }
 917                }
 918
 919                /* Check for CRC error interrupt */
 920                if (err_status & XCAN_ESR_CRCER_MASK) {
 921                        stats->rx_errors++;
 922                        if (skb) {
 923                                cf->can_id |= CAN_ERR_PROT;
 924                                cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 925                        }
 926                }
 927                        priv->can.can_stats.bus_error++;
 928        }
 929
 930        if (skb) {
 931                stats->rx_packets++;
 932                stats->rx_bytes += cf->can_dlc;
 933                netif_rx(skb);
 934        }
 935
 936        netdev_dbg(ndev, "%s: error status register:0x%x\n",
 937                        __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
 938}
 939
 940/**
 941 * xcan_state_interrupt - It will check the state of the CAN device
 942 * @ndev:       net_device pointer
 943 * @isr:        interrupt status register value
 944 *
 945 * This will checks the state of the CAN device
 946 * and puts the device into appropriate state.
 947 */
 948static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
 949{
 950        struct xcan_priv *priv = netdev_priv(ndev);
 951
 952        /* Check for Sleep interrupt if set put CAN device in sleep state */
 953        if (isr & XCAN_IXR_SLP_MASK)
 954                priv->can.state = CAN_STATE_SLEEPING;
 955
 956        /* Check for Wake up interrupt if set put CAN device in Active state */
 957        if (isr & XCAN_IXR_WKUP_MASK)
 958                priv->can.state = CAN_STATE_ERROR_ACTIVE;
 959}
 960
 961/**
 962 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
 963 *
 964 * Return: Register offset of the next frame in RX FIFO.
 965 */
 966static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
 967{
 968        int offset;
 969
 970        if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
 971                u32 fsr;
 972
 973                /* clear RXOK before the is-empty check so that any newly
 974                 * received frame will reassert it without a race
 975                 */
 976                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
 977
 978                fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
 979
 980                /* check if RX FIFO is empty */
 981                if (!(fsr & XCAN_FSR_FL_MASK))
 982                        return -ENOENT;
 983
 984                if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
 985                        offset = XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
 986                else
 987                        offset = XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
 988
 989        } else {
 990                /* check if RX FIFO is empty */
 991                if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
 992                      XCAN_IXR_RXNEMP_MASK))
 993                        return -ENOENT;
 994
 995                /* frames are read from a static offset */
 996                offset = XCAN_RXFIFO_OFFSET;
 997        }
 998
 999        return offset;
1000}
1001
1002/**
1003 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1004 * @napi:       napi structure pointer
1005 * @quota:      Max number of rx packets to be processed.
1006 *
1007 * This is the poll routine for rx part.
1008 * It will process the packets maximux quota value.
1009 *
1010 * Return: number of packets received
1011 */
1012static int xcan_rx_poll(struct napi_struct *napi, int quota)
1013{
1014        struct net_device *ndev = napi->dev;
1015        struct xcan_priv *priv = netdev_priv(ndev);
1016        u32 ier;
1017        int work_done = 0;
1018        int frame_offset;
1019
1020        while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1021               (work_done < quota)) {
1022                work_done += xcan_rx(ndev, frame_offset);
1023
1024                if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1025                        /* increment read index */
1026                        priv->write_reg(priv, XCAN_FSR_OFFSET,
1027                                        XCAN_FSR_IRI_MASK);
1028                else
1029                        /* clear rx-not-empty (will actually clear only if
1030                         * empty)
1031                         */
1032                        priv->write_reg(priv, XCAN_ICR_OFFSET,
1033                                        XCAN_IXR_RXNEMP_MASK);
1034        }
1035
1036        if (work_done) {
1037                can_led_event(ndev, CAN_LED_EVENT_RX);
1038                xcan_update_error_state_after_rxtx(ndev);
1039        }
1040
1041        if (work_done < quota) {
1042                napi_complete_done(napi, work_done);
1043                ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1044                ier |= xcan_rx_int_mask(priv);
1045                priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1046        }
1047        return work_done;
1048}
1049
1050/**
1051 * xcan_tx_interrupt - Tx Done Isr
1052 * @ndev:       net_device pointer
1053 * @isr:        Interrupt status register value
1054 */
1055static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1056{
1057        struct xcan_priv *priv = netdev_priv(ndev);
1058        struct net_device_stats *stats = &ndev->stats;
1059        unsigned int frames_in_fifo;
1060        int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1061        unsigned long flags;
1062        int retries = 0;
1063
1064        /* Synchronize with xmit as we need to know the exact number
1065         * of frames in the FIFO to stay in sync due to the TXFEMP
1066         * handling.
1067         * This also prevents a race between netif_wake_queue() and
1068         * netif_stop_queue().
1069         */
1070        spin_lock_irqsave(&priv->tx_lock, flags);
1071
1072        frames_in_fifo = priv->tx_head - priv->tx_tail;
1073
1074        if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1075                /* clear TXOK anyway to avoid getting back here */
1076                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1077                spin_unlock_irqrestore(&priv->tx_lock, flags);
1078                return;
1079        }
1080
1081        /* Check if 2 frames were sent (TXOK only means that at least 1
1082         * frame was sent).
1083         */
1084        if (frames_in_fifo > 1) {
1085                WARN_ON(frames_in_fifo > priv->tx_max);
1086
1087                /* Synchronize TXOK and isr so that after the loop:
1088                 * (1) isr variable is up-to-date at least up to TXOK clear
1089                 *     time. This avoids us clearing a TXOK of a second frame
1090                 *     but not noticing that the FIFO is now empty and thus
1091                 *     marking only a single frame as sent.
1092                 * (2) No TXOK is left. Having one could mean leaving a
1093                 *     stray TXOK as we might process the associated frame
1094                 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1095                 *     clear to satisfy (1).
1096                 */
1097                while ((isr & XCAN_IXR_TXOK_MASK) && !WARN_ON(++retries == 100)) {
1098                        priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1099                        isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1100                }
1101
1102                if (isr & XCAN_IXR_TXFEMP_MASK) {
1103                        /* nothing in FIFO anymore */
1104                        frames_sent = frames_in_fifo;
1105                }
1106        } else {
1107                /* single frame in fifo, just clear TXOK */
1108                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1109        }
1110
1111        while (frames_sent--) {
1112                stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1113                                                    priv->tx_max);
1114                priv->tx_tail++;
1115                stats->tx_packets++;
1116        }
1117
1118        netif_wake_queue(ndev);
1119
1120        spin_unlock_irqrestore(&priv->tx_lock, flags);
1121
1122        can_led_event(ndev, CAN_LED_EVENT_TX);
1123        xcan_update_error_state_after_rxtx(ndev);
1124}
1125
1126/**
1127 * xcan_interrupt - CAN Isr
1128 * @irq:        irq number
1129 * @dev_id:     device id poniter
1130 *
1131 * This is the xilinx CAN Isr. It checks for the type of interrupt
1132 * and invokes the corresponding ISR.
1133 *
1134 * Return:
1135 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1136 */
1137static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1138{
1139        struct net_device *ndev = (struct net_device *)dev_id;
1140        struct xcan_priv *priv = netdev_priv(ndev);
1141        u32 isr, ier;
1142        u32 isr_errors;
1143        u32 rx_int_mask = xcan_rx_int_mask(priv);
1144
1145        /* Get the interrupt status from Xilinx CAN */
1146        isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1147        if (!isr)
1148                return IRQ_NONE;
1149
1150        /* Check for the type of interrupt and Processing it */
1151        if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1152                priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1153                                XCAN_IXR_WKUP_MASK));
1154                xcan_state_interrupt(ndev, isr);
1155        }
1156
1157        /* Check for Tx interrupt and Processing it */
1158        if (isr & XCAN_IXR_TXOK_MASK)
1159                xcan_tx_interrupt(ndev, isr);
1160
1161        /* Check for the type of error interrupt and Processing it */
1162        isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1163                            XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1164                            XCAN_IXR_RXMNF_MASK);
1165        if (isr_errors) {
1166                priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1167                xcan_err_interrupt(ndev, isr);
1168        }
1169
1170        /* Check for the type of receive interrupt and Processing it */
1171        if (isr & rx_int_mask) {
1172                ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1173                ier &= ~rx_int_mask;
1174                priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1175                napi_schedule(&priv->napi);
1176        }
1177        return IRQ_HANDLED;
1178}
1179
1180/**
1181 * xcan_chip_stop - Driver stop routine
1182 * @ndev:       Pointer to net_device structure
1183 *
1184 * This is the drivers stop routine. It will disable the
1185 * interrupts and put the device into configuration mode.
1186 */
1187static void xcan_chip_stop(struct net_device *ndev)
1188{
1189        struct xcan_priv *priv = netdev_priv(ndev);
1190
1191        /* Disable interrupts and leave the can in configuration mode */
1192        set_reset_mode(ndev);
1193        priv->can.state = CAN_STATE_STOPPED;
1194}
1195
1196/**
1197 * xcan_open - Driver open routine
1198 * @ndev:       Pointer to net_device structure
1199 *
1200 * This is the driver open routine.
1201 * Return: 0 on success and failure value on error
1202 */
1203static int xcan_open(struct net_device *ndev)
1204{
1205        struct xcan_priv *priv = netdev_priv(ndev);
1206        int ret;
1207
1208        ret = pm_runtime_get_sync(priv->dev);
1209        if (ret < 0) {
1210                netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1211                                __func__, ret);
1212                return ret;
1213        }
1214
1215        ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1216                        ndev->name, ndev);
1217        if (ret < 0) {
1218                netdev_err(ndev, "irq allocation for CAN failed\n");
1219                goto err;
1220        }
1221
1222        /* Set chip into reset mode */
1223        ret = set_reset_mode(ndev);
1224        if (ret < 0) {
1225                netdev_err(ndev, "mode resetting failed!\n");
1226                goto err_irq;
1227        }
1228
1229        /* Common open */
1230        ret = open_candev(ndev);
1231        if (ret)
1232                goto err_irq;
1233
1234        ret = xcan_chip_start(ndev);
1235        if (ret < 0) {
1236                netdev_err(ndev, "xcan_chip_start failed!\n");
1237                goto err_candev;
1238        }
1239
1240        can_led_event(ndev, CAN_LED_EVENT_OPEN);
1241        napi_enable(&priv->napi);
1242        netif_start_queue(ndev);
1243
1244        return 0;
1245
1246err_candev:
1247        close_candev(ndev);
1248err_irq:
1249        free_irq(ndev->irq, ndev);
1250err:
1251        pm_runtime_put(priv->dev);
1252
1253        return ret;
1254}
1255
1256/**
1257 * xcan_close - Driver close routine
1258 * @ndev:       Pointer to net_device structure
1259 *
1260 * Return: 0 always
1261 */
1262static int xcan_close(struct net_device *ndev)
1263{
1264        struct xcan_priv *priv = netdev_priv(ndev);
1265
1266        netif_stop_queue(ndev);
1267        napi_disable(&priv->napi);
1268        xcan_chip_stop(ndev);
1269        free_irq(ndev->irq, ndev);
1270        close_candev(ndev);
1271
1272        can_led_event(ndev, CAN_LED_EVENT_STOP);
1273        pm_runtime_put(priv->dev);
1274
1275        return 0;
1276}
1277
1278/**
1279 * xcan_get_berr_counter - error counter routine
1280 * @ndev:       Pointer to net_device structure
1281 * @bec:        Pointer to can_berr_counter structure
1282 *
1283 * This is the driver error counter routine.
1284 * Return: 0 on success and failure value on error
1285 */
1286static int xcan_get_berr_counter(const struct net_device *ndev,
1287                                        struct can_berr_counter *bec)
1288{
1289        struct xcan_priv *priv = netdev_priv(ndev);
1290        int ret;
1291
1292        ret = pm_runtime_get_sync(priv->dev);
1293        if (ret < 0) {
1294                netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1295                                __func__, ret);
1296                return ret;
1297        }
1298
1299        bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1300        bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1301                        XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1302
1303        pm_runtime_put(priv->dev);
1304
1305        return 0;
1306}
1307
1308
1309static const struct net_device_ops xcan_netdev_ops = {
1310        .ndo_open       = xcan_open,
1311        .ndo_stop       = xcan_close,
1312        .ndo_start_xmit = xcan_start_xmit,
1313        .ndo_change_mtu = can_change_mtu,
1314};
1315
1316/**
1317 * xcan_suspend - Suspend method for the driver
1318 * @dev:        Address of the device structure
1319 *
1320 * Put the driver into low power mode.
1321 * Return: 0 on success and failure value on error
1322 */
1323static int __maybe_unused xcan_suspend(struct device *dev)
1324{
1325        struct net_device *ndev = dev_get_drvdata(dev);
1326
1327        if (netif_running(ndev)) {
1328                netif_stop_queue(ndev);
1329                netif_device_detach(ndev);
1330                xcan_chip_stop(ndev);
1331        }
1332
1333        return pm_runtime_force_suspend(dev);
1334}
1335
1336/**
1337 * xcan_resume - Resume from suspend
1338 * @dev:        Address of the device structure
1339 *
1340 * Resume operation after suspend.
1341 * Return: 0 on success and failure value on error
1342 */
1343static int __maybe_unused xcan_resume(struct device *dev)
1344{
1345        struct net_device *ndev = dev_get_drvdata(dev);
1346        int ret;
1347
1348        ret = pm_runtime_force_resume(dev);
1349        if (ret) {
1350                dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1351                return ret;
1352        }
1353
1354        if (netif_running(ndev)) {
1355                ret = xcan_chip_start(ndev);
1356                if (ret) {
1357                        dev_err(dev, "xcan_chip_start failed on resume\n");
1358                        return ret;
1359                }
1360
1361                netif_device_attach(ndev);
1362                netif_start_queue(ndev);
1363        }
1364
1365        return 0;
1366}
1367
1368/**
1369 * xcan_runtime_suspend - Runtime suspend method for the driver
1370 * @dev:        Address of the device structure
1371 *
1372 * Put the driver into low power mode.
1373 * Return: 0 always
1374 */
1375static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1376{
1377        struct net_device *ndev = dev_get_drvdata(dev);
1378        struct xcan_priv *priv = netdev_priv(ndev);
1379
1380        clk_disable_unprepare(priv->bus_clk);
1381        clk_disable_unprepare(priv->can_clk);
1382
1383        return 0;
1384}
1385
1386/**
1387 * xcan_runtime_resume - Runtime resume from suspend
1388 * @dev:        Address of the device structure
1389 *
1390 * Resume operation after suspend.
1391 * Return: 0 on success and failure value on error
1392 */
1393static int __maybe_unused xcan_runtime_resume(struct device *dev)
1394{
1395        struct net_device *ndev = dev_get_drvdata(dev);
1396        struct xcan_priv *priv = netdev_priv(ndev);
1397        int ret;
1398
1399        ret = clk_prepare_enable(priv->bus_clk);
1400        if (ret) {
1401                dev_err(dev, "Cannot enable clock.\n");
1402                return ret;
1403        }
1404        ret = clk_prepare_enable(priv->can_clk);
1405        if (ret) {
1406                dev_err(dev, "Cannot enable clock.\n");
1407                clk_disable_unprepare(priv->bus_clk);
1408                return ret;
1409        }
1410
1411        return 0;
1412}
1413
1414static const struct dev_pm_ops xcan_dev_pm_ops = {
1415        SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1416        SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1417};
1418
1419static const struct xcan_devtype_data xcan_zynq_data = {
1420        .bittiming_const = &xcan_bittiming_const,
1421        .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1422        .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1423        .bus_clk_name = "pclk",
1424};
1425
1426static const struct xcan_devtype_data xcan_axi_data = {
1427        .bittiming_const = &xcan_bittiming_const,
1428        .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1429        .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1430        .bus_clk_name = "s_axi_aclk",
1431};
1432
1433static const struct xcan_devtype_data xcan_canfd_data = {
1434        .flags = XCAN_FLAG_EXT_FILTERS |
1435                 XCAN_FLAG_RXMNF |
1436                 XCAN_FLAG_TX_MAILBOXES |
1437                 XCAN_FLAG_RX_FIFO_MULTI,
1438        .bittiming_const = &xcan_bittiming_const_canfd,
1439        .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1440        .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1441        .bus_clk_name = "s_axi_aclk",
1442};
1443
1444static const struct xcan_devtype_data xcan_canfd2_data = {
1445        .flags = XCAN_FLAG_EXT_FILTERS |
1446                 XCAN_FLAG_RXMNF |
1447                 XCAN_FLAG_TX_MAILBOXES |
1448                 XCAN_FLAG_CANFD_2 |
1449                 XCAN_FLAG_RX_FIFO_MULTI,
1450        .bittiming_const = &xcan_bittiming_const_canfd2,
1451        .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1452        .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1453        .bus_clk_name = "s_axi_aclk",
1454};
1455
1456/* Match table for OF platform binding */
1457static const struct of_device_id xcan_of_match[] = {
1458        { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1459        { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1460        { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1461        { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1462        { /* end of list */ },
1463};
1464MODULE_DEVICE_TABLE(of, xcan_of_match);
1465
1466/**
1467 * xcan_probe - Platform registration call
1468 * @pdev:       Handle to the platform device structure
1469 *
1470 * This function does all the memory allocation and registration for the CAN
1471 * device.
1472 *
1473 * Return: 0 on success and failure value on error
1474 */
1475static int xcan_probe(struct platform_device *pdev)
1476{
1477        struct resource *res; /* IO mem resources */
1478        struct net_device *ndev;
1479        struct xcan_priv *priv;
1480        const struct of_device_id *of_id;
1481        const struct xcan_devtype_data *devtype = &xcan_axi_data;
1482        void __iomem *addr;
1483        int ret;
1484        int rx_max, tx_max;
1485        int hw_tx_max, hw_rx_max;
1486        const char *hw_tx_max_property;
1487
1488        /* Get the virtual base address for the device */
1489        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1490        addr = devm_ioremap_resource(&pdev->dev, res);
1491        if (IS_ERR(addr)) {
1492                ret = PTR_ERR(addr);
1493                goto err;
1494        }
1495
1496        of_id = of_match_device(xcan_of_match, &pdev->dev);
1497        if (of_id && of_id->data)
1498                devtype = of_id->data;
1499
1500        hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1501                             "tx-mailbox-count" : "tx-fifo-depth";
1502
1503        ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1504                                   &hw_tx_max);
1505        if (ret < 0) {
1506                dev_err(&pdev->dev, "missing %s property\n",
1507                        hw_tx_max_property);
1508                goto err;
1509        }
1510
1511        ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1512                                   &hw_rx_max);
1513        if (ret < 0) {
1514                dev_err(&pdev->dev,
1515                        "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1516                goto err;
1517        }
1518
1519        /* With TX FIFO:
1520         *
1521         * There is no way to directly figure out how many frames have been
1522         * sent when the TXOK interrupt is processed. If TXFEMP
1523         * is supported, we can have 2 frames in the FIFO and use TXFEMP
1524         * to determine if 1 or 2 frames have been sent.
1525         * Theoretically we should be able to use TXFWMEMP to determine up
1526         * to 3 frames, but it seems that after putting a second frame in the
1527         * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1528         * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1529         * sent), which is not a sensible state - possibly TXFWMEMP is not
1530         * completely synchronized with the rest of the bits?
1531         *
1532         * With TX mailboxes:
1533         *
1534         * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1535         * we submit frames one at a time.
1536         */
1537        if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1538            (devtype->flags & XCAN_FLAG_TXFEMP))
1539                tx_max = min(hw_tx_max, 2);
1540        else
1541                tx_max = 1;
1542
1543        rx_max = hw_rx_max;
1544
1545        /* Create a CAN device instance */
1546        ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1547        if (!ndev)
1548                return -ENOMEM;
1549
1550        priv = netdev_priv(ndev);
1551        priv->dev = &pdev->dev;
1552        priv->can.bittiming_const = devtype->bittiming_const;
1553        priv->can.do_set_mode = xcan_do_set_mode;
1554        priv->can.do_get_berr_counter = xcan_get_berr_counter;
1555        priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1556                                        CAN_CTRLMODE_BERR_REPORTING;
1557        priv->reg_base = addr;
1558        priv->tx_max = tx_max;
1559        priv->devtype = *devtype;
1560        spin_lock_init(&priv->tx_lock);
1561
1562        /* Get IRQ for the device */
1563        ndev->irq = platform_get_irq(pdev, 0);
1564        ndev->flags |= IFF_ECHO;        /* We support local echo */
1565
1566        platform_set_drvdata(pdev, ndev);
1567        SET_NETDEV_DEV(ndev, &pdev->dev);
1568        ndev->netdev_ops = &xcan_netdev_ops;
1569
1570        /* Getting the CAN can_clk info */
1571        priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1572        if (IS_ERR(priv->can_clk)) {
1573                dev_err(&pdev->dev, "Device clock not found.\n");
1574                ret = PTR_ERR(priv->can_clk);
1575                goto err_free;
1576        }
1577
1578        priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1579        if (IS_ERR(priv->bus_clk)) {
1580                dev_err(&pdev->dev, "bus clock not found\n");
1581                ret = PTR_ERR(priv->bus_clk);
1582                goto err_free;
1583        }
1584
1585        priv->write_reg = xcan_write_reg_le;
1586        priv->read_reg = xcan_read_reg_le;
1587
1588        pm_runtime_enable(&pdev->dev);
1589        ret = pm_runtime_get_sync(&pdev->dev);
1590        if (ret < 0) {
1591                netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1592                        __func__, ret);
1593                goto err_pmdisable;
1594        }
1595
1596        if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1597                priv->write_reg = xcan_write_reg_be;
1598                priv->read_reg = xcan_read_reg_be;
1599        }
1600
1601        priv->can.clock.freq = clk_get_rate(priv->can_clk);
1602
1603        netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1604
1605        ret = register_candev(ndev);
1606        if (ret) {
1607                dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1608                goto err_disableclks;
1609        }
1610
1611        devm_can_led_init(ndev);
1612
1613        pm_runtime_put(&pdev->dev);
1614
1615        netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1616                   priv->reg_base, ndev->irq, priv->can.clock.freq,
1617                   hw_tx_max, priv->tx_max);
1618
1619        return 0;
1620
1621err_disableclks:
1622        pm_runtime_put(priv->dev);
1623err_pmdisable:
1624        pm_runtime_disable(&pdev->dev);
1625err_free:
1626        free_candev(ndev);
1627err:
1628        return ret;
1629}
1630
1631/**
1632 * xcan_remove - Unregister the device after releasing the resources
1633 * @pdev:       Handle to the platform device structure
1634 *
1635 * This function frees all the resources allocated to the device.
1636 * Return: 0 always
1637 */
1638static int xcan_remove(struct platform_device *pdev)
1639{
1640        struct net_device *ndev = platform_get_drvdata(pdev);
1641        struct xcan_priv *priv = netdev_priv(ndev);
1642
1643        unregister_candev(ndev);
1644        pm_runtime_disable(&pdev->dev);
1645        netif_napi_del(&priv->napi);
1646        free_candev(ndev);
1647
1648        return 0;
1649}
1650
1651static struct platform_driver xcan_driver = {
1652        .probe = xcan_probe,
1653        .remove = xcan_remove,
1654        .driver = {
1655                .name = DRIVER_NAME,
1656                .pm = &xcan_dev_pm_ops,
1657                .of_match_table = xcan_of_match,
1658        },
1659};
1660
1661module_platform_driver(xcan_driver);
1662
1663MODULE_LICENSE("GPL");
1664MODULE_AUTHOR("Xilinx Inc");
1665MODULE_DESCRIPTION("Xilinx CAN interface");
1666