linux/drivers/net/dsa/sja1105/sja1105_ptp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
   3 */
   4#include "sja1105.h"
   5
   6/* The adjfine API clamps ppb between [-32,768,000, 32,768,000], and
   7 * therefore scaled_ppm between [-2,147,483,648, 2,147,483,647].
   8 * Set the maximum supported ppb to a round value smaller than the maximum.
   9 *
  10 * Percentually speaking, this is a +/- 0.032x adjustment of the
  11 * free-running counter (0.968x to 1.032x).
  12 */
  13#define SJA1105_MAX_ADJ_PPB             32000000
  14#define SJA1105_SIZE_PTP_CMD            4
  15
  16/* Timestamps are in units of 8 ns clock ticks (equivalent to a fixed
  17 * 125 MHz clock) so the scale factor (MULT / SHIFT) needs to be 8.
  18 * Furthermore, wisely pick SHIFT as 28 bits, which translates
  19 * MULT into 2^31 (0x80000000).  This is the same value around which
  20 * the hardware PTPCLKRATE is centered, so the same ppb conversion
  21 * arithmetic can be reused.
  22 */
  23#define SJA1105_CC_SHIFT                28
  24#define SJA1105_CC_MULT                 (8 << SJA1105_CC_SHIFT)
  25
  26/* Having 33 bits of cycle counter left until a 64-bit overflow during delta
  27 * conversion, we multiply this by the 8 ns counter resolution and arrive at
  28 * a comfortable 68.71 second refresh interval until the delta would cause
  29 * an integer overflow, in absence of any other readout.
  30 * Approximate to 1 minute.
  31 */
  32#define SJA1105_REFRESH_INTERVAL        (HZ * 60)
  33
  34/*            This range is actually +/- SJA1105_MAX_ADJ_PPB
  35 *            divided by 1000 (ppb -> ppm) and with a 16-bit
  36 *            "fractional" part (actually fixed point).
  37 *                                    |
  38 *                                    v
  39 * Convert scaled_ppm from the +/- ((10^6) << 16) range
  40 * into the +/- (1 << 31) range.
  41 *
  42 * This forgoes a "ppb" numeric representation (up to NSEC_PER_SEC)
  43 * and defines the scaling factor between scaled_ppm and the actual
  44 * frequency adjustments (both cycle counter and hardware).
  45 *
  46 *   ptpclkrate = scaled_ppm * 2^31 / (10^6 * 2^16)
  47 *   simplifies to
  48 *   ptpclkrate = scaled_ppm * 2^9 / 5^6
  49 */
  50#define SJA1105_CC_MULT_NUM             (1 << 9)
  51#define SJA1105_CC_MULT_DEM             15625
  52
  53#define ptp_to_sja1105(d) container_of((d), struct sja1105_private, ptp_caps)
  54#define cc_to_sja1105(d) container_of((d), struct sja1105_private, tstamp_cc)
  55#define dw_to_sja1105(d) container_of((d), struct sja1105_private, refresh_work)
  56
  57struct sja1105_ptp_cmd {
  58        u64 resptp;       /* reset */
  59};
  60
  61int sja1105_get_ts_info(struct dsa_switch *ds, int port,
  62                        struct ethtool_ts_info *info)
  63{
  64        struct sja1105_private *priv = ds->priv;
  65
  66        /* Called during cleanup */
  67        if (!priv->clock)
  68                return -ENODEV;
  69
  70        info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
  71                                SOF_TIMESTAMPING_RX_HARDWARE |
  72                                SOF_TIMESTAMPING_RAW_HARDWARE;
  73        info->tx_types = (1 << HWTSTAMP_TX_OFF) |
  74                         (1 << HWTSTAMP_TX_ON);
  75        info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
  76                           (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT);
  77        info->phc_index = ptp_clock_index(priv->clock);
  78        return 0;
  79}
  80
  81int sja1105et_ptp_cmd(const void *ctx, const void *data)
  82{
  83        const struct sja1105_ptp_cmd *cmd = data;
  84        const struct sja1105_private *priv = ctx;
  85        const struct sja1105_regs *regs = priv->info->regs;
  86        const int size = SJA1105_SIZE_PTP_CMD;
  87        u8 buf[SJA1105_SIZE_PTP_CMD] = {0};
  88        /* No need to keep this as part of the structure */
  89        u64 valid = 1;
  90
  91        sja1105_pack(buf, &valid,           31, 31, size);
  92        sja1105_pack(buf, &cmd->resptp,      2,  2, size);
  93
  94        return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control,
  95                                           buf, SJA1105_SIZE_PTP_CMD);
  96}
  97
  98int sja1105pqrs_ptp_cmd(const void *ctx, const void *data)
  99{
 100        const struct sja1105_ptp_cmd *cmd = data;
 101        const struct sja1105_private *priv = ctx;
 102        const struct sja1105_regs *regs = priv->info->regs;
 103        const int size = SJA1105_SIZE_PTP_CMD;
 104        u8 buf[SJA1105_SIZE_PTP_CMD] = {0};
 105        /* No need to keep this as part of the structure */
 106        u64 valid = 1;
 107
 108        sja1105_pack(buf, &valid,           31, 31, size);
 109        sja1105_pack(buf, &cmd->resptp,      3,  3, size);
 110
 111        return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control,
 112                                           buf, SJA1105_SIZE_PTP_CMD);
 113}
 114
 115/* The switch returns partial timestamps (24 bits for SJA1105 E/T, which wrap
 116 * around in 0.135 seconds, and 32 bits for P/Q/R/S, wrapping around in 34.35
 117 * seconds).
 118 *
 119 * This receives the RX or TX MAC timestamps, provided by hardware as
 120 * the lower bits of the cycle counter, sampled at the time the timestamp was
 121 * collected.
 122 *
 123 * To reconstruct into a full 64-bit-wide timestamp, the cycle counter is
 124 * read and the high-order bits are filled in.
 125 *
 126 * Must be called within one wraparound period of the partial timestamp since
 127 * it was generated by the MAC.
 128 */
 129u64 sja1105_tstamp_reconstruct(struct sja1105_private *priv, u64 now,
 130                               u64 ts_partial)
 131{
 132        u64 partial_tstamp_mask = CYCLECOUNTER_MASK(priv->info->ptp_ts_bits);
 133        u64 ts_reconstructed;
 134
 135        ts_reconstructed = (now & ~partial_tstamp_mask) | ts_partial;
 136
 137        /* Check lower bits of current cycle counter against the timestamp.
 138         * If the current cycle counter is lower than the partial timestamp,
 139         * then wraparound surely occurred and must be accounted for.
 140         */
 141        if ((now & partial_tstamp_mask) <= ts_partial)
 142                ts_reconstructed -= (partial_tstamp_mask + 1);
 143
 144        return ts_reconstructed;
 145}
 146
 147/* Reads the SPI interface for an egress timestamp generated by the switch
 148 * for frames sent using management routes.
 149 *
 150 * SJA1105 E/T layout of the 4-byte SPI payload:
 151 *
 152 * 31    23    15    7     0
 153 * |     |     |     |     |
 154 * +-----+-----+-----+     ^
 155 *          ^              |
 156 *          |              |
 157 *  24-bit timestamp   Update bit
 158 *
 159 *
 160 * SJA1105 P/Q/R/S layout of the 8-byte SPI payload:
 161 *
 162 * 31    23    15    7     0     63    55    47    39    32
 163 * |     |     |     |     |     |     |     |     |     |
 164 *                         ^     +-----+-----+-----+-----+
 165 *                         |                 ^
 166 *                         |                 |
 167 *                    Update bit    32-bit timestamp
 168 *
 169 * Notice that the update bit is in the same place.
 170 * To have common code for E/T and P/Q/R/S for reading the timestamp,
 171 * we need to juggle with the offset and the bit indices.
 172 */
 173int sja1105_ptpegr_ts_poll(struct sja1105_private *priv, int port, u64 *ts)
 174{
 175        const struct sja1105_regs *regs = priv->info->regs;
 176        int tstamp_bit_start, tstamp_bit_end;
 177        int timeout = 10;
 178        u8 packed_buf[8];
 179        u64 update;
 180        int rc;
 181
 182        do {
 183                rc = sja1105_spi_send_packed_buf(priv, SPI_READ,
 184                                                 regs->ptpegr_ts[port],
 185                                                 packed_buf,
 186                                                 priv->info->ptpegr_ts_bytes);
 187                if (rc < 0)
 188                        return rc;
 189
 190                sja1105_unpack(packed_buf, &update, 0, 0,
 191                               priv->info->ptpegr_ts_bytes);
 192                if (update)
 193                        break;
 194
 195                usleep_range(10, 50);
 196        } while (--timeout);
 197
 198        if (!timeout)
 199                return -ETIMEDOUT;
 200
 201        /* Point the end bit to the second 32-bit word on P/Q/R/S,
 202         * no-op on E/T.
 203         */
 204        tstamp_bit_end = (priv->info->ptpegr_ts_bytes - 4) * 8;
 205        /* Shift the 24-bit timestamp on E/T to be collected from 31:8.
 206         * No-op on P/Q/R/S.
 207         */
 208        tstamp_bit_end += 32 - priv->info->ptp_ts_bits;
 209        tstamp_bit_start = tstamp_bit_end + priv->info->ptp_ts_bits - 1;
 210
 211        *ts = 0;
 212
 213        sja1105_unpack(packed_buf, ts, tstamp_bit_start, tstamp_bit_end,
 214                       priv->info->ptpegr_ts_bytes);
 215
 216        return 0;
 217}
 218
 219int sja1105_ptp_reset(struct sja1105_private *priv)
 220{
 221        struct dsa_switch *ds = priv->ds;
 222        struct sja1105_ptp_cmd cmd = {0};
 223        int rc;
 224
 225        mutex_lock(&priv->ptp_lock);
 226
 227        cmd.resptp = 1;
 228        dev_dbg(ds->dev, "Resetting PTP clock\n");
 229        rc = priv->info->ptp_cmd(priv, &cmd);
 230
 231        timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc,
 232                         ktime_to_ns(ktime_get_real()));
 233
 234        mutex_unlock(&priv->ptp_lock);
 235
 236        return rc;
 237}
 238
 239static int sja1105_ptp_gettime(struct ptp_clock_info *ptp,
 240                               struct timespec64 *ts)
 241{
 242        struct sja1105_private *priv = ptp_to_sja1105(ptp);
 243        u64 ns;
 244
 245        mutex_lock(&priv->ptp_lock);
 246        ns = timecounter_read(&priv->tstamp_tc);
 247        mutex_unlock(&priv->ptp_lock);
 248
 249        *ts = ns_to_timespec64(ns);
 250
 251        return 0;
 252}
 253
 254static int sja1105_ptp_settime(struct ptp_clock_info *ptp,
 255                               const struct timespec64 *ts)
 256{
 257        struct sja1105_private *priv = ptp_to_sja1105(ptp);
 258        u64 ns = timespec64_to_ns(ts);
 259
 260        mutex_lock(&priv->ptp_lock);
 261        timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc, ns);
 262        mutex_unlock(&priv->ptp_lock);
 263
 264        return 0;
 265}
 266
 267static int sja1105_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
 268{
 269        struct sja1105_private *priv = ptp_to_sja1105(ptp);
 270        s64 clkrate;
 271
 272        clkrate = (s64)scaled_ppm * SJA1105_CC_MULT_NUM;
 273        clkrate = div_s64(clkrate, SJA1105_CC_MULT_DEM);
 274
 275        mutex_lock(&priv->ptp_lock);
 276
 277        /* Force a readout to update the timer *before* changing its frequency.
 278         *
 279         * This way, its corrected time curve can at all times be modeled
 280         * as a linear "A * x + B" function, where:
 281         *
 282         * - B are past frequency adjustments and offset shifts, all
 283         *   accumulated into the cycle_last variable.
 284         *
 285         * - A is the new frequency adjustments we're just about to set.
 286         *
 287         * Reading now makes B accumulate the correct amount of time,
 288         * corrected at the old rate, before changing it.
 289         *
 290         * Hardware timestamps then become simple points on the curve and
 291         * are approximated using the above function.  This is still better
 292         * than letting the switch take the timestamps using the hardware
 293         * rate-corrected clock (PTPCLKVAL) - the comparison in this case would
 294         * be that we're shifting the ruler at the same time as we're taking
 295         * measurements with it.
 296         *
 297         * The disadvantage is that it's possible to receive timestamps when
 298         * a frequency adjustment took place in the near past.
 299         * In this case they will be approximated using the new ppb value
 300         * instead of a compound function made of two segments (one at the old
 301         * and the other at the new rate) - introducing some inaccuracy.
 302         */
 303        timecounter_read(&priv->tstamp_tc);
 304
 305        priv->tstamp_cc.mult = SJA1105_CC_MULT + clkrate;
 306
 307        mutex_unlock(&priv->ptp_lock);
 308
 309        return 0;
 310}
 311
 312static int sja1105_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 313{
 314        struct sja1105_private *priv = ptp_to_sja1105(ptp);
 315
 316        mutex_lock(&priv->ptp_lock);
 317        timecounter_adjtime(&priv->tstamp_tc, delta);
 318        mutex_unlock(&priv->ptp_lock);
 319
 320        return 0;
 321}
 322
 323static u64 sja1105_ptptsclk_read(const struct cyclecounter *cc)
 324{
 325        struct sja1105_private *priv = cc_to_sja1105(cc);
 326        const struct sja1105_regs *regs = priv->info->regs;
 327        u64 ptptsclk = 0;
 328        int rc;
 329
 330        rc = sja1105_spi_send_int(priv, SPI_READ, regs->ptptsclk,
 331                                  &ptptsclk, 8);
 332        if (rc < 0)
 333                dev_err_ratelimited(priv->ds->dev,
 334                                    "failed to read ptp cycle counter: %d\n",
 335                                    rc);
 336        return ptptsclk;
 337}
 338
 339static void sja1105_ptp_overflow_check(struct work_struct *work)
 340{
 341        struct delayed_work *dw = to_delayed_work(work);
 342        struct sja1105_private *priv = dw_to_sja1105(dw);
 343        struct timespec64 ts;
 344
 345        sja1105_ptp_gettime(&priv->ptp_caps, &ts);
 346
 347        schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL);
 348}
 349
 350static const struct ptp_clock_info sja1105_ptp_caps = {
 351        .owner          = THIS_MODULE,
 352        .name           = "SJA1105 PHC",
 353        .adjfine        = sja1105_ptp_adjfine,
 354        .adjtime        = sja1105_ptp_adjtime,
 355        .gettime64      = sja1105_ptp_gettime,
 356        .settime64      = sja1105_ptp_settime,
 357        .max_adj        = SJA1105_MAX_ADJ_PPB,
 358};
 359
 360int sja1105_ptp_clock_register(struct sja1105_private *priv)
 361{
 362        struct dsa_switch *ds = priv->ds;
 363
 364        /* Set up the cycle counter */
 365        priv->tstamp_cc = (struct cyclecounter) {
 366                .read = sja1105_ptptsclk_read,
 367                .mask = CYCLECOUNTER_MASK(64),
 368                .shift = SJA1105_CC_SHIFT,
 369                .mult = SJA1105_CC_MULT,
 370        };
 371        mutex_init(&priv->ptp_lock);
 372        priv->ptp_caps = sja1105_ptp_caps;
 373
 374        priv->clock = ptp_clock_register(&priv->ptp_caps, ds->dev);
 375        if (IS_ERR_OR_NULL(priv->clock))
 376                return PTR_ERR(priv->clock);
 377
 378        INIT_DELAYED_WORK(&priv->refresh_work, sja1105_ptp_overflow_check);
 379        schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL);
 380
 381        return sja1105_ptp_reset(priv);
 382}
 383
 384void sja1105_ptp_clock_unregister(struct sja1105_private *priv)
 385{
 386        if (IS_ERR_OR_NULL(priv->clock))
 387                return;
 388
 389        cancel_delayed_work_sync(&priv->refresh_work);
 390        ptp_clock_unregister(priv->clock);
 391        priv->clock = NULL;
 392}
 393