linux/drivers/net/ethernet/agere/et131x.c
<<
>>
Prefs
   1/* Agere Systems Inc.
   2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
   3 *
   4 * Copyright © 2005 Agere Systems Inc.
   5 * All rights reserved.
   6 *   http://www.agere.com
   7 *
   8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
   9 *
  10 *------------------------------------------------------------------------------
  11 *
  12 * SOFTWARE LICENSE
  13 *
  14 * This software is provided subject to the following terms and conditions,
  15 * which you should read carefully before using the software.  Using this
  16 * software indicates your acceptance of these terms and conditions.  If you do
  17 * not agree with these terms and conditions, do not use the software.
  18 *
  19 * Copyright © 2005 Agere Systems Inc.
  20 * All rights reserved.
  21 *
  22 * Redistribution and use in source or binary forms, with or without
  23 * modifications, are permitted provided that the following conditions are met:
  24 *
  25 * . Redistributions of source code must retain the above copyright notice, this
  26 *    list of conditions and the following Disclaimer as comments in the code as
  27 *    well as in the documentation and/or other materials provided with the
  28 *    distribution.
  29 *
  30 * . Redistributions in binary form must reproduce the above copyright notice,
  31 *    this list of conditions and the following Disclaimer in the documentation
  32 *    and/or other materials provided with the distribution.
  33 *
  34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
  35 *    may be used to endorse or promote products derived from this software
  36 *    without specific prior written permission.
  37 *
  38 * Disclaimer
  39 *
  40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
  42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
  43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
  44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
  45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
  49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  51 * DAMAGE.
  52 */
  53
  54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  55
  56#include <linux/pci.h>
  57#include <linux/module.h>
  58#include <linux/types.h>
  59#include <linux/kernel.h>
  60
  61#include <linux/sched.h>
  62#include <linux/ptrace.h>
  63#include <linux/slab.h>
  64#include <linux/ctype.h>
  65#include <linux/string.h>
  66#include <linux/timer.h>
  67#include <linux/interrupt.h>
  68#include <linux/in.h>
  69#include <linux/delay.h>
  70#include <linux/bitops.h>
  71#include <linux/io.h>
  72
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
  76#include <linux/if_arp.h>
  77#include <linux/ioport.h>
  78#include <linux/crc32.h>
  79#include <linux/random.h>
  80#include <linux/phy.h>
  81
  82#include "et131x.h"
  83
  84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
  85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
  86MODULE_LICENSE("Dual BSD/GPL");
  87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
  88
  89/* EEPROM defines */
  90#define MAX_NUM_REGISTER_POLLS          1000
  91#define MAX_NUM_WRITE_RETRIES           2
  92
  93/* MAC defines */
  94#define COUNTER_WRAP_16_BIT 0x10000
  95#define COUNTER_WRAP_12_BIT 0x1000
  96
  97/* PCI defines */
  98#define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
  99#define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
 100
 101/* ISR defines */
 102/* For interrupts, normal running is:
 103 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
 104 *       watchdog_interrupt & txdma_xfer_done
 105 *
 106 * In both cases, when flow control is enabled for either Tx or bi-direction,
 107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
 108 * buffer rings are running low.
 109 */
 110#define INT_MASK_DISABLE            0xffffffff
 111
 112/* NOTE: Masking out MAC_STAT Interrupt for now...
 113 * #define INT_MASK_ENABLE             0xfff6bf17
 114 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
 115 */
 116#define INT_MASK_ENABLE             0xfffebf17
 117#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
 118
 119/* General defines */
 120/* Packet and header sizes */
 121#define NIC_MIN_PACKET_SIZE     60
 122
 123/* Multicast list size */
 124#define NIC_MAX_MCAST_LIST      128
 125
 126/* Supported Filters */
 127#define ET131X_PACKET_TYPE_DIRECTED             0x0001
 128#define ET131X_PACKET_TYPE_MULTICAST            0x0002
 129#define ET131X_PACKET_TYPE_BROADCAST            0x0004
 130#define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
 131#define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
 132
 133/* Tx Timeout */
 134#define ET131X_TX_TIMEOUT       (1 * HZ)
 135#define NIC_SEND_HANG_THRESHOLD 0
 136
 137/* MP_ADAPTER flags */
 138#define FMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
 139
 140/* MP_SHARED flags */
 141#define FMP_ADAPTER_LOWER_POWER         0x00200000
 142
 143#define FMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
 144#define FMP_ADAPTER_HARDWARE_ERROR      0x04000000
 145
 146#define FMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
 147
 148/* Some offsets in PCI config space that are actually used. */
 149#define ET1310_PCI_MAC_ADDRESS          0xA4
 150#define ET1310_PCI_EEPROM_STATUS        0xB2
 151#define ET1310_PCI_ACK_NACK             0xC0
 152#define ET1310_PCI_REPLAY               0xC2
 153#define ET1310_PCI_L0L1LATENCY          0xCF
 154
 155/* PCI Product IDs */
 156#define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
 157#define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
 158
 159/* Define order of magnitude converter */
 160#define NANO_IN_A_MICRO 1000
 161
 162#define PARM_RX_NUM_BUFS_DEF    4
 163#define PARM_RX_TIME_INT_DEF    10
 164#define PARM_RX_MEM_END_DEF     0x2bc
 165#define PARM_TX_TIME_INT_DEF    40
 166#define PARM_TX_NUM_BUFS_DEF    4
 167#define PARM_DMA_CACHE_DEF      0
 168
 169/* RX defines */
 170#define FBR_CHUNKS              32
 171#define MAX_DESC_PER_RING_RX    1024
 172
 173/* number of RFDs - default and min */
 174#define RFD_LOW_WATER_MARK      40
 175#define NIC_DEFAULT_NUM_RFD     1024
 176#define NUM_FBRS                2
 177
 178#define MAX_PACKETS_HANDLED     256
 179#define ET131X_MIN_MTU          64
 180#define ET131X_MAX_MTU          9216
 181
 182#define ALCATEL_MULTICAST_PKT   0x01000000
 183#define ALCATEL_BROADCAST_PKT   0x02000000
 184
 185/* typedefs for Free Buffer Descriptors */
 186struct fbr_desc {
 187        u32 addr_lo;
 188        u32 addr_hi;
 189        u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
 190};
 191
 192/* Packet Status Ring Descriptors
 193 *
 194 * Word 0:
 195 *
 196 * top 16 bits are from the Alcatel Status Word as enumerated in
 197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
 198 *
 199 * 0: hp                        hash pass
 200 * 1: ipa                       IP checksum assist
 201 * 2: ipp                       IP checksum pass
 202 * 3: tcpa                      TCP checksum assist
 203 * 4: tcpp                      TCP checksum pass
 204 * 5: wol                       WOL Event
 205 * 6: rxmac_error               RXMAC Error Indicator
 206 * 7: drop                      Drop packet
 207 * 8: ft                        Frame Truncated
 208 * 9: jp                        Jumbo Packet
 209 * 10: vp                       VLAN Packet
 210 * 11-15: unused
 211 * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
 212 * 17: asw_RX_DV_event          short receive event detected
 213 * 18: asw_false_carrier_event  bad carrier since last good packet
 214 * 19: asw_code_err             one or more nibbles signalled as errors
 215 * 20: asw_CRC_err              CRC error
 216 * 21: asw_len_chk_err          frame length field incorrect
 217 * 22: asw_too_long             frame length > 1518 bytes
 218 * 23: asw_OK                   valid CRC + no code error
 219 * 24: asw_multicast            has a multicast address
 220 * 25: asw_broadcast            has a broadcast address
 221 * 26: asw_dribble_nibble       spurious bits after EOP
 222 * 27: asw_control_frame        is a control frame
 223 * 28: asw_pause_frame          is a pause frame
 224 * 29: asw_unsupported_op       unsupported OP code
 225 * 30: asw_VLAN_tag             VLAN tag detected
 226 * 31: asw_long_evt             Rx long event
 227 *
 228 * Word 1:
 229 * 0-15: length                 length in bytes
 230 * 16-25: bi                    Buffer Index
 231 * 26-27: ri                    Ring Index
 232 * 28-31: reserved
 233 */
 234struct pkt_stat_desc {
 235        u32 word0;
 236        u32 word1;
 237};
 238
 239/* Typedefs for the RX DMA status word */
 240
 241/* rx status word 0 holds part of the status bits of the Rx DMA engine
 242 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
 243 * which contains the Free Buffer ring 0 and 1 available offset.
 244 *
 245 * bit 0-9 FBR1 offset
 246 * bit 10 Wrap flag for FBR1
 247 * bit 16-25 FBR0 offset
 248 * bit 26 Wrap flag for FBR0
 249 */
 250
 251/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
 252 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
 253 * which contains the Packet Status Ring available offset.
 254 *
 255 * bit 0-15 reserved
 256 * bit 16-27 PSRoffset
 257 * bit 28 PSRwrap
 258 * bit 29-31 unused
 259 */
 260
 261/* struct rx_status_block is a structure representing the status of the Rx
 262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
 263 */
 264struct rx_status_block {
 265        u32 word0;
 266        u32 word1;
 267};
 268
 269/* Structure for look-up table holding free buffer ring pointers, addresses
 270 * and state.
 271 */
 272struct fbr_lookup {
 273        void            *virt[MAX_DESC_PER_RING_RX];
 274        u32              bus_high[MAX_DESC_PER_RING_RX];
 275        u32              bus_low[MAX_DESC_PER_RING_RX];
 276        void            *ring_virtaddr;
 277        dma_addr_t       ring_physaddr;
 278        void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 279        dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 280        u32              local_full;
 281        u32              num_entries;
 282        dma_addr_t       buffsize;
 283};
 284
 285/* struct rx_ring is the structure representing the adaptor's local
 286 * reference(s) to the rings
 287 */
 288struct rx_ring {
 289        struct fbr_lookup *fbr[NUM_FBRS];
 290        void *ps_ring_virtaddr;
 291        dma_addr_t ps_ring_physaddr;
 292        u32 local_psr_full;
 293        u32 psr_entries;
 294
 295        struct rx_status_block *rx_status_block;
 296        dma_addr_t rx_status_bus;
 297
 298        struct list_head recv_list;
 299        u32 num_ready_recv;
 300
 301        u32 num_rfd;
 302
 303        bool unfinished_receives;
 304};
 305
 306/* TX defines */
 307/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
 308 *
 309 * 0-15: length of packet
 310 * 16-27: VLAN tag
 311 * 28: VLAN CFI
 312 * 29-31: VLAN priority
 313 *
 314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
 315 *
 316 * 0: last packet in the sequence
 317 * 1: first packet in the sequence
 318 * 2: interrupt the processor when this pkt sent
 319 * 3: Control word - no packet data
 320 * 4: Issue half-duplex backpressure : XON/XOFF
 321 * 5: send pause frame
 322 * 6: Tx frame has error
 323 * 7: append CRC
 324 * 8: MAC override
 325 * 9: pad packet
 326 * 10: Packet is a Huge packet
 327 * 11: append VLAN tag
 328 * 12: IP checksum assist
 329 * 13: TCP checksum assist
 330 * 14: UDP checksum assist
 331 */
 332#define TXDESC_FLAG_LASTPKT             0x0001
 333#define TXDESC_FLAG_FIRSTPKT            0x0002
 334#define TXDESC_FLAG_INTPROC             0x0004
 335
 336/* struct tx_desc represents each descriptor on the ring */
 337struct tx_desc {
 338        u32 addr_hi;
 339        u32 addr_lo;
 340        u32 len_vlan;   /* control words how to xmit the */
 341        u32 flags;      /* data (detailed above) */
 342};
 343
 344/* The status of the Tx DMA engine it sits in free memory, and is pointed to
 345 * by 0x101c / 0x1020. This is a DMA10 type
 346 */
 347
 348/* TCB (Transmit Control Block: Host Side) */
 349struct tcb {
 350        struct tcb *next;       /* Next entry in ring */
 351        u32 count;              /* Used to spot stuck/lost packets */
 352        u32 stale;              /* Used to spot stuck/lost packets */
 353        struct sk_buff *skb;    /* Network skb we are tied to */
 354        u32 index;              /* Ring indexes */
 355        u32 index_start;
 356};
 357
 358/* Structure representing our local reference(s) to the ring */
 359struct tx_ring {
 360        /* TCB (Transmit Control Block) memory and lists */
 361        struct tcb *tcb_ring;
 362
 363        /* List of TCBs that are ready to be used */
 364        struct tcb *tcb_qhead;
 365        struct tcb *tcb_qtail;
 366
 367        /* list of TCBs that are currently being sent. */
 368        struct tcb *send_head;
 369        struct tcb *send_tail;
 370        int used;
 371
 372        /* The actual descriptor ring */
 373        struct tx_desc *tx_desc_ring;
 374        dma_addr_t tx_desc_ring_pa;
 375
 376        /* send_idx indicates where we last wrote to in the descriptor ring. */
 377        u32 send_idx;
 378
 379        /* The location of the write-back status block */
 380        u32 *tx_status;
 381        dma_addr_t tx_status_pa;
 382
 383        /* Packets since the last IRQ: used for interrupt coalescing */
 384        int since_irq;
 385};
 386
 387/* Do not change these values: if changed, then change also in respective
 388 * TXdma and Rxdma engines
 389 */
 390#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
 391#define NUM_TCB                      64
 392
 393/* These values are all superseded by registry entries to facilitate tuning.
 394 * Once the desired performance has been achieved, the optimal registry values
 395 * should be re-populated to these #defines:
 396 */
 397#define TX_ERROR_PERIOD             1000
 398
 399#define LO_MARK_PERCENT_FOR_PSR     15
 400#define LO_MARK_PERCENT_FOR_RX      15
 401
 402/* RFD (Receive Frame Descriptor) */
 403struct rfd {
 404        struct list_head list_node;
 405        struct sk_buff *skb;
 406        u32 len;        /* total size of receive frame */
 407        u16 bufferindex;
 408        u8 ringindex;
 409};
 410
 411/* Flow Control */
 412#define FLOW_BOTH       0
 413#define FLOW_TXONLY     1
 414#define FLOW_RXONLY     2
 415#define FLOW_NONE       3
 416
 417/* Struct to define some device statistics */
 418struct ce_stats {
 419        u32             multicast_pkts_rcvd;
 420        u32             rcvd_pkts_dropped;
 421
 422        u32             tx_underflows;
 423        u32             tx_collisions;
 424        u32             tx_excessive_collisions;
 425        u32             tx_first_collisions;
 426        u32             tx_late_collisions;
 427        u32             tx_max_pkt_errs;
 428        u32             tx_deferred;
 429
 430        u32             rx_overflows;
 431        u32             rx_length_errs;
 432        u32             rx_align_errs;
 433        u32             rx_crc_errs;
 434        u32             rx_code_violations;
 435        u32             rx_other_errs;
 436
 437        u32             interrupt_status;
 438};
 439
 440/* The private adapter structure */
 441struct et131x_adapter {
 442        struct net_device *netdev;
 443        struct pci_dev *pdev;
 444        struct mii_bus *mii_bus;
 445        struct napi_struct napi;
 446
 447        /* Flags that indicate current state of the adapter */
 448        u32 flags;
 449
 450        /* local link state, to determine if a state change has occurred */
 451        int link;
 452
 453        /* Configuration  */
 454        u8 rom_addr[ETH_ALEN];
 455        u8 addr[ETH_ALEN];
 456        bool has_eeprom;
 457        u8 eeprom_data[2];
 458
 459        spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
 460        spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
 461        spinlock_t rcv_lock; /* protects the rx_ring receive list */
 462
 463        /* Packet Filter and look ahead size */
 464        u32 packet_filter;
 465
 466        /* multicast list */
 467        u32 multicast_addr_count;
 468        u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
 469
 470        /* Pointer to the device's PCI register space */
 471        struct address_map __iomem *regs;
 472
 473        /* Registry parameters */
 474        u8 wanted_flow;         /* Flow we want for 802.3x flow control */
 475        u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
 476
 477        /* Derived from the registry: */
 478        u8 flow;                /* flow control validated by the far-end */
 479
 480        /* Minimize init-time */
 481        struct timer_list error_timer;
 482
 483        /* variable putting the phy into coma mode when boot up with no cable
 484         * plugged in after 5 seconds
 485         */
 486        u8 boot_coma;
 487
 488        /* Tx Memory Variables */
 489        struct tx_ring tx_ring;
 490
 491        /* Rx Memory Variables */
 492        struct rx_ring rx_ring;
 493
 494        struct ce_stats stats;
 495};
 496
 497static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
 498{
 499        u32 reg;
 500        int i;
 501
 502        /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
 503         *    bits 7,1:0 both equal to 1, at least once after reset.
 504         *    Subsequent operations need only to check that bits 1:0 are equal
 505         *    to 1 prior to starting a single byte read/write
 506         */
 507        for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
 508                if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
 509                        return -EIO;
 510
 511                /* I2C idle and Phy Queue Avail both true */
 512                if ((reg & 0x3000) == 0x3000) {
 513                        if (status)
 514                                *status = reg;
 515                        return reg & 0xFF;
 516                }
 517        }
 518        return -ETIMEDOUT;
 519}
 520
 521static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
 522{
 523        struct pci_dev *pdev = adapter->pdev;
 524        int index = 0;
 525        int retries;
 526        int err = 0;
 527        int writeok = 0;
 528        u32 status;
 529        u32 val = 0;
 530
 531        /* For an EEPROM, an I2C single byte write is defined as a START
 532         * condition followed by the device address, EEPROM address, one byte
 533         * of data and a STOP condition.  The STOP condition will trigger the
 534         * EEPROM's internally timed write cycle to the nonvolatile memory.
 535         * All inputs are disabled during this write cycle and the EEPROM will
 536         * not respond to any access until the internal write is complete.
 537         */
 538        err = eeprom_wait_ready(pdev, NULL);
 539        if (err < 0)
 540                return err;
 541
 542         /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
 543          *    and bits 1:0 both =0.  Bit 5 should be set according to the
 544          *    type of EEPROM being accessed (1=two byte addressing, 0=one
 545          *    byte addressing).
 546          */
 547        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 548                                  LBCIF_CONTROL_LBCIF_ENABLE |
 549                                        LBCIF_CONTROL_I2C_WRITE))
 550                return -EIO;
 551
 552        /* Prepare EEPROM address for Step 3 */
 553        for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
 554                if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 555                        break;
 556                /* Write the data to the LBCIF Data Register (the I2C write
 557                 * will begin).
 558                 */
 559                if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
 560                        break;
 561                /* Monitor bit 1:0 of the LBCIF Status Register.  When bits
 562                 * 1:0 are both equal to 1, the I2C write has completed and the
 563                 * internal write cycle of the EEPROM is about to start.
 564                 * (bits 1:0 = 01 is a legal state while waiting from both
 565                 * equal to 1, but bits 1:0 = 10 is invalid and implies that
 566                 * something is broken).
 567                 */
 568                err = eeprom_wait_ready(pdev, &status);
 569                if (err < 0)
 570                        return 0;
 571
 572                /* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
 573                 * an error has occurred.Don't break here if we are revision
 574                 * 1, this is so we do a blind write for load bug.
 575                 */
 576                if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
 577                    adapter->pdev->revision == 0)
 578                        break;
 579
 580                /* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
 581                 * ACK error has occurred on the address phase of the write.
 582                 * This could be due to an actual hardware failure or the
 583                 * EEPROM may still be in its internal write cycle from a
 584                 * previous write. This write operation was ignored and must be
 585                  *repeated later.
 586                 */
 587                if (status & LBCIF_STATUS_ACK_ERROR) {
 588                        /* This could be due to an actual hardware failure
 589                         * or the EEPROM may still be in its internal write
 590                         * cycle from a previous write. This write operation
 591                         * was ignored and must be repeated later.
 592                         */
 593                        udelay(10);
 594                        continue;
 595                }
 596
 597                writeok = 1;
 598                break;
 599        }
 600
 601        udelay(10);
 602
 603        while (1) {
 604                if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 605                                          LBCIF_CONTROL_LBCIF_ENABLE))
 606                        writeok = 0;
 607
 608                /* Do read until internal ACK_ERROR goes away meaning write
 609                 * completed
 610                 */
 611                do {
 612                        pci_write_config_dword(pdev,
 613                                               LBCIF_ADDRESS_REGISTER,
 614                                               addr);
 615                        do {
 616                                pci_read_config_dword(pdev,
 617                                                      LBCIF_DATA_REGISTER,
 618                                                      &val);
 619                        } while ((val & 0x00010000) == 0);
 620                } while (val & 0x00040000);
 621
 622                if ((val & 0xFF00) != 0xC000 || index == 10000)
 623                        break;
 624                index++;
 625        }
 626        return writeok ? 0 : -EIO;
 627}
 628
 629static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
 630{
 631        struct pci_dev *pdev = adapter->pdev;
 632        int err;
 633        u32 status;
 634
 635        /* A single byte read is similar to the single byte write, with the
 636         * exception of the data flow:
 637         */
 638        err = eeprom_wait_ready(pdev, NULL);
 639        if (err < 0)
 640                return err;
 641        /* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
 642         * and bits 1:0 both =0.  Bit 5 should be set according to the type
 643         * of EEPROM being accessed (1=two byte addressing, 0=one byte
 644         * addressing).
 645         */
 646        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 647                                  LBCIF_CONTROL_LBCIF_ENABLE))
 648                return -EIO;
 649        /* Write the address to the LBCIF Address Register (I2C read will
 650         * begin).
 651         */
 652        if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 653                return -EIO;
 654        /* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
 655         * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
 656         * has occurred).
 657         */
 658        err = eeprom_wait_ready(pdev, &status);
 659        if (err < 0)
 660                return err;
 661        /* Regardless of error status, read data byte from LBCIF Data
 662         * Register.
 663         */
 664        *pdata = err;
 665
 666        return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
 667}
 668
 669static int et131x_init_eeprom(struct et131x_adapter *adapter)
 670{
 671        struct pci_dev *pdev = adapter->pdev;
 672        u8 eestatus;
 673
 674        pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
 675
 676        /* THIS IS A WORKAROUND:
 677         * I need to call this function twice to get my card in a
 678         * LG M1 Express Dual running. I tried also a msleep before this
 679         * function, because I thought there could be some time conditions
 680         * but it didn't work. Call the whole function twice also work.
 681         */
 682        if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
 683                dev_err(&pdev->dev,
 684                        "Could not read PCI config space for EEPROM Status\n");
 685                return -EIO;
 686        }
 687
 688        /* Determine if the error(s) we care about are present. If they are
 689         * present we need to fail.
 690         */
 691        if (eestatus & 0x4C) {
 692                int write_failed = 0;
 693
 694                if (pdev->revision == 0x01) {
 695                        int     i;
 696                        static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
 697
 698                        /* Re-write the first 4 bytes if we have an eeprom
 699                         * present and the revision id is 1, this fixes the
 700                         * corruption seen with 1310 B Silicon
 701                         */
 702                        for (i = 0; i < 3; i++)
 703                                if (eeprom_write(adapter, i, eedata[i]) < 0)
 704                                        write_failed = 1;
 705                }
 706                if (pdev->revision  != 0x01 || write_failed) {
 707                        dev_err(&pdev->dev,
 708                                "Fatal EEPROM Status Error - 0x%04x\n",
 709                                eestatus);
 710
 711                        /* This error could mean that there was an error
 712                         * reading the eeprom or that the eeprom doesn't exist.
 713                         * We will treat each case the same and not try to
 714                         * gather additional information that normally would
 715                         * come from the eeprom, like MAC Address
 716                         */
 717                        adapter->has_eeprom = 0;
 718                        return -EIO;
 719                }
 720        }
 721        adapter->has_eeprom = 1;
 722
 723        /* Read the EEPROM for information regarding LED behavior. Refer to
 724         * et131x_xcvr_init() for its use.
 725         */
 726        eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
 727        eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
 728
 729        if (adapter->eeprom_data[0] != 0xcd)
 730                /* Disable all optional features */
 731                adapter->eeprom_data[1] = 0x00;
 732
 733        return 0;
 734}
 735
 736static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
 737{
 738        /* Setup the receive dma configuration register for normal operation */
 739        u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
 740        struct rx_ring *rx_ring = &adapter->rx_ring;
 741
 742        if (rx_ring->fbr[1]->buffsize == 4096)
 743                csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
 744        else if (rx_ring->fbr[1]->buffsize == 8192)
 745                csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
 746        else if (rx_ring->fbr[1]->buffsize == 16384)
 747                csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
 748
 749        csr |= ET_RXDMA_CSR_FBR0_ENABLE;
 750        if (rx_ring->fbr[0]->buffsize == 256)
 751                csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
 752        else if (rx_ring->fbr[0]->buffsize == 512)
 753                csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
 754        else if (rx_ring->fbr[0]->buffsize == 1024)
 755                csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
 756        writel(csr, &adapter->regs->rxdma.csr);
 757
 758        csr = readl(&adapter->regs->rxdma.csr);
 759        if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 760                udelay(5);
 761                csr = readl(&adapter->regs->rxdma.csr);
 762                if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 763                        dev_err(&adapter->pdev->dev,
 764                                "RX Dma failed to exit halt state. CSR 0x%08x\n",
 765                                csr);
 766                }
 767        }
 768}
 769
 770static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
 771{
 772        u32 csr;
 773        /* Setup the receive dma configuration register */
 774        writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
 775               &adapter->regs->rxdma.csr);
 776        csr = readl(&adapter->regs->rxdma.csr);
 777        if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
 778                udelay(5);
 779                csr = readl(&adapter->regs->rxdma.csr);
 780                if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
 781                        dev_err(&adapter->pdev->dev,
 782                                "RX Dma failed to enter halt state. CSR 0x%08x\n",
 783                                csr);
 784        }
 785}
 786
 787static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
 788{
 789        /* Setup the transmit dma configuration register for normal
 790         * operation
 791         */
 792        writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
 793               &adapter->regs->txdma.csr);
 794}
 795
 796static inline void add_10bit(u32 *v, int n)
 797{
 798        *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
 799}
 800
 801static inline void add_12bit(u32 *v, int n)
 802{
 803        *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
 804}
 805
 806static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
 807{
 808        struct mac_regs __iomem *macregs = &adapter->regs->mac;
 809        u32 station1;
 810        u32 station2;
 811        u32 ipg;
 812
 813        /* First we need to reset everything.  Write to MAC configuration
 814         * register 1 to perform reset.
 815         */
 816        writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
 817               ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
 818               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
 819               &macregs->cfg1);
 820
 821        /* Next lets configure the MAC Inter-packet gap register */
 822        ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
 823        ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
 824        writel(ipg, &macregs->ipg);
 825
 826        /* Next lets configure the MAC Half Duplex register */
 827        /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
 828        writel(0x00A1F037, &macregs->hfdp);
 829
 830        /* Next lets configure the MAC Interface Control register */
 831        writel(0, &macregs->if_ctrl);
 832
 833        writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
 834
 835        /* Next lets configure the MAC Station Address register.  These
 836         * values are read from the EEPROM during initialization and stored
 837         * in the adapter structure.  We write what is stored in the adapter
 838         * structure to the MAC Station Address registers high and low.  This
 839         * station address is used for generating and checking pause control
 840         * packets.
 841         */
 842        station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
 843                   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
 844        station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
 845                   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
 846                   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
 847                    adapter->addr[2];
 848        writel(station1, &macregs->station_addr_1);
 849        writel(station2, &macregs->station_addr_2);
 850
 851        /* Max ethernet packet in bytes that will be passed by the mac without
 852         * being truncated.  Allow the MAC to pass 4 more than our max packet
 853         * size.  This is 4 for the Ethernet CRC.
 854         *
 855         * Packets larger than (registry_jumbo_packet) that do not contain a
 856         * VLAN ID will be dropped by the Rx function.
 857         */
 858        writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
 859
 860        /* clear out MAC config reset */
 861        writel(0, &macregs->cfg1);
 862}
 863
 864static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
 865{
 866        int32_t delay = 0;
 867        struct mac_regs __iomem *mac = &adapter->regs->mac;
 868        struct phy_device *phydev = adapter->netdev->phydev;
 869        u32 cfg1;
 870        u32 cfg2;
 871        u32 ifctrl;
 872        u32 ctl;
 873
 874        ctl = readl(&adapter->regs->txmac.ctl);
 875        cfg1 = readl(&mac->cfg1);
 876        cfg2 = readl(&mac->cfg2);
 877        ifctrl = readl(&mac->if_ctrl);
 878
 879        /* Set up the if mode bits */
 880        cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
 881        if (phydev->speed == SPEED_1000) {
 882                cfg2 |= ET_MAC_CFG2_IFMODE_1000;
 883                ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
 884        } else {
 885                cfg2 |= ET_MAC_CFG2_IFMODE_100;
 886                ifctrl |= ET_MAC_IFCTRL_PHYMODE;
 887        }
 888
 889        cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
 890                                                        ET_MAC_CFG1_TX_FLOW;
 891
 892        cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
 893        if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
 894                cfg1 |= ET_MAC_CFG1_RX_FLOW;
 895        writel(cfg1, &mac->cfg1);
 896
 897        /* Now we need to initialize the MAC Configuration 2 register */
 898        /* preamble 7, check length, huge frame off, pad crc, crc enable
 899         * full duplex off
 900         */
 901        cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
 902        cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
 903        cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
 904        cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
 905        cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
 906        cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
 907
 908        if (phydev->duplex == DUPLEX_FULL)
 909                cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
 910
 911        ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
 912        if (phydev->duplex == DUPLEX_HALF)
 913                ifctrl |= ET_MAC_IFCTRL_GHDMODE;
 914
 915        writel(ifctrl, &mac->if_ctrl);
 916        writel(cfg2, &mac->cfg2);
 917
 918        do {
 919                udelay(10);
 920                delay++;
 921                cfg1 = readl(&mac->cfg1);
 922        } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
 923
 924        if (delay == 100) {
 925                dev_warn(&adapter->pdev->dev,
 926                         "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
 927                         cfg1);
 928        }
 929
 930        ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
 931        writel(ctl, &adapter->regs->txmac.ctl);
 932
 933        if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
 934                et131x_rx_dma_enable(adapter);
 935                et131x_tx_dma_enable(adapter);
 936        }
 937}
 938
 939static int et1310_in_phy_coma(struct et131x_adapter *adapter)
 940{
 941        u32 pmcsr = readl(&adapter->regs->global.pm_csr);
 942
 943        return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
 944}
 945
 946static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
 947{
 948        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
 949        u32 hash1 = 0;
 950        u32 hash2 = 0;
 951        u32 hash3 = 0;
 952        u32 hash4 = 0;
 953        u32 pm_csr;
 954
 955        /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
 956         * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
 957         * specified) then we should pass NO multi-cast addresses to the
 958         * driver.
 959         */
 960        if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
 961                int i;
 962
 963                /* Loop through our multicast array and set up the device */
 964                for (i = 0; i < adapter->multicast_addr_count; i++) {
 965                        u32 result;
 966
 967                        result = ether_crc(6, adapter->multicast_list[i]);
 968
 969                        result = (result & 0x3F800000) >> 23;
 970
 971                        if (result < 32) {
 972                                hash1 |= (1 << result);
 973                        } else if ((31 < result) && (result < 64)) {
 974                                result -= 32;
 975                                hash2 |= (1 << result);
 976                        } else if ((63 < result) && (result < 96)) {
 977                                result -= 64;
 978                                hash3 |= (1 << result);
 979                        } else {
 980                                result -= 96;
 981                                hash4 |= (1 << result);
 982                        }
 983                }
 984        }
 985
 986        /* Write out the new hash to the device */
 987        pm_csr = readl(&adapter->regs->global.pm_csr);
 988        if (!et1310_in_phy_coma(adapter)) {
 989                writel(hash1, &rxmac->multi_hash1);
 990                writel(hash2, &rxmac->multi_hash2);
 991                writel(hash3, &rxmac->multi_hash3);
 992                writel(hash4, &rxmac->multi_hash4);
 993        }
 994}
 995
 996static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
 997{
 998        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
 999        u32 uni_pf1;
1000        u32 uni_pf2;
1001        u32 uni_pf3;
1002        u32 pm_csr;
1003
1004        /* Set up unicast packet filter reg 3 to be the first two octets of
1005         * the MAC address for both address
1006         *
1007         * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1008         * MAC address for second address
1009         *
1010         * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1011         * MAC address for first address
1012         */
1013        uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1014                  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1015                  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1016                   adapter->addr[1];
1017
1018        uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1019                  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1020                  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1021                   adapter->addr[5];
1022
1023        uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1024                  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1025                  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1026                   adapter->addr[5];
1027
1028        pm_csr = readl(&adapter->regs->global.pm_csr);
1029        if (!et1310_in_phy_coma(adapter)) {
1030                writel(uni_pf1, &rxmac->uni_pf_addr1);
1031                writel(uni_pf2, &rxmac->uni_pf_addr2);
1032                writel(uni_pf3, &rxmac->uni_pf_addr3);
1033        }
1034}
1035
1036static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1037{
1038        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1039        struct phy_device *phydev = adapter->netdev->phydev;
1040        u32 sa_lo;
1041        u32 sa_hi = 0;
1042        u32 pf_ctrl = 0;
1043        u32 __iomem *wolw;
1044
1045        /* Disable the MAC while it is being configured (also disable WOL) */
1046        writel(0x8, &rxmac->ctrl);
1047
1048        /* Initialize WOL to disabled. */
1049        writel(0, &rxmac->crc0);
1050        writel(0, &rxmac->crc12);
1051        writel(0, &rxmac->crc34);
1052
1053        /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1054         * its default Values of 0x00000000 because there are not WOL masks
1055         * as of this time.
1056         */
1057        for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1058                writel(0, wolw);
1059
1060        /* Lets setup the WOL Source Address */
1061        sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1062                (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1063                (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1064                 adapter->addr[5];
1065        writel(sa_lo, &rxmac->sa_lo);
1066
1067        sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1068                       adapter->addr[1];
1069        writel(sa_hi, &rxmac->sa_hi);
1070
1071        /* Disable all Packet Filtering */
1072        writel(0, &rxmac->pf_ctrl);
1073
1074        /* Let's initialize the Unicast Packet filtering address */
1075        if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1076                et1310_setup_device_for_unicast(adapter);
1077                pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1078        } else {
1079                writel(0, &rxmac->uni_pf_addr1);
1080                writel(0, &rxmac->uni_pf_addr2);
1081                writel(0, &rxmac->uni_pf_addr3);
1082        }
1083
1084        /* Let's initialize the Multicast hash */
1085        if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1086                pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1087                et1310_setup_device_for_multicast(adapter);
1088        }
1089
1090        /* Runt packet filtering.  Didn't work in version A silicon. */
1091        pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1092        pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1093
1094        if (adapter->registry_jumbo_packet > 8192)
1095                /* In order to transmit jumbo packets greater than 8k, the
1096                 * FIFO between RxMAC and RxDMA needs to be reduced in size
1097                 * to (16k - Jumbo packet size).  In order to implement this,
1098                 * we must use "cut through" mode in the RxMAC, which chops
1099                 * packets down into segments which are (max_size * 16).  In
1100                 * this case we selected 256 bytes, since this is the size of
1101                 * the PCI-Express TLP's that the 1310 uses.
1102                 *
1103                 * seg_en on, fc_en off, size 0x10
1104                 */
1105                writel(0x41, &rxmac->mcif_ctrl_max_seg);
1106        else
1107                writel(0, &rxmac->mcif_ctrl_max_seg);
1108
1109        writel(0, &rxmac->mcif_water_mark);
1110        writel(0, &rxmac->mif_ctrl);
1111        writel(0, &rxmac->space_avail);
1112
1113        /* Initialize the the mif_ctrl register
1114         * bit 3:  Receive code error. One or more nibbles were signaled as
1115         *         errors  during the reception of the packet.  Clear this
1116         *         bit in Gigabit, set it in 100Mbit.  This was derived
1117         *         experimentally at UNH.
1118         * bit 4:  Receive CRC error. The packet's CRC did not match the
1119         *         internally generated CRC.
1120         * bit 5:  Receive length check error. Indicates that frame length
1121         *         field value in the packet does not match the actual data
1122         *         byte length and is not a type field.
1123         * bit 16: Receive frame truncated.
1124         * bit 17: Drop packet enable
1125         */
1126        if (phydev && phydev->speed == SPEED_100)
1127                writel(0x30038, &rxmac->mif_ctrl);
1128        else
1129                writel(0x30030, &rxmac->mif_ctrl);
1130
1131        /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1132         * filter is always enabled since it is where the runt packets are
1133         * supposed to be dropped.  For version A silicon, runt packet
1134         * dropping doesn't work, so it is disabled in the pf_ctrl register,
1135         * but we still leave the packet filter on.
1136         */
1137        writel(pf_ctrl, &rxmac->pf_ctrl);
1138        writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1139}
1140
1141static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1142{
1143        struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1144
1145        /* We need to update the Control Frame Parameters
1146         * cfpt - control frame pause timer set to 64 (0x40)
1147         * cfep - control frame extended pause timer set to 0x0
1148         */
1149        if (adapter->flow == FLOW_NONE)
1150                writel(0, &txmac->cf_param);
1151        else
1152                writel(0x40, &txmac->cf_param);
1153}
1154
1155static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1156{
1157        struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1158        u32 __iomem *reg;
1159
1160        /* initialize all the macstat registers to zero on the device  */
1161        for (reg = &macstat->txrx_0_64_byte_frames;
1162             reg <= &macstat->carry_reg2; reg++)
1163                writel(0, reg);
1164
1165        /* Unmask any counters that we want to track the overflow of.
1166         * Initially this will be all counters.  It may become clear later
1167         * that we do not need to track all counters.
1168         */
1169        writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1170        writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1171}
1172
1173static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1174                               u8 reg, u16 *value)
1175{
1176        struct mac_regs __iomem *mac = &adapter->regs->mac;
1177        int status = 0;
1178        u32 delay = 0;
1179        u32 mii_addr;
1180        u32 mii_cmd;
1181        u32 mii_indicator;
1182
1183        /* Save a local copy of the registers we are dealing with so we can
1184         * set them back
1185         */
1186        mii_addr = readl(&mac->mii_mgmt_addr);
1187        mii_cmd = readl(&mac->mii_mgmt_cmd);
1188
1189        /* Stop the current operation */
1190        writel(0, &mac->mii_mgmt_cmd);
1191
1192        /* Set up the register we need to read from on the correct PHY */
1193        writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1194
1195        writel(0x1, &mac->mii_mgmt_cmd);
1196
1197        do {
1198                udelay(50);
1199                delay++;
1200                mii_indicator = readl(&mac->mii_mgmt_indicator);
1201        } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1202
1203        /* If we hit the max delay, we could not read the register */
1204        if (delay == 50) {
1205                dev_warn(&adapter->pdev->dev,
1206                         "reg 0x%08x could not be read\n", reg);
1207                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1208                         mii_indicator);
1209
1210                status = -EIO;
1211                goto out;
1212        }
1213
1214        /* If we hit here we were able to read the register and we need to
1215         * return the value to the caller
1216         */
1217        *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1218
1219out:
1220        /* Stop the read operation */
1221        writel(0, &mac->mii_mgmt_cmd);
1222
1223        /* set the registers we touched back to the state at which we entered
1224         * this function
1225         */
1226        writel(mii_addr, &mac->mii_mgmt_addr);
1227        writel(mii_cmd, &mac->mii_mgmt_cmd);
1228
1229        return status;
1230}
1231
1232static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1233{
1234        struct phy_device *phydev = adapter->netdev->phydev;
1235
1236        if (!phydev)
1237                return -EIO;
1238
1239        return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1240}
1241
1242static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1243                            u16 value)
1244{
1245        struct mac_regs __iomem *mac = &adapter->regs->mac;
1246        int status = 0;
1247        u32 delay = 0;
1248        u32 mii_addr;
1249        u32 mii_cmd;
1250        u32 mii_indicator;
1251
1252        /* Save a local copy of the registers we are dealing with so we can
1253         * set them back
1254         */
1255        mii_addr = readl(&mac->mii_mgmt_addr);
1256        mii_cmd = readl(&mac->mii_mgmt_cmd);
1257
1258        /* Stop the current operation */
1259        writel(0, &mac->mii_mgmt_cmd);
1260
1261        /* Set up the register we need to write to on the correct PHY */
1262        writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1263
1264        /* Add the value to write to the registers to the mac */
1265        writel(value, &mac->mii_mgmt_ctrl);
1266
1267        do {
1268                udelay(50);
1269                delay++;
1270                mii_indicator = readl(&mac->mii_mgmt_indicator);
1271        } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1272
1273        /* If we hit the max delay, we could not write the register */
1274        if (delay == 100) {
1275                u16 tmp;
1276
1277                dev_warn(&adapter->pdev->dev,
1278                         "reg 0x%08x could not be written", reg);
1279                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1280                         mii_indicator);
1281                dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1282                         readl(&mac->mii_mgmt_cmd));
1283
1284                et131x_mii_read(adapter, reg, &tmp);
1285
1286                status = -EIO;
1287        }
1288        /* Stop the write operation */
1289        writel(0, &mac->mii_mgmt_cmd);
1290
1291        /* set the registers we touched back to the state at which we entered
1292         * this function
1293         */
1294        writel(mii_addr, &mac->mii_mgmt_addr);
1295        writel(mii_cmd, &mac->mii_mgmt_cmd);
1296
1297        return status;
1298}
1299
1300static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1301                                    u16 regnum,
1302                                    u16 bitnum,
1303                                    u8 *value)
1304{
1305        u16 reg;
1306        u16 mask = 1 << bitnum;
1307
1308        et131x_mii_read(adapter, regnum, &reg);
1309
1310        *value = (reg & mask) >> bitnum;
1311}
1312
1313static void et1310_config_flow_control(struct et131x_adapter *adapter)
1314{
1315        struct phy_device *phydev = adapter->netdev->phydev;
1316
1317        if (phydev->duplex == DUPLEX_HALF) {
1318                adapter->flow = FLOW_NONE;
1319        } else {
1320                char remote_pause, remote_async_pause;
1321
1322                et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1323                et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1324
1325                if (remote_pause && remote_async_pause) {
1326                        adapter->flow = adapter->wanted_flow;
1327                } else if (remote_pause && !remote_async_pause) {
1328                        if (adapter->wanted_flow == FLOW_BOTH)
1329                                adapter->flow = FLOW_BOTH;
1330                        else
1331                                adapter->flow = FLOW_NONE;
1332                } else if (!remote_pause && !remote_async_pause) {
1333                        adapter->flow = FLOW_NONE;
1334                } else {
1335                        if (adapter->wanted_flow == FLOW_BOTH)
1336                                adapter->flow = FLOW_RXONLY;
1337                        else
1338                                adapter->flow = FLOW_NONE;
1339                }
1340        }
1341}
1342
1343/* et1310_update_macstat_host_counters - Update local copy of the statistics */
1344static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1345{
1346        struct ce_stats *stats = &adapter->stats;
1347        struct macstat_regs __iomem *macstat =
1348                &adapter->regs->macstat;
1349
1350        stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1351        stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1352        stats->tx_deferred             += readl(&macstat->tx_deferred);
1353        stats->tx_excessive_collisions +=
1354                                readl(&macstat->tx_multiple_collisions);
1355        stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1356        stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1357        stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1358
1359        stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1360        stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1361        stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1362        stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1363        stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1364        stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1365        stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1366}
1367
1368/* et1310_handle_macstat_interrupt
1369 *
1370 * One of the MACSTAT counters has wrapped.  Update the local copy of
1371 * the statistics held in the adapter structure, checking the "wrap"
1372 * bit for each counter.
1373 */
1374static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1375{
1376        u32 carry_reg1;
1377        u32 carry_reg2;
1378
1379        /* Read the interrupt bits from the register(s).  These are Clear On
1380         * Write.
1381         */
1382        carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1383        carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1384
1385        writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1386        writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1387
1388        /* We need to do update the host copy of all the MAC_STAT counters.
1389         * For each counter, check it's overflow bit.  If the overflow bit is
1390         * set, then increment the host version of the count by one complete
1391         * revolution of the counter.  This routine is called when the counter
1392         * block indicates that one of the counters has wrapped.
1393         */
1394        if (carry_reg1 & (1 << 14))
1395                adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1396        if (carry_reg1 & (1 << 8))
1397                adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1398        if (carry_reg1 & (1 << 7))
1399                adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1400        if (carry_reg1 & (1 << 2))
1401                adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1402        if (carry_reg1 & (1 << 6))
1403                adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1404        if (carry_reg1 & (1 << 3))
1405                adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1406        if (carry_reg1 & (1 << 0))
1407                adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1408        if (carry_reg2 & (1 << 16))
1409                adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1410        if (carry_reg2 & (1 << 15))
1411                adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1412        if (carry_reg2 & (1 << 6))
1413                adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1414        if (carry_reg2 & (1 << 8))
1415                adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1416        if (carry_reg2 & (1 << 5))
1417                adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1418        if (carry_reg2 & (1 << 4))
1419                adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1420        if (carry_reg2 & (1 << 2))
1421                adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1422}
1423
1424static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1425{
1426        struct net_device *netdev = bus->priv;
1427        struct et131x_adapter *adapter = netdev_priv(netdev);
1428        u16 value;
1429        int ret;
1430
1431        ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1432
1433        if (ret < 0)
1434                return ret;
1435
1436        return value;
1437}
1438
1439static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1440                             int reg, u16 value)
1441{
1442        struct net_device *netdev = bus->priv;
1443        struct et131x_adapter *adapter = netdev_priv(netdev);
1444
1445        return et131x_mii_write(adapter, phy_addr, reg, value);
1446}
1447
1448/*      et1310_phy_power_switch -       PHY power control
1449 *      @adapter: device to control
1450 *      @down: true for off/false for back on
1451 *
1452 *      one hundred, ten, one thousand megs
1453 *      How would you like to have your LAN accessed
1454 *      Can't you see that this code processed
1455 *      Phy power, phy power..
1456 */
1457static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1458{
1459        u16 data;
1460        struct  phy_device *phydev = adapter->netdev->phydev;
1461
1462        et131x_mii_read(adapter, MII_BMCR, &data);
1463        data &= ~BMCR_PDOWN;
1464        if (down)
1465                data |= BMCR_PDOWN;
1466        et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1467}
1468
1469/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1470static void et131x_xcvr_init(struct et131x_adapter *adapter)
1471{
1472        u16 lcr2;
1473        struct  phy_device *phydev = adapter->netdev->phydev;
1474
1475        /* Set the LED behavior such that LED 1 indicates speed (off =
1476         * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1477         * link and activity (on for link, blink off for activity).
1478         *
1479         * NOTE: Some customizations have been added here for specific
1480         * vendors; The LED behavior is now determined by vendor data in the
1481         * EEPROM. However, the above description is the default.
1482         */
1483        if ((adapter->eeprom_data[1] & 0x4) == 0) {
1484                et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1485
1486                lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1487                lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1488
1489                if ((adapter->eeprom_data[1] & 0x8) == 0)
1490                        lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1491                else
1492                        lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1493
1494                et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1495        }
1496}
1497
1498/* et131x_configure_global_regs - configure JAGCore global regs */
1499static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1500{
1501        struct global_regs __iomem *regs = &adapter->regs->global;
1502
1503        writel(0, &regs->rxq_start_addr);
1504        writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1505
1506        if (adapter->registry_jumbo_packet < 2048) {
1507                /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1508                 * block of RAM that the driver can split between Tx
1509                 * and Rx as it desires.  Our default is to split it
1510                 * 50/50:
1511                 */
1512                writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1513                writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1514        } else if (adapter->registry_jumbo_packet < 8192) {
1515                /* For jumbo packets > 2k but < 8k, split 50-50. */
1516                writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1517                writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1518        } else {
1519                /* 9216 is the only packet size greater than 8k that
1520                 * is available. The Tx buffer has to be big enough
1521                 * for one whole packet on the Tx side. We'll make
1522                 * the Tx 9408, and give the rest to Rx
1523                 */
1524                writel(0x01b3, &regs->rxq_end_addr);
1525                writel(0x01b4, &regs->txq_start_addr);
1526        }
1527
1528        /* Initialize the loopback register. Disable all loopbacks. */
1529        writel(0, &regs->loopback);
1530
1531        writel(0, &regs->msi_config);
1532
1533        /* By default, disable the watchdog timer.  It will be enabled when
1534         * a packet is queued.
1535         */
1536        writel(0, &regs->watchdog_timer);
1537}
1538
1539/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1540static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1541{
1542        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1543        struct rx_ring *rx_local = &adapter->rx_ring;
1544        struct fbr_desc *fbr_entry;
1545        u32 entry;
1546        u32 psr_num_des;
1547        unsigned long flags;
1548        u8 id;
1549
1550        et131x_rx_dma_disable(adapter);
1551
1552        /* Load the completion writeback physical address */
1553        writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1554        writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1555
1556        memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1557
1558        /* Set the address and parameters of the packet status ring */
1559        writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1560        writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1561        writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1562        writel(0, &rx_dma->psr_full_offset);
1563
1564        psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1565        writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1566               &rx_dma->psr_min_des);
1567
1568        spin_lock_irqsave(&adapter->rcv_lock, flags);
1569
1570        /* These local variables track the PSR in the adapter structure */
1571        rx_local->local_psr_full = 0;
1572
1573        for (id = 0; id < NUM_FBRS; id++) {
1574                u32 __iomem *num_des;
1575                u32 __iomem *full_offset;
1576                u32 __iomem *min_des;
1577                u32 __iomem *base_hi;
1578                u32 __iomem *base_lo;
1579                struct fbr_lookup *fbr = rx_local->fbr[id];
1580
1581                if (id == 0) {
1582                        num_des = &rx_dma->fbr0_num_des;
1583                        full_offset = &rx_dma->fbr0_full_offset;
1584                        min_des = &rx_dma->fbr0_min_des;
1585                        base_hi = &rx_dma->fbr0_base_hi;
1586                        base_lo = &rx_dma->fbr0_base_lo;
1587                } else {
1588                        num_des = &rx_dma->fbr1_num_des;
1589                        full_offset = &rx_dma->fbr1_full_offset;
1590                        min_des = &rx_dma->fbr1_min_des;
1591                        base_hi = &rx_dma->fbr1_base_hi;
1592                        base_lo = &rx_dma->fbr1_base_lo;
1593                }
1594
1595                /* Now's the best time to initialize FBR contents */
1596                fbr_entry = fbr->ring_virtaddr;
1597                for (entry = 0; entry < fbr->num_entries; entry++) {
1598                        fbr_entry->addr_hi = fbr->bus_high[entry];
1599                        fbr_entry->addr_lo = fbr->bus_low[entry];
1600                        fbr_entry->word2 = entry;
1601                        fbr_entry++;
1602                }
1603
1604                /* Set the address and parameters of Free buffer ring 1 and 0 */
1605                writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1606                writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1607                writel(fbr->num_entries - 1, num_des);
1608                writel(ET_DMA10_WRAP, full_offset);
1609
1610                /* This variable tracks the free buffer ring 1 full position,
1611                 * so it has to match the above.
1612                 */
1613                fbr->local_full = ET_DMA10_WRAP;
1614                writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1615                       min_des);
1616        }
1617
1618        /* Program the number of packets we will receive before generating an
1619         * interrupt.
1620         * For version B silicon, this value gets updated once autoneg is
1621         *complete.
1622         */
1623        writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1624
1625        /* The "time_done" is not working correctly to coalesce interrupts
1626         * after a given time period, but rather is giving us an interrupt
1627         * regardless of whether we have received packets.
1628         * This value gets updated once autoneg is complete.
1629         */
1630        writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1631
1632        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1633}
1634
1635/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1636 *
1637 * Configure the transmit engine with the ring buffers we have created
1638 * and prepare it for use.
1639 */
1640static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1641{
1642        struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1643        struct tx_ring *tx_ring = &adapter->tx_ring;
1644
1645        /* Load the hardware with the start of the transmit descriptor ring. */
1646        writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1647        writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1648
1649        /* Initialise the transmit DMA engine */
1650        writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1651
1652        /* Load the completion writeback physical address */
1653        writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1654        writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1655
1656        *tx_ring->tx_status = 0;
1657
1658        writel(0, &txdma->service_request);
1659        tx_ring->send_idx = 0;
1660}
1661
1662/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1663static void et131x_adapter_setup(struct et131x_adapter *adapter)
1664{
1665        et131x_configure_global_regs(adapter);
1666        et1310_config_mac_regs1(adapter);
1667
1668        /* Configure the MMC registers */
1669        /* All we need to do is initialize the Memory Control Register */
1670        writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1671
1672        et1310_config_rxmac_regs(adapter);
1673        et1310_config_txmac_regs(adapter);
1674
1675        et131x_config_rx_dma_regs(adapter);
1676        et131x_config_tx_dma_regs(adapter);
1677
1678        et1310_config_macstat_regs(adapter);
1679
1680        et1310_phy_power_switch(adapter, 0);
1681        et131x_xcvr_init(adapter);
1682}
1683
1684/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1685static void et131x_soft_reset(struct et131x_adapter *adapter)
1686{
1687        u32 reg;
1688
1689        /* Disable MAC Core */
1690        reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1691              ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1692              ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1693        writel(reg, &adapter->regs->mac.cfg1);
1694
1695        reg = ET_RESET_ALL;
1696        writel(reg, &adapter->regs->global.sw_reset);
1697
1698        reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1699              ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1700        writel(reg, &adapter->regs->mac.cfg1);
1701        writel(0, &adapter->regs->mac.cfg1);
1702}
1703
1704static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1705{
1706        u32 mask;
1707
1708        if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1709                mask = INT_MASK_ENABLE;
1710        else
1711                mask = INT_MASK_ENABLE_NO_FLOW;
1712
1713        writel(mask, &adapter->regs->global.int_mask);
1714}
1715
1716static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1717{
1718        writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1719}
1720
1721static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1722{
1723        /* Setup the transmit dma configuration register */
1724        writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1725               &adapter->regs->txdma.csr);
1726}
1727
1728static void et131x_enable_txrx(struct net_device *netdev)
1729{
1730        struct et131x_adapter *adapter = netdev_priv(netdev);
1731
1732        et131x_rx_dma_enable(adapter);
1733        et131x_tx_dma_enable(adapter);
1734
1735        if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1736                et131x_enable_interrupts(adapter);
1737
1738        netif_start_queue(netdev);
1739}
1740
1741static void et131x_disable_txrx(struct net_device *netdev)
1742{
1743        struct et131x_adapter *adapter = netdev_priv(netdev);
1744
1745        netif_stop_queue(netdev);
1746
1747        et131x_rx_dma_disable(adapter);
1748        et131x_tx_dma_disable(adapter);
1749
1750        et131x_disable_interrupts(adapter);
1751}
1752
1753static void et131x_init_send(struct et131x_adapter *adapter)
1754{
1755        int i;
1756        struct tx_ring *tx_ring = &adapter->tx_ring;
1757        struct tcb *tcb = tx_ring->tcb_ring;
1758
1759        tx_ring->tcb_qhead = tcb;
1760
1761        memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1762
1763        for (i = 0; i < NUM_TCB; i++) {
1764                tcb->next = tcb + 1;
1765                tcb++;
1766        }
1767
1768        tcb--;
1769        tx_ring->tcb_qtail = tcb;
1770        tcb->next = NULL;
1771        /* Curr send queue should now be empty */
1772        tx_ring->send_head = NULL;
1773        tx_ring->send_tail = NULL;
1774}
1775
1776/* et1310_enable_phy_coma
1777 *
1778 * driver receive an phy status change interrupt while in D0 and check that
1779 * phy_status is down.
1780 *
1781 *          -- gate off JAGCore;
1782 *          -- set gigE PHY in Coma mode
1783 *          -- wake on phy_interrupt; Perform software reset JAGCore,
1784 *             re-initialize jagcore and gigE PHY
1785 */
1786static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1787{
1788        u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1789
1790        /* Stop sending packets. */
1791        adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1792
1793        /* Wait for outstanding Receive packets */
1794        et131x_disable_txrx(adapter->netdev);
1795
1796        /* Gate off JAGCore 3 clock domains */
1797        pmcsr &= ~ET_PMCSR_INIT;
1798        writel(pmcsr, &adapter->regs->global.pm_csr);
1799
1800        /* Program gigE PHY in to Coma mode */
1801        pmcsr |= ET_PM_PHY_SW_COMA;
1802        writel(pmcsr, &adapter->regs->global.pm_csr);
1803}
1804
1805static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1806{
1807        u32 pmcsr;
1808
1809        pmcsr = readl(&adapter->regs->global.pm_csr);
1810
1811        /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1812        pmcsr |= ET_PMCSR_INIT;
1813        pmcsr &= ~ET_PM_PHY_SW_COMA;
1814        writel(pmcsr, &adapter->regs->global.pm_csr);
1815
1816        /* Restore the GbE PHY speed and duplex modes;
1817         * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1818         */
1819
1820        /* Re-initialize the send structures */
1821        et131x_init_send(adapter);
1822
1823        /* Bring the device back to the state it was during init prior to
1824         * autonegotiation being complete.  This way, when we get the auto-neg
1825         * complete interrupt, we can complete init by calling ConfigMacREGS2.
1826         */
1827        et131x_soft_reset(adapter);
1828
1829        et131x_adapter_setup(adapter);
1830
1831        /* Allow Tx to restart */
1832        adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1833
1834        et131x_enable_txrx(adapter->netdev);
1835}
1836
1837static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1838{
1839        u32 tmp_free_buff_ring = *free_buff_ring;
1840
1841        tmp_free_buff_ring++;
1842        /* This works for all cases where limit < 1024. The 1023 case
1843         * works because 1023++ is 1024 which means the if condition is not
1844         * taken but the carry of the bit into the wrap bit toggles the wrap
1845         * value correctly
1846         */
1847        if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1848                tmp_free_buff_ring &= ~ET_DMA10_MASK;
1849                tmp_free_buff_ring ^= ET_DMA10_WRAP;
1850        }
1851        /* For the 1023 case */
1852        tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1853        *free_buff_ring = tmp_free_buff_ring;
1854        return tmp_free_buff_ring;
1855}
1856
1857/* et131x_rx_dma_memory_alloc
1858 *
1859 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1860 * and the Packet Status Ring.
1861 */
1862static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1863{
1864        u8 id;
1865        u32 i, j;
1866        u32 bufsize;
1867        u32 psr_size;
1868        u32 fbr_chunksize;
1869        struct rx_ring *rx_ring = &adapter->rx_ring;
1870        struct fbr_lookup *fbr;
1871
1872        /* Alloc memory for the lookup table */
1873        rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1874        if (rx_ring->fbr[0] == NULL)
1875                return -ENOMEM;
1876        rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1877        if (rx_ring->fbr[1] == NULL)
1878                return -ENOMEM;
1879
1880        /* The first thing we will do is configure the sizes of the buffer
1881         * rings. These will change based on jumbo packet support.  Larger
1882         * jumbo packets increases the size of each entry in FBR0, and the
1883         * number of entries in FBR0, while at the same time decreasing the
1884         * number of entries in FBR1.
1885         *
1886         * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1887         * entries are huge in order to accommodate a "jumbo" frame, then it
1888         * will have less entries.  Conversely, FBR1 will now be relied upon
1889         * to carry more "normal" frames, thus it's entry size also increases
1890         * and the number of entries goes up too (since it now carries
1891         * "small" + "regular" packets.
1892         *
1893         * In this scheme, we try to maintain 512 entries between the two
1894         * rings. Also, FBR1 remains a constant size - when it's size doubles
1895         * the number of entries halves.  FBR0 increases in size, however.
1896         */
1897        if (adapter->registry_jumbo_packet < 2048) {
1898                rx_ring->fbr[0]->buffsize = 256;
1899                rx_ring->fbr[0]->num_entries = 512;
1900                rx_ring->fbr[1]->buffsize = 2048;
1901                rx_ring->fbr[1]->num_entries = 512;
1902        } else if (adapter->registry_jumbo_packet < 4096) {
1903                rx_ring->fbr[0]->buffsize = 512;
1904                rx_ring->fbr[0]->num_entries = 1024;
1905                rx_ring->fbr[1]->buffsize = 4096;
1906                rx_ring->fbr[1]->num_entries = 512;
1907        } else {
1908                rx_ring->fbr[0]->buffsize = 1024;
1909                rx_ring->fbr[0]->num_entries = 768;
1910                rx_ring->fbr[1]->buffsize = 16384;
1911                rx_ring->fbr[1]->num_entries = 128;
1912        }
1913
1914        rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1915                               rx_ring->fbr[1]->num_entries;
1916
1917        for (id = 0; id < NUM_FBRS; id++) {
1918                fbr = rx_ring->fbr[id];
1919                /* Allocate an area of memory for Free Buffer Ring */
1920                bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1921                fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1922                                                        bufsize,
1923                                                        &fbr->ring_physaddr,
1924                                                        GFP_KERNEL);
1925                if (!fbr->ring_virtaddr) {
1926                        dev_err(&adapter->pdev->dev,
1927                                "Cannot alloc memory for Free Buffer Ring %d\n",
1928                                id);
1929                        return -ENOMEM;
1930                }
1931        }
1932
1933        for (id = 0; id < NUM_FBRS; id++) {
1934                fbr = rx_ring->fbr[id];
1935                fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1936
1937                for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1938                        dma_addr_t fbr_physaddr;
1939
1940                        fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1941                                        &adapter->pdev->dev, fbr_chunksize,
1942                                        &fbr->mem_physaddrs[i],
1943                                        GFP_KERNEL);
1944
1945                        if (!fbr->mem_virtaddrs[i]) {
1946                                dev_err(&adapter->pdev->dev,
1947                                        "Could not alloc memory\n");
1948                                return -ENOMEM;
1949                        }
1950
1951                        /* See NOTE in "Save Physical Address" comment above */
1952                        fbr_physaddr = fbr->mem_physaddrs[i];
1953
1954                        for (j = 0; j < FBR_CHUNKS; j++) {
1955                                u32 k = (i * FBR_CHUNKS) + j;
1956
1957                                /* Save the Virtual address of this index for
1958                                 * quick access later
1959                                 */
1960                                fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1961                                                   (j * fbr->buffsize);
1962
1963                                /* now store the physical address in the
1964                                 * descriptor so the device can access it
1965                                 */
1966                                fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1967                                fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1968                                fbr_physaddr += fbr->buffsize;
1969                        }
1970                }
1971        }
1972
1973        /* Allocate an area of memory for FIFO of Packet Status ring entries */
1974        psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1975
1976        rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1977                                                  psr_size,
1978                                                  &rx_ring->ps_ring_physaddr,
1979                                                  GFP_KERNEL);
1980
1981        if (!rx_ring->ps_ring_virtaddr) {
1982                dev_err(&adapter->pdev->dev,
1983                        "Cannot alloc memory for Packet Status Ring\n");
1984                return -ENOMEM;
1985        }
1986
1987        /* Allocate an area of memory for writeback of status information */
1988        rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1989                                            sizeof(struct rx_status_block),
1990                                            &rx_ring->rx_status_bus,
1991                                            GFP_KERNEL);
1992        if (!rx_ring->rx_status_block) {
1993                dev_err(&adapter->pdev->dev,
1994                        "Cannot alloc memory for Status Block\n");
1995                return -ENOMEM;
1996        }
1997        rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1998
1999        /* The RFDs are going to be put on lists later on, so initialize the
2000         * lists now.
2001         */
2002        INIT_LIST_HEAD(&rx_ring->recv_list);
2003        return 0;
2004}
2005
2006static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2007{
2008        u8 id;
2009        u32 ii;
2010        u32 bufsize;
2011        u32 psr_size;
2012        struct rfd *rfd;
2013        struct rx_ring *rx_ring = &adapter->rx_ring;
2014        struct fbr_lookup *fbr;
2015
2016        /* Free RFDs and associated packet descriptors */
2017        WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2018
2019        while (!list_empty(&rx_ring->recv_list)) {
2020                rfd = list_entry(rx_ring->recv_list.next,
2021                                 struct rfd, list_node);
2022
2023                list_del(&rfd->list_node);
2024                rfd->skb = NULL;
2025                kfree(rfd);
2026        }
2027
2028        /* Free Free Buffer Rings */
2029        for (id = 0; id < NUM_FBRS; id++) {
2030                fbr = rx_ring->fbr[id];
2031
2032                if (!fbr || !fbr->ring_virtaddr)
2033                        continue;
2034
2035                /* First the packet memory */
2036                for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2037                        if (fbr->mem_virtaddrs[ii]) {
2038                                bufsize = fbr->buffsize * FBR_CHUNKS;
2039
2040                                dma_free_coherent(&adapter->pdev->dev,
2041                                                  bufsize,
2042                                                  fbr->mem_virtaddrs[ii],
2043                                                  fbr->mem_physaddrs[ii]);
2044
2045                                fbr->mem_virtaddrs[ii] = NULL;
2046                        }
2047                }
2048
2049                bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2050
2051                dma_free_coherent(&adapter->pdev->dev,
2052                                  bufsize,
2053                                  fbr->ring_virtaddr,
2054                                  fbr->ring_physaddr);
2055
2056                fbr->ring_virtaddr = NULL;
2057        }
2058
2059        /* Free Packet Status Ring */
2060        if (rx_ring->ps_ring_virtaddr) {
2061                psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2062
2063                dma_free_coherent(&adapter->pdev->dev, psr_size,
2064                                  rx_ring->ps_ring_virtaddr,
2065                                  rx_ring->ps_ring_physaddr);
2066
2067                rx_ring->ps_ring_virtaddr = NULL;
2068        }
2069
2070        /* Free area of memory for the writeback of status information */
2071        if (rx_ring->rx_status_block) {
2072                dma_free_coherent(&adapter->pdev->dev,
2073                                  sizeof(struct rx_status_block),
2074                                  rx_ring->rx_status_block,
2075                                  rx_ring->rx_status_bus);
2076                rx_ring->rx_status_block = NULL;
2077        }
2078
2079        /* Free the FBR Lookup Table */
2080        kfree(rx_ring->fbr[0]);
2081        kfree(rx_ring->fbr[1]);
2082
2083        /* Reset Counters */
2084        rx_ring->num_ready_recv = 0;
2085}
2086
2087/* et131x_init_recv - Initialize receive data structures */
2088static int et131x_init_recv(struct et131x_adapter *adapter)
2089{
2090        struct rfd *rfd;
2091        u32 rfdct;
2092        struct rx_ring *rx_ring = &adapter->rx_ring;
2093
2094        /* Setup each RFD */
2095        for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2096                rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2097                if (!rfd)
2098                        return -ENOMEM;
2099
2100                rfd->skb = NULL;
2101
2102                /* Add this RFD to the recv_list */
2103                list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2104
2105                /* Increment the available RFD's */
2106                rx_ring->num_ready_recv++;
2107        }
2108
2109        return 0;
2110}
2111
2112/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2113static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2114{
2115        struct phy_device *phydev = adapter->netdev->phydev;
2116
2117        /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2118         * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2119         */
2120        if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2121                writel(0, &adapter->regs->rxdma.max_pkt_time);
2122                writel(1, &adapter->regs->rxdma.num_pkt_done);
2123        }
2124}
2125
2126/* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2127static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2128{
2129        struct rx_ring *rx_local = &adapter->rx_ring;
2130        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2131        u16 buff_index = rfd->bufferindex;
2132        u8 ring_index = rfd->ringindex;
2133        unsigned long flags;
2134        struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2135
2136        /* We don't use any of the OOB data besides status. Otherwise, we
2137         * need to clean up OOB data
2138         */
2139        if (buff_index < fbr->num_entries) {
2140                u32 free_buff_ring;
2141                u32 __iomem *offset;
2142                struct fbr_desc *next;
2143
2144                if (ring_index == 0)
2145                        offset = &rx_dma->fbr0_full_offset;
2146                else
2147                        offset = &rx_dma->fbr1_full_offset;
2148
2149                next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2150                       INDEX10(fbr->local_full);
2151
2152                /* Handle the Free Buffer Ring advancement here. Write
2153                 * the PA / Buffer Index for the returned buffer into
2154                 * the oldest (next to be freed)FBR entry
2155                 */
2156                next->addr_hi = fbr->bus_high[buff_index];
2157                next->addr_lo = fbr->bus_low[buff_index];
2158                next->word2 = buff_index;
2159
2160                free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2161                                                     fbr->num_entries - 1);
2162                writel(free_buff_ring, offset);
2163        } else {
2164                dev_err(&adapter->pdev->dev,
2165                        "%s illegal Buffer Index returned\n", __func__);
2166        }
2167
2168        /* The processing on this RFD is done, so put it back on the tail of
2169         * our list
2170         */
2171        spin_lock_irqsave(&adapter->rcv_lock, flags);
2172        list_add_tail(&rfd->list_node, &rx_local->recv_list);
2173        rx_local->num_ready_recv++;
2174        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2175
2176        WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2177}
2178
2179/* nic_rx_pkts - Checks the hardware for available packets
2180 *
2181 * Checks the hardware for available packets, using completion ring
2182 * If packets are available, it gets an RFD from the recv_list, attaches
2183 * the packet to it, puts the RFD in the RecvPendList, and also returns
2184 * the pointer to the RFD.
2185 */
2186static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2187{
2188        struct rx_ring *rx_local = &adapter->rx_ring;
2189        struct rx_status_block *status;
2190        struct pkt_stat_desc *psr;
2191        struct rfd *rfd;
2192        unsigned long flags;
2193        struct list_head *element;
2194        u8 ring_index;
2195        u16 buff_index;
2196        u32 len;
2197        u32 word0;
2198        u32 word1;
2199        struct sk_buff *skb;
2200        struct fbr_lookup *fbr;
2201
2202        /* RX Status block is written by the DMA engine prior to every
2203         * interrupt. It contains the next to be used entry in the Packet
2204         * Status Ring, and also the two Free Buffer rings.
2205         */
2206        status = rx_local->rx_status_block;
2207        word1 = status->word1 >> 16;
2208
2209        /* Check the PSR and wrap bits do not match */
2210        if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2211                return NULL; /* Looks like this ring is not updated yet */
2212
2213        /* The packet status ring indicates that data is available. */
2214        psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2215                        (rx_local->local_psr_full & 0xFFF);
2216
2217        /* Grab any information that is required once the PSR is advanced,
2218         * since we can no longer rely on the memory being accurate
2219         */
2220        len = psr->word1 & 0xFFFF;
2221        ring_index = (psr->word1 >> 26) & 0x03;
2222        fbr = rx_local->fbr[ring_index];
2223        buff_index = (psr->word1 >> 16) & 0x3FF;
2224        word0 = psr->word0;
2225
2226        /* Indicate that we have used this PSR entry. */
2227        /* FIXME wrap 12 */
2228        add_12bit(&rx_local->local_psr_full, 1);
2229        if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2230                /* Clear psr full and toggle the wrap bit */
2231                rx_local->local_psr_full &=  ~0xFFF;
2232                rx_local->local_psr_full ^= 0x1000;
2233        }
2234
2235        writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2236
2237        if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2238                /* Illegal buffer or ring index cannot be used by S/W*/
2239                dev_err(&adapter->pdev->dev,
2240                        "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2241                        rx_local->local_psr_full & 0xFFF, len, buff_index);
2242                return NULL;
2243        }
2244
2245        /* Get and fill the RFD. */
2246        spin_lock_irqsave(&adapter->rcv_lock, flags);
2247
2248        element = rx_local->recv_list.next;
2249        rfd = list_entry(element, struct rfd, list_node);
2250
2251        if (!rfd) {
2252                spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2253                return NULL;
2254        }
2255
2256        list_del(&rfd->list_node);
2257        rx_local->num_ready_recv--;
2258
2259        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2260
2261        rfd->bufferindex = buff_index;
2262        rfd->ringindex = ring_index;
2263
2264        /* In V1 silicon, there is a bug which screws up filtering of runt
2265         * packets. Therefore runt packet filtering is disabled in the MAC and
2266         * the packets are dropped here. They are also counted here.
2267         */
2268        if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2269                adapter->stats.rx_other_errs++;
2270                rfd->len = 0;
2271                goto out;
2272        }
2273
2274        if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2275                adapter->stats.multicast_pkts_rcvd++;
2276
2277        rfd->len = len;
2278
2279        skb = dev_alloc_skb(rfd->len + 2);
2280        if (!skb)
2281                return NULL;
2282
2283        adapter->netdev->stats.rx_bytes += rfd->len;
2284
2285        skb_put_data(skb, fbr->virt[buff_index], rfd->len);
2286
2287        skb->protocol = eth_type_trans(skb, adapter->netdev);
2288        skb->ip_summed = CHECKSUM_NONE;
2289        netif_receive_skb(skb);
2290
2291out:
2292        nic_return_rfd(adapter, rfd);
2293        return rfd;
2294}
2295
2296static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2297{
2298        struct rfd *rfd = NULL;
2299        int count = 0;
2300        int limit = budget;
2301        bool done = true;
2302        struct rx_ring *rx_ring = &adapter->rx_ring;
2303
2304        if (budget > MAX_PACKETS_HANDLED)
2305                limit = MAX_PACKETS_HANDLED;
2306
2307        /* Process up to available RFD's */
2308        while (count < limit) {
2309                if (list_empty(&rx_ring->recv_list)) {
2310                        WARN_ON(rx_ring->num_ready_recv != 0);
2311                        done = false;
2312                        break;
2313                }
2314
2315                rfd = nic_rx_pkts(adapter);
2316
2317                if (rfd == NULL)
2318                        break;
2319
2320                /* Do not receive any packets until a filter has been set.
2321                 * Do not receive any packets until we have link.
2322                 * If length is zero, return the RFD in order to advance the
2323                 * Free buffer ring.
2324                 */
2325                if (!adapter->packet_filter ||
2326                    !netif_carrier_ok(adapter->netdev) ||
2327                    rfd->len == 0)
2328                        continue;
2329
2330                adapter->netdev->stats.rx_packets++;
2331
2332                if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2333                        dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2334
2335                count++;
2336        }
2337
2338        if (count == limit || !done) {
2339                rx_ring->unfinished_receives = true;
2340                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2341                       &adapter->regs->global.watchdog_timer);
2342        } else {
2343                /* Watchdog timer will disable itself if appropriate. */
2344                rx_ring->unfinished_receives = false;
2345        }
2346
2347        return count;
2348}
2349
2350/* et131x_tx_dma_memory_alloc
2351 *
2352 * Allocates memory that will be visible both to the device and to the CPU.
2353 * The OS will pass us packets, pointers to which we will insert in the Tx
2354 * Descriptor queue. The device will read this queue to find the packets in
2355 * memory. The device will update the "status" in memory each time it xmits a
2356 * packet.
2357 */
2358static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2359{
2360        int desc_size = 0;
2361        struct tx_ring *tx_ring = &adapter->tx_ring;
2362
2363        /* Allocate memory for the TCB's (Transmit Control Block) */
2364        tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2365                                    GFP_KERNEL | GFP_DMA);
2366        if (!tx_ring->tcb_ring)
2367                return -ENOMEM;
2368
2369        desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2370        tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2371                                                   desc_size,
2372                                                   &tx_ring->tx_desc_ring_pa,
2373                                                   GFP_KERNEL);
2374        if (!tx_ring->tx_desc_ring) {
2375                dev_err(&adapter->pdev->dev,
2376                        "Cannot alloc memory for Tx Ring\n");
2377                return -ENOMEM;
2378        }
2379
2380        tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2381                                                    sizeof(u32),
2382                                                    &tx_ring->tx_status_pa,
2383                                                    GFP_KERNEL);
2384        if (!tx_ring->tx_status) {
2385                dev_err(&adapter->pdev->dev,
2386                        "Cannot alloc memory for Tx status block\n");
2387                return -ENOMEM;
2388        }
2389        return 0;
2390}
2391
2392static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2393{
2394        int desc_size = 0;
2395        struct tx_ring *tx_ring = &adapter->tx_ring;
2396
2397        if (tx_ring->tx_desc_ring) {
2398                /* Free memory relating to Tx rings here */
2399                desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2400                dma_free_coherent(&adapter->pdev->dev,
2401                                  desc_size,
2402                                  tx_ring->tx_desc_ring,
2403                                  tx_ring->tx_desc_ring_pa);
2404                tx_ring->tx_desc_ring = NULL;
2405        }
2406
2407        /* Free memory for the Tx status block */
2408        if (tx_ring->tx_status) {
2409                dma_free_coherent(&adapter->pdev->dev,
2410                                  sizeof(u32),
2411                                  tx_ring->tx_status,
2412                                  tx_ring->tx_status_pa);
2413
2414                tx_ring->tx_status = NULL;
2415        }
2416        /* Free the memory for the tcb structures */
2417        kfree(tx_ring->tcb_ring);
2418}
2419
2420/* nic_send_packet - NIC specific send handler for version B silicon. */
2421static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2422{
2423        u32 i;
2424        struct tx_desc desc[24];
2425        u32 frag = 0;
2426        u32 thiscopy, remainder;
2427        struct sk_buff *skb = tcb->skb;
2428        u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2429        struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2430        struct phy_device *phydev = adapter->netdev->phydev;
2431        dma_addr_t dma_addr;
2432        struct tx_ring *tx_ring = &adapter->tx_ring;
2433
2434        /* Part of the optimizations of this send routine restrict us to
2435         * sending 24 fragments at a pass.  In practice we should never see
2436         * more than 5 fragments.
2437         */
2438
2439        /* nr_frags should be no more than 18. */
2440        BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2441
2442        memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2443
2444        for (i = 0; i < nr_frags; i++) {
2445                /* If there is something in this element, lets get a
2446                 * descriptor from the ring and get the necessary data
2447                 */
2448                if (i == 0) {
2449                        /* If the fragments are smaller than a standard MTU,
2450                         * then map them to a single descriptor in the Tx
2451                         * Desc ring. However, if they're larger, as is
2452                         * possible with support for jumbo packets, then
2453                         * split them each across 2 descriptors.
2454                         *
2455                         * This will work until we determine why the hardware
2456                         * doesn't seem to like large fragments.
2457                         */
2458                        if (skb_headlen(skb) <= 1514) {
2459                                /* Low 16bits are length, high is vlan and
2460                                 * unused currently so zero
2461                                 */
2462                                desc[frag].len_vlan = skb_headlen(skb);
2463                                dma_addr = dma_map_single(&adapter->pdev->dev,
2464                                                          skb->data,
2465                                                          skb_headlen(skb),
2466                                                          DMA_TO_DEVICE);
2467                                desc[frag].addr_lo = lower_32_bits(dma_addr);
2468                                desc[frag].addr_hi = upper_32_bits(dma_addr);
2469                                frag++;
2470                        } else {
2471                                desc[frag].len_vlan = skb_headlen(skb) / 2;
2472                                dma_addr = dma_map_single(&adapter->pdev->dev,
2473                                                          skb->data,
2474                                                          skb_headlen(skb) / 2,
2475                                                          DMA_TO_DEVICE);
2476                                desc[frag].addr_lo = lower_32_bits(dma_addr);
2477                                desc[frag].addr_hi = upper_32_bits(dma_addr);
2478                                frag++;
2479
2480                                desc[frag].len_vlan = skb_headlen(skb) / 2;
2481                                dma_addr = dma_map_single(&adapter->pdev->dev,
2482                                                          skb->data +
2483                                                          skb_headlen(skb) / 2,
2484                                                          skb_headlen(skb) / 2,
2485                                                          DMA_TO_DEVICE);
2486                                desc[frag].addr_lo = lower_32_bits(dma_addr);
2487                                desc[frag].addr_hi = upper_32_bits(dma_addr);
2488                                frag++;
2489                        }
2490                } else {
2491                        desc[frag].len_vlan = frags[i - 1].size;
2492                        dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2493                                                    &frags[i - 1],
2494                                                    0,
2495                                                    frags[i - 1].size,
2496                                                    DMA_TO_DEVICE);
2497                        desc[frag].addr_lo = lower_32_bits(dma_addr);
2498                        desc[frag].addr_hi = upper_32_bits(dma_addr);
2499                        frag++;
2500                }
2501        }
2502
2503        if (phydev && phydev->speed == SPEED_1000) {
2504                if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2505                        /* Last element & Interrupt flag */
2506                        desc[frag - 1].flags =
2507                                    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2508                        tx_ring->since_irq = 0;
2509                } else { /* Last element */
2510                        desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2511                }
2512        } else {
2513                desc[frag - 1].flags =
2514                                    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2515        }
2516
2517        desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2518
2519        tcb->index_start = tx_ring->send_idx;
2520        tcb->stale = 0;
2521
2522        thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2523
2524        if (thiscopy >= frag) {
2525                remainder = 0;
2526                thiscopy = frag;
2527        } else {
2528                remainder = frag - thiscopy;
2529        }
2530
2531        memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2532               desc,
2533               sizeof(struct tx_desc) * thiscopy);
2534
2535        add_10bit(&tx_ring->send_idx, thiscopy);
2536
2537        if (INDEX10(tx_ring->send_idx) == 0 ||
2538            INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2539                tx_ring->send_idx &= ~ET_DMA10_MASK;
2540                tx_ring->send_idx ^= ET_DMA10_WRAP;
2541        }
2542
2543        if (remainder) {
2544                memcpy(tx_ring->tx_desc_ring,
2545                       desc + thiscopy,
2546                       sizeof(struct tx_desc) * remainder);
2547
2548                add_10bit(&tx_ring->send_idx, remainder);
2549        }
2550
2551        if (INDEX10(tx_ring->send_idx) == 0) {
2552                if (tx_ring->send_idx)
2553                        tcb->index = NUM_DESC_PER_RING_TX - 1;
2554                else
2555                        tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2556        } else {
2557                tcb->index = tx_ring->send_idx - 1;
2558        }
2559
2560        spin_lock(&adapter->tcb_send_qlock);
2561
2562        if (tx_ring->send_tail)
2563                tx_ring->send_tail->next = tcb;
2564        else
2565                tx_ring->send_head = tcb;
2566
2567        tx_ring->send_tail = tcb;
2568
2569        WARN_ON(tcb->next != NULL);
2570
2571        tx_ring->used++;
2572
2573        spin_unlock(&adapter->tcb_send_qlock);
2574
2575        /* Write the new write pointer back to the device. */
2576        writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2577
2578        /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2579         * timer to wake us up if this packet isn't followed by N more.
2580         */
2581        if (phydev && phydev->speed == SPEED_1000) {
2582                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2583                       &adapter->regs->global.watchdog_timer);
2584        }
2585        return 0;
2586}
2587
2588static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2589{
2590        int status;
2591        struct tcb *tcb;
2592        unsigned long flags;
2593        struct tx_ring *tx_ring = &adapter->tx_ring;
2594
2595        /* All packets must have at least a MAC address and a protocol type */
2596        if (skb->len < ETH_HLEN)
2597                return -EIO;
2598
2599        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2600
2601        tcb = tx_ring->tcb_qhead;
2602
2603        if (tcb == NULL) {
2604                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2605                return -ENOMEM;
2606        }
2607
2608        tx_ring->tcb_qhead = tcb->next;
2609
2610        if (tx_ring->tcb_qhead == NULL)
2611                tx_ring->tcb_qtail = NULL;
2612
2613        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2614
2615        tcb->skb = skb;
2616        tcb->next = NULL;
2617
2618        status = nic_send_packet(adapter, tcb);
2619
2620        if (status != 0) {
2621                spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2622
2623                if (tx_ring->tcb_qtail)
2624                        tx_ring->tcb_qtail->next = tcb;
2625                else
2626                        /* Apparently ready Q is empty. */
2627                        tx_ring->tcb_qhead = tcb;
2628
2629                tx_ring->tcb_qtail = tcb;
2630                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2631                return status;
2632        }
2633        WARN_ON(tx_ring->used > NUM_TCB);
2634        return 0;
2635}
2636
2637/* free_send_packet - Recycle a struct tcb */
2638static inline void free_send_packet(struct et131x_adapter *adapter,
2639                                    struct tcb *tcb)
2640{
2641        unsigned long flags;
2642        struct tx_desc *desc = NULL;
2643        struct net_device_stats *stats = &adapter->netdev->stats;
2644        struct tx_ring *tx_ring = &adapter->tx_ring;
2645        u64  dma_addr;
2646
2647        if (tcb->skb) {
2648                stats->tx_bytes += tcb->skb->len;
2649
2650                /* Iterate through the TX descriptors on the ring
2651                 * corresponding to this packet and umap the fragments
2652                 * they point to
2653                 */
2654                do {
2655                        desc = tx_ring->tx_desc_ring +
2656                               INDEX10(tcb->index_start);
2657
2658                        dma_addr = desc->addr_lo;
2659                        dma_addr |= (u64)desc->addr_hi << 32;
2660
2661                        dma_unmap_single(&adapter->pdev->dev,
2662                                         dma_addr,
2663                                         desc->len_vlan, DMA_TO_DEVICE);
2664
2665                        add_10bit(&tcb->index_start, 1);
2666                        if (INDEX10(tcb->index_start) >=
2667                                                        NUM_DESC_PER_RING_TX) {
2668                                tcb->index_start &= ~ET_DMA10_MASK;
2669                                tcb->index_start ^= ET_DMA10_WRAP;
2670                        }
2671                } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2672
2673                dev_kfree_skb_any(tcb->skb);
2674        }
2675
2676        memset(tcb, 0, sizeof(struct tcb));
2677
2678        /* Add the TCB to the Ready Q */
2679        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2680
2681        stats->tx_packets++;
2682
2683        if (tx_ring->tcb_qtail)
2684                tx_ring->tcb_qtail->next = tcb;
2685        else /* Apparently ready Q is empty. */
2686                tx_ring->tcb_qhead = tcb;
2687
2688        tx_ring->tcb_qtail = tcb;
2689
2690        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2691        WARN_ON(tx_ring->used < 0);
2692}
2693
2694/* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2695static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2696{
2697        struct tcb *tcb;
2698        unsigned long flags;
2699        u32 freed = 0;
2700        struct tx_ring *tx_ring = &adapter->tx_ring;
2701
2702        /* Any packets being sent? Check the first TCB on the send list */
2703        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2704
2705        tcb = tx_ring->send_head;
2706
2707        while (tcb != NULL && freed < NUM_TCB) {
2708                struct tcb *next = tcb->next;
2709
2710                tx_ring->send_head = next;
2711
2712                if (next == NULL)
2713                        tx_ring->send_tail = NULL;
2714
2715                tx_ring->used--;
2716
2717                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2718
2719                freed++;
2720                free_send_packet(adapter, tcb);
2721
2722                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2723
2724                tcb = tx_ring->send_head;
2725        }
2726
2727        WARN_ON(freed == NUM_TCB);
2728
2729        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2730
2731        tx_ring->used = 0;
2732}
2733
2734/* et131x_handle_send_pkts
2735 *
2736 * Re-claim the send resources, complete sends and get more to send from
2737 * the send wait queue.
2738 */
2739static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2740{
2741        unsigned long flags;
2742        u32 serviced;
2743        struct tcb *tcb;
2744        u32 index;
2745        struct tx_ring *tx_ring = &adapter->tx_ring;
2746
2747        serviced = readl(&adapter->regs->txdma.new_service_complete);
2748        index = INDEX10(serviced);
2749
2750        /* Has the ring wrapped?  Process any descriptors that do not have
2751         * the same "wrap" indicator as the current completion indicator
2752         */
2753        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2754
2755        tcb = tx_ring->send_head;
2756
2757        while (tcb &&
2758               ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2759               index < INDEX10(tcb->index)) {
2760                tx_ring->used--;
2761                tx_ring->send_head = tcb->next;
2762                if (tcb->next == NULL)
2763                        tx_ring->send_tail = NULL;
2764
2765                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2766                free_send_packet(adapter, tcb);
2767                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2768
2769                /* Goto the next packet */
2770                tcb = tx_ring->send_head;
2771        }
2772        while (tcb &&
2773               !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2774               index > (tcb->index & ET_DMA10_MASK)) {
2775                tx_ring->used--;
2776                tx_ring->send_head = tcb->next;
2777                if (tcb->next == NULL)
2778                        tx_ring->send_tail = NULL;
2779
2780                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2781                free_send_packet(adapter, tcb);
2782                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2783
2784                /* Goto the next packet */
2785                tcb = tx_ring->send_head;
2786        }
2787
2788        /* Wake up the queue when we hit a low-water mark */
2789        if (tx_ring->used <= NUM_TCB / 3)
2790                netif_wake_queue(adapter->netdev);
2791
2792        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2793}
2794
2795static int et131x_get_regs_len(struct net_device *netdev)
2796{
2797#define ET131X_REGS_LEN 256
2798        return ET131X_REGS_LEN * sizeof(u32);
2799}
2800
2801static void et131x_get_regs(struct net_device *netdev,
2802                            struct ethtool_regs *regs, void *regs_data)
2803{
2804        struct et131x_adapter *adapter = netdev_priv(netdev);
2805        struct address_map __iomem *aregs = adapter->regs;
2806        u32 *regs_buff = regs_data;
2807        u32 num = 0;
2808        u16 tmp;
2809
2810        memset(regs_data, 0, et131x_get_regs_len(netdev));
2811
2812        regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2813                        adapter->pdev->device;
2814
2815        /* PHY regs */
2816        et131x_mii_read(adapter, MII_BMCR, &tmp);
2817        regs_buff[num++] = tmp;
2818        et131x_mii_read(adapter, MII_BMSR, &tmp);
2819        regs_buff[num++] = tmp;
2820        et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2821        regs_buff[num++] = tmp;
2822        et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2823        regs_buff[num++] = tmp;
2824        et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2825        regs_buff[num++] = tmp;
2826        et131x_mii_read(adapter, MII_LPA, &tmp);
2827        regs_buff[num++] = tmp;
2828        et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2829        regs_buff[num++] = tmp;
2830        /* Autoneg next page transmit reg */
2831        et131x_mii_read(adapter, 0x07, &tmp);
2832        regs_buff[num++] = tmp;
2833        /* Link partner next page reg */
2834        et131x_mii_read(adapter, 0x08, &tmp);
2835        regs_buff[num++] = tmp;
2836        et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2837        regs_buff[num++] = tmp;
2838        et131x_mii_read(adapter, MII_STAT1000, &tmp);
2839        regs_buff[num++] = tmp;
2840        et131x_mii_read(adapter, 0x0b, &tmp);
2841        regs_buff[num++] = tmp;
2842        et131x_mii_read(adapter, 0x0c, &tmp);
2843        regs_buff[num++] = tmp;
2844        et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2845        regs_buff[num++] = tmp;
2846        et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2847        regs_buff[num++] = tmp;
2848        et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2849        regs_buff[num++] = tmp;
2850
2851        et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2852        regs_buff[num++] = tmp;
2853        et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2854        regs_buff[num++] = tmp;
2855        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2856        regs_buff[num++] = tmp;
2857        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2858        regs_buff[num++] = tmp;
2859        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2860        regs_buff[num++] = tmp;
2861
2862        et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2863        regs_buff[num++] = tmp;
2864        et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2865        regs_buff[num++] = tmp;
2866        et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2867        regs_buff[num++] = tmp;
2868        et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2869        regs_buff[num++] = tmp;
2870        et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2871        regs_buff[num++] = tmp;
2872        et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2873        regs_buff[num++] = tmp;
2874        et131x_mii_read(adapter, PHY_LED_1, &tmp);
2875        regs_buff[num++] = tmp;
2876        et131x_mii_read(adapter, PHY_LED_2, &tmp);
2877        regs_buff[num++] = tmp;
2878
2879        /* Global regs */
2880        regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2881        regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2882        regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2883        regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2884        regs_buff[num++] = readl(&aregs->global.pm_csr);
2885        regs_buff[num++] = adapter->stats.interrupt_status;
2886        regs_buff[num++] = readl(&aregs->global.int_mask);
2887        regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2888        regs_buff[num++] = readl(&aregs->global.int_status_alias);
2889        regs_buff[num++] = readl(&aregs->global.sw_reset);
2890        regs_buff[num++] = readl(&aregs->global.slv_timer);
2891        regs_buff[num++] = readl(&aregs->global.msi_config);
2892        regs_buff[num++] = readl(&aregs->global.loopback);
2893        regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2894
2895        /* TXDMA regs */
2896        regs_buff[num++] = readl(&aregs->txdma.csr);
2897        regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2898        regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2899        regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2900        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2901        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2902        regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2903        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2904        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2905        regs_buff[num++] = readl(&aregs->txdma.service_request);
2906        regs_buff[num++] = readl(&aregs->txdma.service_complete);
2907        regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2908        regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2909        regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2910        regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2911        regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2912        regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2913        regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2914        regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2915        regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2916        regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2917        regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2918        regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2919        regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2920        regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2921        regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2922
2923        /* RXDMA regs */
2924        regs_buff[num++] = readl(&aregs->rxdma.csr);
2925        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2926        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2927        regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2928        regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2929        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2930        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2931        regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2932        regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2933        regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2934        regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2935        regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2936        regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2937        regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2938        regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2939        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2940        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2941        regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2942        regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2943        regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2944        regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2945        regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2946        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2947        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2948        regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2949        regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2950        regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2951        regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2952        regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2953}
2954
2955static void et131x_get_drvinfo(struct net_device *netdev,
2956                               struct ethtool_drvinfo *info)
2957{
2958        struct et131x_adapter *adapter = netdev_priv(netdev);
2959
2960        strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2961        strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2962        strlcpy(info->bus_info, pci_name(adapter->pdev),
2963                sizeof(info->bus_info));
2964}
2965
2966static const struct ethtool_ops et131x_ethtool_ops = {
2967        .get_drvinfo    = et131x_get_drvinfo,
2968        .get_regs_len   = et131x_get_regs_len,
2969        .get_regs       = et131x_get_regs,
2970        .get_link       = ethtool_op_get_link,
2971        .get_link_ksettings = phy_ethtool_get_link_ksettings,
2972        .set_link_ksettings = phy_ethtool_set_link_ksettings,
2973};
2974
2975/* et131x_hwaddr_init - set up the MAC Address */
2976static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2977{
2978        /* If have our default mac from init and no mac address from
2979         * EEPROM then we need to generate the last octet and set it on the
2980         * device
2981         */
2982        if (is_zero_ether_addr(adapter->rom_addr)) {
2983                /* We need to randomly generate the last octet so we
2984                 * decrease our chances of setting the mac address to
2985                 * same as another one of our cards in the system
2986                 */
2987                get_random_bytes(&adapter->addr[5], 1);
2988                /* We have the default value in the register we are
2989                 * working with so we need to copy the current
2990                 * address into the permanent address
2991                 */
2992                ether_addr_copy(adapter->rom_addr, adapter->addr);
2993        } else {
2994                /* We do not have an override address, so set the
2995                 * current address to the permanent address and add
2996                 * it to the device
2997                 */
2998                ether_addr_copy(adapter->addr, adapter->rom_addr);
2999        }
3000}
3001
3002static int et131x_pci_init(struct et131x_adapter *adapter,
3003                           struct pci_dev *pdev)
3004{
3005        u16 max_payload;
3006        int i, rc;
3007
3008        rc = et131x_init_eeprom(adapter);
3009        if (rc < 0)
3010                goto out;
3011
3012        if (!pci_is_pcie(pdev)) {
3013                dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3014                goto err_out;
3015        }
3016
3017        /* Program the Ack/Nak latency and replay timers */
3018        max_payload = pdev->pcie_mpss;
3019
3020        if (max_payload < 2) {
3021                static const u16 acknak[2] = { 0x76, 0xD0 };
3022                static const u16 replay[2] = { 0x1E0, 0x2ED };
3023
3024                if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3025                                          acknak[max_payload])) {
3026                        dev_err(&pdev->dev,
3027                                "Could not write PCI config space for ACK/NAK\n");
3028                        goto err_out;
3029                }
3030                if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3031                                          replay[max_payload])) {
3032                        dev_err(&pdev->dev,
3033                                "Could not write PCI config space for Replay Timer\n");
3034                        goto err_out;
3035                }
3036        }
3037
3038        /* l0s and l1 latency timers.  We are using default values.
3039         * Representing 001 for L0s and 010 for L1
3040         */
3041        if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3042                dev_err(&pdev->dev,
3043                        "Could not write PCI config space for Latency Timers\n");
3044                goto err_out;
3045        }
3046
3047        /* Change the max read size to 2k */
3048        if (pcie_set_readrq(pdev, 2048)) {
3049                dev_err(&pdev->dev,
3050                        "Couldn't change PCI config space for Max read size\n");
3051                goto err_out;
3052        }
3053
3054        /* Get MAC address from config space if an eeprom exists, otherwise
3055         * the MAC address there will not be valid
3056         */
3057        if (!adapter->has_eeprom) {
3058                et131x_hwaddr_init(adapter);
3059                return 0;
3060        }
3061
3062        for (i = 0; i < ETH_ALEN; i++) {
3063                if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3064                                         adapter->rom_addr + i)) {
3065                        dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3066                        goto err_out;
3067                }
3068        }
3069        ether_addr_copy(adapter->addr, adapter->rom_addr);
3070out:
3071        return rc;
3072err_out:
3073        rc = -EIO;
3074        goto out;
3075}
3076
3077/* et131x_error_timer_handler
3078 * @data: timer-specific variable; here a pointer to our adapter structure
3079 *
3080 * The routine called when the error timer expires, to track the number of
3081 * recurring errors.
3082 */
3083static void et131x_error_timer_handler(struct timer_list *t)
3084{
3085        struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
3086        struct phy_device *phydev = adapter->netdev->phydev;
3087
3088        if (et1310_in_phy_coma(adapter)) {
3089                /* Bring the device immediately out of coma, to
3090                 * prevent it from sleeping indefinitely, this
3091                 * mechanism could be improved!
3092                 */
3093                et1310_disable_phy_coma(adapter);
3094                adapter->boot_coma = 20;
3095        } else {
3096                et1310_update_macstat_host_counters(adapter);
3097        }
3098
3099        if (!phydev->link && adapter->boot_coma < 11)
3100                adapter->boot_coma++;
3101
3102        if (adapter->boot_coma == 10) {
3103                if (!phydev->link) {
3104                        if (!et1310_in_phy_coma(adapter)) {
3105                                /* NOTE - This was originally a 'sync with
3106                                 *  interrupt'. How to do that under Linux?
3107                                 */
3108                                et131x_enable_interrupts(adapter);
3109                                et1310_enable_phy_coma(adapter);
3110                        }
3111                }
3112        }
3113
3114        /* This is a periodic timer, so reschedule */
3115        mod_timer(&adapter->error_timer, jiffies +
3116                  msecs_to_jiffies(TX_ERROR_PERIOD));
3117}
3118
3119static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3120{
3121        et131x_tx_dma_memory_free(adapter);
3122        et131x_rx_dma_memory_free(adapter);
3123}
3124
3125static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3126{
3127        int status;
3128
3129        status = et131x_tx_dma_memory_alloc(adapter);
3130        if (status) {
3131                dev_err(&adapter->pdev->dev,
3132                        "et131x_tx_dma_memory_alloc FAILED\n");
3133                et131x_tx_dma_memory_free(adapter);
3134                return status;
3135        }
3136
3137        status = et131x_rx_dma_memory_alloc(adapter);
3138        if (status) {
3139                dev_err(&adapter->pdev->dev,
3140                        "et131x_rx_dma_memory_alloc FAILED\n");
3141                et131x_adapter_memory_free(adapter);
3142                return status;
3143        }
3144
3145        status = et131x_init_recv(adapter);
3146        if (status) {
3147                dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3148                et131x_adapter_memory_free(adapter);
3149        }
3150        return status;
3151}
3152
3153static void et131x_adjust_link(struct net_device *netdev)
3154{
3155        struct et131x_adapter *adapter = netdev_priv(netdev);
3156        struct  phy_device *phydev = netdev->phydev;
3157
3158        if (!phydev)
3159                return;
3160        if (phydev->link == adapter->link)
3161                return;
3162
3163        /* Check to see if we are in coma mode and if
3164         * so, disable it because we will not be able
3165         * to read PHY values until we are out.
3166         */
3167        if (et1310_in_phy_coma(adapter))
3168                et1310_disable_phy_coma(adapter);
3169
3170        adapter->link = phydev->link;
3171        phy_print_status(phydev);
3172
3173        if (phydev->link) {
3174                adapter->boot_coma = 20;
3175                if (phydev->speed == SPEED_10) {
3176                        u16 register18;
3177
3178                        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3179                                        &register18);
3180                        et131x_mii_write(adapter, phydev->mdio.addr,
3181                                         PHY_MPHY_CONTROL_REG,
3182                                         register18 | 0x4);
3183                        et131x_mii_write(adapter, phydev->mdio.addr,
3184                                         PHY_INDEX_REG, register18 | 0x8402);
3185                        et131x_mii_write(adapter, phydev->mdio.addr,
3186                                         PHY_DATA_REG, register18 | 511);
3187                        et131x_mii_write(adapter, phydev->mdio.addr,
3188                                         PHY_MPHY_CONTROL_REG, register18);
3189                }
3190
3191                et1310_config_flow_control(adapter);
3192
3193                if (phydev->speed == SPEED_1000 &&
3194                    adapter->registry_jumbo_packet > 2048) {
3195                        u16 reg;
3196
3197                        et131x_mii_read(adapter, PHY_CONFIG, &reg);
3198                        reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3199                        reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3200                        et131x_mii_write(adapter, phydev->mdio.addr,
3201                                         PHY_CONFIG, reg);
3202                }
3203
3204                et131x_set_rx_dma_timer(adapter);
3205                et1310_config_mac_regs2(adapter);
3206        } else {
3207                adapter->boot_coma = 0;
3208
3209                if (phydev->speed == SPEED_10) {
3210                        u16 register18;
3211
3212                        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3213                                        &register18);
3214                        et131x_mii_write(adapter, phydev->mdio.addr,
3215                                         PHY_MPHY_CONTROL_REG,
3216                                         register18 | 0x4);
3217                        et131x_mii_write(adapter, phydev->mdio.addr,
3218                                         PHY_INDEX_REG, register18 | 0x8402);
3219                        et131x_mii_write(adapter, phydev->mdio.addr,
3220                                         PHY_DATA_REG, register18 | 511);
3221                        et131x_mii_write(adapter, phydev->mdio.addr,
3222                                         PHY_MPHY_CONTROL_REG, register18);
3223                }
3224
3225                et131x_free_busy_send_packets(adapter);
3226                et131x_init_send(adapter);
3227
3228                /* Bring the device back to the state it was during
3229                 * init prior to autonegotiation being complete. This
3230                 * way, when we get the auto-neg complete interrupt,
3231                 * we can complete init by calling config_mac_regs2.
3232                 */
3233                et131x_soft_reset(adapter);
3234
3235                et131x_adapter_setup(adapter);
3236
3237                et131x_disable_txrx(netdev);
3238                et131x_enable_txrx(netdev);
3239        }
3240}
3241
3242static int et131x_mii_probe(struct net_device *netdev)
3243{
3244        struct et131x_adapter *adapter = netdev_priv(netdev);
3245        struct  phy_device *phydev = NULL;
3246
3247        phydev = phy_find_first(adapter->mii_bus);
3248        if (!phydev) {
3249                dev_err(&adapter->pdev->dev, "no PHY found\n");
3250                return -ENODEV;
3251        }
3252
3253        phydev = phy_connect(netdev, phydev_name(phydev),
3254                             &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3255
3256        if (IS_ERR(phydev)) {
3257                dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3258                return PTR_ERR(phydev);
3259        }
3260
3261        phy_set_max_speed(phydev, SPEED_100);
3262
3263        if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3264                phy_set_max_speed(phydev, SPEED_1000);
3265
3266        phydev->autoneg = AUTONEG_ENABLE;
3267
3268        phy_attached_info(phydev);
3269
3270        return 0;
3271}
3272
3273static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3274                                                  struct pci_dev *pdev)
3275{
3276        static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3277
3278        struct et131x_adapter *adapter;
3279
3280        adapter = netdev_priv(netdev);
3281        adapter->pdev = pci_dev_get(pdev);
3282        adapter->netdev = netdev;
3283
3284        spin_lock_init(&adapter->tcb_send_qlock);
3285        spin_lock_init(&adapter->tcb_ready_qlock);
3286        spin_lock_init(&adapter->rcv_lock);
3287
3288        adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
3289
3290        ether_addr_copy(adapter->addr, default_mac);
3291
3292        return adapter;
3293}
3294
3295static void et131x_pci_remove(struct pci_dev *pdev)
3296{
3297        struct net_device *netdev = pci_get_drvdata(pdev);
3298        struct et131x_adapter *adapter = netdev_priv(netdev);
3299
3300        unregister_netdev(netdev);
3301        netif_napi_del(&adapter->napi);
3302        phy_disconnect(netdev->phydev);
3303        mdiobus_unregister(adapter->mii_bus);
3304        mdiobus_free(adapter->mii_bus);
3305
3306        et131x_adapter_memory_free(adapter);
3307        iounmap(adapter->regs);
3308        pci_dev_put(pdev);
3309
3310        free_netdev(netdev);
3311        pci_release_regions(pdev);
3312        pci_disable_device(pdev);
3313}
3314
3315static void et131x_up(struct net_device *netdev)
3316{
3317        et131x_enable_txrx(netdev);
3318        phy_start(netdev->phydev);
3319}
3320
3321static void et131x_down(struct net_device *netdev)
3322{
3323        /* Save the timestamp for the TX watchdog, prevent a timeout */
3324        netif_trans_update(netdev);
3325
3326        phy_stop(netdev->phydev);
3327        et131x_disable_txrx(netdev);
3328}
3329
3330#ifdef CONFIG_PM_SLEEP
3331static int et131x_suspend(struct device *dev)
3332{
3333        struct pci_dev *pdev = to_pci_dev(dev);
3334        struct net_device *netdev = pci_get_drvdata(pdev);
3335
3336        if (netif_running(netdev)) {
3337                netif_device_detach(netdev);
3338                et131x_down(netdev);
3339                pci_save_state(pdev);
3340        }
3341
3342        return 0;
3343}
3344
3345static int et131x_resume(struct device *dev)
3346{
3347        struct pci_dev *pdev = to_pci_dev(dev);
3348        struct net_device *netdev = pci_get_drvdata(pdev);
3349
3350        if (netif_running(netdev)) {
3351                pci_restore_state(pdev);
3352                et131x_up(netdev);
3353                netif_device_attach(netdev);
3354        }
3355
3356        return 0;
3357}
3358#endif
3359
3360static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3361
3362static irqreturn_t et131x_isr(int irq, void *dev_id)
3363{
3364        bool handled = true;
3365        bool enable_interrupts = true;
3366        struct net_device *netdev = dev_id;
3367        struct et131x_adapter *adapter = netdev_priv(netdev);
3368        struct address_map __iomem *iomem = adapter->regs;
3369        struct rx_ring *rx_ring = &adapter->rx_ring;
3370        struct tx_ring *tx_ring = &adapter->tx_ring;
3371        u32 status;
3372
3373        if (!netif_device_present(netdev)) {
3374                handled = false;
3375                enable_interrupts = false;
3376                goto out;
3377        }
3378
3379        et131x_disable_interrupts(adapter);
3380
3381        status = readl(&adapter->regs->global.int_status);
3382
3383        if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3384                status &= ~INT_MASK_ENABLE;
3385        else
3386                status &= ~INT_MASK_ENABLE_NO_FLOW;
3387
3388        /* Make sure this is our interrupt */
3389        if (!status) {
3390                handled = false;
3391                et131x_enable_interrupts(adapter);
3392                goto out;
3393        }
3394
3395        /* This is our interrupt, so process accordingly */
3396        if (status & ET_INTR_WATCHDOG) {
3397                struct tcb *tcb = tx_ring->send_head;
3398
3399                if (tcb)
3400                        if (++tcb->stale > 1)
3401                                status |= ET_INTR_TXDMA_ISR;
3402
3403                if (rx_ring->unfinished_receives)
3404                        status |= ET_INTR_RXDMA_XFR_DONE;
3405                else if (tcb == NULL)
3406                        writel(0, &adapter->regs->global.watchdog_timer);
3407
3408                status &= ~ET_INTR_WATCHDOG;
3409        }
3410
3411        if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3412                enable_interrupts = false;
3413                napi_schedule(&adapter->napi);
3414        }
3415
3416        status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3417
3418        if (!status)
3419                goto out;
3420
3421        if (status & ET_INTR_TXDMA_ERR) {
3422                /* Following read also clears the register (COR) */
3423                u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3424
3425                dev_warn(&adapter->pdev->dev,
3426                         "TXDMA_ERR interrupt, error = %d\n",
3427                         txdma_err);
3428        }
3429
3430        if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3431                /* This indicates the number of unused buffers in RXDMA free
3432                 * buffer ring 0 is <= the limit you programmed. Free buffer
3433                 * resources need to be returned.  Free buffers are consumed as
3434                 * packets are passed from the network to the host. The host
3435                 * becomes aware of the packets from the contents of the packet
3436                 * status ring. This ring is queried when the packet done
3437                 * interrupt occurs. Packets are then passed to the OS. When
3438                 * the OS is done with the packets the resources can be
3439                 * returned to the ET1310 for re-use. This interrupt is one
3440                 * method of returning resources.
3441                 */
3442
3443                /*  If the user has flow control on, then we will
3444                 * send a pause packet, otherwise just exit
3445                 */
3446                if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3447                        u32 pm_csr;
3448
3449                        /* Tell the device to send a pause packet via the back
3450                         * pressure register (bp req and bp xon/xoff)
3451                         */
3452                        pm_csr = readl(&iomem->global.pm_csr);
3453                        if (!et1310_in_phy_coma(adapter))
3454                                writel(3, &iomem->txmac.bp_ctrl);
3455                }
3456        }
3457
3458        /* Handle Packet Status Ring Low Interrupt */
3459        if (status & ET_INTR_RXDMA_STAT_LOW) {
3460                /* Same idea as with the two Free Buffer Rings. Packets going
3461                 * from the network to the host each consume a free buffer
3462                 * resource and a packet status resource. These resources are
3463                 * passed to the OS. When the OS is done with the resources,
3464                 * they need to be returned to the ET1310. This is one method
3465                 * of returning the resources.
3466                 */
3467        }
3468
3469        if (status & ET_INTR_RXDMA_ERR) {
3470                /* The rxdma_error interrupt is sent when a time-out on a
3471                 * request issued by the JAGCore has occurred or a completion is
3472                 * returned with an un-successful status. In both cases the
3473                 * request is considered complete. The JAGCore will
3474                 * automatically re-try the request in question. Normally
3475                 * information on events like these are sent to the host using
3476                 * the "Advanced Error Reporting" capability. This interrupt is
3477                 * another way of getting similar information. The only thing
3478                 * required is to clear the interrupt by reading the ISR in the
3479                 * global resources. The JAGCore will do a re-try on the
3480                 * request. Normally you should never see this interrupt. If
3481                 * you start to see this interrupt occurring frequently then
3482                 * something bad has occurred. A reset might be the thing to do.
3483                 */
3484                /* TRAP();*/
3485
3486                dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3487                         readl(&iomem->txmac.tx_test));
3488        }
3489
3490        /* Handle the Wake on LAN Event */
3491        if (status & ET_INTR_WOL) {
3492                /* This is a secondary interrupt for wake on LAN. The driver
3493                 * should never see this, if it does, something serious is
3494                 * wrong.
3495                 */
3496                dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3497        }
3498
3499        if (status & ET_INTR_TXMAC) {
3500                u32 err = readl(&iomem->txmac.err);
3501
3502                /* When any of the errors occur and TXMAC generates an
3503                 * interrupt to report these errors, it usually means that
3504                 * TXMAC has detected an error in the data stream retrieved
3505                 * from the on-chip Tx Q. All of these errors are catastrophic
3506                 * and TXMAC won't be able to recover data when these errors
3507                 * occur. In a nutshell, the whole Tx path will have to be reset
3508                 * and re-configured afterwards.
3509                 */
3510                dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3511                         err);
3512
3513                /* If we are debugging, we want to see this error, otherwise we
3514                 * just want the device to be reset and continue
3515                 */
3516        }
3517
3518        if (status & ET_INTR_RXMAC) {
3519                /* These interrupts are catastrophic to the device, what we need
3520                 * to do is disable the interrupts and set the flag to cause us
3521                 * to reset so we can solve this issue.
3522                 */
3523                dev_warn(&adapter->pdev->dev,
3524                         "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3525                         readl(&iomem->rxmac.err_reg));
3526
3527                dev_warn(&adapter->pdev->dev,
3528                         "Enable 0x%08x, Diag 0x%08x\n",
3529                         readl(&iomem->rxmac.ctrl),
3530                         readl(&iomem->rxmac.rxq_diag));
3531
3532                /* If we are debugging, we want to see this error, otherwise we
3533                 * just want the device to be reset and continue
3534                 */
3535        }
3536
3537        if (status & ET_INTR_MAC_STAT) {
3538                /* This means at least one of the un-masked counters in the
3539                 * MAC_STAT block has rolled over. Use this to maintain the top,
3540                 * software managed bits of the counter(s).
3541                 */
3542                et1310_handle_macstat_interrupt(adapter);
3543        }
3544
3545        if (status & ET_INTR_SLV_TIMEOUT) {
3546                /* This means a timeout has occurred on a read or write request
3547                 * to one of the JAGCore registers. The Global Resources block
3548                 * has terminated the request and on a read request, returned a
3549                 * "fake" value. The most likely reasons are: Bad Address or the
3550                 * addressed module is in a power-down state and can't respond.
3551                 */
3552        }
3553
3554out:
3555        if (enable_interrupts)
3556                et131x_enable_interrupts(adapter);
3557
3558        return IRQ_RETVAL(handled);
3559}
3560
3561static int et131x_poll(struct napi_struct *napi, int budget)
3562{
3563        struct et131x_adapter *adapter =
3564                container_of(napi, struct et131x_adapter, napi);
3565        int work_done = et131x_handle_recv_pkts(adapter, budget);
3566
3567        et131x_handle_send_pkts(adapter);
3568
3569        if (work_done < budget) {
3570                napi_complete_done(&adapter->napi, work_done);
3571                et131x_enable_interrupts(adapter);
3572        }
3573
3574        return work_done;
3575}
3576
3577/* et131x_stats - Return the current device statistics  */
3578static struct net_device_stats *et131x_stats(struct net_device *netdev)
3579{
3580        struct et131x_adapter *adapter = netdev_priv(netdev);
3581        struct net_device_stats *stats = &adapter->netdev->stats;
3582        struct ce_stats *devstat = &adapter->stats;
3583
3584        stats->rx_errors = devstat->rx_length_errs +
3585                           devstat->rx_align_errs +
3586                           devstat->rx_crc_errs +
3587                           devstat->rx_code_violations +
3588                           devstat->rx_other_errs;
3589        stats->tx_errors = devstat->tx_max_pkt_errs;
3590        stats->multicast = devstat->multicast_pkts_rcvd;
3591        stats->collisions = devstat->tx_collisions;
3592
3593        stats->rx_length_errors = devstat->rx_length_errs;
3594        stats->rx_over_errors = devstat->rx_overflows;
3595        stats->rx_crc_errors = devstat->rx_crc_errs;
3596        stats->rx_dropped = devstat->rcvd_pkts_dropped;
3597
3598        /* NOTE: Not used, can't find analogous statistics */
3599        /* stats->rx_frame_errors     = devstat->; */
3600        /* stats->rx_fifo_errors      = devstat->; */
3601        /* stats->rx_missed_errors    = devstat->; */
3602
3603        /* stats->tx_aborted_errors   = devstat->; */
3604        /* stats->tx_carrier_errors   = devstat->; */
3605        /* stats->tx_fifo_errors      = devstat->; */
3606        /* stats->tx_heartbeat_errors = devstat->; */
3607        /* stats->tx_window_errors    = devstat->; */
3608        return stats;
3609}
3610
3611static int et131x_open(struct net_device *netdev)
3612{
3613        struct et131x_adapter *adapter = netdev_priv(netdev);
3614        struct pci_dev *pdev = adapter->pdev;
3615        unsigned int irq = pdev->irq;
3616        int result;
3617
3618        /* Start the timer to track NIC errors */
3619        timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
3620        adapter->error_timer.expires = jiffies +
3621                msecs_to_jiffies(TX_ERROR_PERIOD);
3622        add_timer(&adapter->error_timer);
3623
3624        result = request_irq(irq, et131x_isr,
3625                             IRQF_SHARED, netdev->name, netdev);
3626        if (result) {
3627                dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3628                return result;
3629        }
3630
3631        adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3632
3633        napi_enable(&adapter->napi);
3634
3635        et131x_up(netdev);
3636
3637        return result;
3638}
3639
3640static int et131x_close(struct net_device *netdev)
3641{
3642        struct et131x_adapter *adapter = netdev_priv(netdev);
3643
3644        et131x_down(netdev);
3645        napi_disable(&adapter->napi);
3646
3647        adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3648        free_irq(adapter->pdev->irq, netdev);
3649
3650        /* Stop the error timer */
3651        return del_timer_sync(&adapter->error_timer);
3652}
3653
3654static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3655                        int cmd)
3656{
3657        if (!netdev->phydev)
3658                return -EINVAL;
3659
3660        return phy_mii_ioctl(netdev->phydev, reqbuf, cmd);
3661}
3662
3663/* et131x_set_packet_filter - Configures the Rx Packet filtering */
3664static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3665{
3666        int filter = adapter->packet_filter;
3667        u32 ctrl;
3668        u32 pf_ctrl;
3669
3670        ctrl = readl(&adapter->regs->rxmac.ctrl);
3671        pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3672
3673        /* Default to disabled packet filtering */
3674        ctrl |= 0x04;
3675
3676        /* Set us to be in promiscuous mode so we receive everything, this
3677         * is also true when we get a packet filter of 0
3678         */
3679        if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3680                pf_ctrl &= ~7;  /* Clear filter bits */
3681        else {
3682                /* Set us up with Multicast packet filtering.  Three cases are
3683                 * possible - (1) we have a multi-cast list, (2) we receive ALL
3684                 * multicast entries or (3) we receive none.
3685                 */
3686                if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3687                        pf_ctrl &= ~2;  /* Multicast filter bit */
3688                else {
3689                        et1310_setup_device_for_multicast(adapter);
3690                        pf_ctrl |= 2;
3691                        ctrl &= ~0x04;
3692                }
3693
3694                /* Set us up with Unicast packet filtering */
3695                if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3696                        et1310_setup_device_for_unicast(adapter);
3697                        pf_ctrl |= 4;
3698                        ctrl &= ~0x04;
3699                }
3700
3701                /* Set us up with Broadcast packet filtering */
3702                if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3703                        pf_ctrl |= 1;   /* Broadcast filter bit */
3704                        ctrl &= ~0x04;
3705                } else {
3706                        pf_ctrl &= ~1;
3707                }
3708
3709                /* Setup the receive mac configuration registers - Packet
3710                 * Filter control + the enable / disable for packet filter
3711                 * in the control reg.
3712                 */
3713                writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3714                writel(ctrl, &adapter->regs->rxmac.ctrl);
3715        }
3716        return 0;
3717}
3718
3719static void et131x_multicast(struct net_device *netdev)
3720{
3721        struct et131x_adapter *adapter = netdev_priv(netdev);
3722        int packet_filter;
3723        struct netdev_hw_addr *ha;
3724        int i;
3725
3726        /* Before we modify the platform-independent filter flags, store them
3727         * locally. This allows us to determine if anything's changed and if
3728         * we even need to bother the hardware
3729         */
3730        packet_filter = adapter->packet_filter;
3731
3732        /* Clear the 'multicast' flag locally; because we only have a single
3733         * flag to check multicast, and multiple multicast addresses can be
3734         * set, this is the easiest way to determine if more than one
3735         * multicast address is being set.
3736         */
3737        packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3738
3739        /* Check the net_device flags and set the device independent flags
3740         * accordingly
3741         */
3742        if (netdev->flags & IFF_PROMISC)
3743                adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3744        else
3745                adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3746
3747        if ((netdev->flags & IFF_ALLMULTI) ||
3748            (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3749                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3750
3751        if (netdev_mc_count(netdev) < 1) {
3752                adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3753                adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3754        } else {
3755                adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3756        }
3757
3758        /* Set values in the private adapter struct */
3759        i = 0;
3760        netdev_for_each_mc_addr(ha, netdev) {
3761                if (i == NIC_MAX_MCAST_LIST)
3762                        break;
3763                ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3764        }
3765        adapter->multicast_addr_count = i;
3766
3767        /* Are the new flags different from the previous ones? If not, then no
3768         * action is required
3769         *
3770         * NOTE - This block will always update the multicast_list with the
3771         *        hardware, even if the addresses aren't the same.
3772         */
3773        if (packet_filter != adapter->packet_filter)
3774                et131x_set_packet_filter(adapter);
3775}
3776
3777static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3778{
3779        struct et131x_adapter *adapter = netdev_priv(netdev);
3780        struct tx_ring *tx_ring = &adapter->tx_ring;
3781
3782        /* stop the queue if it's getting full */
3783        if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3784                netif_stop_queue(netdev);
3785
3786        /* Save the timestamp for the TX timeout watchdog */
3787        netif_trans_update(netdev);
3788
3789        /* TCB is not available */
3790        if (tx_ring->used >= NUM_TCB)
3791                goto drop_err;
3792
3793        if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3794            !netif_carrier_ok(netdev))
3795                goto drop_err;
3796
3797        if (send_packet(skb, adapter))
3798                goto drop_err;
3799
3800        return NETDEV_TX_OK;
3801
3802drop_err:
3803        dev_kfree_skb_any(skb);
3804        adapter->netdev->stats.tx_dropped++;
3805        return NETDEV_TX_OK;
3806}
3807
3808/* et131x_tx_timeout - Timeout handler
3809 *
3810 * The handler called when a Tx request times out. The timeout period is
3811 * specified by the 'tx_timeo" element in the net_device structure (see
3812 * et131x_alloc_device() to see how this value is set).
3813 */
3814static void et131x_tx_timeout(struct net_device *netdev)
3815{
3816        struct et131x_adapter *adapter = netdev_priv(netdev);
3817        struct tx_ring *tx_ring = &adapter->tx_ring;
3818        struct tcb *tcb;
3819        unsigned long flags;
3820
3821        /* If the device is closed, ignore the timeout */
3822        if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3823                return;
3824
3825        /* Any nonrecoverable hardware error?
3826         * Checks adapter->flags for any failure in phy reading
3827         */
3828        if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3829                return;
3830
3831        /* Hardware failure? */
3832        if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3833                dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3834                return;
3835        }
3836
3837        /* Is send stuck? */
3838        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3839        tcb = tx_ring->send_head;
3840        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3841
3842        if (tcb) {
3843                tcb->count++;
3844
3845                if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3846                        dev_warn(&adapter->pdev->dev,
3847                                 "Send stuck - reset. tcb->WrIndex %x\n",
3848                                 tcb->index);
3849
3850                        adapter->netdev->stats.tx_errors++;
3851
3852                        /* perform reset of tx/rx */
3853                        et131x_disable_txrx(netdev);
3854                        et131x_enable_txrx(netdev);
3855                }
3856        }
3857}
3858
3859static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3860{
3861        int result = 0;
3862        struct et131x_adapter *adapter = netdev_priv(netdev);
3863
3864        et131x_disable_txrx(netdev);
3865
3866        netdev->mtu = new_mtu;
3867
3868        et131x_adapter_memory_free(adapter);
3869
3870        /* Set the config parameter for Jumbo Packet support */
3871        adapter->registry_jumbo_packet = new_mtu + 14;
3872        et131x_soft_reset(adapter);
3873
3874        result = et131x_adapter_memory_alloc(adapter);
3875        if (result != 0) {
3876                dev_warn(&adapter->pdev->dev,
3877                         "Change MTU failed; couldn't re-alloc DMA memory\n");
3878                return result;
3879        }
3880
3881        et131x_init_send(adapter);
3882        et131x_hwaddr_init(adapter);
3883        ether_addr_copy(netdev->dev_addr, adapter->addr);
3884
3885        /* Init the device with the new settings */
3886        et131x_adapter_setup(adapter);
3887        et131x_enable_txrx(netdev);
3888
3889        return result;
3890}
3891
3892static const struct net_device_ops et131x_netdev_ops = {
3893        .ndo_open               = et131x_open,
3894        .ndo_stop               = et131x_close,
3895        .ndo_start_xmit         = et131x_tx,
3896        .ndo_set_rx_mode        = et131x_multicast,
3897        .ndo_tx_timeout         = et131x_tx_timeout,
3898        .ndo_change_mtu         = et131x_change_mtu,
3899        .ndo_set_mac_address    = eth_mac_addr,
3900        .ndo_validate_addr      = eth_validate_addr,
3901        .ndo_get_stats          = et131x_stats,
3902        .ndo_do_ioctl           = et131x_ioctl,
3903};
3904
3905static int et131x_pci_setup(struct pci_dev *pdev,
3906                            const struct pci_device_id *ent)
3907{
3908        struct net_device *netdev;
3909        struct et131x_adapter *adapter;
3910        int rc;
3911
3912        rc = pci_enable_device(pdev);
3913        if (rc < 0) {
3914                dev_err(&pdev->dev, "pci_enable_device() failed\n");
3915                goto out;
3916        }
3917
3918        /* Perform some basic PCI checks */
3919        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3920                dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3921                rc = -ENODEV;
3922                goto err_disable;
3923        }
3924
3925        rc = pci_request_regions(pdev, DRIVER_NAME);
3926        if (rc < 0) {
3927                dev_err(&pdev->dev, "Can't get PCI resources\n");
3928                goto err_disable;
3929        }
3930
3931        pci_set_master(pdev);
3932
3933        /* Check the DMA addressing support of this device */
3934        if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3935            dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3936                dev_err(&pdev->dev, "No usable DMA addressing method\n");
3937                rc = -EIO;
3938                goto err_release_res;
3939        }
3940
3941        netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3942        if (!netdev) {
3943                dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3944                rc = -ENOMEM;
3945                goto err_release_res;
3946        }
3947
3948        netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3949        netdev->netdev_ops     = &et131x_netdev_ops;
3950        netdev->min_mtu        = ET131X_MIN_MTU;
3951        netdev->max_mtu        = ET131X_MAX_MTU;
3952
3953        SET_NETDEV_DEV(netdev, &pdev->dev);
3954        netdev->ethtool_ops = &et131x_ethtool_ops;
3955
3956        adapter = et131x_adapter_init(netdev, pdev);
3957
3958        rc = et131x_pci_init(adapter, pdev);
3959        if (rc < 0)
3960                goto err_free_dev;
3961
3962        /* Map the bus-relative registers to system virtual memory */
3963        adapter->regs = pci_ioremap_bar(pdev, 0);
3964        if (!adapter->regs) {
3965                dev_err(&pdev->dev, "Cannot map device registers\n");
3966                rc = -ENOMEM;
3967                goto err_free_dev;
3968        }
3969
3970        /* If Phy COMA mode was enabled when we went down, disable it here. */
3971        writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3972
3973        et131x_soft_reset(adapter);
3974        et131x_disable_interrupts(adapter);
3975
3976        rc = et131x_adapter_memory_alloc(adapter);
3977        if (rc < 0) {
3978                dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3979                goto err_iounmap;
3980        }
3981
3982        et131x_init_send(adapter);
3983
3984        netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3985
3986        ether_addr_copy(netdev->dev_addr, adapter->addr);
3987
3988        rc = -ENOMEM;
3989
3990        adapter->mii_bus = mdiobus_alloc();
3991        if (!adapter->mii_bus) {
3992                dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
3993                goto err_mem_free;
3994        }
3995
3996        adapter->mii_bus->name = "et131x_eth_mii";
3997        snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
3998                 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
3999        adapter->mii_bus->priv = netdev;
4000        adapter->mii_bus->read = et131x_mdio_read;
4001        adapter->mii_bus->write = et131x_mdio_write;
4002
4003        rc = mdiobus_register(adapter->mii_bus);
4004        if (rc < 0) {
4005                dev_err(&pdev->dev, "failed to register MII bus\n");
4006                goto err_mdio_free;
4007        }
4008
4009        rc = et131x_mii_probe(netdev);
4010        if (rc < 0) {
4011                dev_err(&pdev->dev, "failed to probe MII bus\n");
4012                goto err_mdio_unregister;
4013        }
4014
4015        et131x_adapter_setup(adapter);
4016
4017        /* Init variable for counting how long we do not have link status */
4018        adapter->boot_coma = 0;
4019        et1310_disable_phy_coma(adapter);
4020
4021        /* We can enable interrupts now
4022         *
4023         *  NOTE - Because registration of interrupt handler is done in the
4024         *         device's open(), defer enabling device interrupts to that
4025         *         point
4026         */
4027
4028        rc = register_netdev(netdev);
4029        if (rc < 0) {
4030                dev_err(&pdev->dev, "register_netdev() failed\n");
4031                goto err_phy_disconnect;
4032        }
4033
4034        /* Register the net_device struct with the PCI subsystem. Save a copy
4035         * of the PCI config space for this device now that the device has
4036         * been initialized, just in case it needs to be quickly restored.
4037         */
4038        pci_set_drvdata(pdev, netdev);
4039out:
4040        return rc;
4041
4042err_phy_disconnect:
4043        phy_disconnect(netdev->phydev);
4044err_mdio_unregister:
4045        mdiobus_unregister(adapter->mii_bus);
4046err_mdio_free:
4047        mdiobus_free(adapter->mii_bus);
4048err_mem_free:
4049        et131x_adapter_memory_free(adapter);
4050err_iounmap:
4051        iounmap(adapter->regs);
4052err_free_dev:
4053        pci_dev_put(pdev);
4054        free_netdev(netdev);
4055err_release_res:
4056        pci_release_regions(pdev);
4057err_disable:
4058        pci_disable_device(pdev);
4059        goto out;
4060}
4061
4062static const struct pci_device_id et131x_pci_table[] = {
4063        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4064        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4065        { 0,}
4066};
4067MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4068
4069static struct pci_driver et131x_driver = {
4070        .name           = DRIVER_NAME,
4071        .id_table       = et131x_pci_table,
4072        .probe          = et131x_pci_setup,
4073        .remove         = et131x_pci_remove,
4074        .driver.pm      = &et131x_pm_ops,
4075};
4076
4077module_pci_driver(et131x_driver);
4078