linux/drivers/net/ethernet/amd/au1000_eth.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Alchemy Au1x00 ethernet driver
   5 *
   6 * Copyright 2001-2003, 2006 MontaVista Software Inc.
   7 * Copyright 2002 TimeSys Corp.
   8 * Added ethtool/mii-tool support,
   9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
  10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
  11 * or riemer@riemer-nt.de: fixed the link beat detection with
  12 * ioctls (SIOCGMIIPHY)
  13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
  14 *  converted to use linux-2.6.x's PHY framework
  15 *
  16 * Author: MontaVista Software, Inc.
  17 *              ppopov@mvista.com or source@mvista.com
  18 */
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/capability.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/module.h>
  24#include <linux/kernel.h>
  25#include <linux/string.h>
  26#include <linux/timer.h>
  27#include <linux/errno.h>
  28#include <linux/in.h>
  29#include <linux/ioport.h>
  30#include <linux/bitops.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/ethtool.h>
  36#include <linux/mii.h>
  37#include <linux/skbuff.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/phy.h>
  41#include <linux/platform_device.h>
  42#include <linux/cpu.h>
  43#include <linux/io.h>
  44
  45#include <asm/mipsregs.h>
  46#include <asm/irq.h>
  47#include <asm/processor.h>
  48
  49#include <au1000.h>
  50#include <au1xxx_eth.h>
  51#include <prom.h>
  52
  53#include "au1000_eth.h"
  54
  55#ifdef AU1000_ETH_DEBUG
  56static int au1000_debug = 5;
  57#else
  58static int au1000_debug = 3;
  59#endif
  60
  61#define AU1000_DEF_MSG_ENABLE   (NETIF_MSG_DRV  | \
  62                                NETIF_MSG_PROBE | \
  63                                NETIF_MSG_LINK)
  64
  65#define DRV_NAME        "au1000_eth"
  66#define DRV_VERSION     "1.7"
  67#define DRV_AUTHOR      "Pete Popov <ppopov@embeddedalley.com>"
  68#define DRV_DESC        "Au1xxx on-chip Ethernet driver"
  69
  70MODULE_AUTHOR(DRV_AUTHOR);
  71MODULE_DESCRIPTION(DRV_DESC);
  72MODULE_LICENSE("GPL");
  73MODULE_VERSION(DRV_VERSION);
  74
  75/* AU1000 MAC registers and bits */
  76#define MAC_CONTROL             0x0
  77#  define MAC_RX_ENABLE         (1 << 2)
  78#  define MAC_TX_ENABLE         (1 << 3)
  79#  define MAC_DEF_CHECK         (1 << 5)
  80#  define MAC_SET_BL(X)         (((X) & 0x3) << 6)
  81#  define MAC_AUTO_PAD          (1 << 8)
  82#  define MAC_DISABLE_RETRY     (1 << 10)
  83#  define MAC_DISABLE_BCAST     (1 << 11)
  84#  define MAC_LATE_COL          (1 << 12)
  85#  define MAC_HASH_MODE         (1 << 13)
  86#  define MAC_HASH_ONLY         (1 << 15)
  87#  define MAC_PASS_ALL          (1 << 16)
  88#  define MAC_INVERSE_FILTER    (1 << 17)
  89#  define MAC_PROMISCUOUS       (1 << 18)
  90#  define MAC_PASS_ALL_MULTI    (1 << 19)
  91#  define MAC_FULL_DUPLEX       (1 << 20)
  92#  define MAC_NORMAL_MODE       0
  93#  define MAC_INT_LOOPBACK      (1 << 21)
  94#  define MAC_EXT_LOOPBACK      (1 << 22)
  95#  define MAC_DISABLE_RX_OWN    (1 << 23)
  96#  define MAC_BIG_ENDIAN        (1 << 30)
  97#  define MAC_RX_ALL            (1 << 31)
  98#define MAC_ADDRESS_HIGH        0x4
  99#define MAC_ADDRESS_LOW         0x8
 100#define MAC_MCAST_HIGH          0xC
 101#define MAC_MCAST_LOW           0x10
 102#define MAC_MII_CNTRL           0x14
 103#  define MAC_MII_BUSY          (1 << 0)
 104#  define MAC_MII_READ          0
 105#  define MAC_MII_WRITE         (1 << 1)
 106#  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
 107#  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
 108#define MAC_MII_DATA            0x18
 109#define MAC_FLOW_CNTRL          0x1C
 110#  define MAC_FLOW_CNTRL_BUSY   (1 << 0)
 111#  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
 112#  define MAC_PASS_CONTROL      (1 << 2)
 113#  define MAC_SET_PAUSE(X)      (((X) & 0xffff) << 16)
 114#define MAC_VLAN1_TAG           0x20
 115#define MAC_VLAN2_TAG           0x24
 116
 117/* Ethernet Controller Enable */
 118#  define MAC_EN_CLOCK_ENABLE   (1 << 0)
 119#  define MAC_EN_RESET0         (1 << 1)
 120#  define MAC_EN_TOSS           (0 << 2)
 121#  define MAC_EN_CACHEABLE      (1 << 3)
 122#  define MAC_EN_RESET1         (1 << 4)
 123#  define MAC_EN_RESET2         (1 << 5)
 124#  define MAC_DMA_RESET         (1 << 6)
 125
 126/* Ethernet Controller DMA Channels */
 127/* offsets from MAC_TX_RING_ADDR address */
 128#define MAC_TX_BUFF0_STATUS     0x0
 129#  define TX_FRAME_ABORTED      (1 << 0)
 130#  define TX_JAB_TIMEOUT        (1 << 1)
 131#  define TX_NO_CARRIER         (1 << 2)
 132#  define TX_LOSS_CARRIER       (1 << 3)
 133#  define TX_EXC_DEF            (1 << 4)
 134#  define TX_LATE_COLL_ABORT    (1 << 5)
 135#  define TX_EXC_COLL           (1 << 6)
 136#  define TX_UNDERRUN           (1 << 7)
 137#  define TX_DEFERRED           (1 << 8)
 138#  define TX_LATE_COLL          (1 << 9)
 139#  define TX_COLL_CNT_MASK      (0xF << 10)
 140#  define TX_PKT_RETRY          (1 << 31)
 141#define MAC_TX_BUFF0_ADDR       0x4
 142#  define TX_DMA_ENABLE         (1 << 0)
 143#  define TX_T_DONE             (1 << 1)
 144#  define TX_GET_DMA_BUFFER(X)  (((X) >> 2) & 0x3)
 145#define MAC_TX_BUFF0_LEN        0x8
 146#define MAC_TX_BUFF1_STATUS     0x10
 147#define MAC_TX_BUFF1_ADDR       0x14
 148#define MAC_TX_BUFF1_LEN        0x18
 149#define MAC_TX_BUFF2_STATUS     0x20
 150#define MAC_TX_BUFF2_ADDR       0x24
 151#define MAC_TX_BUFF2_LEN        0x28
 152#define MAC_TX_BUFF3_STATUS     0x30
 153#define MAC_TX_BUFF3_ADDR       0x34
 154#define MAC_TX_BUFF3_LEN        0x38
 155
 156/* offsets from MAC_RX_RING_ADDR */
 157#define MAC_RX_BUFF0_STATUS     0x0
 158#  define RX_FRAME_LEN_MASK     0x3fff
 159#  define RX_WDOG_TIMER         (1 << 14)
 160#  define RX_RUNT               (1 << 15)
 161#  define RX_OVERLEN            (1 << 16)
 162#  define RX_COLL               (1 << 17)
 163#  define RX_ETHER              (1 << 18)
 164#  define RX_MII_ERROR          (1 << 19)
 165#  define RX_DRIBBLING          (1 << 20)
 166#  define RX_CRC_ERROR          (1 << 21)
 167#  define RX_VLAN1              (1 << 22)
 168#  define RX_VLAN2              (1 << 23)
 169#  define RX_LEN_ERROR          (1 << 24)
 170#  define RX_CNTRL_FRAME        (1 << 25)
 171#  define RX_U_CNTRL_FRAME      (1 << 26)
 172#  define RX_MCAST_FRAME        (1 << 27)
 173#  define RX_BCAST_FRAME        (1 << 28)
 174#  define RX_FILTER_FAIL        (1 << 29)
 175#  define RX_PACKET_FILTER      (1 << 30)
 176#  define RX_MISSED_FRAME       (1 << 31)
 177
 178#  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
 179                    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
 180                    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
 181#define MAC_RX_BUFF0_ADDR       0x4
 182#  define RX_DMA_ENABLE         (1 << 0)
 183#  define RX_T_DONE             (1 << 1)
 184#  define RX_GET_DMA_BUFFER(X)  (((X) >> 2) & 0x3)
 185#  define RX_SET_BUFF_ADDR(X)   ((X) & 0xffffffc0)
 186#define MAC_RX_BUFF1_STATUS     0x10
 187#define MAC_RX_BUFF1_ADDR       0x14
 188#define MAC_RX_BUFF2_STATUS     0x20
 189#define MAC_RX_BUFF2_ADDR       0x24
 190#define MAC_RX_BUFF3_STATUS     0x30
 191#define MAC_RX_BUFF3_ADDR       0x34
 192
 193/*
 194 * Theory of operation
 195 *
 196 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
 197 * There are four receive and four transmit descriptors.  These
 198 * descriptors are not in memory; rather, they are just a set of
 199 * hardware registers.
 200 *
 201 * Since the Au1000 has a coherent data cache, the receive and
 202 * transmit buffers are allocated from the KSEG0 segment. The
 203 * hardware registers, however, are still mapped at KSEG1 to
 204 * make sure there's no out-of-order writes, and that all writes
 205 * complete immediately.
 206 */
 207
 208/*
 209 * board-specific configurations
 210 *
 211 * PHY detection algorithm
 212 *
 213 * If phy_static_config is undefined, the PHY setup is
 214 * autodetected:
 215 *
 216 * mii_probe() first searches the current MAC's MII bus for a PHY,
 217 * selecting the first (or last, if phy_search_highest_addr is
 218 * defined) PHY address not already claimed by another netdev.
 219 *
 220 * If nothing was found that way when searching for the 2nd ethernet
 221 * controller's PHY and phy1_search_mac0 is defined, then
 222 * the first MII bus is searched as well for an unclaimed PHY; this is
 223 * needed in case of a dual-PHY accessible only through the MAC0's MII
 224 * bus.
 225 *
 226 * Finally, if no PHY is found, then the corresponding ethernet
 227 * controller is not registered to the network subsystem.
 228 */
 229
 230/* autodetection defaults: phy1_search_mac0 */
 231
 232/* static PHY setup
 233 *
 234 * most boards PHY setup should be detectable properly with the
 235 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 236 * you have a switch attached, or want to use the PHY's interrupt
 237 * notification capabilities) you can provide a static PHY
 238 * configuration here
 239 *
 240 * IRQs may only be set, if a PHY address was configured
 241 * If a PHY address is given, also a bus id is required to be set
 242 *
 243 * ps: make sure the used irqs are configured properly in the board
 244 * specific irq-map
 245 */
 246
 247static void au1000_enable_mac(struct net_device *dev, int force_reset)
 248{
 249        unsigned long flags;
 250        struct au1000_private *aup = netdev_priv(dev);
 251
 252        spin_lock_irqsave(&aup->lock, flags);
 253
 254        if (force_reset || (!aup->mac_enabled)) {
 255                writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 256                wmb(); /* drain writebuffer */
 257                mdelay(2);
 258                writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
 259                                | MAC_EN_CLOCK_ENABLE), aup->enable);
 260                wmb(); /* drain writebuffer */
 261                mdelay(2);
 262
 263                aup->mac_enabled = 1;
 264        }
 265
 266        spin_unlock_irqrestore(&aup->lock, flags);
 267}
 268
 269/*
 270 * MII operations
 271 */
 272static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
 273{
 274        struct au1000_private *aup = netdev_priv(dev);
 275        u32 *const mii_control_reg = &aup->mac->mii_control;
 276        u32 *const mii_data_reg = &aup->mac->mii_data;
 277        u32 timedout = 20;
 278        u32 mii_control;
 279
 280        while (readl(mii_control_reg) & MAC_MII_BUSY) {
 281                mdelay(1);
 282                if (--timedout == 0) {
 283                        netdev_err(dev, "read_MII busy timeout!!\n");
 284                        return -1;
 285                }
 286        }
 287
 288        mii_control = MAC_SET_MII_SELECT_REG(reg) |
 289                MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
 290
 291        writel(mii_control, mii_control_reg);
 292
 293        timedout = 20;
 294        while (readl(mii_control_reg) & MAC_MII_BUSY) {
 295                mdelay(1);
 296                if (--timedout == 0) {
 297                        netdev_err(dev, "mdio_read busy timeout!!\n");
 298                        return -1;
 299                }
 300        }
 301        return readl(mii_data_reg);
 302}
 303
 304static void au1000_mdio_write(struct net_device *dev, int phy_addr,
 305                              int reg, u16 value)
 306{
 307        struct au1000_private *aup = netdev_priv(dev);
 308        u32 *const mii_control_reg = &aup->mac->mii_control;
 309        u32 *const mii_data_reg = &aup->mac->mii_data;
 310        u32 timedout = 20;
 311        u32 mii_control;
 312
 313        while (readl(mii_control_reg) & MAC_MII_BUSY) {
 314                mdelay(1);
 315                if (--timedout == 0) {
 316                        netdev_err(dev, "mdio_write busy timeout!!\n");
 317                        return;
 318                }
 319        }
 320
 321        mii_control = MAC_SET_MII_SELECT_REG(reg) |
 322                MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
 323
 324        writel(value, mii_data_reg);
 325        writel(mii_control, mii_control_reg);
 326}
 327
 328static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 329{
 330        struct net_device *const dev = bus->priv;
 331
 332        /* make sure the MAC associated with this
 333         * mii_bus is enabled
 334         */
 335        au1000_enable_mac(dev, 0);
 336
 337        return au1000_mdio_read(dev, phy_addr, regnum);
 338}
 339
 340static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
 341                                u16 value)
 342{
 343        struct net_device *const dev = bus->priv;
 344
 345        /* make sure the MAC associated with this
 346         * mii_bus is enabled
 347         */
 348        au1000_enable_mac(dev, 0);
 349
 350        au1000_mdio_write(dev, phy_addr, regnum, value);
 351        return 0;
 352}
 353
 354static int au1000_mdiobus_reset(struct mii_bus *bus)
 355{
 356        struct net_device *const dev = bus->priv;
 357
 358        /* make sure the MAC associated with this
 359         * mii_bus is enabled
 360         */
 361        au1000_enable_mac(dev, 0);
 362
 363        return 0;
 364}
 365
 366static void au1000_hard_stop(struct net_device *dev)
 367{
 368        struct au1000_private *aup = netdev_priv(dev);
 369        u32 reg;
 370
 371        netif_dbg(aup, drv, dev, "hard stop\n");
 372
 373        reg = readl(&aup->mac->control);
 374        reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
 375        writel(reg, &aup->mac->control);
 376        wmb(); /* drain writebuffer */
 377        mdelay(10);
 378}
 379
 380static void au1000_enable_rx_tx(struct net_device *dev)
 381{
 382        struct au1000_private *aup = netdev_priv(dev);
 383        u32 reg;
 384
 385        netif_dbg(aup, hw, dev, "enable_rx_tx\n");
 386
 387        reg = readl(&aup->mac->control);
 388        reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
 389        writel(reg, &aup->mac->control);
 390        wmb(); /* drain writebuffer */
 391        mdelay(10);
 392}
 393
 394static void
 395au1000_adjust_link(struct net_device *dev)
 396{
 397        struct au1000_private *aup = netdev_priv(dev);
 398        struct phy_device *phydev = dev->phydev;
 399        unsigned long flags;
 400        u32 reg;
 401
 402        int status_change = 0;
 403
 404        BUG_ON(!phydev);
 405
 406        spin_lock_irqsave(&aup->lock, flags);
 407
 408        if (phydev->link && (aup->old_speed != phydev->speed)) {
 409                /* speed changed */
 410
 411                switch (phydev->speed) {
 412                case SPEED_10:
 413                case SPEED_100:
 414                        break;
 415                default:
 416                        netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
 417                                                        phydev->speed);
 418                        break;
 419                }
 420
 421                aup->old_speed = phydev->speed;
 422
 423                status_change = 1;
 424        }
 425
 426        if (phydev->link && (aup->old_duplex != phydev->duplex)) {
 427                /* duplex mode changed */
 428
 429                /* switching duplex mode requires to disable rx and tx! */
 430                au1000_hard_stop(dev);
 431
 432                reg = readl(&aup->mac->control);
 433                if (DUPLEX_FULL == phydev->duplex) {
 434                        reg |= MAC_FULL_DUPLEX;
 435                        reg &= ~MAC_DISABLE_RX_OWN;
 436                } else {
 437                        reg &= ~MAC_FULL_DUPLEX;
 438                        reg |= MAC_DISABLE_RX_OWN;
 439                }
 440                writel(reg, &aup->mac->control);
 441                wmb(); /* drain writebuffer */
 442                mdelay(1);
 443
 444                au1000_enable_rx_tx(dev);
 445                aup->old_duplex = phydev->duplex;
 446
 447                status_change = 1;
 448        }
 449
 450        if (phydev->link != aup->old_link) {
 451                /* link state changed */
 452
 453                if (!phydev->link) {
 454                        /* link went down */
 455                        aup->old_speed = 0;
 456                        aup->old_duplex = -1;
 457                }
 458
 459                aup->old_link = phydev->link;
 460                status_change = 1;
 461        }
 462
 463        spin_unlock_irqrestore(&aup->lock, flags);
 464
 465        if (status_change) {
 466                if (phydev->link)
 467                        netdev_info(dev, "link up (%d/%s)\n",
 468                               phydev->speed,
 469                               DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
 470                else
 471                        netdev_info(dev, "link down\n");
 472        }
 473}
 474
 475static int au1000_mii_probe(struct net_device *dev)
 476{
 477        struct au1000_private *const aup = netdev_priv(dev);
 478        struct phy_device *phydev = NULL;
 479        int phy_addr;
 480
 481        if (aup->phy_static_config) {
 482                BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
 483
 484                if (aup->phy_addr)
 485                        phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
 486                else
 487                        netdev_info(dev, "using PHY-less setup\n");
 488                return 0;
 489        }
 490
 491        /* find the first (lowest address) PHY
 492         * on the current MAC's MII bus
 493         */
 494        for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
 495                if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
 496                        phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
 497                        if (!aup->phy_search_highest_addr)
 498                                /* break out with first one found */
 499                                break;
 500                }
 501
 502        if (aup->phy1_search_mac0) {
 503                /* try harder to find a PHY */
 504                if (!phydev && (aup->mac_id == 1)) {
 505                        /* no PHY found, maybe we have a dual PHY? */
 506                        dev_info(&dev->dev, ": no PHY found on MAC1, "
 507                                "let's see if it's attached to MAC0...\n");
 508
 509                        /* find the first (lowest address) non-attached
 510                         * PHY on the MAC0 MII bus
 511                         */
 512                        for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 513                                struct phy_device *const tmp_phydev =
 514                                        mdiobus_get_phy(aup->mii_bus,
 515                                                        phy_addr);
 516
 517                                if (aup->mac_id == 1)
 518                                        break;
 519
 520                                /* no PHY here... */
 521                                if (!tmp_phydev)
 522                                        continue;
 523
 524                                /* already claimed by MAC0 */
 525                                if (tmp_phydev->attached_dev)
 526                                        continue;
 527
 528                                phydev = tmp_phydev;
 529                                break; /* found it */
 530                        }
 531                }
 532        }
 533
 534        if (!phydev) {
 535                netdev_err(dev, "no PHY found\n");
 536                return -1;
 537        }
 538
 539        /* now we are supposed to have a proper phydev, to attach to... */
 540        BUG_ON(phydev->attached_dev);
 541
 542        phydev = phy_connect(dev, phydev_name(phydev),
 543                             &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
 544
 545        if (IS_ERR(phydev)) {
 546                netdev_err(dev, "Could not attach to PHY\n");
 547                return PTR_ERR(phydev);
 548        }
 549
 550        phy_set_max_speed(phydev, SPEED_100);
 551
 552        aup->old_link = 0;
 553        aup->old_speed = 0;
 554        aup->old_duplex = -1;
 555
 556        phy_attached_info(phydev);
 557
 558        return 0;
 559}
 560
 561
 562/*
 563 * Buffer allocation/deallocation routines. The buffer descriptor returned
 564 * has the virtual and dma address of a buffer suitable for
 565 * both, receive and transmit operations.
 566 */
 567static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
 568{
 569        struct db_dest *pDB;
 570        pDB = aup->pDBfree;
 571
 572        if (pDB)
 573                aup->pDBfree = pDB->pnext;
 574
 575        return pDB;
 576}
 577
 578void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
 579{
 580        struct db_dest *pDBfree = aup->pDBfree;
 581        if (pDBfree)
 582                pDBfree->pnext = pDB;
 583        aup->pDBfree = pDB;
 584}
 585
 586static void au1000_reset_mac_unlocked(struct net_device *dev)
 587{
 588        struct au1000_private *const aup = netdev_priv(dev);
 589        int i;
 590
 591        au1000_hard_stop(dev);
 592
 593        writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 594        wmb(); /* drain writebuffer */
 595        mdelay(2);
 596        writel(0, aup->enable);
 597        wmb(); /* drain writebuffer */
 598        mdelay(2);
 599
 600        aup->tx_full = 0;
 601        for (i = 0; i < NUM_RX_DMA; i++) {
 602                /* reset control bits */
 603                aup->rx_dma_ring[i]->buff_stat &= ~0xf;
 604        }
 605        for (i = 0; i < NUM_TX_DMA; i++) {
 606                /* reset control bits */
 607                aup->tx_dma_ring[i]->buff_stat &= ~0xf;
 608        }
 609
 610        aup->mac_enabled = 0;
 611
 612}
 613
 614static void au1000_reset_mac(struct net_device *dev)
 615{
 616        struct au1000_private *const aup = netdev_priv(dev);
 617        unsigned long flags;
 618
 619        netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
 620                                        (unsigned)aup);
 621
 622        spin_lock_irqsave(&aup->lock, flags);
 623
 624        au1000_reset_mac_unlocked(dev);
 625
 626        spin_unlock_irqrestore(&aup->lock, flags);
 627}
 628
 629/*
 630 * Setup the receive and transmit "rings".  These pointers are the addresses
 631 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 632 * these are not descriptors sitting in memory.
 633 */
 634static void
 635au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
 636{
 637        int i;
 638
 639        for (i = 0; i < NUM_RX_DMA; i++) {
 640                aup->rx_dma_ring[i] = (struct rx_dma *)
 641                        (tx_base + 0x100 + sizeof(struct rx_dma) * i);
 642        }
 643        for (i = 0; i < NUM_TX_DMA; i++) {
 644                aup->tx_dma_ring[i] = (struct tx_dma *)
 645                        (tx_base + sizeof(struct tx_dma) * i);
 646        }
 647}
 648
 649/*
 650 * ethtool operations
 651 */
 652
 653static void
 654au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 655{
 656        struct au1000_private *aup = netdev_priv(dev);
 657
 658        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 659        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 660        snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
 661                 aup->mac_id);
 662}
 663
 664static void au1000_set_msglevel(struct net_device *dev, u32 value)
 665{
 666        struct au1000_private *aup = netdev_priv(dev);
 667        aup->msg_enable = value;
 668}
 669
 670static u32 au1000_get_msglevel(struct net_device *dev)
 671{
 672        struct au1000_private *aup = netdev_priv(dev);
 673        return aup->msg_enable;
 674}
 675
 676static const struct ethtool_ops au1000_ethtool_ops = {
 677        .get_drvinfo = au1000_get_drvinfo,
 678        .get_link = ethtool_op_get_link,
 679        .get_msglevel = au1000_get_msglevel,
 680        .set_msglevel = au1000_set_msglevel,
 681        .get_link_ksettings = phy_ethtool_get_link_ksettings,
 682        .set_link_ksettings = phy_ethtool_set_link_ksettings,
 683};
 684
 685
 686/*
 687 * Initialize the interface.
 688 *
 689 * When the device powers up, the clocks are disabled and the
 690 * mac is in reset state.  When the interface is closed, we
 691 * do the same -- reset the device and disable the clocks to
 692 * conserve power. Thus, whenever au1000_init() is called,
 693 * the device should already be in reset state.
 694 */
 695static int au1000_init(struct net_device *dev)
 696{
 697        struct au1000_private *aup = netdev_priv(dev);
 698        unsigned long flags;
 699        int i;
 700        u32 control;
 701
 702        netif_dbg(aup, hw, dev, "au1000_init\n");
 703
 704        /* bring the device out of reset */
 705        au1000_enable_mac(dev, 1);
 706
 707        spin_lock_irqsave(&aup->lock, flags);
 708
 709        writel(0, &aup->mac->control);
 710        aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
 711        aup->tx_tail = aup->tx_head;
 712        aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
 713
 714        writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
 715                                        &aup->mac->mac_addr_high);
 716        writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
 717                dev->dev_addr[1]<<8 | dev->dev_addr[0],
 718                                        &aup->mac->mac_addr_low);
 719
 720
 721        for (i = 0; i < NUM_RX_DMA; i++)
 722                aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
 723
 724        wmb(); /* drain writebuffer */
 725
 726        control = MAC_RX_ENABLE | MAC_TX_ENABLE;
 727#ifndef CONFIG_CPU_LITTLE_ENDIAN
 728        control |= MAC_BIG_ENDIAN;
 729#endif
 730        if (dev->phydev) {
 731                if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
 732                        control |= MAC_FULL_DUPLEX;
 733                else
 734                        control |= MAC_DISABLE_RX_OWN;
 735        } else { /* PHY-less op, assume full-duplex */
 736                control |= MAC_FULL_DUPLEX;
 737        }
 738
 739        writel(control, &aup->mac->control);
 740        writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
 741        wmb(); /* drain writebuffer */
 742
 743        spin_unlock_irqrestore(&aup->lock, flags);
 744        return 0;
 745}
 746
 747static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
 748{
 749        struct net_device_stats *ps = &dev->stats;
 750
 751        ps->rx_packets++;
 752        if (status & RX_MCAST_FRAME)
 753                ps->multicast++;
 754
 755        if (status & RX_ERROR) {
 756                ps->rx_errors++;
 757                if (status & RX_MISSED_FRAME)
 758                        ps->rx_missed_errors++;
 759                if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
 760                        ps->rx_length_errors++;
 761                if (status & RX_CRC_ERROR)
 762                        ps->rx_crc_errors++;
 763                if (status & RX_COLL)
 764                        ps->collisions++;
 765        } else
 766                ps->rx_bytes += status & RX_FRAME_LEN_MASK;
 767
 768}
 769
 770/*
 771 * Au1000 receive routine.
 772 */
 773static int au1000_rx(struct net_device *dev)
 774{
 775        struct au1000_private *aup = netdev_priv(dev);
 776        struct sk_buff *skb;
 777        struct rx_dma *prxd;
 778        u32 buff_stat, status;
 779        struct db_dest *pDB;
 780        u32     frmlen;
 781
 782        netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
 783
 784        prxd = aup->rx_dma_ring[aup->rx_head];
 785        buff_stat = prxd->buff_stat;
 786        while (buff_stat & RX_T_DONE)  {
 787                status = prxd->status;
 788                pDB = aup->rx_db_inuse[aup->rx_head];
 789                au1000_update_rx_stats(dev, status);
 790                if (!(status & RX_ERROR))  {
 791
 792                        /* good frame */
 793                        frmlen = (status & RX_FRAME_LEN_MASK);
 794                        frmlen -= 4; /* Remove FCS */
 795                        skb = netdev_alloc_skb(dev, frmlen + 2);
 796                        if (skb == NULL) {
 797                                dev->stats.rx_dropped++;
 798                                continue;
 799                        }
 800                        skb_reserve(skb, 2);    /* 16 byte IP header align */
 801                        skb_copy_to_linear_data(skb,
 802                                (unsigned char *)pDB->vaddr, frmlen);
 803                        skb_put(skb, frmlen);
 804                        skb->protocol = eth_type_trans(skb, dev);
 805                        netif_rx(skb);  /* pass the packet to upper layers */
 806                } else {
 807                        if (au1000_debug > 4) {
 808                                pr_err("rx_error(s):");
 809                                if (status & RX_MISSED_FRAME)
 810                                        pr_cont(" miss");
 811                                if (status & RX_WDOG_TIMER)
 812                                        pr_cont(" wdog");
 813                                if (status & RX_RUNT)
 814                                        pr_cont(" runt");
 815                                if (status & RX_OVERLEN)
 816                                        pr_cont(" overlen");
 817                                if (status & RX_COLL)
 818                                        pr_cont(" coll");
 819                                if (status & RX_MII_ERROR)
 820                                        pr_cont(" mii error");
 821                                if (status & RX_CRC_ERROR)
 822                                        pr_cont(" crc error");
 823                                if (status & RX_LEN_ERROR)
 824                                        pr_cont(" len error");
 825                                if (status & RX_U_CNTRL_FRAME)
 826                                        pr_cont(" u control frame");
 827                                pr_cont("\n");
 828                        }
 829                }
 830                prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
 831                aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
 832                wmb(); /* drain writebuffer */
 833
 834                /* next descriptor */
 835                prxd = aup->rx_dma_ring[aup->rx_head];
 836                buff_stat = prxd->buff_stat;
 837        }
 838        return 0;
 839}
 840
 841static void au1000_update_tx_stats(struct net_device *dev, u32 status)
 842{
 843        struct net_device_stats *ps = &dev->stats;
 844
 845        if (status & TX_FRAME_ABORTED) {
 846                if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
 847                        if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
 848                                /* any other tx errors are only valid
 849                                 * in half duplex mode
 850                                 */
 851                                ps->tx_errors++;
 852                                ps->tx_aborted_errors++;
 853                        }
 854                } else {
 855                        ps->tx_errors++;
 856                        ps->tx_aborted_errors++;
 857                        if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
 858                                ps->tx_carrier_errors++;
 859                }
 860        }
 861}
 862
 863/*
 864 * Called from the interrupt service routine to acknowledge
 865 * the TX DONE bits.  This is a must if the irq is setup as
 866 * edge triggered.
 867 */
 868static void au1000_tx_ack(struct net_device *dev)
 869{
 870        struct au1000_private *aup = netdev_priv(dev);
 871        struct tx_dma *ptxd;
 872
 873        ptxd = aup->tx_dma_ring[aup->tx_tail];
 874
 875        while (ptxd->buff_stat & TX_T_DONE) {
 876                au1000_update_tx_stats(dev, ptxd->status);
 877                ptxd->buff_stat &= ~TX_T_DONE;
 878                ptxd->len = 0;
 879                wmb(); /* drain writebuffer */
 880
 881                aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
 882                ptxd = aup->tx_dma_ring[aup->tx_tail];
 883
 884                if (aup->tx_full) {
 885                        aup->tx_full = 0;
 886                        netif_wake_queue(dev);
 887                }
 888        }
 889}
 890
 891/*
 892 * Au1000 interrupt service routine.
 893 */
 894static irqreturn_t au1000_interrupt(int irq, void *dev_id)
 895{
 896        struct net_device *dev = dev_id;
 897
 898        /* Handle RX interrupts first to minimize chance of overrun */
 899
 900        au1000_rx(dev);
 901        au1000_tx_ack(dev);
 902        return IRQ_RETVAL(1);
 903}
 904
 905static int au1000_open(struct net_device *dev)
 906{
 907        int retval;
 908        struct au1000_private *aup = netdev_priv(dev);
 909
 910        netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
 911
 912        retval = request_irq(dev->irq, au1000_interrupt, 0,
 913                                        dev->name, dev);
 914        if (retval) {
 915                netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
 916                return retval;
 917        }
 918
 919        retval = au1000_init(dev);
 920        if (retval) {
 921                netdev_err(dev, "error in au1000_init\n");
 922                free_irq(dev->irq, dev);
 923                return retval;
 924        }
 925
 926        if (dev->phydev)
 927                phy_start(dev->phydev);
 928
 929        netif_start_queue(dev);
 930
 931        netif_dbg(aup, drv, dev, "open: Initialization done.\n");
 932
 933        return 0;
 934}
 935
 936static int au1000_close(struct net_device *dev)
 937{
 938        unsigned long flags;
 939        struct au1000_private *const aup = netdev_priv(dev);
 940
 941        netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
 942
 943        if (dev->phydev)
 944                phy_stop(dev->phydev);
 945
 946        spin_lock_irqsave(&aup->lock, flags);
 947
 948        au1000_reset_mac_unlocked(dev);
 949
 950        /* stop the device */
 951        netif_stop_queue(dev);
 952
 953        /* disable the interrupt */
 954        free_irq(dev->irq, dev);
 955        spin_unlock_irqrestore(&aup->lock, flags);
 956
 957        return 0;
 958}
 959
 960/*
 961 * Au1000 transmit routine.
 962 */
 963static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
 964{
 965        struct au1000_private *aup = netdev_priv(dev);
 966        struct net_device_stats *ps = &dev->stats;
 967        struct tx_dma *ptxd;
 968        u32 buff_stat;
 969        struct db_dest *pDB;
 970        int i;
 971
 972        netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
 973                                (unsigned)aup, skb->len,
 974                                skb->data, aup->tx_head);
 975
 976        ptxd = aup->tx_dma_ring[aup->tx_head];
 977        buff_stat = ptxd->buff_stat;
 978        if (buff_stat & TX_DMA_ENABLE) {
 979                /* We've wrapped around and the transmitter is still busy */
 980                netif_stop_queue(dev);
 981                aup->tx_full = 1;
 982                return NETDEV_TX_BUSY;
 983        } else if (buff_stat & TX_T_DONE) {
 984                au1000_update_tx_stats(dev, ptxd->status);
 985                ptxd->len = 0;
 986        }
 987
 988        if (aup->tx_full) {
 989                aup->tx_full = 0;
 990                netif_wake_queue(dev);
 991        }
 992
 993        pDB = aup->tx_db_inuse[aup->tx_head];
 994        skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
 995        if (skb->len < ETH_ZLEN) {
 996                for (i = skb->len; i < ETH_ZLEN; i++)
 997                        ((char *)pDB->vaddr)[i] = 0;
 998
 999                ptxd->len = ETH_ZLEN;
1000        } else
1001                ptxd->len = skb->len;
1002
1003        ps->tx_packets++;
1004        ps->tx_bytes += ptxd->len;
1005
1006        ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1007        wmb(); /* drain writebuffer */
1008        dev_kfree_skb(skb);
1009        aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1010        return NETDEV_TX_OK;
1011}
1012
1013/*
1014 * The Tx ring has been full longer than the watchdog timeout
1015 * value. The transmitter must be hung?
1016 */
1017static void au1000_tx_timeout(struct net_device *dev)
1018{
1019        netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1020        au1000_reset_mac(dev);
1021        au1000_init(dev);
1022        netif_trans_update(dev); /* prevent tx timeout */
1023        netif_wake_queue(dev);
1024}
1025
1026static void au1000_multicast_list(struct net_device *dev)
1027{
1028        struct au1000_private *aup = netdev_priv(dev);
1029        u32 reg;
1030
1031        netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1032        reg = readl(&aup->mac->control);
1033        if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous. */
1034                reg |= MAC_PROMISCUOUS;
1035        } else if ((dev->flags & IFF_ALLMULTI)  ||
1036                           netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1037                reg |= MAC_PASS_ALL_MULTI;
1038                reg &= ~MAC_PROMISCUOUS;
1039                netdev_info(dev, "Pass all multicast\n");
1040        } else {
1041                struct netdev_hw_addr *ha;
1042                u32 mc_filter[2];       /* Multicast hash filter */
1043
1044                mc_filter[1] = mc_filter[0] = 0;
1045                netdev_for_each_mc_addr(ha, dev)
1046                        set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1047                                        (long *)mc_filter);
1048                writel(mc_filter[1], &aup->mac->multi_hash_high);
1049                writel(mc_filter[0], &aup->mac->multi_hash_low);
1050                reg &= ~MAC_PROMISCUOUS;
1051                reg |= MAC_HASH_MODE;
1052        }
1053        writel(reg, &aup->mac->control);
1054}
1055
1056static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1057{
1058        if (!netif_running(dev))
1059                return -EINVAL;
1060
1061        if (!dev->phydev)
1062                return -EINVAL; /* PHY not controllable */
1063
1064        return phy_mii_ioctl(dev->phydev, rq, cmd);
1065}
1066
1067static const struct net_device_ops au1000_netdev_ops = {
1068        .ndo_open               = au1000_open,
1069        .ndo_stop               = au1000_close,
1070        .ndo_start_xmit         = au1000_tx,
1071        .ndo_set_rx_mode        = au1000_multicast_list,
1072        .ndo_do_ioctl           = au1000_ioctl,
1073        .ndo_tx_timeout         = au1000_tx_timeout,
1074        .ndo_set_mac_address    = eth_mac_addr,
1075        .ndo_validate_addr      = eth_validate_addr,
1076};
1077
1078static int au1000_probe(struct platform_device *pdev)
1079{
1080        struct au1000_private *aup = NULL;
1081        struct au1000_eth_platform_data *pd;
1082        struct net_device *dev = NULL;
1083        struct db_dest *pDB, *pDBfree;
1084        int irq, i, err = 0;
1085        struct resource *base, *macen, *macdma;
1086
1087        base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088        if (!base) {
1089                dev_err(&pdev->dev, "failed to retrieve base register\n");
1090                err = -ENODEV;
1091                goto out;
1092        }
1093
1094        macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1095        if (!macen) {
1096                dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1097                err = -ENODEV;
1098                goto out;
1099        }
1100
1101        irq = platform_get_irq(pdev, 0);
1102        if (irq < 0) {
1103                dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1104                err = -ENODEV;
1105                goto out;
1106        }
1107
1108        macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1109        if (!macdma) {
1110                dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1111                err = -ENODEV;
1112                goto out;
1113        }
1114
1115        if (!request_mem_region(base->start, resource_size(base),
1116                                                        pdev->name)) {
1117                dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1118                err = -ENXIO;
1119                goto out;
1120        }
1121
1122        if (!request_mem_region(macen->start, resource_size(macen),
1123                                                        pdev->name)) {
1124                dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1125                err = -ENXIO;
1126                goto err_request;
1127        }
1128
1129        if (!request_mem_region(macdma->start, resource_size(macdma),
1130                                                        pdev->name)) {
1131                dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1132                err = -ENXIO;
1133                goto err_macdma;
1134        }
1135
1136        dev = alloc_etherdev(sizeof(struct au1000_private));
1137        if (!dev) {
1138                err = -ENOMEM;
1139                goto err_alloc;
1140        }
1141
1142        SET_NETDEV_DEV(dev, &pdev->dev);
1143        platform_set_drvdata(pdev, dev);
1144        aup = netdev_priv(dev);
1145
1146        spin_lock_init(&aup->lock);
1147        aup->msg_enable = (au1000_debug < 4 ?
1148                                AU1000_DEF_MSG_ENABLE : au1000_debug);
1149
1150        /* Allocate the data buffers
1151         * Snooping works fine with eth on all au1xxx
1152         */
1153        aup->vaddr = (u32)dma_alloc_attrs(&pdev->dev, MAX_BUF_SIZE *
1154                                          (NUM_TX_BUFFS + NUM_RX_BUFFS),
1155                                          &aup->dma_addr, 0,
1156                                          DMA_ATTR_NON_CONSISTENT);
1157        if (!aup->vaddr) {
1158                dev_err(&pdev->dev, "failed to allocate data buffers\n");
1159                err = -ENOMEM;
1160                goto err_vaddr;
1161        }
1162
1163        /* aup->mac is the base address of the MAC's registers */
1164        aup->mac = (struct mac_reg *)
1165                        ioremap_nocache(base->start, resource_size(base));
1166        if (!aup->mac) {
1167                dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1168                err = -ENXIO;
1169                goto err_remap1;
1170        }
1171
1172        /* Setup some variables for quick register address access */
1173        aup->enable = (u32 *)ioremap_nocache(macen->start,
1174                                                resource_size(macen));
1175        if (!aup->enable) {
1176                dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1177                err = -ENXIO;
1178                goto err_remap2;
1179        }
1180        aup->mac_id = pdev->id;
1181
1182        aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1183        if (!aup->macdma) {
1184                dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1185                err = -ENXIO;
1186                goto err_remap3;
1187        }
1188
1189        au1000_setup_hw_rings(aup, aup->macdma);
1190
1191        writel(0, aup->enable);
1192        aup->mac_enabled = 0;
1193
1194        pd = dev_get_platdata(&pdev->dev);
1195        if (!pd) {
1196                dev_info(&pdev->dev, "no platform_data passed,"
1197                                        " PHY search on MAC0\n");
1198                aup->phy1_search_mac0 = 1;
1199        } else {
1200                if (is_valid_ether_addr(pd->mac)) {
1201                        memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1202                } else {
1203                        /* Set a random MAC since no valid provided by platform_data. */
1204                        eth_hw_addr_random(dev);
1205                }
1206
1207                aup->phy_static_config = pd->phy_static_config;
1208                aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1209                aup->phy1_search_mac0 = pd->phy1_search_mac0;
1210                aup->phy_addr = pd->phy_addr;
1211                aup->phy_busid = pd->phy_busid;
1212                aup->phy_irq = pd->phy_irq;
1213        }
1214
1215        if (aup->phy_busid > 0) {
1216                dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1217                err = -ENODEV;
1218                goto err_mdiobus_alloc;
1219        }
1220
1221        aup->mii_bus = mdiobus_alloc();
1222        if (aup->mii_bus == NULL) {
1223                dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1224                err = -ENOMEM;
1225                goto err_mdiobus_alloc;
1226        }
1227
1228        aup->mii_bus->priv = dev;
1229        aup->mii_bus->read = au1000_mdiobus_read;
1230        aup->mii_bus->write = au1000_mdiobus_write;
1231        aup->mii_bus->reset = au1000_mdiobus_reset;
1232        aup->mii_bus->name = "au1000_eth_mii";
1233        snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1234                pdev->name, aup->mac_id);
1235
1236        /* if known, set corresponding PHY IRQs */
1237        if (aup->phy_static_config)
1238                if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1239                        aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1240
1241        err = mdiobus_register(aup->mii_bus);
1242        if (err) {
1243                dev_err(&pdev->dev, "failed to register MDIO bus\n");
1244                goto err_mdiobus_reg;
1245        }
1246
1247        err = au1000_mii_probe(dev);
1248        if (err != 0)
1249                goto err_out;
1250
1251        pDBfree = NULL;
1252        /* setup the data buffer descriptors and attach a buffer to each one */
1253        pDB = aup->db;
1254        for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1255                pDB->pnext = pDBfree;
1256                pDBfree = pDB;
1257                pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1258                pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1259                pDB++;
1260        }
1261        aup->pDBfree = pDBfree;
1262
1263        err = -ENODEV;
1264        for (i = 0; i < NUM_RX_DMA; i++) {
1265                pDB = au1000_GetFreeDB(aup);
1266                if (!pDB)
1267                        goto err_out;
1268
1269                aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1270                aup->rx_db_inuse[i] = pDB;
1271        }
1272
1273        err = -ENODEV;
1274        for (i = 0; i < NUM_TX_DMA; i++) {
1275                pDB = au1000_GetFreeDB(aup);
1276                if (!pDB)
1277                        goto err_out;
1278
1279                aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1280                aup->tx_dma_ring[i]->len = 0;
1281                aup->tx_db_inuse[i] = pDB;
1282        }
1283
1284        dev->base_addr = base->start;
1285        dev->irq = irq;
1286        dev->netdev_ops = &au1000_netdev_ops;
1287        dev->ethtool_ops = &au1000_ethtool_ops;
1288        dev->watchdog_timeo = ETH_TX_TIMEOUT;
1289
1290        /*
1291         * The boot code uses the ethernet controller, so reset it to start
1292         * fresh.  au1000_init() expects that the device is in reset state.
1293         */
1294        au1000_reset_mac(dev);
1295
1296        err = register_netdev(dev);
1297        if (err) {
1298                netdev_err(dev, "Cannot register net device, aborting.\n");
1299                goto err_out;
1300        }
1301
1302        netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1303                        (unsigned long)base->start, irq);
1304
1305        pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1306
1307        return 0;
1308
1309err_out:
1310        if (aup->mii_bus != NULL)
1311                mdiobus_unregister(aup->mii_bus);
1312
1313        /* here we should have a valid dev plus aup-> register addresses
1314         * so we can reset the mac properly.
1315         */
1316        au1000_reset_mac(dev);
1317
1318        for (i = 0; i < NUM_RX_DMA; i++) {
1319                if (aup->rx_db_inuse[i])
1320                        au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1321        }
1322        for (i = 0; i < NUM_TX_DMA; i++) {
1323                if (aup->tx_db_inuse[i])
1324                        au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1325        }
1326err_mdiobus_reg:
1327        mdiobus_free(aup->mii_bus);
1328err_mdiobus_alloc:
1329        iounmap(aup->macdma);
1330err_remap3:
1331        iounmap(aup->enable);
1332err_remap2:
1333        iounmap(aup->mac);
1334err_remap1:
1335        dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1336                        (void *)aup->vaddr, aup->dma_addr,
1337                        DMA_ATTR_NON_CONSISTENT);
1338err_vaddr:
1339        free_netdev(dev);
1340err_alloc:
1341        release_mem_region(macdma->start, resource_size(macdma));
1342err_macdma:
1343        release_mem_region(macen->start, resource_size(macen));
1344err_request:
1345        release_mem_region(base->start, resource_size(base));
1346out:
1347        return err;
1348}
1349
1350static int au1000_remove(struct platform_device *pdev)
1351{
1352        struct net_device *dev = platform_get_drvdata(pdev);
1353        struct au1000_private *aup = netdev_priv(dev);
1354        int i;
1355        struct resource *base, *macen;
1356
1357        unregister_netdev(dev);
1358        mdiobus_unregister(aup->mii_bus);
1359        mdiobus_free(aup->mii_bus);
1360
1361        for (i = 0; i < NUM_RX_DMA; i++)
1362                if (aup->rx_db_inuse[i])
1363                        au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1364
1365        for (i = 0; i < NUM_TX_DMA; i++)
1366                if (aup->tx_db_inuse[i])
1367                        au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1368
1369        dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1370                        (void *)aup->vaddr, aup->dma_addr,
1371                        DMA_ATTR_NON_CONSISTENT);
1372
1373        iounmap(aup->macdma);
1374        iounmap(aup->mac);
1375        iounmap(aup->enable);
1376
1377        base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1378        release_mem_region(base->start, resource_size(base));
1379
1380        base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1381        release_mem_region(base->start, resource_size(base));
1382
1383        macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1384        release_mem_region(macen->start, resource_size(macen));
1385
1386        free_netdev(dev);
1387
1388        return 0;
1389}
1390
1391static struct platform_driver au1000_eth_driver = {
1392        .probe  = au1000_probe,
1393        .remove = au1000_remove,
1394        .driver = {
1395                .name   = "au1000-eth",
1396        },
1397};
1398
1399module_platform_driver(au1000_eth_driver);
1400
1401MODULE_ALIAS("platform:au1000-eth");
1402