linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
<<
>>
Prefs
   1/* bnx2x_main.c: QLogic Everest network driver.
   2 *
   3 * Copyright (c) 2007-2013 Broadcom Corporation
   4 * Copyright (c) 2014 QLogic Corporation
   5 * All rights reserved
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation.
  10 *
  11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
  12 * Written by: Eliezer Tamir
  13 * Based on code from Michael Chan's bnx2 driver
  14 * UDP CSUM errata workaround by Arik Gendelman
  15 * Slowpath and fastpath rework by Vladislav Zolotarov
  16 * Statistics and Link management by Yitchak Gertner
  17 *
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/kernel.h>
  25#include <linux/device.h>  /* for dev_info() */
  26#include <linux/timer.h>
  27#include <linux/errno.h>
  28#include <linux/ioport.h>
  29#include <linux/slab.h>
  30#include <linux/interrupt.h>
  31#include <linux/pci.h>
  32#include <linux/aer.h>
  33#include <linux/init.h>
  34#include <linux/netdevice.h>
  35#include <linux/etherdevice.h>
  36#include <linux/skbuff.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/bitops.h>
  39#include <linux/irq.h>
  40#include <linux/delay.h>
  41#include <asm/byteorder.h>
  42#include <linux/time.h>
  43#include <linux/ethtool.h>
  44#include <linux/mii.h>
  45#include <linux/if_vlan.h>
  46#include <linux/crash_dump.h>
  47#include <net/ip.h>
  48#include <net/ipv6.h>
  49#include <net/tcp.h>
  50#include <net/vxlan.h>
  51#include <net/checksum.h>
  52#include <net/ip6_checksum.h>
  53#include <linux/workqueue.h>
  54#include <linux/crc32.h>
  55#include <linux/crc32c.h>
  56#include <linux/prefetch.h>
  57#include <linux/zlib.h>
  58#include <linux/io.h>
  59#include <linux/semaphore.h>
  60#include <linux/stringify.h>
  61#include <linux/vmalloc.h>
  62#include "bnx2x.h"
  63#include "bnx2x_init.h"
  64#include "bnx2x_init_ops.h"
  65#include "bnx2x_cmn.h"
  66#include "bnx2x_vfpf.h"
  67#include "bnx2x_dcb.h"
  68#include "bnx2x_sp.h"
  69#include <linux/firmware.h>
  70#include "bnx2x_fw_file_hdr.h"
  71/* FW files */
  72#define FW_FILE_VERSION                                 \
  73        __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
  74        __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
  75        __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
  76        __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  77#define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  78#define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  79#define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  80
  81/* Time in jiffies before concluding the transmitter is hung */
  82#define TX_TIMEOUT              (5*HZ)
  83
  84static char version[] =
  85        "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
  86        DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  87
  88MODULE_AUTHOR("Eliezer Tamir");
  89MODULE_DESCRIPTION("QLogic "
  90                   "BCM57710/57711/57711E/"
  91                   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  92                   "57840/57840_MF Driver");
  93MODULE_LICENSE("GPL");
  94MODULE_VERSION(DRV_MODULE_VERSION);
  95MODULE_FIRMWARE(FW_FILE_NAME_E1);
  96MODULE_FIRMWARE(FW_FILE_NAME_E1H);
  97MODULE_FIRMWARE(FW_FILE_NAME_E2);
  98
  99int bnx2x_num_queues;
 100module_param_named(num_queues, bnx2x_num_queues, int, 0444);
 101MODULE_PARM_DESC(num_queues,
 102                 " Set number of queues (default is as a number of CPUs)");
 103
 104static int disable_tpa;
 105module_param(disable_tpa, int, 0444);
 106MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
 107
 108static int int_mode;
 109module_param(int_mode, int, 0444);
 110MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
 111                                "(1 INT#x; 2 MSI)");
 112
 113static int dropless_fc;
 114module_param(dropless_fc, int, 0444);
 115MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
 116
 117static int mrrs = -1;
 118module_param(mrrs, int, 0444);
 119MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
 120
 121static int debug;
 122module_param(debug, int, 0444);
 123MODULE_PARM_DESC(debug, " Default debug msglevel");
 124
 125static struct workqueue_struct *bnx2x_wq;
 126struct workqueue_struct *bnx2x_iov_wq;
 127
 128struct bnx2x_mac_vals {
 129        u32 xmac_addr;
 130        u32 xmac_val;
 131        u32 emac_addr;
 132        u32 emac_val;
 133        u32 umac_addr[2];
 134        u32 umac_val[2];
 135        u32 bmac_addr;
 136        u32 bmac_val[2];
 137};
 138
 139enum bnx2x_board_type {
 140        BCM57710 = 0,
 141        BCM57711,
 142        BCM57711E,
 143        BCM57712,
 144        BCM57712_MF,
 145        BCM57712_VF,
 146        BCM57800,
 147        BCM57800_MF,
 148        BCM57800_VF,
 149        BCM57810,
 150        BCM57810_MF,
 151        BCM57810_VF,
 152        BCM57840_4_10,
 153        BCM57840_2_20,
 154        BCM57840_MF,
 155        BCM57840_VF,
 156        BCM57811,
 157        BCM57811_MF,
 158        BCM57840_O,
 159        BCM57840_MFO,
 160        BCM57811_VF
 161};
 162
 163/* indexed by board_type, above */
 164static struct {
 165        char *name;
 166} board_info[] = {
 167        [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
 168        [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
 169        [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
 170        [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
 171        [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
 172        [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
 173        [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
 174        [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
 175        [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
 176        [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
 177        [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
 178        [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
 179        [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
 180        [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
 181        [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
 182        [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
 183        [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
 184        [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
 185        [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
 186        [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
 187        [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
 188};
 189
 190#ifndef PCI_DEVICE_ID_NX2_57710
 191#define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
 192#endif
 193#ifndef PCI_DEVICE_ID_NX2_57711
 194#define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
 195#endif
 196#ifndef PCI_DEVICE_ID_NX2_57711E
 197#define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
 198#endif
 199#ifndef PCI_DEVICE_ID_NX2_57712
 200#define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
 201#endif
 202#ifndef PCI_DEVICE_ID_NX2_57712_MF
 203#define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
 204#endif
 205#ifndef PCI_DEVICE_ID_NX2_57712_VF
 206#define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
 207#endif
 208#ifndef PCI_DEVICE_ID_NX2_57800
 209#define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
 210#endif
 211#ifndef PCI_DEVICE_ID_NX2_57800_MF
 212#define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
 213#endif
 214#ifndef PCI_DEVICE_ID_NX2_57800_VF
 215#define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
 216#endif
 217#ifndef PCI_DEVICE_ID_NX2_57810
 218#define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
 219#endif
 220#ifndef PCI_DEVICE_ID_NX2_57810_MF
 221#define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
 222#endif
 223#ifndef PCI_DEVICE_ID_NX2_57840_O
 224#define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
 225#endif
 226#ifndef PCI_DEVICE_ID_NX2_57810_VF
 227#define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
 228#endif
 229#ifndef PCI_DEVICE_ID_NX2_57840_4_10
 230#define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
 231#endif
 232#ifndef PCI_DEVICE_ID_NX2_57840_2_20
 233#define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
 234#endif
 235#ifndef PCI_DEVICE_ID_NX2_57840_MFO
 236#define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
 237#endif
 238#ifndef PCI_DEVICE_ID_NX2_57840_MF
 239#define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
 240#endif
 241#ifndef PCI_DEVICE_ID_NX2_57840_VF
 242#define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
 243#endif
 244#ifndef PCI_DEVICE_ID_NX2_57811
 245#define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
 246#endif
 247#ifndef PCI_DEVICE_ID_NX2_57811_MF
 248#define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
 249#endif
 250#ifndef PCI_DEVICE_ID_NX2_57811_VF
 251#define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
 252#endif
 253
 254static const struct pci_device_id bnx2x_pci_tbl[] = {
 255        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
 256        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
 257        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
 258        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
 259        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
 260        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
 261        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
 262        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
 263        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
 264        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
 265        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
 266        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
 267        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 268        { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 269        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
 270        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
 271        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
 272        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 273        { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 274        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 275        { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 276        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
 277        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
 278        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
 279        { 0 }
 280};
 281
 282MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
 283
 284/* Global resources for unloading a previously loaded device */
 285#define BNX2X_PREV_WAIT_NEEDED 1
 286static DEFINE_SEMAPHORE(bnx2x_prev_sem);
 287static LIST_HEAD(bnx2x_prev_list);
 288
 289/* Forward declaration */
 290static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
 291static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
 292static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
 293
 294/****************************************************************************
 295* General service functions
 296****************************************************************************/
 297
 298static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
 299
 300static void __storm_memset_dma_mapping(struct bnx2x *bp,
 301                                       u32 addr, dma_addr_t mapping)
 302{
 303        REG_WR(bp,  addr, U64_LO(mapping));
 304        REG_WR(bp,  addr + 4, U64_HI(mapping));
 305}
 306
 307static void storm_memset_spq_addr(struct bnx2x *bp,
 308                                  dma_addr_t mapping, u16 abs_fid)
 309{
 310        u32 addr = XSEM_REG_FAST_MEMORY +
 311                        XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
 312
 313        __storm_memset_dma_mapping(bp, addr, mapping);
 314}
 315
 316static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
 317                                  u16 pf_id)
 318{
 319        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
 320                pf_id);
 321        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
 322                pf_id);
 323        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
 324                pf_id);
 325        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
 326                pf_id);
 327}
 328
 329static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
 330                                 u8 enable)
 331{
 332        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
 333                enable);
 334        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
 335                enable);
 336        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
 337                enable);
 338        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
 339                enable);
 340}
 341
 342static void storm_memset_eq_data(struct bnx2x *bp,
 343                                 struct event_ring_data *eq_data,
 344                                u16 pfid)
 345{
 346        size_t size = sizeof(struct event_ring_data);
 347
 348        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
 349
 350        __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
 351}
 352
 353static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
 354                                 u16 pfid)
 355{
 356        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
 357        REG_WR16(bp, addr, eq_prod);
 358}
 359
 360/* used only at init
 361 * locking is done by mcp
 362 */
 363static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
 364{
 365        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 366        pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
 367        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 368                               PCICFG_VENDOR_ID_OFFSET);
 369}
 370
 371static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
 372{
 373        u32 val;
 374
 375        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 376        pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
 377        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 378                               PCICFG_VENDOR_ID_OFFSET);
 379
 380        return val;
 381}
 382
 383#define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
 384#define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
 385#define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
 386#define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
 387#define DMAE_DP_DST_NONE        "dst_addr [none]"
 388
 389static void bnx2x_dp_dmae(struct bnx2x *bp,
 390                          struct dmae_command *dmae, int msglvl)
 391{
 392        u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
 393        int i;
 394
 395        switch (dmae->opcode & DMAE_COMMAND_DST) {
 396        case DMAE_CMD_DST_PCI:
 397                if (src_type == DMAE_CMD_SRC_PCI)
 398                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 399                           "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
 400                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 401                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 402                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 403                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 404                           dmae->comp_val);
 405                else
 406                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 407                           "src [%08x], len [%d*4], dst [%x:%08x]\n"
 408                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 409                           dmae->opcode, dmae->src_addr_lo >> 2,
 410                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 411                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 412                           dmae->comp_val);
 413                break;
 414        case DMAE_CMD_DST_GRC:
 415                if (src_type == DMAE_CMD_SRC_PCI)
 416                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 417                           "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
 418                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 419                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 420                           dmae->len, dmae->dst_addr_lo >> 2,
 421                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 422                           dmae->comp_val);
 423                else
 424                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 425                           "src [%08x], len [%d*4], dst [%08x]\n"
 426                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 427                           dmae->opcode, dmae->src_addr_lo >> 2,
 428                           dmae->len, dmae->dst_addr_lo >> 2,
 429                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 430                           dmae->comp_val);
 431                break;
 432        default:
 433                if (src_type == DMAE_CMD_SRC_PCI)
 434                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 435                           "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
 436                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 437                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 438                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 439                           dmae->comp_val);
 440                else
 441                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 442                           "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
 443                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 444                           dmae->opcode, dmae->src_addr_lo >> 2,
 445                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 446                           dmae->comp_val);
 447                break;
 448        }
 449
 450        for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
 451                DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
 452                   i, *(((u32 *)dmae) + i));
 453}
 454
 455/* copy command into DMAE command memory and set DMAE command go */
 456void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
 457{
 458        u32 cmd_offset;
 459        int i;
 460
 461        cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
 462        for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
 463                REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
 464        }
 465        REG_WR(bp, dmae_reg_go_c[idx], 1);
 466}
 467
 468u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
 469{
 470        return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
 471                           DMAE_CMD_C_ENABLE);
 472}
 473
 474u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
 475{
 476        return opcode & ~DMAE_CMD_SRC_RESET;
 477}
 478
 479u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
 480                             bool with_comp, u8 comp_type)
 481{
 482        u32 opcode = 0;
 483
 484        opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
 485                   (dst_type << DMAE_COMMAND_DST_SHIFT));
 486
 487        opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
 488
 489        opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
 490        opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
 491                   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
 492        opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
 493
 494#ifdef __BIG_ENDIAN
 495        opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
 496#else
 497        opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
 498#endif
 499        if (with_comp)
 500                opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
 501        return opcode;
 502}
 503
 504void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
 505                                      struct dmae_command *dmae,
 506                                      u8 src_type, u8 dst_type)
 507{
 508        memset(dmae, 0, sizeof(struct dmae_command));
 509
 510        /* set the opcode */
 511        dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
 512                                         true, DMAE_COMP_PCI);
 513
 514        /* fill in the completion parameters */
 515        dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
 516        dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
 517        dmae->comp_val = DMAE_COMP_VAL;
 518}
 519
 520/* issue a dmae command over the init-channel and wait for completion */
 521int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
 522                               u32 *comp)
 523{
 524        int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
 525        int rc = 0;
 526
 527        bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
 528
 529        /* Lock the dmae channel. Disable BHs to prevent a dead-lock
 530         * as long as this code is called both from syscall context and
 531         * from ndo_set_rx_mode() flow that may be called from BH.
 532         */
 533
 534        spin_lock_bh(&bp->dmae_lock);
 535
 536        /* reset completion */
 537        *comp = 0;
 538
 539        /* post the command on the channel used for initializations */
 540        bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
 541
 542        /* wait for completion */
 543        udelay(5);
 544        while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
 545
 546                if (!cnt ||
 547                    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
 548                     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
 549                        BNX2X_ERR("DMAE timeout!\n");
 550                        rc = DMAE_TIMEOUT;
 551                        goto unlock;
 552                }
 553                cnt--;
 554                udelay(50);
 555        }
 556        if (*comp & DMAE_PCI_ERR_FLAG) {
 557                BNX2X_ERR("DMAE PCI error!\n");
 558                rc = DMAE_PCI_ERROR;
 559        }
 560
 561unlock:
 562
 563        spin_unlock_bh(&bp->dmae_lock);
 564
 565        return rc;
 566}
 567
 568void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
 569                      u32 len32)
 570{
 571        int rc;
 572        struct dmae_command dmae;
 573
 574        if (!bp->dmae_ready) {
 575                u32 *data = bnx2x_sp(bp, wb_data[0]);
 576
 577                if (CHIP_IS_E1(bp))
 578                        bnx2x_init_ind_wr(bp, dst_addr, data, len32);
 579                else
 580                        bnx2x_init_str_wr(bp, dst_addr, data, len32);
 581                return;
 582        }
 583
 584        /* set opcode and fixed command fields */
 585        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
 586
 587        /* fill in addresses and len */
 588        dmae.src_addr_lo = U64_LO(dma_addr);
 589        dmae.src_addr_hi = U64_HI(dma_addr);
 590        dmae.dst_addr_lo = dst_addr >> 2;
 591        dmae.dst_addr_hi = 0;
 592        dmae.len = len32;
 593
 594        /* issue the command and wait for completion */
 595        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 596        if (rc) {
 597                BNX2X_ERR("DMAE returned failure %d\n", rc);
 598#ifdef BNX2X_STOP_ON_ERROR
 599                bnx2x_panic();
 600#endif
 601        }
 602}
 603
 604void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
 605{
 606        int rc;
 607        struct dmae_command dmae;
 608
 609        if (!bp->dmae_ready) {
 610                u32 *data = bnx2x_sp(bp, wb_data[0]);
 611                int i;
 612
 613                if (CHIP_IS_E1(bp))
 614                        for (i = 0; i < len32; i++)
 615                                data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
 616                else
 617                        for (i = 0; i < len32; i++)
 618                                data[i] = REG_RD(bp, src_addr + i*4);
 619
 620                return;
 621        }
 622
 623        /* set opcode and fixed command fields */
 624        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
 625
 626        /* fill in addresses and len */
 627        dmae.src_addr_lo = src_addr >> 2;
 628        dmae.src_addr_hi = 0;
 629        dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
 630        dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
 631        dmae.len = len32;
 632
 633        /* issue the command and wait for completion */
 634        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 635        if (rc) {
 636                BNX2X_ERR("DMAE returned failure %d\n", rc);
 637#ifdef BNX2X_STOP_ON_ERROR
 638                bnx2x_panic();
 639#endif
 640        }
 641}
 642
 643static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
 644                                      u32 addr, u32 len)
 645{
 646        int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
 647        int offset = 0;
 648
 649        while (len > dmae_wr_max) {
 650                bnx2x_write_dmae(bp, phys_addr + offset,
 651                                 addr + offset, dmae_wr_max);
 652                offset += dmae_wr_max * 4;
 653                len -= dmae_wr_max;
 654        }
 655
 656        bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
 657}
 658
 659enum storms {
 660           XSTORM,
 661           TSTORM,
 662           CSTORM,
 663           USTORM,
 664           MAX_STORMS
 665};
 666
 667#define STORMS_NUM 4
 668#define REGS_IN_ENTRY 4
 669
 670static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
 671                                              enum storms storm,
 672                                              int entry)
 673{
 674        switch (storm) {
 675        case XSTORM:
 676                return XSTORM_ASSERT_LIST_OFFSET(entry);
 677        case TSTORM:
 678                return TSTORM_ASSERT_LIST_OFFSET(entry);
 679        case CSTORM:
 680                return CSTORM_ASSERT_LIST_OFFSET(entry);
 681        case USTORM:
 682                return USTORM_ASSERT_LIST_OFFSET(entry);
 683        case MAX_STORMS:
 684        default:
 685                BNX2X_ERR("unknown storm\n");
 686        }
 687        return -EINVAL;
 688}
 689
 690static int bnx2x_mc_assert(struct bnx2x *bp)
 691{
 692        char last_idx;
 693        int i, j, rc = 0;
 694        enum storms storm;
 695        u32 regs[REGS_IN_ENTRY];
 696        u32 bar_storm_intmem[STORMS_NUM] = {
 697                BAR_XSTRORM_INTMEM,
 698                BAR_TSTRORM_INTMEM,
 699                BAR_CSTRORM_INTMEM,
 700                BAR_USTRORM_INTMEM
 701        };
 702        u32 storm_assert_list_index[STORMS_NUM] = {
 703                XSTORM_ASSERT_LIST_INDEX_OFFSET,
 704                TSTORM_ASSERT_LIST_INDEX_OFFSET,
 705                CSTORM_ASSERT_LIST_INDEX_OFFSET,
 706                USTORM_ASSERT_LIST_INDEX_OFFSET
 707        };
 708        char *storms_string[STORMS_NUM] = {
 709                "XSTORM",
 710                "TSTORM",
 711                "CSTORM",
 712                "USTORM"
 713        };
 714
 715        for (storm = XSTORM; storm < MAX_STORMS; storm++) {
 716                last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
 717                                   storm_assert_list_index[storm]);
 718                if (last_idx)
 719                        BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
 720                                  storms_string[storm], last_idx);
 721
 722                /* print the asserts */
 723                for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 724                        /* read a single assert entry */
 725                        for (j = 0; j < REGS_IN_ENTRY; j++)
 726                                regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
 727                                          bnx2x_get_assert_list_entry(bp,
 728                                                                      storm,
 729                                                                      i) +
 730                                          sizeof(u32) * j);
 731
 732                        /* log entry if it contains a valid assert */
 733                        if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 734                                BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 735                                          storms_string[storm], i, regs[3],
 736                                          regs[2], regs[1], regs[0]);
 737                                rc++;
 738                        } else {
 739                                break;
 740                        }
 741                }
 742        }
 743
 744        BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
 745                  CHIP_IS_E1(bp) ? "everest1" :
 746                  CHIP_IS_E1H(bp) ? "everest1h" :
 747                  CHIP_IS_E2(bp) ? "everest2" : "everest3",
 748                  BCM_5710_FW_MAJOR_VERSION,
 749                  BCM_5710_FW_MINOR_VERSION,
 750                  BCM_5710_FW_REVISION_VERSION);
 751
 752        return rc;
 753}
 754
 755#define MCPR_TRACE_BUFFER_SIZE  (0x800)
 756#define SCRATCH_BUFFER_SIZE(bp) \
 757        (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
 758
 759void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
 760{
 761        u32 addr, val;
 762        u32 mark, offset;
 763        __be32 data[9];
 764        int word;
 765        u32 trace_shmem_base;
 766        if (BP_NOMCP(bp)) {
 767                BNX2X_ERR("NO MCP - can not dump\n");
 768                return;
 769        }
 770        netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
 771                (bp->common.bc_ver & 0xff0000) >> 16,
 772                (bp->common.bc_ver & 0xff00) >> 8,
 773                (bp->common.bc_ver & 0xff));
 774
 775        if (pci_channel_offline(bp->pdev)) {
 776                BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
 777                return;
 778        }
 779
 780        val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
 781        if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
 782                BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
 783
 784        if (BP_PATH(bp) == 0)
 785                trace_shmem_base = bp->common.shmem_base;
 786        else
 787                trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
 788
 789        /* sanity */
 790        if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
 791            trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
 792                                SCRATCH_BUFFER_SIZE(bp)) {
 793                BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
 794                          trace_shmem_base);
 795                return;
 796        }
 797
 798        addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
 799
 800        /* validate TRCB signature */
 801        mark = REG_RD(bp, addr);
 802        if (mark != MFW_TRACE_SIGNATURE) {
 803                BNX2X_ERR("Trace buffer signature is missing.");
 804                return ;
 805        }
 806
 807        /* read cyclic buffer pointer */
 808        addr += 4;
 809        mark = REG_RD(bp, addr);
 810        mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
 811        if (mark >= trace_shmem_base || mark < addr + 4) {
 812                BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
 813                return;
 814        }
 815        printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
 816
 817        printk("%s", lvl);
 818
 819        /* dump buffer after the mark */
 820        for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
 821                for (word = 0; word < 8; word++)
 822                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 823                data[8] = 0x0;
 824                pr_cont("%s", (char *)data);
 825        }
 826
 827        /* dump buffer before the mark */
 828        for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
 829                for (word = 0; word < 8; word++)
 830                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 831                data[8] = 0x0;
 832                pr_cont("%s", (char *)data);
 833        }
 834        printk("%s" "end of fw dump\n", lvl);
 835}
 836
 837static void bnx2x_fw_dump(struct bnx2x *bp)
 838{
 839        bnx2x_fw_dump_lvl(bp, KERN_ERR);
 840}
 841
 842static void bnx2x_hc_int_disable(struct bnx2x *bp)
 843{
 844        int port = BP_PORT(bp);
 845        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
 846        u32 val = REG_RD(bp, addr);
 847
 848        /* in E1 we must use only PCI configuration space to disable
 849         * MSI/MSIX capability
 850         * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
 851         */
 852        if (CHIP_IS_E1(bp)) {
 853                /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
 854                 * Use mask register to prevent from HC sending interrupts
 855                 * after we exit the function
 856                 */
 857                REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
 858
 859                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 860                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 861                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 862        } else
 863                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 864                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 865                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 866                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 867
 868        DP(NETIF_MSG_IFDOWN,
 869           "write %x to HC %d (addr 0x%x)\n",
 870           val, port, addr);
 871
 872        REG_WR(bp, addr, val);
 873        if (REG_RD(bp, addr) != val)
 874                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 875}
 876
 877static void bnx2x_igu_int_disable(struct bnx2x *bp)
 878{
 879        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
 880
 881        val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
 882                 IGU_PF_CONF_INT_LINE_EN |
 883                 IGU_PF_CONF_ATTN_BIT_EN);
 884
 885        DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
 886
 887        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 888        if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
 889                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 890}
 891
 892static void bnx2x_int_disable(struct bnx2x *bp)
 893{
 894        if (bp->common.int_block == INT_BLOCK_HC)
 895                bnx2x_hc_int_disable(bp);
 896        else
 897                bnx2x_igu_int_disable(bp);
 898}
 899
 900void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
 901{
 902        int i;
 903        u16 j;
 904        struct hc_sp_status_block_data sp_sb_data;
 905        int func = BP_FUNC(bp);
 906#ifdef BNX2X_STOP_ON_ERROR
 907        u16 start = 0, end = 0;
 908        u8 cos;
 909#endif
 910        if (IS_PF(bp) && disable_int)
 911                bnx2x_int_disable(bp);
 912
 913        bp->stats_state = STATS_STATE_DISABLED;
 914        bp->eth_stats.unrecoverable_error++;
 915        DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
 916
 917        BNX2X_ERR("begin crash dump -----------------\n");
 918
 919        /* Indices */
 920        /* Common */
 921        if (IS_PF(bp)) {
 922                struct host_sp_status_block *def_sb = bp->def_status_blk;
 923                int data_size, cstorm_offset;
 924
 925                BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
 926                          bp->def_idx, bp->def_att_idx, bp->attn_state,
 927                          bp->spq_prod_idx, bp->stats_counter);
 928                BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
 929                          def_sb->atten_status_block.attn_bits,
 930                          def_sb->atten_status_block.attn_bits_ack,
 931                          def_sb->atten_status_block.status_block_id,
 932                          def_sb->atten_status_block.attn_bits_index);
 933                BNX2X_ERR("     def (");
 934                for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
 935                        pr_cont("0x%x%s",
 936                                def_sb->sp_sb.index_values[i],
 937                                (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
 938
 939                data_size = sizeof(struct hc_sp_status_block_data) /
 940                            sizeof(u32);
 941                cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
 942                for (i = 0; i < data_size; i++)
 943                        *((u32 *)&sp_sb_data + i) =
 944                                REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
 945                                           i * sizeof(u32));
 946
 947                pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
 948                        sp_sb_data.igu_sb_id,
 949                        sp_sb_data.igu_seg_id,
 950                        sp_sb_data.p_func.pf_id,
 951                        sp_sb_data.p_func.vnic_id,
 952                        sp_sb_data.p_func.vf_id,
 953                        sp_sb_data.p_func.vf_valid,
 954                        sp_sb_data.state);
 955        }
 956
 957        for_each_eth_queue(bp, i) {
 958                struct bnx2x_fastpath *fp = &bp->fp[i];
 959                int loop;
 960                struct hc_status_block_data_e2 sb_data_e2;
 961                struct hc_status_block_data_e1x sb_data_e1x;
 962                struct hc_status_block_sm  *hc_sm_p =
 963                        CHIP_IS_E1x(bp) ?
 964                        sb_data_e1x.common.state_machine :
 965                        sb_data_e2.common.state_machine;
 966                struct hc_index_data *hc_index_p =
 967                        CHIP_IS_E1x(bp) ?
 968                        sb_data_e1x.index_data :
 969                        sb_data_e2.index_data;
 970                u8 data_size, cos;
 971                u32 *sb_data_p;
 972                struct bnx2x_fp_txdata txdata;
 973
 974                if (!bp->fp)
 975                        break;
 976
 977                if (!fp->rx_cons_sb)
 978                        continue;
 979
 980                /* Rx */
 981                BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
 982                          i, fp->rx_bd_prod, fp->rx_bd_cons,
 983                          fp->rx_comp_prod,
 984                          fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
 985                BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
 986                          fp->rx_sge_prod, fp->last_max_sge,
 987                          le16_to_cpu(fp->fp_hc_idx));
 988
 989                /* Tx */
 990                for_each_cos_in_tx_queue(fp, cos)
 991                {
 992                        if (!fp->txdata_ptr[cos])
 993                                break;
 994
 995                        txdata = *fp->txdata_ptr[cos];
 996
 997                        if (!txdata.tx_cons_sb)
 998                                continue;
 999
1000                        BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1001                                  i, txdata.tx_pkt_prod,
1002                                  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1003                                  txdata.tx_bd_cons,
1004                                  le16_to_cpu(*txdata.tx_cons_sb));
1005                }
1006
1007                loop = CHIP_IS_E1x(bp) ?
1008                        HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1009
1010                /* host sb data */
1011
1012                if (IS_FCOE_FP(fp))
1013                        continue;
1014
1015                BNX2X_ERR("     run indexes (");
1016                for (j = 0; j < HC_SB_MAX_SM; j++)
1017                        pr_cont("0x%x%s",
1018                               fp->sb_running_index[j],
1019                               (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1020
1021                BNX2X_ERR("     indexes (");
1022                for (j = 0; j < loop; j++)
1023                        pr_cont("0x%x%s",
1024                               fp->sb_index_values[j],
1025                               (j == loop - 1) ? ")" : " ");
1026
1027                /* VF cannot access FW refelection for status block */
1028                if (IS_VF(bp))
1029                        continue;
1030
1031                /* fw sb data */
1032                data_size = CHIP_IS_E1x(bp) ?
1033                        sizeof(struct hc_status_block_data_e1x) :
1034                        sizeof(struct hc_status_block_data_e2);
1035                data_size /= sizeof(u32);
1036                sb_data_p = CHIP_IS_E1x(bp) ?
1037                        (u32 *)&sb_data_e1x :
1038                        (u32 *)&sb_data_e2;
1039                /* copy sb data in here */
1040                for (j = 0; j < data_size; j++)
1041                        *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1042                                CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1043                                j * sizeof(u32));
1044
1045                if (!CHIP_IS_E1x(bp)) {
1046                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1047                                sb_data_e2.common.p_func.pf_id,
1048                                sb_data_e2.common.p_func.vf_id,
1049                                sb_data_e2.common.p_func.vf_valid,
1050                                sb_data_e2.common.p_func.vnic_id,
1051                                sb_data_e2.common.same_igu_sb_1b,
1052                                sb_data_e2.common.state);
1053                } else {
1054                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1055                                sb_data_e1x.common.p_func.pf_id,
1056                                sb_data_e1x.common.p_func.vf_id,
1057                                sb_data_e1x.common.p_func.vf_valid,
1058                                sb_data_e1x.common.p_func.vnic_id,
1059                                sb_data_e1x.common.same_igu_sb_1b,
1060                                sb_data_e1x.common.state);
1061                }
1062
1063                /* SB_SMs data */
1064                for (j = 0; j < HC_SB_MAX_SM; j++) {
1065                        pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1066                                j, hc_sm_p[j].__flags,
1067                                hc_sm_p[j].igu_sb_id,
1068                                hc_sm_p[j].igu_seg_id,
1069                                hc_sm_p[j].time_to_expire,
1070                                hc_sm_p[j].timer_value);
1071                }
1072
1073                /* Indices data */
1074                for (j = 0; j < loop; j++) {
1075                        pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1076                               hc_index_p[j].flags,
1077                               hc_index_p[j].timeout);
1078                }
1079        }
1080
1081#ifdef BNX2X_STOP_ON_ERROR
1082        if (IS_PF(bp)) {
1083                /* event queue */
1084                BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1085                for (i = 0; i < NUM_EQ_DESC; i++) {
1086                        u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1087
1088                        BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1089                                  i, bp->eq_ring[i].message.opcode,
1090                                  bp->eq_ring[i].message.error);
1091                        BNX2X_ERR("data: %x %x %x\n",
1092                                  data[0], data[1], data[2]);
1093                }
1094        }
1095
1096        /* Rings */
1097        /* Rx */
1098        for_each_valid_rx_queue(bp, i) {
1099                struct bnx2x_fastpath *fp = &bp->fp[i];
1100
1101                if (!bp->fp)
1102                        break;
1103
1104                if (!fp->rx_cons_sb)
1105                        continue;
1106
1107                start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1108                end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1109                for (j = start; j != end; j = RX_BD(j + 1)) {
1110                        u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1111                        struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1112
1113                        BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1114                                  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1115                }
1116
1117                start = RX_SGE(fp->rx_sge_prod);
1118                end = RX_SGE(fp->last_max_sge);
1119                for (j = start; j != end; j = RX_SGE(j + 1)) {
1120                        u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1121                        struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1122
1123                        BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1124                                  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1125                }
1126
1127                start = RCQ_BD(fp->rx_comp_cons - 10);
1128                end = RCQ_BD(fp->rx_comp_cons + 503);
1129                for (j = start; j != end; j = RCQ_BD(j + 1)) {
1130                        u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1131
1132                        BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1133                                  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1134                }
1135        }
1136
1137        /* Tx */
1138        for_each_valid_tx_queue(bp, i) {
1139                struct bnx2x_fastpath *fp = &bp->fp[i];
1140
1141                if (!bp->fp)
1142                        break;
1143
1144                for_each_cos_in_tx_queue(fp, cos) {
1145                        struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1146
1147                        if (!fp->txdata_ptr[cos])
1148                                break;
1149
1150                        if (!txdata->tx_cons_sb)
1151                                continue;
1152
1153                        start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1154                        end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1155                        for (j = start; j != end; j = TX_BD(j + 1)) {
1156                                struct sw_tx_bd *sw_bd =
1157                                        &txdata->tx_buf_ring[j];
1158
1159                                BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1160                                          i, cos, j, sw_bd->skb,
1161                                          sw_bd->first_bd);
1162                        }
1163
1164                        start = TX_BD(txdata->tx_bd_cons - 10);
1165                        end = TX_BD(txdata->tx_bd_cons + 254);
1166                        for (j = start; j != end; j = TX_BD(j + 1)) {
1167                                u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1168
1169                                BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1170                                          i, cos, j, tx_bd[0], tx_bd[1],
1171                                          tx_bd[2], tx_bd[3]);
1172                        }
1173                }
1174        }
1175#endif
1176        if (IS_PF(bp)) {
1177                bnx2x_fw_dump(bp);
1178                bnx2x_mc_assert(bp);
1179        }
1180        BNX2X_ERR("end crash dump -----------------\n");
1181}
1182
1183/*
1184 * FLR Support for E2
1185 *
1186 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1187 * initialization.
1188 */
1189#define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1190#define FLR_WAIT_INTERVAL       50      /* usec */
1191#define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1192
1193struct pbf_pN_buf_regs {
1194        int pN;
1195        u32 init_crd;
1196        u32 crd;
1197        u32 crd_freed;
1198};
1199
1200struct pbf_pN_cmd_regs {
1201        int pN;
1202        u32 lines_occup;
1203        u32 lines_freed;
1204};
1205
1206static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1207                                     struct pbf_pN_buf_regs *regs,
1208                                     u32 poll_count)
1209{
1210        u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1211        u32 cur_cnt = poll_count;
1212
1213        crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1214        crd = crd_start = REG_RD(bp, regs->crd);
1215        init_crd = REG_RD(bp, regs->init_crd);
1216
1217        DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1218        DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1219        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1220
1221        while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1222               (init_crd - crd_start))) {
1223                if (cur_cnt--) {
1224                        udelay(FLR_WAIT_INTERVAL);
1225                        crd = REG_RD(bp, regs->crd);
1226                        crd_freed = REG_RD(bp, regs->crd_freed);
1227                } else {
1228                        DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1229                           regs->pN);
1230                        DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1231                           regs->pN, crd);
1232                        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1233                           regs->pN, crd_freed);
1234                        break;
1235                }
1236        }
1237        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1238           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1239}
1240
1241static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1242                                     struct pbf_pN_cmd_regs *regs,
1243                                     u32 poll_count)
1244{
1245        u32 occup, to_free, freed, freed_start;
1246        u32 cur_cnt = poll_count;
1247
1248        occup = to_free = REG_RD(bp, regs->lines_occup);
1249        freed = freed_start = REG_RD(bp, regs->lines_freed);
1250
1251        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1252        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1253
1254        while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1255                if (cur_cnt--) {
1256                        udelay(FLR_WAIT_INTERVAL);
1257                        occup = REG_RD(bp, regs->lines_occup);
1258                        freed = REG_RD(bp, regs->lines_freed);
1259                } else {
1260                        DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1261                           regs->pN);
1262                        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1263                           regs->pN, occup);
1264                        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1265                           regs->pN, freed);
1266                        break;
1267                }
1268        }
1269        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1270           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1271}
1272
1273static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1274                                    u32 expected, u32 poll_count)
1275{
1276        u32 cur_cnt = poll_count;
1277        u32 val;
1278
1279        while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1280                udelay(FLR_WAIT_INTERVAL);
1281
1282        return val;
1283}
1284
1285int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1286                                    char *msg, u32 poll_cnt)
1287{
1288        u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1289        if (val != 0) {
1290                BNX2X_ERR("%s usage count=%d\n", msg, val);
1291                return 1;
1292        }
1293        return 0;
1294}
1295
1296/* Common routines with VF FLR cleanup */
1297u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1298{
1299        /* adjust polling timeout */
1300        if (CHIP_REV_IS_EMUL(bp))
1301                return FLR_POLL_CNT * 2000;
1302
1303        if (CHIP_REV_IS_FPGA(bp))
1304                return FLR_POLL_CNT * 120;
1305
1306        return FLR_POLL_CNT;
1307}
1308
1309void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1310{
1311        struct pbf_pN_cmd_regs cmd_regs[] = {
1312                {0, (CHIP_IS_E3B0(bp)) ?
1313                        PBF_REG_TQ_OCCUPANCY_Q0 :
1314                        PBF_REG_P0_TQ_OCCUPANCY,
1315                    (CHIP_IS_E3B0(bp)) ?
1316                        PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1317                        PBF_REG_P0_TQ_LINES_FREED_CNT},
1318                {1, (CHIP_IS_E3B0(bp)) ?
1319                        PBF_REG_TQ_OCCUPANCY_Q1 :
1320                        PBF_REG_P1_TQ_OCCUPANCY,
1321                    (CHIP_IS_E3B0(bp)) ?
1322                        PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1323                        PBF_REG_P1_TQ_LINES_FREED_CNT},
1324                {4, (CHIP_IS_E3B0(bp)) ?
1325                        PBF_REG_TQ_OCCUPANCY_LB_Q :
1326                        PBF_REG_P4_TQ_OCCUPANCY,
1327                    (CHIP_IS_E3B0(bp)) ?
1328                        PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1329                        PBF_REG_P4_TQ_LINES_FREED_CNT}
1330        };
1331
1332        struct pbf_pN_buf_regs buf_regs[] = {
1333                {0, (CHIP_IS_E3B0(bp)) ?
1334                        PBF_REG_INIT_CRD_Q0 :
1335                        PBF_REG_P0_INIT_CRD ,
1336                    (CHIP_IS_E3B0(bp)) ?
1337                        PBF_REG_CREDIT_Q0 :
1338                        PBF_REG_P0_CREDIT,
1339                    (CHIP_IS_E3B0(bp)) ?
1340                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1341                        PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1342                {1, (CHIP_IS_E3B0(bp)) ?
1343                        PBF_REG_INIT_CRD_Q1 :
1344                        PBF_REG_P1_INIT_CRD,
1345                    (CHIP_IS_E3B0(bp)) ?
1346                        PBF_REG_CREDIT_Q1 :
1347                        PBF_REG_P1_CREDIT,
1348                    (CHIP_IS_E3B0(bp)) ?
1349                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1350                        PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1351                {4, (CHIP_IS_E3B0(bp)) ?
1352                        PBF_REG_INIT_CRD_LB_Q :
1353                        PBF_REG_P4_INIT_CRD,
1354                    (CHIP_IS_E3B0(bp)) ?
1355                        PBF_REG_CREDIT_LB_Q :
1356                        PBF_REG_P4_CREDIT,
1357                    (CHIP_IS_E3B0(bp)) ?
1358                        PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1359                        PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1360        };
1361
1362        int i;
1363
1364        /* Verify the command queues are flushed P0, P1, P4 */
1365        for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1366                bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1367
1368        /* Verify the transmission buffers are flushed P0, P1, P4 */
1369        for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1370                bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1371}
1372
1373#define OP_GEN_PARAM(param) \
1374        (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1375
1376#define OP_GEN_TYPE(type) \
1377        (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1378
1379#define OP_GEN_AGG_VECT(index) \
1380        (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1381
1382int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1383{
1384        u32 op_gen_command = 0;
1385        u32 comp_addr = BAR_CSTRORM_INTMEM +
1386                        CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1387        int ret = 0;
1388
1389        if (REG_RD(bp, comp_addr)) {
1390                BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1391                return 1;
1392        }
1393
1394        op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1395        op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1396        op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1397        op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1398
1399        DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1400        REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1401
1402        if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1403                BNX2X_ERR("FW final cleanup did not succeed\n");
1404                DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1405                   (REG_RD(bp, comp_addr)));
1406                bnx2x_panic();
1407                return 1;
1408        }
1409        /* Zero completion for next FLR */
1410        REG_WR(bp, comp_addr, 0);
1411
1412        return ret;
1413}
1414
1415u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1416{
1417        u16 status;
1418
1419        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1420        return status & PCI_EXP_DEVSTA_TRPND;
1421}
1422
1423/* PF FLR specific routines
1424*/
1425static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1426{
1427        /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1428        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1429                        CFC_REG_NUM_LCIDS_INSIDE_PF,
1430                        "CFC PF usage counter timed out",
1431                        poll_cnt))
1432                return 1;
1433
1434        /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1435        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1436                        DORQ_REG_PF_USAGE_CNT,
1437                        "DQ PF usage counter timed out",
1438                        poll_cnt))
1439                return 1;
1440
1441        /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1442        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1443                        QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1444                        "QM PF usage counter timed out",
1445                        poll_cnt))
1446                return 1;
1447
1448        /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1449        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1450                        TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1451                        "Timers VNIC usage counter timed out",
1452                        poll_cnt))
1453                return 1;
1454        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1455                        TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1456                        "Timers NUM_SCANS usage counter timed out",
1457                        poll_cnt))
1458                return 1;
1459
1460        /* Wait DMAE PF usage counter to zero */
1461        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1462                        dmae_reg_go_c[INIT_DMAE_C(bp)],
1463                        "DMAE command register timed out",
1464                        poll_cnt))
1465                return 1;
1466
1467        return 0;
1468}
1469
1470static void bnx2x_hw_enable_status(struct bnx2x *bp)
1471{
1472        u32 val;
1473
1474        val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1475        DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1476
1477        val = REG_RD(bp, PBF_REG_DISABLE_PF);
1478        DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1479
1480        val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1481        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1482
1483        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1484        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1485
1486        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1487        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1488
1489        val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1490        DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1491
1492        val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1493        DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1494
1495        val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1496        DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1497           val);
1498}
1499
1500static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1501{
1502        u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1503
1504        DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1505
1506        /* Re-enable PF target read access */
1507        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1508
1509        /* Poll HW usage counters */
1510        DP(BNX2X_MSG_SP, "Polling usage counters\n");
1511        if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1512                return -EBUSY;
1513
1514        /* Zero the igu 'trailing edge' and 'leading edge' */
1515
1516        /* Send the FW cleanup command */
1517        if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1518                return -EBUSY;
1519
1520        /* ATC cleanup */
1521
1522        /* Verify TX hw is flushed */
1523        bnx2x_tx_hw_flushed(bp, poll_cnt);
1524
1525        /* Wait 100ms (not adjusted according to platform) */
1526        msleep(100);
1527
1528        /* Verify no pending pci transactions */
1529        if (bnx2x_is_pcie_pending(bp->pdev))
1530                BNX2X_ERR("PCIE Transactions still pending\n");
1531
1532        /* Debug */
1533        bnx2x_hw_enable_status(bp);
1534
1535        /*
1536         * Master enable - Due to WB DMAE writes performed before this
1537         * register is re-initialized as part of the regular function init
1538         */
1539        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1540
1541        return 0;
1542}
1543
1544static void bnx2x_hc_int_enable(struct bnx2x *bp)
1545{
1546        int port = BP_PORT(bp);
1547        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1548        u32 val = REG_RD(bp, addr);
1549        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1550        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1551        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1552
1553        if (msix) {
1554                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1555                         HC_CONFIG_0_REG_INT_LINE_EN_0);
1556                val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1557                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1558                if (single_msix)
1559                        val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1560        } else if (msi) {
1561                val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1562                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1563                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1564                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1565        } else {
1566                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1567                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1568                        HC_CONFIG_0_REG_INT_LINE_EN_0 |
1569                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1570
1571                if (!CHIP_IS_E1(bp)) {
1572                        DP(NETIF_MSG_IFUP,
1573                           "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1574
1575                        REG_WR(bp, addr, val);
1576
1577                        val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1578                }
1579        }
1580
1581        if (CHIP_IS_E1(bp))
1582                REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1583
1584        DP(NETIF_MSG_IFUP,
1585           "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1586           (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1587
1588        REG_WR(bp, addr, val);
1589        /*
1590         * Ensure that HC_CONFIG is written before leading/trailing edge config
1591         */
1592        barrier();
1593
1594        if (!CHIP_IS_E1(bp)) {
1595                /* init leading/trailing edge */
1596                if (IS_MF(bp)) {
1597                        val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1598                        if (bp->port.pmf)
1599                                /* enable nig and gpio3 attention */
1600                                val |= 0x1100;
1601                } else
1602                        val = 0xffff;
1603
1604                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1605                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1606        }
1607}
1608
1609static void bnx2x_igu_int_enable(struct bnx2x *bp)
1610{
1611        u32 val;
1612        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1613        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1614        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1615
1616        val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1617
1618        if (msix) {
1619                val &= ~(IGU_PF_CONF_INT_LINE_EN |
1620                         IGU_PF_CONF_SINGLE_ISR_EN);
1621                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1622                        IGU_PF_CONF_ATTN_BIT_EN);
1623
1624                if (single_msix)
1625                        val |= IGU_PF_CONF_SINGLE_ISR_EN;
1626        } else if (msi) {
1627                val &= ~IGU_PF_CONF_INT_LINE_EN;
1628                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1629                        IGU_PF_CONF_ATTN_BIT_EN |
1630                        IGU_PF_CONF_SINGLE_ISR_EN);
1631        } else {
1632                val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1633                val |= (IGU_PF_CONF_INT_LINE_EN |
1634                        IGU_PF_CONF_ATTN_BIT_EN |
1635                        IGU_PF_CONF_SINGLE_ISR_EN);
1636        }
1637
1638        /* Clean previous status - need to configure igu prior to ack*/
1639        if ((!msix) || single_msix) {
1640                REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1641                bnx2x_ack_int(bp);
1642        }
1643
1644        val |= IGU_PF_CONF_FUNC_EN;
1645
1646        DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1647           val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1648
1649        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1650
1651        if (val & IGU_PF_CONF_INT_LINE_EN)
1652                pci_intx(bp->pdev, true);
1653
1654        barrier();
1655
1656        /* init leading/trailing edge */
1657        if (IS_MF(bp)) {
1658                val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1659                if (bp->port.pmf)
1660                        /* enable nig and gpio3 attention */
1661                        val |= 0x1100;
1662        } else
1663                val = 0xffff;
1664
1665        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1666        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1667}
1668
1669void bnx2x_int_enable(struct bnx2x *bp)
1670{
1671        if (bp->common.int_block == INT_BLOCK_HC)
1672                bnx2x_hc_int_enable(bp);
1673        else
1674                bnx2x_igu_int_enable(bp);
1675}
1676
1677void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1678{
1679        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1680        int i, offset;
1681
1682        if (disable_hw)
1683                /* prevent the HW from sending interrupts */
1684                bnx2x_int_disable(bp);
1685
1686        /* make sure all ISRs are done */
1687        if (msix) {
1688                synchronize_irq(bp->msix_table[0].vector);
1689                offset = 1;
1690                if (CNIC_SUPPORT(bp))
1691                        offset++;
1692                for_each_eth_queue(bp, i)
1693                        synchronize_irq(bp->msix_table[offset++].vector);
1694        } else
1695                synchronize_irq(bp->pdev->irq);
1696
1697        /* make sure sp_task is not running */
1698        cancel_delayed_work(&bp->sp_task);
1699        cancel_delayed_work(&bp->period_task);
1700        flush_workqueue(bnx2x_wq);
1701}
1702
1703/* fast path */
1704
1705/*
1706 * General service functions
1707 */
1708
1709/* Return true if succeeded to acquire the lock */
1710static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1711{
1712        u32 lock_status;
1713        u32 resource_bit = (1 << resource);
1714        int func = BP_FUNC(bp);
1715        u32 hw_lock_control_reg;
1716
1717        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1718           "Trying to take a lock on resource %d\n", resource);
1719
1720        /* Validating that the resource is within range */
1721        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1722                DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1723                   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1724                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1725                return false;
1726        }
1727
1728        if (func <= 5)
1729                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1730        else
1731                hw_lock_control_reg =
1732                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1733
1734        /* Try to acquire the lock */
1735        REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1736        lock_status = REG_RD(bp, hw_lock_control_reg);
1737        if (lock_status & resource_bit)
1738                return true;
1739
1740        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1741           "Failed to get a lock on resource %d\n", resource);
1742        return false;
1743}
1744
1745/**
1746 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1747 *
1748 * @bp: driver handle
1749 *
1750 * Returns the recovery leader resource id according to the engine this function
1751 * belongs to. Currently only only 2 engines is supported.
1752 */
1753static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1754{
1755        if (BP_PATH(bp))
1756                return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1757        else
1758                return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1759}
1760
1761/**
1762 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1763 *
1764 * @bp: driver handle
1765 *
1766 * Tries to acquire a leader lock for current engine.
1767 */
1768static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1769{
1770        return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1771}
1772
1773static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1774
1775/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1776static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1777{
1778        /* Set the interrupt occurred bit for the sp-task to recognize it
1779         * must ack the interrupt and transition according to the IGU
1780         * state machine.
1781         */
1782        atomic_set(&bp->interrupt_occurred, 1);
1783
1784        /* The sp_task must execute only after this bit
1785         * is set, otherwise we will get out of sync and miss all
1786         * further interrupts. Hence, the barrier.
1787         */
1788        smp_wmb();
1789
1790        /* schedule sp_task to workqueue */
1791        return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1792}
1793
1794void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1795{
1796        struct bnx2x *bp = fp->bp;
1797        int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1798        int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1799        enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1800        struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1801
1802        DP(BNX2X_MSG_SP,
1803           "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1804           fp->index, cid, command, bp->state,
1805           rr_cqe->ramrod_cqe.ramrod_type);
1806
1807        /* If cid is within VF range, replace the slowpath object with the
1808         * one corresponding to this VF
1809         */
1810        if (cid >= BNX2X_FIRST_VF_CID  &&
1811            cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1812                bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1813
1814        switch (command) {
1815        case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1816                DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1817                drv_cmd = BNX2X_Q_CMD_UPDATE;
1818                break;
1819
1820        case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1821                DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1822                drv_cmd = BNX2X_Q_CMD_SETUP;
1823                break;
1824
1825        case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1826                DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1827                drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1828                break;
1829
1830        case (RAMROD_CMD_ID_ETH_HALT):
1831                DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1832                drv_cmd = BNX2X_Q_CMD_HALT;
1833                break;
1834
1835        case (RAMROD_CMD_ID_ETH_TERMINATE):
1836                DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1837                drv_cmd = BNX2X_Q_CMD_TERMINATE;
1838                break;
1839
1840        case (RAMROD_CMD_ID_ETH_EMPTY):
1841                DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1842                drv_cmd = BNX2X_Q_CMD_EMPTY;
1843                break;
1844
1845        case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1846                DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1847                drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1848                break;
1849
1850        default:
1851                BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1852                          command, fp->index);
1853                return;
1854        }
1855
1856        if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1857            q_obj->complete_cmd(bp, q_obj, drv_cmd))
1858                /* q_obj->complete_cmd() failure means that this was
1859                 * an unexpected completion.
1860                 *
1861                 * In this case we don't want to increase the bp->spq_left
1862                 * because apparently we haven't sent this command the first
1863                 * place.
1864                 */
1865#ifdef BNX2X_STOP_ON_ERROR
1866                bnx2x_panic();
1867#else
1868                return;
1869#endif
1870
1871        smp_mb__before_atomic();
1872        atomic_inc(&bp->cq_spq_left);
1873        /* push the change in bp->spq_left and towards the memory */
1874        smp_mb__after_atomic();
1875
1876        DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1877
1878        if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1879            (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1880                /* if Q update ramrod is completed for last Q in AFEX vif set
1881                 * flow, then ACK MCP at the end
1882                 *
1883                 * mark pending ACK to MCP bit.
1884                 * prevent case that both bits are cleared.
1885                 * At the end of load/unload driver checks that
1886                 * sp_state is cleared, and this order prevents
1887                 * races
1888                 */
1889                smp_mb__before_atomic();
1890                set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1891                wmb();
1892                clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1893                smp_mb__after_atomic();
1894
1895                /* schedule the sp task as mcp ack is required */
1896                bnx2x_schedule_sp_task(bp);
1897        }
1898
1899        return;
1900}
1901
1902irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1903{
1904        struct bnx2x *bp = netdev_priv(dev_instance);
1905        u16 status = bnx2x_ack_int(bp);
1906        u16 mask;
1907        int i;
1908        u8 cos;
1909
1910        /* Return here if interrupt is shared and it's not for us */
1911        if (unlikely(status == 0)) {
1912                DP(NETIF_MSG_INTR, "not our interrupt!\n");
1913                return IRQ_NONE;
1914        }
1915        DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1916
1917#ifdef BNX2X_STOP_ON_ERROR
1918        if (unlikely(bp->panic))
1919                return IRQ_HANDLED;
1920#endif
1921
1922        for_each_eth_queue(bp, i) {
1923                struct bnx2x_fastpath *fp = &bp->fp[i];
1924
1925                mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1926                if (status & mask) {
1927                        /* Handle Rx or Tx according to SB id */
1928                        for_each_cos_in_tx_queue(fp, cos)
1929                                prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1930                        prefetch(&fp->sb_running_index[SM_RX_ID]);
1931                        napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1932                        status &= ~mask;
1933                }
1934        }
1935
1936        if (CNIC_SUPPORT(bp)) {
1937                mask = 0x2;
1938                if (status & (mask | 0x1)) {
1939                        struct cnic_ops *c_ops = NULL;
1940
1941                        rcu_read_lock();
1942                        c_ops = rcu_dereference(bp->cnic_ops);
1943                        if (c_ops && (bp->cnic_eth_dev.drv_state &
1944                                      CNIC_DRV_STATE_HANDLES_IRQ))
1945                                c_ops->cnic_handler(bp->cnic_data, NULL);
1946                        rcu_read_unlock();
1947
1948                        status &= ~mask;
1949                }
1950        }
1951
1952        if (unlikely(status & 0x1)) {
1953
1954                /* schedule sp task to perform default status block work, ack
1955                 * attentions and enable interrupts.
1956                 */
1957                bnx2x_schedule_sp_task(bp);
1958
1959                status &= ~0x1;
1960                if (!status)
1961                        return IRQ_HANDLED;
1962        }
1963
1964        if (unlikely(status))
1965                DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1966                   status);
1967
1968        return IRQ_HANDLED;
1969}
1970
1971/* Link */
1972
1973/*
1974 * General service functions
1975 */
1976
1977int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1978{
1979        u32 lock_status;
1980        u32 resource_bit = (1 << resource);
1981        int func = BP_FUNC(bp);
1982        u32 hw_lock_control_reg;
1983        int cnt;
1984
1985        /* Validating that the resource is within range */
1986        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1987                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1988                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1989                return -EINVAL;
1990        }
1991
1992        if (func <= 5) {
1993                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1994        } else {
1995                hw_lock_control_reg =
1996                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1997        }
1998
1999        /* Validating that the resource is not already taken */
2000        lock_status = REG_RD(bp, hw_lock_control_reg);
2001        if (lock_status & resource_bit) {
2002                BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2003                   lock_status, resource_bit);
2004                return -EEXIST;
2005        }
2006
2007        /* Try for 5 second every 5ms */
2008        for (cnt = 0; cnt < 1000; cnt++) {
2009                /* Try to acquire the lock */
2010                REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2011                lock_status = REG_RD(bp, hw_lock_control_reg);
2012                if (lock_status & resource_bit)
2013                        return 0;
2014
2015                usleep_range(5000, 10000);
2016        }
2017        BNX2X_ERR("Timeout\n");
2018        return -EAGAIN;
2019}
2020
2021int bnx2x_release_leader_lock(struct bnx2x *bp)
2022{
2023        return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2024}
2025
2026int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2027{
2028        u32 lock_status;
2029        u32 resource_bit = (1 << resource);
2030        int func = BP_FUNC(bp);
2031        u32 hw_lock_control_reg;
2032
2033        /* Validating that the resource is within range */
2034        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2035                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2036                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2037                return -EINVAL;
2038        }
2039
2040        if (func <= 5) {
2041                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2042        } else {
2043                hw_lock_control_reg =
2044                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2045        }
2046
2047        /* Validating that the resource is currently taken */
2048        lock_status = REG_RD(bp, hw_lock_control_reg);
2049        if (!(lock_status & resource_bit)) {
2050                BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2051                          lock_status, resource_bit);
2052                return -EFAULT;
2053        }
2054
2055        REG_WR(bp, hw_lock_control_reg, resource_bit);
2056        return 0;
2057}
2058
2059int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2060{
2061        /* The GPIO should be swapped if swap register is set and active */
2062        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2063                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2064        int gpio_shift = gpio_num +
2065                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2066        u32 gpio_mask = (1 << gpio_shift);
2067        u32 gpio_reg;
2068        int value;
2069
2070        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2071                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2072                return -EINVAL;
2073        }
2074
2075        /* read GPIO value */
2076        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2077
2078        /* get the requested pin value */
2079        if ((gpio_reg & gpio_mask) == gpio_mask)
2080                value = 1;
2081        else
2082                value = 0;
2083
2084        return value;
2085}
2086
2087int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2088{
2089        /* The GPIO should be swapped if swap register is set and active */
2090        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2091                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2092        int gpio_shift = gpio_num +
2093                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2094        u32 gpio_mask = (1 << gpio_shift);
2095        u32 gpio_reg;
2096
2097        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2098                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2099                return -EINVAL;
2100        }
2101
2102        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2103        /* read GPIO and mask except the float bits */
2104        gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2105
2106        switch (mode) {
2107        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2108                DP(NETIF_MSG_LINK,
2109                   "Set GPIO %d (shift %d) -> output low\n",
2110                   gpio_num, gpio_shift);
2111                /* clear FLOAT and set CLR */
2112                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2113                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2114                break;
2115
2116        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2117                DP(NETIF_MSG_LINK,
2118                   "Set GPIO %d (shift %d) -> output high\n",
2119                   gpio_num, gpio_shift);
2120                /* clear FLOAT and set SET */
2121                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2122                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2123                break;
2124
2125        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2126                DP(NETIF_MSG_LINK,
2127                   "Set GPIO %d (shift %d) -> input\n",
2128                   gpio_num, gpio_shift);
2129                /* set FLOAT */
2130                gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2131                break;
2132
2133        default:
2134                break;
2135        }
2136
2137        REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2138        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2139
2140        return 0;
2141}
2142
2143int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2144{
2145        u32 gpio_reg = 0;
2146        int rc = 0;
2147
2148        /* Any port swapping should be handled by caller. */
2149
2150        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2151        /* read GPIO and mask except the float bits */
2152        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2153        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2154        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2155        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2156
2157        switch (mode) {
2158        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2159                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2160                /* set CLR */
2161                gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2162                break;
2163
2164        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2165                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2166                /* set SET */
2167                gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2168                break;
2169
2170        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2171                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2172                /* set FLOAT */
2173                gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2174                break;
2175
2176        default:
2177                BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2178                rc = -EINVAL;
2179                break;
2180        }
2181
2182        if (rc == 0)
2183                REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2184
2185        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2186
2187        return rc;
2188}
2189
2190int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2191{
2192        /* The GPIO should be swapped if swap register is set and active */
2193        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2194                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2195        int gpio_shift = gpio_num +
2196                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2197        u32 gpio_mask = (1 << gpio_shift);
2198        u32 gpio_reg;
2199
2200        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2201                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2202                return -EINVAL;
2203        }
2204
2205        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2206        /* read GPIO int */
2207        gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2208
2209        switch (mode) {
2210        case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2211                DP(NETIF_MSG_LINK,
2212                   "Clear GPIO INT %d (shift %d) -> output low\n",
2213                   gpio_num, gpio_shift);
2214                /* clear SET and set CLR */
2215                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2216                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2217                break;
2218
2219        case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2220                DP(NETIF_MSG_LINK,
2221                   "Set GPIO INT %d (shift %d) -> output high\n",
2222                   gpio_num, gpio_shift);
2223                /* clear CLR and set SET */
2224                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2225                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2226                break;
2227
2228        default:
2229                break;
2230        }
2231
2232        REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2233        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2234
2235        return 0;
2236}
2237
2238static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2239{
2240        u32 spio_reg;
2241
2242        /* Only 2 SPIOs are configurable */
2243        if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2244                BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2245                return -EINVAL;
2246        }
2247
2248        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2249        /* read SPIO and mask except the float bits */
2250        spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2251
2252        switch (mode) {
2253        case MISC_SPIO_OUTPUT_LOW:
2254                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2255                /* clear FLOAT and set CLR */
2256                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2257                spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2258                break;
2259
2260        case MISC_SPIO_OUTPUT_HIGH:
2261                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2262                /* clear FLOAT and set SET */
2263                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2264                spio_reg |=  (spio << MISC_SPIO_SET_POS);
2265                break;
2266
2267        case MISC_SPIO_INPUT_HI_Z:
2268                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2269                /* set FLOAT */
2270                spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2271                break;
2272
2273        default:
2274                break;
2275        }
2276
2277        REG_WR(bp, MISC_REG_SPIO, spio_reg);
2278        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2279
2280        return 0;
2281}
2282
2283void bnx2x_calc_fc_adv(struct bnx2x *bp)
2284{
2285        u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2286
2287        bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2288                                           ADVERTISED_Pause);
2289        switch (bp->link_vars.ieee_fc &
2290                MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2291        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2292                bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2293                                                  ADVERTISED_Pause);
2294                break;
2295
2296        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2297                bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2298                break;
2299
2300        default:
2301                break;
2302        }
2303}
2304
2305static void bnx2x_set_requested_fc(struct bnx2x *bp)
2306{
2307        /* Initialize link parameters structure variables
2308         * It is recommended to turn off RX FC for jumbo frames
2309         *  for better performance
2310         */
2311        if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2312                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2313        else
2314                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2315}
2316
2317static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2318{
2319        u32 pause_enabled = 0;
2320
2321        if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2322                if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2323                        pause_enabled = 1;
2324
2325                REG_WR(bp, BAR_USTRORM_INTMEM +
2326                           USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2327                       pause_enabled);
2328        }
2329
2330        DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2331           pause_enabled ? "enabled" : "disabled");
2332}
2333
2334int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2335{
2336        int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2337        u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2338
2339        if (!BP_NOMCP(bp)) {
2340                bnx2x_set_requested_fc(bp);
2341                bnx2x_acquire_phy_lock(bp);
2342
2343                if (load_mode == LOAD_DIAG) {
2344                        struct link_params *lp = &bp->link_params;
2345                        lp->loopback_mode = LOOPBACK_XGXS;
2346                        /* Prefer doing PHY loopback at highest speed */
2347                        if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2348                                if (lp->speed_cap_mask[cfx_idx] &
2349                                    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2350                                        lp->req_line_speed[cfx_idx] =
2351                                        SPEED_20000;
2352                                else if (lp->speed_cap_mask[cfx_idx] &
2353                                            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2354                                                lp->req_line_speed[cfx_idx] =
2355                                                SPEED_10000;
2356                                else
2357                                        lp->req_line_speed[cfx_idx] =
2358                                        SPEED_1000;
2359                        }
2360                }
2361
2362                if (load_mode == LOAD_LOOPBACK_EXT) {
2363                        struct link_params *lp = &bp->link_params;
2364                        lp->loopback_mode = LOOPBACK_EXT;
2365                }
2366
2367                rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2368
2369                bnx2x_release_phy_lock(bp);
2370
2371                bnx2x_init_dropless_fc(bp);
2372
2373                bnx2x_calc_fc_adv(bp);
2374
2375                if (bp->link_vars.link_up) {
2376                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2377                        bnx2x_link_report(bp);
2378                }
2379                queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2380                bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2381                return rc;
2382        }
2383        BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2384        return -EINVAL;
2385}
2386
2387void bnx2x_link_set(struct bnx2x *bp)
2388{
2389        if (!BP_NOMCP(bp)) {
2390                bnx2x_acquire_phy_lock(bp);
2391                bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2392                bnx2x_release_phy_lock(bp);
2393
2394                bnx2x_init_dropless_fc(bp);
2395
2396                bnx2x_calc_fc_adv(bp);
2397        } else
2398                BNX2X_ERR("Bootcode is missing - can not set link\n");
2399}
2400
2401static void bnx2x__link_reset(struct bnx2x *bp)
2402{
2403        if (!BP_NOMCP(bp)) {
2404                bnx2x_acquire_phy_lock(bp);
2405                bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2406                bnx2x_release_phy_lock(bp);
2407        } else
2408                BNX2X_ERR("Bootcode is missing - can not reset link\n");
2409}
2410
2411void bnx2x_force_link_reset(struct bnx2x *bp)
2412{
2413        bnx2x_acquire_phy_lock(bp);
2414        bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2415        bnx2x_release_phy_lock(bp);
2416}
2417
2418u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2419{
2420        u8 rc = 0;
2421
2422        if (!BP_NOMCP(bp)) {
2423                bnx2x_acquire_phy_lock(bp);
2424                rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2425                                     is_serdes);
2426                bnx2x_release_phy_lock(bp);
2427        } else
2428                BNX2X_ERR("Bootcode is missing - can not test link\n");
2429
2430        return rc;
2431}
2432
2433/* Calculates the sum of vn_min_rates.
2434   It's needed for further normalizing of the min_rates.
2435   Returns:
2436     sum of vn_min_rates.
2437       or
2438     0 - if all the min_rates are 0.
2439     In the later case fairness algorithm should be deactivated.
2440     If not all min_rates are zero then those that are zeroes will be set to 1.
2441 */
2442static void bnx2x_calc_vn_min(struct bnx2x *bp,
2443                                      struct cmng_init_input *input)
2444{
2445        int all_zero = 1;
2446        int vn;
2447
2448        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2449                u32 vn_cfg = bp->mf_config[vn];
2450                u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2451                                   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2452
2453                /* Skip hidden vns */
2454                if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2455                        vn_min_rate = 0;
2456                /* If min rate is zero - set it to 1 */
2457                else if (!vn_min_rate)
2458                        vn_min_rate = DEF_MIN_RATE;
2459                else
2460                        all_zero = 0;
2461
2462                input->vnic_min_rate[vn] = vn_min_rate;
2463        }
2464
2465        /* if ETS or all min rates are zeros - disable fairness */
2466        if (BNX2X_IS_ETS_ENABLED(bp)) {
2467                input->flags.cmng_enables &=
2468                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2469                DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2470        } else if (all_zero) {
2471                input->flags.cmng_enables &=
2472                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2473                DP(NETIF_MSG_IFUP,
2474                   "All MIN values are zeroes fairness will be disabled\n");
2475        } else
2476                input->flags.cmng_enables |=
2477                                        CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2478}
2479
2480static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2481                                    struct cmng_init_input *input)
2482{
2483        u16 vn_max_rate;
2484        u32 vn_cfg = bp->mf_config[vn];
2485
2486        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2487                vn_max_rate = 0;
2488        else {
2489                u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2490
2491                if (IS_MF_PERCENT_BW(bp)) {
2492                        /* maxCfg in percents of linkspeed */
2493                        vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2494                } else /* SD modes */
2495                        /* maxCfg is absolute in 100Mb units */
2496                        vn_max_rate = maxCfg * 100;
2497        }
2498
2499        DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2500
2501        input->vnic_max_rate[vn] = vn_max_rate;
2502}
2503
2504static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2505{
2506        if (CHIP_REV_IS_SLOW(bp))
2507                return CMNG_FNS_NONE;
2508        if (IS_MF(bp))
2509                return CMNG_FNS_MINMAX;
2510
2511        return CMNG_FNS_NONE;
2512}
2513
2514void bnx2x_read_mf_cfg(struct bnx2x *bp)
2515{
2516        int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2517
2518        if (BP_NOMCP(bp))
2519                return; /* what should be the default value in this case */
2520
2521        /* For 2 port configuration the absolute function number formula
2522         * is:
2523         *      abs_func = 2 * vn + BP_PORT + BP_PATH
2524         *
2525         *      and there are 4 functions per port
2526         *
2527         * For 4 port configuration it is
2528         *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2529         *
2530         *      and there are 2 functions per port
2531         */
2532        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2533                int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2534
2535                if (func >= E1H_FUNC_MAX)
2536                        break;
2537
2538                bp->mf_config[vn] =
2539                        MF_CFG_RD(bp, func_mf_config[func].config);
2540        }
2541        if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2542                DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2543                bp->flags |= MF_FUNC_DIS;
2544        } else {
2545                DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2546                bp->flags &= ~MF_FUNC_DIS;
2547        }
2548}
2549
2550static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2551{
2552        struct cmng_init_input input;
2553        memset(&input, 0, sizeof(struct cmng_init_input));
2554
2555        input.port_rate = bp->link_vars.line_speed;
2556
2557        if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2558                int vn;
2559
2560                /* read mf conf from shmem */
2561                if (read_cfg)
2562                        bnx2x_read_mf_cfg(bp);
2563
2564                /* vn_weight_sum and enable fairness if not 0 */
2565                bnx2x_calc_vn_min(bp, &input);
2566
2567                /* calculate and set min-max rate for each vn */
2568                if (bp->port.pmf)
2569                        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2570                                bnx2x_calc_vn_max(bp, vn, &input);
2571
2572                /* always enable rate shaping and fairness */
2573                input.flags.cmng_enables |=
2574                                        CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2575
2576                bnx2x_init_cmng(&input, &bp->cmng);
2577                return;
2578        }
2579
2580        /* rate shaping and fairness are disabled */
2581        DP(NETIF_MSG_IFUP,
2582           "rate shaping and fairness are disabled\n");
2583}
2584
2585static void storm_memset_cmng(struct bnx2x *bp,
2586                              struct cmng_init *cmng,
2587                              u8 port)
2588{
2589        int vn;
2590        size_t size = sizeof(struct cmng_struct_per_port);
2591
2592        u32 addr = BAR_XSTRORM_INTMEM +
2593                        XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2594
2595        __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2596
2597        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2598                int func = func_by_vn(bp, vn);
2599
2600                addr = BAR_XSTRORM_INTMEM +
2601                       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2602                size = sizeof(struct rate_shaping_vars_per_vn);
2603                __storm_memset_struct(bp, addr, size,
2604                                      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2605
2606                addr = BAR_XSTRORM_INTMEM +
2607                       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2608                size = sizeof(struct fairness_vars_per_vn);
2609                __storm_memset_struct(bp, addr, size,
2610                                      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2611        }
2612}
2613
2614/* init cmng mode in HW according to local configuration */
2615void bnx2x_set_local_cmng(struct bnx2x *bp)
2616{
2617        int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2618
2619        if (cmng_fns != CMNG_FNS_NONE) {
2620                bnx2x_cmng_fns_init(bp, false, cmng_fns);
2621                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2622        } else {
2623                /* rate shaping and fairness are disabled */
2624                DP(NETIF_MSG_IFUP,
2625                   "single function mode without fairness\n");
2626        }
2627}
2628
2629/* This function is called upon link interrupt */
2630static void bnx2x_link_attn(struct bnx2x *bp)
2631{
2632        /* Make sure that we are synced with the current statistics */
2633        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2634
2635        bnx2x_link_update(&bp->link_params, &bp->link_vars);
2636
2637        bnx2x_init_dropless_fc(bp);
2638
2639        if (bp->link_vars.link_up) {
2640
2641                if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2642                        struct host_port_stats *pstats;
2643
2644                        pstats = bnx2x_sp(bp, port_stats);
2645                        /* reset old mac stats */
2646                        memset(&(pstats->mac_stx[0]), 0,
2647                               sizeof(struct mac_stx));
2648                }
2649                if (bp->state == BNX2X_STATE_OPEN)
2650                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2651        }
2652
2653        if (bp->link_vars.link_up && bp->link_vars.line_speed)
2654                bnx2x_set_local_cmng(bp);
2655
2656        __bnx2x_link_report(bp);
2657
2658        if (IS_MF(bp))
2659                bnx2x_link_sync_notify(bp);
2660}
2661
2662void bnx2x__link_status_update(struct bnx2x *bp)
2663{
2664        if (bp->state != BNX2X_STATE_OPEN)
2665                return;
2666
2667        /* read updated dcb configuration */
2668        if (IS_PF(bp)) {
2669                bnx2x_dcbx_pmf_update(bp);
2670                bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2671                if (bp->link_vars.link_up)
2672                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2673                else
2674                        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2675                        /* indicate link status */
2676                bnx2x_link_report(bp);
2677
2678        } else { /* VF */
2679                bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2680                                          SUPPORTED_10baseT_Full |
2681                                          SUPPORTED_100baseT_Half |
2682                                          SUPPORTED_100baseT_Full |
2683                                          SUPPORTED_1000baseT_Full |
2684                                          SUPPORTED_2500baseX_Full |
2685                                          SUPPORTED_10000baseT_Full |
2686                                          SUPPORTED_TP |
2687                                          SUPPORTED_FIBRE |
2688                                          SUPPORTED_Autoneg |
2689                                          SUPPORTED_Pause |
2690                                          SUPPORTED_Asym_Pause);
2691                bp->port.advertising[0] = bp->port.supported[0];
2692
2693                bp->link_params.bp = bp;
2694                bp->link_params.port = BP_PORT(bp);
2695                bp->link_params.req_duplex[0] = DUPLEX_FULL;
2696                bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2697                bp->link_params.req_line_speed[0] = SPEED_10000;
2698                bp->link_params.speed_cap_mask[0] = 0x7f0000;
2699                bp->link_params.switch_cfg = SWITCH_CFG_10G;
2700                bp->link_vars.mac_type = MAC_TYPE_BMAC;
2701                bp->link_vars.line_speed = SPEED_10000;
2702                bp->link_vars.link_status =
2703                        (LINK_STATUS_LINK_UP |
2704                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2705                bp->link_vars.link_up = 1;
2706                bp->link_vars.duplex = DUPLEX_FULL;
2707                bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2708                __bnx2x_link_report(bp);
2709
2710                bnx2x_sample_bulletin(bp);
2711
2712                /* if bulletin board did not have an update for link status
2713                 * __bnx2x_link_report will report current status
2714                 * but it will NOT duplicate report in case of already reported
2715                 * during sampling bulletin board.
2716                 */
2717                bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2718        }
2719}
2720
2721static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2722                                  u16 vlan_val, u8 allowed_prio)
2723{
2724        struct bnx2x_func_state_params func_params = {NULL};
2725        struct bnx2x_func_afex_update_params *f_update_params =
2726                &func_params.params.afex_update;
2727
2728        func_params.f_obj = &bp->func_obj;
2729        func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2730
2731        /* no need to wait for RAMROD completion, so don't
2732         * set RAMROD_COMP_WAIT flag
2733         */
2734
2735        f_update_params->vif_id = vifid;
2736        f_update_params->afex_default_vlan = vlan_val;
2737        f_update_params->allowed_priorities = allowed_prio;
2738
2739        /* if ramrod can not be sent, response to MCP immediately */
2740        if (bnx2x_func_state_change(bp, &func_params) < 0)
2741                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2742
2743        return 0;
2744}
2745
2746static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2747                                          u16 vif_index, u8 func_bit_map)
2748{
2749        struct bnx2x_func_state_params func_params = {NULL};
2750        struct bnx2x_func_afex_viflists_params *update_params =
2751                &func_params.params.afex_viflists;
2752        int rc;
2753        u32 drv_msg_code;
2754
2755        /* validate only LIST_SET and LIST_GET are received from switch */
2756        if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2757                BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2758                          cmd_type);
2759
2760        func_params.f_obj = &bp->func_obj;
2761        func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2762
2763        /* set parameters according to cmd_type */
2764        update_params->afex_vif_list_command = cmd_type;
2765        update_params->vif_list_index = vif_index;
2766        update_params->func_bit_map =
2767                (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2768        update_params->func_to_clear = 0;
2769        drv_msg_code =
2770                (cmd_type == VIF_LIST_RULE_GET) ?
2771                DRV_MSG_CODE_AFEX_LISTGET_ACK :
2772                DRV_MSG_CODE_AFEX_LISTSET_ACK;
2773
2774        /* if ramrod can not be sent, respond to MCP immediately for
2775         * SET and GET requests (other are not triggered from MCP)
2776         */
2777        rc = bnx2x_func_state_change(bp, &func_params);
2778        if (rc < 0)
2779                bnx2x_fw_command(bp, drv_msg_code, 0);
2780
2781        return 0;
2782}
2783
2784static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2785{
2786        struct afex_stats afex_stats;
2787        u32 func = BP_ABS_FUNC(bp);
2788        u32 mf_config;
2789        u16 vlan_val;
2790        u32 vlan_prio;
2791        u16 vif_id;
2792        u8 allowed_prio;
2793        u8 vlan_mode;
2794        u32 addr_to_write, vifid, addrs, stats_type, i;
2795
2796        if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2797                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2798                DP(BNX2X_MSG_MCP,
2799                   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2800                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2801        }
2802
2803        if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2804                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2805                addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2806                DP(BNX2X_MSG_MCP,
2807                   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2808                   vifid, addrs);
2809                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2810                                               addrs);
2811        }
2812
2813        if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2814                addr_to_write = SHMEM2_RD(bp,
2815                        afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2816                stats_type = SHMEM2_RD(bp,
2817                        afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818
2819                DP(BNX2X_MSG_MCP,
2820                   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2821                   addr_to_write);
2822
2823                bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2824
2825                /* write response to scratchpad, for MCP */
2826                for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2827                        REG_WR(bp, addr_to_write + i*sizeof(u32),
2828                               *(((u32 *)(&afex_stats))+i));
2829
2830                /* send ack message to MCP */
2831                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2832        }
2833
2834        if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2835                mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2836                bp->mf_config[BP_VN(bp)] = mf_config;
2837                DP(BNX2X_MSG_MCP,
2838                   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2839                   mf_config);
2840
2841                /* if VIF_SET is "enabled" */
2842                if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2843                        /* set rate limit directly to internal RAM */
2844                        struct cmng_init_input cmng_input;
2845                        struct rate_shaping_vars_per_vn m_rs_vn;
2846                        size_t size = sizeof(struct rate_shaping_vars_per_vn);
2847                        u32 addr = BAR_XSTRORM_INTMEM +
2848                            XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2849
2850                        bp->mf_config[BP_VN(bp)] = mf_config;
2851
2852                        bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2853                        m_rs_vn.vn_counter.rate =
2854                                cmng_input.vnic_max_rate[BP_VN(bp)];
2855                        m_rs_vn.vn_counter.quota =
2856                                (m_rs_vn.vn_counter.rate *
2857                                 RS_PERIODIC_TIMEOUT_USEC) / 8;
2858
2859                        __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2860
2861                        /* read relevant values from mf_cfg struct in shmem */
2862                        vif_id =
2863                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2864                                 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2865                                FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2866                        vlan_val =
2867                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2868                                 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2869                                FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2870                        vlan_prio = (mf_config &
2871                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2872                                    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2873                        vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2874                        vlan_mode =
2875                                (MF_CFG_RD(bp,
2876                                           func_mf_config[func].afex_config) &
2877                                 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2878                                FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2879                        allowed_prio =
2880                                (MF_CFG_RD(bp,
2881                                           func_mf_config[func].afex_config) &
2882                                 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2883                                FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2884
2885                        /* send ramrod to FW, return in case of failure */
2886                        if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2887                                                   allowed_prio))
2888                                return;
2889
2890                        bp->afex_def_vlan_tag = vlan_val;
2891                        bp->afex_vlan_mode = vlan_mode;
2892                } else {
2893                        /* notify link down because BP->flags is disabled */
2894                        bnx2x_link_report(bp);
2895
2896                        /* send INVALID VIF ramrod to FW */
2897                        bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2898
2899                        /* Reset the default afex VLAN */
2900                        bp->afex_def_vlan_tag = -1;
2901                }
2902        }
2903}
2904
2905static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2906{
2907        struct bnx2x_func_switch_update_params *switch_update_params;
2908        struct bnx2x_func_state_params func_params;
2909
2910        memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2911        switch_update_params = &func_params.params.switch_update;
2912        func_params.f_obj = &bp->func_obj;
2913        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2914
2915        /* Prepare parameters for function state transitions */
2916        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2917        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2918
2919        if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2920                int func = BP_ABS_FUNC(bp);
2921                u32 val;
2922
2923                /* Re-learn the S-tag from shmem */
2924                val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2925                                FUNC_MF_CFG_E1HOV_TAG_MASK;
2926                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2927                        bp->mf_ov = val;
2928                } else {
2929                        BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2930                        goto fail;
2931                }
2932
2933                /* Configure new S-tag in LLH */
2934                REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2935                       bp->mf_ov);
2936
2937                /* Send Ramrod to update FW of change */
2938                __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2939                          &switch_update_params->changes);
2940                switch_update_params->vlan = bp->mf_ov;
2941
2942                if (bnx2x_func_state_change(bp, &func_params) < 0) {
2943                        BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2944                                  bp->mf_ov);
2945                        goto fail;
2946                } else {
2947                        DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2948                           bp->mf_ov);
2949                }
2950        } else {
2951                goto fail;
2952        }
2953
2954        bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2955        return;
2956fail:
2957        bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2958}
2959
2960static void bnx2x_pmf_update(struct bnx2x *bp)
2961{
2962        int port = BP_PORT(bp);
2963        u32 val;
2964
2965        bp->port.pmf = 1;
2966        DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2967
2968        /*
2969         * We need the mb() to ensure the ordering between the writing to
2970         * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2971         */
2972        smp_mb();
2973
2974        /* queue a periodic task */
2975        queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2976
2977        bnx2x_dcbx_pmf_update(bp);
2978
2979        /* enable nig attention */
2980        val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2981        if (bp->common.int_block == INT_BLOCK_HC) {
2982                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2983                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2984        } else if (!CHIP_IS_E1x(bp)) {
2985                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2986                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2987        }
2988
2989        bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2990}
2991
2992/* end of Link */
2993
2994/* slow path */
2995
2996/*
2997 * General service functions
2998 */
2999
3000/* send the MCP a request, block until there is a reply */
3001u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3002{
3003        int mb_idx = BP_FW_MB_IDX(bp);
3004        u32 seq;
3005        u32 rc = 0;
3006        u32 cnt = 1;
3007        u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3008
3009        mutex_lock(&bp->fw_mb_mutex);
3010        seq = ++bp->fw_seq;
3011        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3012        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3013
3014        DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3015                        (command | seq), param);
3016
3017        do {
3018                /* let the FW do it's magic ... */
3019                msleep(delay);
3020
3021                rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3022
3023                /* Give the FW up to 5 second (500*10ms) */
3024        } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3025
3026        DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3027           cnt*delay, rc, seq);
3028
3029        /* is this a reply to our command? */
3030        if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3031                rc &= FW_MSG_CODE_MASK;
3032        else {
3033                /* FW BUG! */
3034                BNX2X_ERR("FW failed to respond!\n");
3035                bnx2x_fw_dump(bp);
3036                rc = 0;
3037        }
3038        mutex_unlock(&bp->fw_mb_mutex);
3039
3040        return rc;
3041}
3042
3043static void storm_memset_func_cfg(struct bnx2x *bp,
3044                                 struct tstorm_eth_function_common_config *tcfg,
3045                                 u16 abs_fid)
3046{
3047        size_t size = sizeof(struct tstorm_eth_function_common_config);
3048
3049        u32 addr = BAR_TSTRORM_INTMEM +
3050                        TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3051
3052        __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3053}
3054
3055void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3056{
3057        if (CHIP_IS_E1x(bp)) {
3058                struct tstorm_eth_function_common_config tcfg = {0};
3059
3060                storm_memset_func_cfg(bp, &tcfg, p->func_id);
3061        }
3062
3063        /* Enable the function in the FW */
3064        storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3065        storm_memset_func_en(bp, p->func_id, 1);
3066
3067        /* spq */
3068        if (p->spq_active) {
3069                storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3070                REG_WR(bp, XSEM_REG_FAST_MEMORY +
3071                       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3072        }
3073}
3074
3075/**
3076 * bnx2x_get_common_flags - Return common flags
3077 *
3078 * @bp          device handle
3079 * @fp          queue handle
3080 * @zero_stats  TRUE if statistics zeroing is needed
3081 *
3082 * Return the flags that are common for the Tx-only and not normal connections.
3083 */
3084static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3085                                            struct bnx2x_fastpath *fp,
3086                                            bool zero_stats)
3087{
3088        unsigned long flags = 0;
3089
3090        /* PF driver will always initialize the Queue to an ACTIVE state */
3091        __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3092
3093        /* tx only connections collect statistics (on the same index as the
3094         * parent connection). The statistics are zeroed when the parent
3095         * connection is initialized.
3096         */
3097
3098        __set_bit(BNX2X_Q_FLG_STATS, &flags);
3099        if (zero_stats)
3100                __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3101
3102        if (bp->flags & TX_SWITCHING)
3103                __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3104
3105        __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3106        __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3107
3108#ifdef BNX2X_STOP_ON_ERROR
3109        __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3110#endif
3111
3112        return flags;
3113}
3114
3115static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3116                                       struct bnx2x_fastpath *fp,
3117                                       bool leading)
3118{
3119        unsigned long flags = 0;
3120
3121        /* calculate other queue flags */
3122        if (IS_MF_SD(bp))
3123                __set_bit(BNX2X_Q_FLG_OV, &flags);
3124
3125        if (IS_FCOE_FP(fp)) {
3126                __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3127                /* For FCoE - force usage of default priority (for afex) */
3128                __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3129        }
3130
3131        if (fp->mode != TPA_MODE_DISABLED) {
3132                __set_bit(BNX2X_Q_FLG_TPA, &flags);
3133                __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3134                if (fp->mode == TPA_MODE_GRO)
3135                        __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3136        }
3137
3138        if (leading) {
3139                __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3140                __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3141        }
3142
3143        /* Always set HW VLAN stripping */
3144        __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3145
3146        /* configure silent vlan removal */
3147        if (IS_MF_AFEX(bp))
3148                __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3149
3150        return flags | bnx2x_get_common_flags(bp, fp, true);
3151}
3152
3153static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3154        struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3155        u8 cos)
3156{
3157        gen_init->stat_id = bnx2x_stats_id(fp);
3158        gen_init->spcl_id = fp->cl_id;
3159
3160        /* Always use mini-jumbo MTU for FCoE L2 ring */
3161        if (IS_FCOE_FP(fp))
3162                gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3163        else
3164                gen_init->mtu = bp->dev->mtu;
3165
3166        gen_init->cos = cos;
3167
3168        gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3169}
3170
3171static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3172        struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3173        struct bnx2x_rxq_setup_params *rxq_init)
3174{
3175        u8 max_sge = 0;
3176        u16 sge_sz = 0;
3177        u16 tpa_agg_size = 0;
3178
3179        if (fp->mode != TPA_MODE_DISABLED) {
3180                pause->sge_th_lo = SGE_TH_LO(bp);
3181                pause->sge_th_hi = SGE_TH_HI(bp);
3182
3183                /* validate SGE ring has enough to cross high threshold */
3184                WARN_ON(bp->dropless_fc &&
3185                                pause->sge_th_hi + FW_PREFETCH_CNT >
3186                                MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3187
3188                tpa_agg_size = TPA_AGG_SIZE;
3189                max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3190                        SGE_PAGE_SHIFT;
3191                max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3192                          (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3193                sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3194        }
3195
3196        /* pause - not for e1 */
3197        if (!CHIP_IS_E1(bp)) {
3198                pause->bd_th_lo = BD_TH_LO(bp);
3199                pause->bd_th_hi = BD_TH_HI(bp);
3200
3201                pause->rcq_th_lo = RCQ_TH_LO(bp);
3202                pause->rcq_th_hi = RCQ_TH_HI(bp);
3203                /*
3204                 * validate that rings have enough entries to cross
3205                 * high thresholds
3206                 */
3207                WARN_ON(bp->dropless_fc &&
3208                                pause->bd_th_hi + FW_PREFETCH_CNT >
3209                                bp->rx_ring_size);
3210                WARN_ON(bp->dropless_fc &&
3211                                pause->rcq_th_hi + FW_PREFETCH_CNT >
3212                                NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3213
3214                pause->pri_map = 1;
3215        }
3216
3217        /* rxq setup */
3218        rxq_init->dscr_map = fp->rx_desc_mapping;
3219        rxq_init->sge_map = fp->rx_sge_mapping;
3220        rxq_init->rcq_map = fp->rx_comp_mapping;
3221        rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3222
3223        /* This should be a maximum number of data bytes that may be
3224         * placed on the BD (not including paddings).
3225         */
3226        rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3227                           BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3228
3229        rxq_init->cl_qzone_id = fp->cl_qzone_id;
3230        rxq_init->tpa_agg_sz = tpa_agg_size;
3231        rxq_init->sge_buf_sz = sge_sz;
3232        rxq_init->max_sges_pkt = max_sge;
3233        rxq_init->rss_engine_id = BP_FUNC(bp);
3234        rxq_init->mcast_engine_id = BP_FUNC(bp);
3235
3236        /* Maximum number or simultaneous TPA aggregation for this Queue.
3237         *
3238         * For PF Clients it should be the maximum available number.
3239         * VF driver(s) may want to define it to a smaller value.
3240         */
3241        rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3242
3243        rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3244        rxq_init->fw_sb_id = fp->fw_sb_id;
3245
3246        if (IS_FCOE_FP(fp))
3247                rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3248        else
3249                rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3250        /* configure silent vlan removal
3251         * if multi function mode is afex, then mask default vlan
3252         */
3253        if (IS_MF_AFEX(bp)) {
3254                rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3255                rxq_init->silent_removal_mask = VLAN_VID_MASK;
3256        }
3257}
3258
3259static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3260        struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3261        u8 cos)
3262{
3263        txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3264        txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3265        txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3266        txq_init->fw_sb_id = fp->fw_sb_id;
3267
3268        /*
3269         * set the tss leading client id for TX classification ==
3270         * leading RSS client id
3271         */
3272        txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3273
3274        if (IS_FCOE_FP(fp)) {
3275                txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3276                txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3277        }
3278}
3279
3280static void bnx2x_pf_init(struct bnx2x *bp)
3281{
3282        struct bnx2x_func_init_params func_init = {0};
3283        struct event_ring_data eq_data = { {0} };
3284
3285        if (!CHIP_IS_E1x(bp)) {
3286                /* reset IGU PF statistics: MSIX + ATTN */
3287                /* PF */
3288                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3289                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3290                           (CHIP_MODE_IS_4_PORT(bp) ?
3291                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3292                /* ATTN */
3293                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3294                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3295                           BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3296                           (CHIP_MODE_IS_4_PORT(bp) ?
3297                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3298        }
3299
3300        func_init.spq_active = true;
3301        func_init.pf_id = BP_FUNC(bp);
3302        func_init.func_id = BP_FUNC(bp);
3303        func_init.spq_map = bp->spq_mapping;
3304        func_init.spq_prod = bp->spq_prod_idx;
3305
3306        bnx2x_func_init(bp, &func_init);
3307
3308        memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3309
3310        /*
3311         * Congestion management values depend on the link rate
3312         * There is no active link so initial link rate is set to 10 Gbps.
3313         * When the link comes up The congestion management values are
3314         * re-calculated according to the actual link rate.
3315         */
3316        bp->link_vars.line_speed = SPEED_10000;
3317        bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3318
3319        /* Only the PMF sets the HW */
3320        if (bp->port.pmf)
3321                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3322
3323        /* init Event Queue - PCI bus guarantees correct endianity*/
3324        eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3325        eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3326        eq_data.producer = bp->eq_prod;
3327        eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3328        eq_data.sb_id = DEF_SB_ID;
3329        storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3330}
3331
3332static void bnx2x_e1h_disable(struct bnx2x *bp)
3333{
3334        int port = BP_PORT(bp);
3335
3336        bnx2x_tx_disable(bp);
3337
3338        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3339}
3340
3341static void bnx2x_e1h_enable(struct bnx2x *bp)
3342{
3343        int port = BP_PORT(bp);
3344
3345        if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3346                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3347
3348        /* Tx queue should be only re-enabled */
3349        netif_tx_wake_all_queues(bp->dev);
3350
3351        /*
3352         * Should not call netif_carrier_on since it will be called if the link
3353         * is up when checking for link state
3354         */
3355}
3356
3357#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3358
3359static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3360{
3361        struct eth_stats_info *ether_stat =
3362                &bp->slowpath->drv_info_to_mcp.ether_stat;
3363        struct bnx2x_vlan_mac_obj *mac_obj =
3364                &bp->sp_objs->mac_obj;
3365        int i;
3366
3367        strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3368                ETH_STAT_INFO_VERSION_LEN);
3369
3370        /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3371         * mac_local field in ether_stat struct. The base address is offset by 2
3372         * bytes to account for the field being 8 bytes but a mac address is
3373         * only 6 bytes. Likewise, the stride for the get_n_elements function is
3374         * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3375         * allocated by the ether_stat struct, so the macs will land in their
3376         * proper positions.
3377         */
3378        for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3379                memset(ether_stat->mac_local + i, 0,
3380                       sizeof(ether_stat->mac_local[0]));
3381        mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3382                                DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3383                                ether_stat->mac_local + MAC_PAD, MAC_PAD,
3384                                ETH_ALEN);
3385        ether_stat->mtu_size = bp->dev->mtu;
3386        if (bp->dev->features & NETIF_F_RXCSUM)
3387                ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3388        if (bp->dev->features & NETIF_F_TSO)
3389                ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3390        ether_stat->feature_flags |= bp->common.boot_mode;
3391
3392        ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3393
3394        ether_stat->txq_size = bp->tx_ring_size;
3395        ether_stat->rxq_size = bp->rx_ring_size;
3396
3397#ifdef CONFIG_BNX2X_SRIOV
3398        ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3399#endif
3400}
3401
3402static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3403{
3404        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3405        struct fcoe_stats_info *fcoe_stat =
3406                &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3407
3408        if (!CNIC_LOADED(bp))
3409                return;
3410
3411        memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3412
3413        fcoe_stat->qos_priority =
3414                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3415
3416        /* insert FCoE stats from ramrod response */
3417        if (!NO_FCOE(bp)) {
3418                struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3419                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3420                        tstorm_queue_statistics;
3421
3422                struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3423                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3424                        xstorm_queue_statistics;
3425
3426                struct fcoe_statistics_params *fw_fcoe_stat =
3427                        &bp->fw_stats_data->fcoe;
3428
3429                ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3430                          fcoe_stat->rx_bytes_lo,
3431                          fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3432
3433                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3434                          fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3435                          fcoe_stat->rx_bytes_lo,
3436                          fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3437
3438                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3439                          fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3440                          fcoe_stat->rx_bytes_lo,
3441                          fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3442
3443                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3444                          fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3445                          fcoe_stat->rx_bytes_lo,
3446                          fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3447
3448                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3449                          fcoe_stat->rx_frames_lo,
3450                          fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3451
3452                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3453                          fcoe_stat->rx_frames_lo,
3454                          fcoe_q_tstorm_stats->rcv_ucast_pkts);
3455
3456                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3457                          fcoe_stat->rx_frames_lo,
3458                          fcoe_q_tstorm_stats->rcv_bcast_pkts);
3459
3460                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3461                          fcoe_stat->rx_frames_lo,
3462                          fcoe_q_tstorm_stats->rcv_mcast_pkts);
3463
3464                ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3465                          fcoe_stat->tx_bytes_lo,
3466                          fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3467
3468                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3469                          fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3470                          fcoe_stat->tx_bytes_lo,
3471                          fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3472
3473                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3474                          fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3475                          fcoe_stat->tx_bytes_lo,
3476                          fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3477
3478                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3479                          fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3480                          fcoe_stat->tx_bytes_lo,
3481                          fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3482
3483                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3484                          fcoe_stat->tx_frames_lo,
3485                          fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3486
3487                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3488                          fcoe_stat->tx_frames_lo,
3489                          fcoe_q_xstorm_stats->ucast_pkts_sent);
3490
3491                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3492                          fcoe_stat->tx_frames_lo,
3493                          fcoe_q_xstorm_stats->bcast_pkts_sent);
3494
3495                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3496                          fcoe_stat->tx_frames_lo,
3497                          fcoe_q_xstorm_stats->mcast_pkts_sent);
3498        }
3499
3500        /* ask L5 driver to add data to the struct */
3501        bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3502}
3503
3504static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3505{
3506        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3507        struct iscsi_stats_info *iscsi_stat =
3508                &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3509
3510        if (!CNIC_LOADED(bp))
3511                return;
3512
3513        memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3514               ETH_ALEN);
3515
3516        iscsi_stat->qos_priority =
3517                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3518
3519        /* ask L5 driver to add data to the struct */
3520        bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3521}
3522
3523/* called due to MCP event (on pmf):
3524 *      reread new bandwidth configuration
3525 *      configure FW
3526 *      notify others function about the change
3527 */
3528static void bnx2x_config_mf_bw(struct bnx2x *bp)
3529{
3530        /* Workaround for MFW bug.
3531         * MFW is not supposed to generate BW attention in
3532         * single function mode.
3533         */
3534        if (!IS_MF(bp)) {
3535                DP(BNX2X_MSG_MCP,
3536                   "Ignoring MF BW config in single function mode\n");
3537                return;
3538        }
3539
3540        if (bp->link_vars.link_up) {
3541                bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3542                bnx2x_link_sync_notify(bp);
3543        }
3544        storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3545}
3546
3547static void bnx2x_set_mf_bw(struct bnx2x *bp)
3548{
3549        bnx2x_config_mf_bw(bp);
3550        bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3551}
3552
3553static void bnx2x_handle_eee_event(struct bnx2x *bp)
3554{
3555        DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3556        bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3557}
3558
3559#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3560#define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3561
3562static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3563{
3564        enum drv_info_opcode op_code;
3565        u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3566        bool release = false;
3567        int wait;
3568
3569        /* if drv_info version supported by MFW doesn't match - send NACK */
3570        if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3571                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3572                return;
3573        }
3574
3575        op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3576                  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3577
3578        /* Must prevent other flows from accessing drv_info_to_mcp */
3579        mutex_lock(&bp->drv_info_mutex);
3580
3581        memset(&bp->slowpath->drv_info_to_mcp, 0,
3582               sizeof(union drv_info_to_mcp));
3583
3584        switch (op_code) {
3585        case ETH_STATS_OPCODE:
3586                bnx2x_drv_info_ether_stat(bp);
3587                break;
3588        case FCOE_STATS_OPCODE:
3589                bnx2x_drv_info_fcoe_stat(bp);
3590                break;
3591        case ISCSI_STATS_OPCODE:
3592                bnx2x_drv_info_iscsi_stat(bp);
3593                break;
3594        default:
3595                /* if op code isn't supported - send NACK */
3596                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3597                goto out;
3598        }
3599
3600        /* if we got drv_info attn from MFW then these fields are defined in
3601         * shmem2 for sure
3602         */
3603        SHMEM2_WR(bp, drv_info_host_addr_lo,
3604                U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3605        SHMEM2_WR(bp, drv_info_host_addr_hi,
3606                U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3607
3608        bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3609
3610        /* Since possible management wants both this and get_driver_version
3611         * need to wait until management notifies us it finished utilizing
3612         * the buffer.
3613         */
3614        if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3615                DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3616        } else if (!bp->drv_info_mng_owner) {
3617                u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3618
3619                for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3620                        u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3621
3622                        /* Management is done; need to clear indication */
3623                        if (indication & bit) {
3624                                SHMEM2_WR(bp, mfw_drv_indication,
3625                                          indication & ~bit);
3626                                release = true;
3627                                break;
3628                        }
3629
3630                        msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3631                }
3632        }
3633        if (!release) {
3634                DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3635                bp->drv_info_mng_owner = true;
3636        }
3637
3638out:
3639        mutex_unlock(&bp->drv_info_mutex);
3640}
3641
3642static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3643{
3644        u8 vals[4];
3645        int i = 0;
3646
3647        if (bnx2x_format) {
3648                i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3649                           &vals[0], &vals[1], &vals[2], &vals[3]);
3650                if (i > 0)
3651                        vals[0] -= '0';
3652        } else {
3653                i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3654                           &vals[0], &vals[1], &vals[2], &vals[3]);
3655        }
3656
3657        while (i < 4)
3658                vals[i++] = 0;
3659
3660        return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3661}
3662
3663void bnx2x_update_mng_version(struct bnx2x *bp)
3664{
3665        u32 iscsiver = DRV_VER_NOT_LOADED;
3666        u32 fcoever = DRV_VER_NOT_LOADED;
3667        u32 ethver = DRV_VER_NOT_LOADED;
3668        int idx = BP_FW_MB_IDX(bp);
3669        u8 *version;
3670
3671        if (!SHMEM2_HAS(bp, func_os_drv_ver))
3672                return;
3673
3674        mutex_lock(&bp->drv_info_mutex);
3675        /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3676        if (bp->drv_info_mng_owner)
3677                goto out;
3678
3679        if (bp->state != BNX2X_STATE_OPEN)
3680                goto out;
3681
3682        /* Parse ethernet driver version */
3683        ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3684        if (!CNIC_LOADED(bp))
3685                goto out;
3686
3687        /* Try getting storage driver version via cnic */
3688        memset(&bp->slowpath->drv_info_to_mcp, 0,
3689               sizeof(union drv_info_to_mcp));
3690        bnx2x_drv_info_iscsi_stat(bp);
3691        version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3692        iscsiver = bnx2x_update_mng_version_utility(version, false);
3693
3694        memset(&bp->slowpath->drv_info_to_mcp, 0,
3695               sizeof(union drv_info_to_mcp));
3696        bnx2x_drv_info_fcoe_stat(bp);
3697        version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3698        fcoever = bnx2x_update_mng_version_utility(version, false);
3699
3700out:
3701        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3702        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3703        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3704
3705        mutex_unlock(&bp->drv_info_mutex);
3706
3707        DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3708           ethver, iscsiver, fcoever);
3709}
3710
3711void bnx2x_update_mfw_dump(struct bnx2x *bp)
3712{
3713        u32 drv_ver;
3714        u32 valid_dump;
3715
3716        if (!SHMEM2_HAS(bp, drv_info))
3717                return;
3718
3719        /* Update Driver load time, possibly broken in y2038 */
3720        SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3721
3722        drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3723        SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3724
3725        SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3726
3727        /* Check & notify On-Chip dump. */
3728        valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3729
3730        if (valid_dump & FIRST_DUMP_VALID)
3731                DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3732
3733        if (valid_dump & SECOND_DUMP_VALID)
3734                DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3735}
3736
3737static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3738{
3739        u32 cmd_ok, cmd_fail;
3740
3741        /* sanity */
3742        if (event & DRV_STATUS_DCC_EVENT_MASK &&
3743            event & DRV_STATUS_OEM_EVENT_MASK) {
3744                BNX2X_ERR("Received simultaneous events %08x\n", event);
3745                return;
3746        }
3747
3748        if (event & DRV_STATUS_DCC_EVENT_MASK) {
3749                cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3750                cmd_ok = DRV_MSG_CODE_DCC_OK;
3751        } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3752                cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3753                cmd_ok = DRV_MSG_CODE_OEM_OK;
3754        }
3755
3756        DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3757
3758        if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3759                     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3760                /* This is the only place besides the function initialization
3761                 * where the bp->flags can change so it is done without any
3762                 * locks
3763                 */
3764                if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3765                        DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3766                        bp->flags |= MF_FUNC_DIS;
3767
3768                        bnx2x_e1h_disable(bp);
3769                } else {
3770                        DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3771                        bp->flags &= ~MF_FUNC_DIS;
3772
3773                        bnx2x_e1h_enable(bp);
3774                }
3775                event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3776                           DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3777        }
3778
3779        if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3780                     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3781                bnx2x_config_mf_bw(bp);
3782                event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3783                           DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3784        }
3785
3786        /* Report results to MCP */
3787        if (event)
3788                bnx2x_fw_command(bp, cmd_fail, 0);
3789        else
3790                bnx2x_fw_command(bp, cmd_ok, 0);
3791}
3792
3793/* must be called under the spq lock */
3794static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3795{
3796        struct eth_spe *next_spe = bp->spq_prod_bd;
3797
3798        if (bp->spq_prod_bd == bp->spq_last_bd) {
3799                bp->spq_prod_bd = bp->spq;
3800                bp->spq_prod_idx = 0;
3801                DP(BNX2X_MSG_SP, "end of spq\n");
3802        } else {
3803                bp->spq_prod_bd++;
3804                bp->spq_prod_idx++;
3805        }
3806        return next_spe;
3807}
3808
3809/* must be called under the spq lock */
3810static void bnx2x_sp_prod_update(struct bnx2x *bp)
3811{
3812        int func = BP_FUNC(bp);
3813
3814        /*
3815         * Make sure that BD data is updated before writing the producer:
3816         * BD data is written to the memory, the producer is read from the
3817         * memory, thus we need a full memory barrier to ensure the ordering.
3818         */
3819        mb();
3820
3821        REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3822                         bp->spq_prod_idx);
3823}
3824
3825/**
3826 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3827 *
3828 * @cmd:        command to check
3829 * @cmd_type:   command type
3830 */
3831static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3832{
3833        if ((cmd_type == NONE_CONNECTION_TYPE) ||
3834            (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3835            (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3836            (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3837            (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3838            (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3839            (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3840                return true;
3841        else
3842                return false;
3843}
3844
3845/**
3846 * bnx2x_sp_post - place a single command on an SP ring
3847 *
3848 * @bp:         driver handle
3849 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3850 * @cid:        SW CID the command is related to
3851 * @data_hi:    command private data address (high 32 bits)
3852 * @data_lo:    command private data address (low 32 bits)
3853 * @cmd_type:   command type (e.g. NONE, ETH)
3854 *
3855 * SP data is handled as if it's always an address pair, thus data fields are
3856 * not swapped to little endian in upper functions. Instead this function swaps
3857 * data as if it's two u32 fields.
3858 */
3859int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3860                  u32 data_hi, u32 data_lo, int cmd_type)
3861{
3862        struct eth_spe *spe;
3863        u16 type;
3864        bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3865
3866#ifdef BNX2X_STOP_ON_ERROR
3867        if (unlikely(bp->panic)) {
3868                BNX2X_ERR("Can't post SP when there is panic\n");
3869                return -EIO;
3870        }
3871#endif
3872
3873        spin_lock_bh(&bp->spq_lock);
3874
3875        if (common) {
3876                if (!atomic_read(&bp->eq_spq_left)) {
3877                        BNX2X_ERR("BUG! EQ ring full!\n");
3878                        spin_unlock_bh(&bp->spq_lock);
3879                        bnx2x_panic();
3880                        return -EBUSY;
3881                }
3882        } else if (!atomic_read(&bp->cq_spq_left)) {
3883                        BNX2X_ERR("BUG! SPQ ring full!\n");
3884                        spin_unlock_bh(&bp->spq_lock);
3885                        bnx2x_panic();
3886                        return -EBUSY;
3887        }
3888
3889        spe = bnx2x_sp_get_next(bp);
3890
3891        /* CID needs port number to be encoded int it */
3892        spe->hdr.conn_and_cmd_data =
3893                        cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3894                                    HW_CID(bp, cid));
3895
3896        /* In some cases, type may already contain the func-id
3897         * mainly in SRIOV related use cases, so we add it here only
3898         * if it's not already set.
3899         */
3900        if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3901                type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3902                        SPE_HDR_CONN_TYPE;
3903                type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3904                         SPE_HDR_FUNCTION_ID);
3905        } else {
3906                type = cmd_type;
3907        }
3908
3909        spe->hdr.type = cpu_to_le16(type);
3910
3911        spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3912        spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3913
3914        /*
3915         * It's ok if the actual decrement is issued towards the memory
3916         * somewhere between the spin_lock and spin_unlock. Thus no
3917         * more explicit memory barrier is needed.
3918         */
3919        if (common)
3920                atomic_dec(&bp->eq_spq_left);
3921        else
3922                atomic_dec(&bp->cq_spq_left);
3923
3924        DP(BNX2X_MSG_SP,
3925           "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3926           bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3927           (u32)(U64_LO(bp->spq_mapping) +
3928           (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3929           HW_CID(bp, cid), data_hi, data_lo, type,
3930           atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3931
3932        bnx2x_sp_prod_update(bp);
3933        spin_unlock_bh(&bp->spq_lock);
3934        return 0;
3935}
3936
3937/* acquire split MCP access lock register */
3938static int bnx2x_acquire_alr(struct bnx2x *bp)
3939{
3940        u32 j, val;
3941        int rc = 0;
3942
3943        might_sleep();
3944        for (j = 0; j < 1000; j++) {
3945                REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3946                val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3947                if (val & MCPR_ACCESS_LOCK_LOCK)
3948                        break;
3949
3950                usleep_range(5000, 10000);
3951        }
3952        if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3953                BNX2X_ERR("Cannot acquire MCP access lock register\n");
3954                rc = -EBUSY;
3955        }
3956
3957        return rc;
3958}
3959
3960/* release split MCP access lock register */
3961static void bnx2x_release_alr(struct bnx2x *bp)
3962{
3963        REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3964}
3965
3966#define BNX2X_DEF_SB_ATT_IDX    0x0001
3967#define BNX2X_DEF_SB_IDX        0x0002
3968
3969static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3970{
3971        struct host_sp_status_block *def_sb = bp->def_status_blk;
3972        u16 rc = 0;
3973
3974        barrier(); /* status block is written to by the chip */
3975        if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3976                bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3977                rc |= BNX2X_DEF_SB_ATT_IDX;
3978        }
3979
3980        if (bp->def_idx != def_sb->sp_sb.running_index) {
3981                bp->def_idx = def_sb->sp_sb.running_index;
3982                rc |= BNX2X_DEF_SB_IDX;
3983        }
3984
3985        /* Do not reorder: indices reading should complete before handling */
3986        barrier();
3987        return rc;
3988}
3989
3990/*
3991 * slow path service functions
3992 */
3993
3994static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3995{
3996        int port = BP_PORT(bp);
3997        u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3998                              MISC_REG_AEU_MASK_ATTN_FUNC_0;
3999        u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4000                                       NIG_REG_MASK_INTERRUPT_PORT0;
4001        u32 aeu_mask;
4002        u32 nig_mask = 0;
4003        u32 reg_addr;
4004
4005        if (bp->attn_state & asserted)
4006                BNX2X_ERR("IGU ERROR\n");
4007
4008        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4009        aeu_mask = REG_RD(bp, aeu_addr);
4010
4011        DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4012           aeu_mask, asserted);
4013        aeu_mask &= ~(asserted & 0x3ff);
4014        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4015
4016        REG_WR(bp, aeu_addr, aeu_mask);
4017        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4018
4019        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4020        bp->attn_state |= asserted;
4021        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4022
4023        if (asserted & ATTN_HARD_WIRED_MASK) {
4024                if (asserted & ATTN_NIG_FOR_FUNC) {
4025
4026                        bnx2x_acquire_phy_lock(bp);
4027
4028                        /* save nig interrupt mask */
4029                        nig_mask = REG_RD(bp, nig_int_mask_addr);
4030
4031                        /* If nig_mask is not set, no need to call the update
4032                         * function.
4033                         */
4034                        if (nig_mask) {
4035                                REG_WR(bp, nig_int_mask_addr, 0);
4036
4037                                bnx2x_link_attn(bp);
4038                        }
4039
4040                        /* handle unicore attn? */
4041                }
4042                if (asserted & ATTN_SW_TIMER_4_FUNC)
4043                        DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4044
4045                if (asserted & GPIO_2_FUNC)
4046                        DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4047
4048                if (asserted & GPIO_3_FUNC)
4049                        DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4050
4051                if (asserted & GPIO_4_FUNC)
4052                        DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4053
4054                if (port == 0) {
4055                        if (asserted & ATTN_GENERAL_ATTN_1) {
4056                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4057                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4058                        }
4059                        if (asserted & ATTN_GENERAL_ATTN_2) {
4060                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4061                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4062                        }
4063                        if (asserted & ATTN_GENERAL_ATTN_3) {
4064                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4065                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4066                        }
4067                } else {
4068                        if (asserted & ATTN_GENERAL_ATTN_4) {
4069                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4070                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4071                        }
4072                        if (asserted & ATTN_GENERAL_ATTN_5) {
4073                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4074                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4075                        }
4076                        if (asserted & ATTN_GENERAL_ATTN_6) {
4077                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4078                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4079                        }
4080                }
4081
4082        } /* if hardwired */
4083
4084        if (bp->common.int_block == INT_BLOCK_HC)
4085                reg_addr = (HC_REG_COMMAND_REG + port*32 +
4086                            COMMAND_REG_ATTN_BITS_SET);
4087        else
4088                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4089
4090        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4091           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4092        REG_WR(bp, reg_addr, asserted);
4093
4094        /* now set back the mask */
4095        if (asserted & ATTN_NIG_FOR_FUNC) {
4096                /* Verify that IGU ack through BAR was written before restoring
4097                 * NIG mask. This loop should exit after 2-3 iterations max.
4098                 */
4099                if (bp->common.int_block != INT_BLOCK_HC) {
4100                        u32 cnt = 0, igu_acked;
4101                        do {
4102                                igu_acked = REG_RD(bp,
4103                                                   IGU_REG_ATTENTION_ACK_BITS);
4104                        } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4105                                 (++cnt < MAX_IGU_ATTN_ACK_TO));
4106                        if (!igu_acked)
4107                                DP(NETIF_MSG_HW,
4108                                   "Failed to verify IGU ack on time\n");
4109                        barrier();
4110                }
4111                REG_WR(bp, nig_int_mask_addr, nig_mask);
4112                bnx2x_release_phy_lock(bp);
4113        }
4114}
4115
4116static void bnx2x_fan_failure(struct bnx2x *bp)
4117{
4118        int port = BP_PORT(bp);
4119        u32 ext_phy_config;
4120        /* mark the failure */
4121        ext_phy_config =
4122                SHMEM_RD(bp,
4123                         dev_info.port_hw_config[port].external_phy_config);
4124
4125        ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4126        ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4127        SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4128                 ext_phy_config);
4129
4130        /* log the failure */
4131        netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4132                            "Please contact OEM Support for assistance\n");
4133
4134        /* Schedule device reset (unload)
4135         * This is due to some boards consuming sufficient power when driver is
4136         * up to overheat if fan fails.
4137         */
4138        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4139}
4140
4141static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4142{
4143        int port = BP_PORT(bp);
4144        int reg_offset;
4145        u32 val;
4146
4147        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4148                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4149
4150        if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4151
4152                val = REG_RD(bp, reg_offset);
4153                val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4154                REG_WR(bp, reg_offset, val);
4155
4156                BNX2X_ERR("SPIO5 hw attention\n");
4157
4158                /* Fan failure attention */
4159                bnx2x_hw_reset_phy(&bp->link_params);
4160                bnx2x_fan_failure(bp);
4161        }
4162
4163        if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4164                bnx2x_acquire_phy_lock(bp);
4165                bnx2x_handle_module_detect_int(&bp->link_params);
4166                bnx2x_release_phy_lock(bp);
4167        }
4168
4169        if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4170
4171                val = REG_RD(bp, reg_offset);
4172                val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4173                REG_WR(bp, reg_offset, val);
4174
4175                BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4176                          (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4177                bnx2x_panic();
4178        }
4179}
4180
4181static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4182{
4183        u32 val;
4184
4185        if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4186
4187                val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4188                BNX2X_ERR("DB hw attention 0x%x\n", val);
4189                /* DORQ discard attention */
4190                if (val & 0x2)
4191                        BNX2X_ERR("FATAL error from DORQ\n");
4192        }
4193
4194        if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4195
4196                int port = BP_PORT(bp);
4197                int reg_offset;
4198
4199                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4200                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4201
4202                val = REG_RD(bp, reg_offset);
4203                val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4204                REG_WR(bp, reg_offset, val);
4205
4206                BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4207                          (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4208                bnx2x_panic();
4209        }
4210}
4211
4212static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4213{
4214        u32 val;
4215
4216        if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4217
4218                val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4219                BNX2X_ERR("CFC hw attention 0x%x\n", val);
4220                /* CFC error attention */
4221                if (val & 0x2)
4222                        BNX2X_ERR("FATAL error from CFC\n");
4223        }
4224
4225        if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4226                val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4227                BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4228                /* RQ_USDMDP_FIFO_OVERFLOW */
4229                if (val & 0x18000)
4230                        BNX2X_ERR("FATAL error from PXP\n");
4231
4232                if (!CHIP_IS_E1x(bp)) {
4233                        val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4234                        BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4235                }
4236        }
4237
4238        if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4239
4240                int port = BP_PORT(bp);
4241                int reg_offset;
4242
4243                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4244                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4245
4246                val = REG_RD(bp, reg_offset);
4247                val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4248                REG_WR(bp, reg_offset, val);
4249
4250                BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4251                          (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4252                bnx2x_panic();
4253        }
4254}
4255
4256static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4257{
4258        u32 val;
4259
4260        if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4261
4262                if (attn & BNX2X_PMF_LINK_ASSERT) {
4263                        int func = BP_FUNC(bp);
4264
4265                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4266                        bnx2x_read_mf_cfg(bp);
4267                        bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4268                                        func_mf_config[BP_ABS_FUNC(bp)].config);
4269                        val = SHMEM_RD(bp,
4270                                       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4271
4272                        if (val & (DRV_STATUS_DCC_EVENT_MASK |
4273                                   DRV_STATUS_OEM_EVENT_MASK))
4274                                bnx2x_oem_event(bp,
4275                                        (val & (DRV_STATUS_DCC_EVENT_MASK |
4276                                                DRV_STATUS_OEM_EVENT_MASK)));
4277
4278                        if (val & DRV_STATUS_SET_MF_BW)
4279                                bnx2x_set_mf_bw(bp);
4280
4281                        if (val & DRV_STATUS_DRV_INFO_REQ)
4282                                bnx2x_handle_drv_info_req(bp);
4283
4284                        if (val & DRV_STATUS_VF_DISABLED)
4285                                bnx2x_schedule_iov_task(bp,
4286                                                        BNX2X_IOV_HANDLE_FLR);
4287
4288                        if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4289                                bnx2x_pmf_update(bp);
4290
4291                        if (bp->port.pmf &&
4292                            (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4293                                bp->dcbx_enabled > 0)
4294                                /* start dcbx state machine */
4295                                bnx2x_dcbx_set_params(bp,
4296                                        BNX2X_DCBX_STATE_NEG_RECEIVED);
4297                        if (val & DRV_STATUS_AFEX_EVENT_MASK)
4298                                bnx2x_handle_afex_cmd(bp,
4299                                        val & DRV_STATUS_AFEX_EVENT_MASK);
4300                        if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4301                                bnx2x_handle_eee_event(bp);
4302
4303                        if (val & DRV_STATUS_OEM_UPDATE_SVID)
4304                                bnx2x_schedule_sp_rtnl(bp,
4305                                        BNX2X_SP_RTNL_UPDATE_SVID, 0);
4306
4307                        if (bp->link_vars.periodic_flags &
4308                            PERIODIC_FLAGS_LINK_EVENT) {
4309                                /*  sync with link */
4310                                bnx2x_acquire_phy_lock(bp);
4311                                bp->link_vars.periodic_flags &=
4312                                        ~PERIODIC_FLAGS_LINK_EVENT;
4313                                bnx2x_release_phy_lock(bp);
4314                                if (IS_MF(bp))
4315                                        bnx2x_link_sync_notify(bp);
4316                                bnx2x_link_report(bp);
4317                        }
4318                        /* Always call it here: bnx2x_link_report() will
4319                         * prevent the link indication duplication.
4320                         */
4321                        bnx2x__link_status_update(bp);
4322                } else if (attn & BNX2X_MC_ASSERT_BITS) {
4323
4324                        BNX2X_ERR("MC assert!\n");
4325                        bnx2x_mc_assert(bp);
4326                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4327                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4328                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4329                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4330                        bnx2x_panic();
4331
4332                } else if (attn & BNX2X_MCP_ASSERT) {
4333
4334                        BNX2X_ERR("MCP assert!\n");
4335                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4336                        bnx2x_fw_dump(bp);
4337
4338                } else
4339                        BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4340        }
4341
4342        if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4343                BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4344                if (attn & BNX2X_GRC_TIMEOUT) {
4345                        val = CHIP_IS_E1(bp) ? 0 :
4346                                        REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4347                        BNX2X_ERR("GRC time-out 0x%08x\n", val);
4348                }
4349                if (attn & BNX2X_GRC_RSV) {
4350                        val = CHIP_IS_E1(bp) ? 0 :
4351                                        REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4352                        BNX2X_ERR("GRC reserved 0x%08x\n", val);
4353                }
4354                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4355        }
4356}
4357
4358/*
4359 * Bits map:
4360 * 0-7   - Engine0 load counter.
4361 * 8-15  - Engine1 load counter.
4362 * 16    - Engine0 RESET_IN_PROGRESS bit.
4363 * 17    - Engine1 RESET_IN_PROGRESS bit.
4364 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4365 *         on the engine
4366 * 19    - Engine1 ONE_IS_LOADED.
4367 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4368 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4369 *         just the one belonging to its engine).
4370 *
4371 */
4372#define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4373
4374#define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4375#define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4376#define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4377#define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4378#define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4379#define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4380#define BNX2X_GLOBAL_RESET_BIT          0x00040000
4381
4382/*
4383 * Set the GLOBAL_RESET bit.
4384 *
4385 * Should be run under rtnl lock
4386 */
4387void bnx2x_set_reset_global(struct bnx2x *bp)
4388{
4389        u32 val;
4390        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4391        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4392        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4393        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4394}
4395
4396/*
4397 * Clear the GLOBAL_RESET bit.
4398 *
4399 * Should be run under rtnl lock
4400 */
4401static void bnx2x_clear_reset_global(struct bnx2x *bp)
4402{
4403        u32 val;
4404        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4406        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4407        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4408}
4409
4410/*
4411 * Checks the GLOBAL_RESET bit.
4412 *
4413 * should be run under rtnl lock
4414 */
4415static bool bnx2x_reset_is_global(struct bnx2x *bp)
4416{
4417        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4418
4419        DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4420        return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4421}
4422
4423/*
4424 * Clear RESET_IN_PROGRESS bit for the current engine.
4425 *
4426 * Should be run under rtnl lock
4427 */
4428static void bnx2x_set_reset_done(struct bnx2x *bp)
4429{
4430        u32 val;
4431        u32 bit = BP_PATH(bp) ?
4432                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4433        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4434        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4435
4436        /* Clear the bit */
4437        val &= ~bit;
4438        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4439
4440        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4441}
4442
4443/*
4444 * Set RESET_IN_PROGRESS for the current engine.
4445 *
4446 * should be run under rtnl lock
4447 */
4448void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4449{
4450        u32 val;
4451        u32 bit = BP_PATH(bp) ?
4452                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4453        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4455
4456        /* Set the bit */
4457        val |= bit;
4458        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4459        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4460}
4461
4462/*
4463 * Checks the RESET_IN_PROGRESS bit for the given engine.
4464 * should be run under rtnl lock
4465 */
4466bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4467{
4468        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4469        u32 bit = engine ?
4470                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4471
4472        /* return false if bit is set */
4473        return (val & bit) ? false : true;
4474}
4475
4476/*
4477 * set pf load for the current pf.
4478 *
4479 * should be run under rtnl lock
4480 */
4481void bnx2x_set_pf_load(struct bnx2x *bp)
4482{
4483        u32 val1, val;
4484        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4485                             BNX2X_PATH0_LOAD_CNT_MASK;
4486        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4487                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4488
4489        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4490        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4491
4492        DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4493
4494        /* get the current counter value */
4495        val1 = (val & mask) >> shift;
4496
4497        /* set bit of that PF */
4498        val1 |= (1 << bp->pf_num);
4499
4500        /* clear the old value */
4501        val &= ~mask;
4502
4503        /* set the new one */
4504        val |= ((val1 << shift) & mask);
4505
4506        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4507        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4508}
4509
4510/**
4511 * bnx2x_clear_pf_load - clear pf load mark
4512 *
4513 * @bp:         driver handle
4514 *
4515 * Should be run under rtnl lock.
4516 * Decrements the load counter for the current engine. Returns
4517 * whether other functions are still loaded
4518 */
4519bool bnx2x_clear_pf_load(struct bnx2x *bp)
4520{
4521        u32 val1, val;
4522        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4523                             BNX2X_PATH0_LOAD_CNT_MASK;
4524        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4525                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4526
4527        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4528        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4529        DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4530
4531        /* get the current counter value */
4532        val1 = (val & mask) >> shift;
4533
4534        /* clear bit of that PF */
4535        val1 &= ~(1 << bp->pf_num);
4536
4537        /* clear the old value */
4538        val &= ~mask;
4539
4540        /* set the new one */
4541        val |= ((val1 << shift) & mask);
4542
4543        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4544        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4545        return val1 != 0;
4546}
4547
4548/*
4549 * Read the load status for the current engine.
4550 *
4551 * should be run under rtnl lock
4552 */
4553static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4554{
4555        u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4556                             BNX2X_PATH0_LOAD_CNT_MASK);
4557        u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4558                             BNX2X_PATH0_LOAD_CNT_SHIFT);
4559        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4560
4561        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4562
4563        val = (val & mask) >> shift;
4564
4565        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4566           engine, val);
4567
4568        return val != 0;
4569}
4570
4571static void _print_parity(struct bnx2x *bp, u32 reg)
4572{
4573        pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4574}
4575
4576static void _print_next_block(int idx, const char *blk)
4577{
4578        pr_cont("%s%s", idx ? ", " : "", blk);
4579}
4580
4581static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4582                                            int *par_num, bool print)
4583{
4584        u32 cur_bit;
4585        bool res;
4586        int i;
4587
4588        res = false;
4589
4590        for (i = 0; sig; i++) {
4591                cur_bit = (0x1UL << i);
4592                if (sig & cur_bit) {
4593                        res |= true; /* Each bit is real error! */
4594
4595                        if (print) {
4596                                switch (cur_bit) {
4597                                case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4598                                        _print_next_block((*par_num)++, "BRB");
4599                                        _print_parity(bp,
4600                                                      BRB1_REG_BRB1_PRTY_STS);
4601                                        break;
4602                                case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4603                                        _print_next_block((*par_num)++,
4604                                                          "PARSER");
4605                                        _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4606                                        break;
4607                                case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4608                                        _print_next_block((*par_num)++, "TSDM");
4609                                        _print_parity(bp,
4610                                                      TSDM_REG_TSDM_PRTY_STS);
4611                                        break;
4612                                case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4613                                        _print_next_block((*par_num)++,
4614                                                          "SEARCHER");
4615                                        _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4616                                        break;
4617                                case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4618                                        _print_next_block((*par_num)++, "TCM");
4619                                        _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4620                                        break;
4621                                case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4622                                        _print_next_block((*par_num)++,
4623                                                          "TSEMI");
4624                                        _print_parity(bp,
4625                                                      TSEM_REG_TSEM_PRTY_STS_0);
4626                                        _print_parity(bp,
4627                                                      TSEM_REG_TSEM_PRTY_STS_1);
4628                                        break;
4629                                case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4630                                        _print_next_block((*par_num)++, "XPB");
4631                                        _print_parity(bp, GRCBASE_XPB +
4632                                                          PB_REG_PB_PRTY_STS);
4633                                        break;
4634                                }
4635                        }
4636
4637                        /* Clear the bit */
4638                        sig &= ~cur_bit;
4639                }
4640        }
4641
4642        return res;
4643}
4644
4645static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4646                                            int *par_num, bool *global,
4647                                            bool print)
4648{
4649        u32 cur_bit;
4650        bool res;
4651        int i;
4652
4653        res = false;
4654
4655        for (i = 0; sig; i++) {
4656                cur_bit = (0x1UL << i);
4657                if (sig & cur_bit) {
4658                        res |= true; /* Each bit is real error! */
4659                        switch (cur_bit) {
4660                        case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4661                                if (print) {
4662                                        _print_next_block((*par_num)++, "PBF");
4663                                        _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4664                                }
4665                                break;
4666                        case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4667                                if (print) {
4668                                        _print_next_block((*par_num)++, "QM");
4669                                        _print_parity(bp, QM_REG_QM_PRTY_STS);
4670                                }
4671                                break;
4672                        case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4673                                if (print) {
4674                                        _print_next_block((*par_num)++, "TM");
4675                                        _print_parity(bp, TM_REG_TM_PRTY_STS);
4676                                }
4677                                break;
4678                        case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4679                                if (print) {
4680                                        _print_next_block((*par_num)++, "XSDM");
4681                                        _print_parity(bp,
4682                                                      XSDM_REG_XSDM_PRTY_STS);
4683                                }
4684                                break;
4685                        case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4686                                if (print) {
4687                                        _print_next_block((*par_num)++, "XCM");
4688                                        _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4689                                }
4690                                break;
4691                        case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4692                                if (print) {
4693                                        _print_next_block((*par_num)++,
4694                                                          "XSEMI");
4695                                        _print_parity(bp,
4696                                                      XSEM_REG_XSEM_PRTY_STS_0);
4697                                        _print_parity(bp,
4698                                                      XSEM_REG_XSEM_PRTY_STS_1);
4699                                }
4700                                break;
4701                        case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4702                                if (print) {
4703                                        _print_next_block((*par_num)++,
4704                                                          "DOORBELLQ");
4705                                        _print_parity(bp,
4706                                                      DORQ_REG_DORQ_PRTY_STS);
4707                                }
4708                                break;
4709                        case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4710                                if (print) {
4711                                        _print_next_block((*par_num)++, "NIG");
4712                                        if (CHIP_IS_E1x(bp)) {
4713                                                _print_parity(bp,
4714                                                        NIG_REG_NIG_PRTY_STS);
4715                                        } else {
4716                                                _print_parity(bp,
4717                                                        NIG_REG_NIG_PRTY_STS_0);
4718                                                _print_parity(bp,
4719                                                        NIG_REG_NIG_PRTY_STS_1);
4720                                        }
4721                                }
4722                                break;
4723                        case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4724                                if (print)
4725                                        _print_next_block((*par_num)++,
4726                                                          "VAUX PCI CORE");
4727                                *global = true;
4728                                break;
4729                        case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4730                                if (print) {
4731                                        _print_next_block((*par_num)++,
4732                                                          "DEBUG");
4733                                        _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4734                                }
4735                                break;
4736                        case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4737                                if (print) {
4738                                        _print_next_block((*par_num)++, "USDM");
4739                                        _print_parity(bp,
4740                                                      USDM_REG_USDM_PRTY_STS);
4741                                }
4742                                break;
4743                        case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4744                                if (print) {
4745                                        _print_next_block((*par_num)++, "UCM");
4746                                        _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4747                                }
4748                                break;
4749                        case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4750                                if (print) {
4751                                        _print_next_block((*par_num)++,
4752                                                          "USEMI");
4753                                        _print_parity(bp,
4754                                                      USEM_REG_USEM_PRTY_STS_0);
4755                                        _print_parity(bp,
4756                                                      USEM_REG_USEM_PRTY_STS_1);
4757                                }
4758                                break;
4759                        case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4760                                if (print) {
4761                                        _print_next_block((*par_num)++, "UPB");
4762                                        _print_parity(bp, GRCBASE_UPB +
4763                                                          PB_REG_PB_PRTY_STS);
4764                                }
4765                                break;
4766                        case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4767                                if (print) {
4768                                        _print_next_block((*par_num)++, "CSDM");
4769                                        _print_parity(bp,
4770                                                      CSDM_REG_CSDM_PRTY_STS);
4771                                }
4772                                break;
4773                        case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4774                                if (print) {
4775                                        _print_next_block((*par_num)++, "CCM");
4776                                        _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4777                                }
4778                                break;
4779                        }
4780
4781                        /* Clear the bit */
4782                        sig &= ~cur_bit;
4783                }
4784        }
4785
4786        return res;
4787}
4788
4789static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4790                                            int *par_num, bool print)
4791{
4792        u32 cur_bit;
4793        bool res;
4794        int i;
4795
4796        res = false;
4797
4798        for (i = 0; sig; i++) {
4799                cur_bit = (0x1UL << i);
4800                if (sig & cur_bit) {
4801                        res = true; /* Each bit is real error! */
4802                        if (print) {
4803                                switch (cur_bit) {
4804                                case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4805                                        _print_next_block((*par_num)++,
4806                                                          "CSEMI");
4807                                        _print_parity(bp,
4808                                                      CSEM_REG_CSEM_PRTY_STS_0);
4809                                        _print_parity(bp,
4810                                                      CSEM_REG_CSEM_PRTY_STS_1);
4811                                        break;
4812                                case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4813                                        _print_next_block((*par_num)++, "PXP");
4814                                        _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4815                                        _print_parity(bp,
4816                                                      PXP2_REG_PXP2_PRTY_STS_0);
4817                                        _print_parity(bp,
4818                                                      PXP2_REG_PXP2_PRTY_STS_1);
4819                                        break;
4820                                case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4821                                        _print_next_block((*par_num)++,
4822                                                          "PXPPCICLOCKCLIENT");
4823                                        break;
4824                                case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4825                                        _print_next_block((*par_num)++, "CFC");
4826                                        _print_parity(bp,
4827                                                      CFC_REG_CFC_PRTY_STS);
4828                                        break;
4829                                case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4830                                        _print_next_block((*par_num)++, "CDU");
4831                                        _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4832                                        break;
4833                                case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4834                                        _print_next_block((*par_num)++, "DMAE");
4835                                        _print_parity(bp,
4836                                                      DMAE_REG_DMAE_PRTY_STS);
4837                                        break;
4838                                case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4839                                        _print_next_block((*par_num)++, "IGU");
4840                                        if (CHIP_IS_E1x(bp))
4841                                                _print_parity(bp,
4842                                                        HC_REG_HC_PRTY_STS);
4843                                        else
4844                                                _print_parity(bp,
4845                                                        IGU_REG_IGU_PRTY_STS);
4846                                        break;
4847                                case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4848                                        _print_next_block((*par_num)++, "MISC");
4849                                        _print_parity(bp,
4850                                                      MISC_REG_MISC_PRTY_STS);
4851                                        break;
4852                                }
4853                        }
4854
4855                        /* Clear the bit */
4856                        sig &= ~cur_bit;
4857                }
4858        }
4859
4860        return res;
4861}
4862
4863static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4864                                            int *par_num, bool *global,
4865                                            bool print)
4866{
4867        bool res = false;
4868        u32 cur_bit;
4869        int i;
4870
4871        for (i = 0; sig; i++) {
4872                cur_bit = (0x1UL << i);
4873                if (sig & cur_bit) {
4874                        switch (cur_bit) {
4875                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4876                                if (print)
4877                                        _print_next_block((*par_num)++,
4878                                                          "MCP ROM");
4879                                *global = true;
4880                                res = true;
4881                                break;
4882                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4883                                if (print)
4884                                        _print_next_block((*par_num)++,
4885                                                          "MCP UMP RX");
4886                                *global = true;
4887                                res = true;
4888                                break;
4889                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4890                                if (print)
4891                                        _print_next_block((*par_num)++,
4892                                                          "MCP UMP TX");
4893                                *global = true;
4894                                res = true;
4895                                break;
4896                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4897                                (*par_num)++;
4898                                /* clear latched SCPAD PATIRY from MCP */
4899                                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4900                                       1UL << 10);
4901                                break;
4902                        }
4903
4904                        /* Clear the bit */
4905                        sig &= ~cur_bit;
4906                }
4907        }
4908
4909        return res;
4910}
4911
4912static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4913                                            int *par_num, bool print)
4914{
4915        u32 cur_bit;
4916        bool res;
4917        int i;
4918
4919        res = false;
4920
4921        for (i = 0; sig; i++) {
4922                cur_bit = (0x1UL << i);
4923                if (sig & cur_bit) {
4924                        res = true; /* Each bit is real error! */
4925                        if (print) {
4926                                switch (cur_bit) {
4927                                case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4928                                        _print_next_block((*par_num)++,
4929                                                          "PGLUE_B");
4930                                        _print_parity(bp,
4931                                                      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4932                                        break;
4933                                case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4934                                        _print_next_block((*par_num)++, "ATC");
4935                                        _print_parity(bp,
4936                                                      ATC_REG_ATC_PRTY_STS);
4937                                        break;
4938                                }
4939                        }
4940                        /* Clear the bit */
4941                        sig &= ~cur_bit;
4942                }
4943        }
4944
4945        return res;
4946}
4947
4948static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4949                              u32 *sig)
4950{
4951        bool res = false;
4952
4953        if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4954            (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4955            (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4956            (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4957            (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4958                int par_num = 0;
4959
4960                DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4961                                 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4962                          sig[0] & HW_PRTY_ASSERT_SET_0,
4963                          sig[1] & HW_PRTY_ASSERT_SET_1,
4964                          sig[2] & HW_PRTY_ASSERT_SET_2,
4965                          sig[3] & HW_PRTY_ASSERT_SET_3,
4966                          sig[4] & HW_PRTY_ASSERT_SET_4);
4967                if (print) {
4968                        if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4969                             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4970                             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4971                             (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4972                             (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4973                                netdev_err(bp->dev,
4974                                           "Parity errors detected in blocks: ");
4975                        } else {
4976                                print = false;
4977                        }
4978                }
4979                res |= bnx2x_check_blocks_with_parity0(bp,
4980                        sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4981                res |= bnx2x_check_blocks_with_parity1(bp,
4982                        sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4983                res |= bnx2x_check_blocks_with_parity2(bp,
4984                        sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4985                res |= bnx2x_check_blocks_with_parity3(bp,
4986                        sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4987                res |= bnx2x_check_blocks_with_parity4(bp,
4988                        sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4989
4990                if (print)
4991                        pr_cont("\n");
4992        }
4993
4994        return res;
4995}
4996
4997/**
4998 * bnx2x_chk_parity_attn - checks for parity attentions.
4999 *
5000 * @bp:         driver handle
5001 * @global:     true if there was a global attention
5002 * @print:      show parity attention in syslog
5003 */
5004bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5005{
5006        struct attn_route attn = { {0} };
5007        int port = BP_PORT(bp);
5008
5009        attn.sig[0] = REG_RD(bp,
5010                MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5011                             port*4);
5012        attn.sig[1] = REG_RD(bp,
5013                MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5014                             port*4);
5015        attn.sig[2] = REG_RD(bp,
5016                MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5017                             port*4);
5018        attn.sig[3] = REG_RD(bp,
5019                MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5020                             port*4);
5021        /* Since MCP attentions can't be disabled inside the block, we need to
5022         * read AEU registers to see whether they're currently disabled
5023         */
5024        attn.sig[3] &= ((REG_RD(bp,
5025                                !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5026                                      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5027                         MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5028                        ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5029
5030        if (!CHIP_IS_E1x(bp))
5031                attn.sig[4] = REG_RD(bp,
5032                        MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5033                                     port*4);
5034
5035        return bnx2x_parity_attn(bp, global, print, attn.sig);
5036}
5037
5038static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5039{
5040        u32 val;
5041        if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5042
5043                val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5044                BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5045                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5046                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5047                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5048                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5049                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5050                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5051                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5052                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5053                if (val &
5054                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5055                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5056                if (val &
5057                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5058                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5059                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5060                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5061                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5062                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5063                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5064                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5065        }
5066        if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5067                val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5068                BNX2X_ERR("ATC hw attention 0x%x\n", val);
5069                if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5070                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5071                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5072                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5073                if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5074                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5075                if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5076                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5077                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5078                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5079                if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5080                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5081        }
5082
5083        if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5084                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5085                BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5086                (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5087                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5088        }
5089}
5090
5091static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5092{
5093        struct attn_route attn, *group_mask;
5094        int port = BP_PORT(bp);
5095        int index;
5096        u32 reg_addr;
5097        u32 val;
5098        u32 aeu_mask;
5099        bool global = false;
5100
5101        /* need to take HW lock because MCP or other port might also
5102           try to handle this event */
5103        bnx2x_acquire_alr(bp);
5104
5105        if (bnx2x_chk_parity_attn(bp, &global, true)) {
5106#ifndef BNX2X_STOP_ON_ERROR
5107                bp->recovery_state = BNX2X_RECOVERY_INIT;
5108                schedule_delayed_work(&bp->sp_rtnl_task, 0);
5109                /* Disable HW interrupts */
5110                bnx2x_int_disable(bp);
5111                /* In case of parity errors don't handle attentions so that
5112                 * other function would "see" parity errors.
5113                 */
5114#else
5115                bnx2x_panic();
5116#endif
5117                bnx2x_release_alr(bp);
5118                return;
5119        }
5120
5121        attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5122        attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5123        attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5124        attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5125        if (!CHIP_IS_E1x(bp))
5126                attn.sig[4] =
5127                      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5128        else
5129                attn.sig[4] = 0;
5130
5131        DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5132           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5133
5134        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5135                if (deasserted & (1 << index)) {
5136                        group_mask = &bp->attn_group[index];
5137
5138                        DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5139                           index,
5140                           group_mask->sig[0], group_mask->sig[1],
5141                           group_mask->sig[2], group_mask->sig[3],
5142                           group_mask->sig[4]);
5143
5144                        bnx2x_attn_int_deasserted4(bp,
5145                                        attn.sig[4] & group_mask->sig[4]);
5146                        bnx2x_attn_int_deasserted3(bp,
5147                                        attn.sig[3] & group_mask->sig[3]);
5148                        bnx2x_attn_int_deasserted1(bp,
5149                                        attn.sig[1] & group_mask->sig[1]);
5150                        bnx2x_attn_int_deasserted2(bp,
5151                                        attn.sig[2] & group_mask->sig[2]);
5152                        bnx2x_attn_int_deasserted0(bp,
5153                                        attn.sig[0] & group_mask->sig[0]);
5154                }
5155        }
5156
5157        bnx2x_release_alr(bp);
5158
5159        if (bp->common.int_block == INT_BLOCK_HC)
5160                reg_addr = (HC_REG_COMMAND_REG + port*32 +
5161                            COMMAND_REG_ATTN_BITS_CLR);
5162        else
5163                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5164
5165        val = ~deasserted;
5166        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5167           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5168        REG_WR(bp, reg_addr, val);
5169
5170        if (~bp->attn_state & deasserted)
5171                BNX2X_ERR("IGU ERROR\n");
5172
5173        reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5174                          MISC_REG_AEU_MASK_ATTN_FUNC_0;
5175
5176        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5177        aeu_mask = REG_RD(bp, reg_addr);
5178
5179        DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5180           aeu_mask, deasserted);
5181        aeu_mask |= (deasserted & 0x3ff);
5182        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5183
5184        REG_WR(bp, reg_addr, aeu_mask);
5185        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5186
5187        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5188        bp->attn_state &= ~deasserted;
5189        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5190}
5191
5192static void bnx2x_attn_int(struct bnx2x *bp)
5193{
5194        /* read local copy of bits */
5195        u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5196                                                                attn_bits);
5197        u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5198                                                                attn_bits_ack);
5199        u32 attn_state = bp->attn_state;
5200
5201        /* look for changed bits */
5202        u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5203        u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5204
5205        DP(NETIF_MSG_HW,
5206           "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5207           attn_bits, attn_ack, asserted, deasserted);
5208
5209        if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5210                BNX2X_ERR("BAD attention state\n");
5211
5212        /* handle bits that were raised */
5213        if (asserted)
5214                bnx2x_attn_int_asserted(bp, asserted);
5215
5216        if (deasserted)
5217                bnx2x_attn_int_deasserted(bp, deasserted);
5218}
5219
5220void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5221                      u16 index, u8 op, u8 update)
5222{
5223        u32 igu_addr = bp->igu_base_addr;
5224        igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5225        bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5226                             igu_addr);
5227}
5228
5229static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5230{
5231        /* No memory barriers */
5232        storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5233}
5234
5235static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5236                                      union event_ring_elem *elem)
5237{
5238        u8 err = elem->message.error;
5239
5240        if (!bp->cnic_eth_dev.starting_cid  ||
5241            (cid < bp->cnic_eth_dev.starting_cid &&
5242            cid != bp->cnic_eth_dev.iscsi_l2_cid))
5243                return 1;
5244
5245        DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5246
5247        if (unlikely(err)) {
5248
5249                BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5250                          cid);
5251                bnx2x_panic_dump(bp, false);
5252        }
5253        bnx2x_cnic_cfc_comp(bp, cid, err);
5254        return 0;
5255}
5256
5257static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5258{
5259        struct bnx2x_mcast_ramrod_params rparam;
5260        int rc;
5261
5262        memset(&rparam, 0, sizeof(rparam));
5263
5264        rparam.mcast_obj = &bp->mcast_obj;
5265
5266        netif_addr_lock_bh(bp->dev);
5267
5268        /* Clear pending state for the last command */
5269        bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5270
5271        /* If there are pending mcast commands - send them */
5272        if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5273                rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5274                if (rc < 0)
5275                        BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5276                                  rc);
5277        }
5278
5279        netif_addr_unlock_bh(bp->dev);
5280}
5281
5282static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5283                                            union event_ring_elem *elem)
5284{
5285        unsigned long ramrod_flags = 0;
5286        int rc = 0;
5287        u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5288        u32 cid = echo & BNX2X_SWCID_MASK;
5289        struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5290
5291        /* Always push next commands out, don't wait here */
5292        __set_bit(RAMROD_CONT, &ramrod_flags);
5293
5294        switch (echo >> BNX2X_SWCID_SHIFT) {
5295        case BNX2X_FILTER_MAC_PENDING:
5296                DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5297                if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5298                        vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5299                else
5300                        vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5301
5302                break;
5303        case BNX2X_FILTER_VLAN_PENDING:
5304                DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5305                vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5306                break;
5307        case BNX2X_FILTER_MCAST_PENDING:
5308                DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5309                /* This is only relevant for 57710 where multicast MACs are
5310                 * configured as unicast MACs using the same ramrod.
5311                 */
5312                bnx2x_handle_mcast_eqe(bp);
5313                return;
5314        default:
5315                BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5316                return;
5317        }
5318
5319        rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5320
5321        if (rc < 0)
5322                BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5323        else if (rc > 0)
5324                DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5325}
5326
5327static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5328
5329static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5330{
5331        netif_addr_lock_bh(bp->dev);
5332
5333        clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5334
5335        /* Send rx_mode command again if was requested */
5336        if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5337                bnx2x_set_storm_rx_mode(bp);
5338        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5339                                    &bp->sp_state))
5340                bnx2x_set_iscsi_eth_rx_mode(bp, true);
5341        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5342                                    &bp->sp_state))
5343                bnx2x_set_iscsi_eth_rx_mode(bp, false);
5344
5345        netif_addr_unlock_bh(bp->dev);
5346}
5347
5348static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5349                                              union event_ring_elem *elem)
5350{
5351        if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5352                DP(BNX2X_MSG_SP,
5353                   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5354                   elem->message.data.vif_list_event.func_bit_map);
5355                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5356                        elem->message.data.vif_list_event.func_bit_map);
5357        } else if (elem->message.data.vif_list_event.echo ==
5358                   VIF_LIST_RULE_SET) {
5359                DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5360                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5361        }
5362}
5363
5364/* called with rtnl_lock */
5365static void bnx2x_after_function_update(struct bnx2x *bp)
5366{
5367        int q, rc;
5368        struct bnx2x_fastpath *fp;
5369        struct bnx2x_queue_state_params queue_params = {NULL};
5370        struct bnx2x_queue_update_params *q_update_params =
5371                &queue_params.params.update;
5372
5373        /* Send Q update command with afex vlan removal values for all Qs */
5374        queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5375
5376        /* set silent vlan removal values according to vlan mode */
5377        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5378                  &q_update_params->update_flags);
5379        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5380                  &q_update_params->update_flags);
5381        __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5382
5383        /* in access mode mark mask and value are 0 to strip all vlans */
5384        if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5385                q_update_params->silent_removal_value = 0;
5386                q_update_params->silent_removal_mask = 0;
5387        } else {
5388                q_update_params->silent_removal_value =
5389                        (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5390                q_update_params->silent_removal_mask = VLAN_VID_MASK;
5391        }
5392
5393        for_each_eth_queue(bp, q) {
5394                /* Set the appropriate Queue object */
5395                fp = &bp->fp[q];
5396                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5397
5398                /* send the ramrod */
5399                rc = bnx2x_queue_state_change(bp, &queue_params);
5400                if (rc < 0)
5401                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5402                                  q);
5403        }
5404
5405        if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5406                fp = &bp->fp[FCOE_IDX(bp)];
5407                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5408
5409                /* clear pending completion bit */
5410                __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5411
5412                /* mark latest Q bit */
5413                smp_mb__before_atomic();
5414                set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5415                smp_mb__after_atomic();
5416
5417                /* send Q update ramrod for FCoE Q */
5418                rc = bnx2x_queue_state_change(bp, &queue_params);
5419                if (rc < 0)
5420                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5421                                  q);
5422        } else {
5423                /* If no FCoE ring - ACK MCP now */
5424                bnx2x_link_report(bp);
5425                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5426        }
5427}
5428
5429static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5430        struct bnx2x *bp, u32 cid)
5431{
5432        DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5433
5434        if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5435                return &bnx2x_fcoe_sp_obj(bp, q_obj);
5436        else
5437                return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5438}
5439
5440static void bnx2x_eq_int(struct bnx2x *bp)
5441{
5442        u16 hw_cons, sw_cons, sw_prod;
5443        union event_ring_elem *elem;
5444        u8 echo;
5445        u32 cid;
5446        u8 opcode;
5447        int rc, spqe_cnt = 0;
5448        struct bnx2x_queue_sp_obj *q_obj;
5449        struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5450        struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5451
5452        hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5453
5454        /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5455         * when we get the next-page we need to adjust so the loop
5456         * condition below will be met. The next element is the size of a
5457         * regular element and hence incrementing by 1
5458         */
5459        if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5460                hw_cons++;
5461
5462        /* This function may never run in parallel with itself for a
5463         * specific bp, thus there is no need in "paired" read memory
5464         * barrier here.
5465         */
5466        sw_cons = bp->eq_cons;
5467        sw_prod = bp->eq_prod;
5468
5469        DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5470                        hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5471
5472        for (; sw_cons != hw_cons;
5473              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5474
5475                elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5476
5477                rc = bnx2x_iov_eq_sp_event(bp, elem);
5478                if (!rc) {
5479                        DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5480                           rc);
5481                        goto next_spqe;
5482                }
5483
5484                opcode = elem->message.opcode;
5485
5486                /* handle eq element */
5487                switch (opcode) {
5488                case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5489                        bnx2x_vf_mbx_schedule(bp,
5490                                              &elem->message.data.vf_pf_event);
5491                        continue;
5492
5493                case EVENT_RING_OPCODE_STAT_QUERY:
5494                        DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5495                               "got statistics comp event %d\n",
5496                               bp->stats_comp++);
5497                        /* nothing to do with stats comp */
5498                        goto next_spqe;
5499
5500                case EVENT_RING_OPCODE_CFC_DEL:
5501                        /* handle according to cid range */
5502                        /*
5503                         * we may want to verify here that the bp state is
5504                         * HALTING
5505                         */
5506
5507                        /* elem CID originates from FW; actually LE */
5508                        cid = SW_CID(elem->message.data.cfc_del_event.cid);
5509
5510                        DP(BNX2X_MSG_SP,
5511                           "got delete ramrod for MULTI[%d]\n", cid);
5512
5513                        if (CNIC_LOADED(bp) &&
5514                            !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5515                                goto next_spqe;
5516
5517                        q_obj = bnx2x_cid_to_q_obj(bp, cid);
5518
5519                        if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5520                                break;
5521
5522                        goto next_spqe;
5523
5524                case EVENT_RING_OPCODE_STOP_TRAFFIC:
5525                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5526                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5527                        if (f_obj->complete_cmd(bp, f_obj,
5528                                                BNX2X_F_CMD_TX_STOP))
5529                                break;
5530                        goto next_spqe;
5531
5532                case EVENT_RING_OPCODE_START_TRAFFIC:
5533                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5534                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5535                        if (f_obj->complete_cmd(bp, f_obj,
5536                                                BNX2X_F_CMD_TX_START))
5537                                break;
5538                        goto next_spqe;
5539
5540                case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5541                        echo = elem->message.data.function_update_event.echo;
5542                        if (echo == SWITCH_UPDATE) {
5543                                DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5544                                   "got FUNC_SWITCH_UPDATE ramrod\n");
5545                                if (f_obj->complete_cmd(
5546                                        bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5547                                        break;
5548
5549                        } else {
5550                                int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5551
5552                                DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5553                                   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5554                                f_obj->complete_cmd(bp, f_obj,
5555                                                    BNX2X_F_CMD_AFEX_UPDATE);
5556
5557                                /* We will perform the Queues update from
5558                                 * sp_rtnl task as all Queue SP operations
5559                                 * should run under rtnl_lock.
5560                                 */
5561                                bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5562                        }
5563
5564                        goto next_spqe;
5565
5566                case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5567                        f_obj->complete_cmd(bp, f_obj,
5568                                            BNX2X_F_CMD_AFEX_VIFLISTS);
5569                        bnx2x_after_afex_vif_lists(bp, elem);
5570                        goto next_spqe;
5571                case EVENT_RING_OPCODE_FUNCTION_START:
5572                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5573                           "got FUNC_START ramrod\n");
5574                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5575                                break;
5576
5577                        goto next_spqe;
5578
5579                case EVENT_RING_OPCODE_FUNCTION_STOP:
5580                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5581                           "got FUNC_STOP ramrod\n");
5582                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5583                                break;
5584
5585                        goto next_spqe;
5586
5587                case EVENT_RING_OPCODE_SET_TIMESYNC:
5588                        DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5589                           "got set_timesync ramrod completion\n");
5590                        if (f_obj->complete_cmd(bp, f_obj,
5591                                                BNX2X_F_CMD_SET_TIMESYNC))
5592                                break;
5593                        goto next_spqe;
5594                }
5595
5596                switch (opcode | bp->state) {
5597                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598                      BNX2X_STATE_OPEN):
5599                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5600                      BNX2X_STATE_OPENING_WAIT4_PORT):
5601                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5602                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5603                        DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5604                           SW_CID(elem->message.data.eth_event.echo));
5605                        rss_raw->clear_pending(rss_raw);
5606                        break;
5607
5608                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5609                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5610                case (EVENT_RING_OPCODE_SET_MAC |
5611                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5612                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613                      BNX2X_STATE_OPEN):
5614                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615                      BNX2X_STATE_DIAG):
5616                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5617                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5618                        DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5619                        bnx2x_handle_classification_eqe(bp, elem);
5620                        break;
5621
5622                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623                      BNX2X_STATE_OPEN):
5624                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625                      BNX2X_STATE_DIAG):
5626                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5627                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5628                        DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5629                        bnx2x_handle_mcast_eqe(bp);
5630                        break;
5631
5632                case (EVENT_RING_OPCODE_FILTERS_RULES |
5633                      BNX2X_STATE_OPEN):
5634                case (EVENT_RING_OPCODE_FILTERS_RULES |
5635                      BNX2X_STATE_DIAG):
5636                case (EVENT_RING_OPCODE_FILTERS_RULES |
5637                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5638                        DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5639                        bnx2x_handle_rx_mode_eqe(bp);
5640                        break;
5641                default:
5642                        /* unknown event log error and continue */
5643                        BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5644                                  elem->message.opcode, bp->state);
5645                }
5646next_spqe:
5647                spqe_cnt++;
5648        } /* for */
5649
5650        smp_mb__before_atomic();
5651        atomic_add(spqe_cnt, &bp->eq_spq_left);
5652
5653        bp->eq_cons = sw_cons;
5654        bp->eq_prod = sw_prod;
5655        /* Make sure that above mem writes were issued towards the memory */
5656        smp_wmb();
5657
5658        /* update producer */
5659        bnx2x_update_eq_prod(bp, bp->eq_prod);
5660}
5661
5662static void bnx2x_sp_task(struct work_struct *work)
5663{
5664        struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5665
5666        DP(BNX2X_MSG_SP, "sp task invoked\n");
5667
5668        /* make sure the atomic interrupt_occurred has been written */
5669        smp_rmb();
5670        if (atomic_read(&bp->interrupt_occurred)) {
5671
5672                /* what work needs to be performed? */
5673                u16 status = bnx2x_update_dsb_idx(bp);
5674
5675                DP(BNX2X_MSG_SP, "status %x\n", status);
5676                DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5677                atomic_set(&bp->interrupt_occurred, 0);
5678
5679                /* HW attentions */
5680                if (status & BNX2X_DEF_SB_ATT_IDX) {
5681                        bnx2x_attn_int(bp);
5682                        status &= ~BNX2X_DEF_SB_ATT_IDX;
5683                }
5684
5685                /* SP events: STAT_QUERY and others */
5686                if (status & BNX2X_DEF_SB_IDX) {
5687                        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5688
5689                        if (FCOE_INIT(bp) &&
5690                            (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5691                                /* Prevent local bottom-halves from running as
5692                                 * we are going to change the local NAPI list.
5693                                 */
5694                                local_bh_disable();
5695                                napi_schedule(&bnx2x_fcoe(bp, napi));
5696                                local_bh_enable();
5697                        }
5698
5699                        /* Handle EQ completions */
5700                        bnx2x_eq_int(bp);
5701                        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5702                                     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5703
5704                        status &= ~BNX2X_DEF_SB_IDX;
5705                }
5706
5707                /* if status is non zero then perhaps something went wrong */
5708                if (unlikely(status))
5709                        DP(BNX2X_MSG_SP,
5710                           "got an unknown interrupt! (status 0x%x)\n", status);
5711
5712                /* ack status block only if something was actually handled */
5713                bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5714                             le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5715        }
5716
5717        /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5718        if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5719                               &bp->sp_state)) {
5720                bnx2x_link_report(bp);
5721                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5722        }
5723}
5724
5725irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5726{
5727        struct net_device *dev = dev_instance;
5728        struct bnx2x *bp = netdev_priv(dev);
5729
5730        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5731                     IGU_INT_DISABLE, 0);
5732
5733#ifdef BNX2X_STOP_ON_ERROR
5734        if (unlikely(bp->panic))
5735                return IRQ_HANDLED;
5736#endif
5737
5738        if (CNIC_LOADED(bp)) {
5739                struct cnic_ops *c_ops;
5740
5741                rcu_read_lock();
5742                c_ops = rcu_dereference(bp->cnic_ops);
5743                if (c_ops)
5744                        c_ops->cnic_handler(bp->cnic_data, NULL);
5745                rcu_read_unlock();
5746        }
5747
5748        /* schedule sp task to perform default status block work, ack
5749         * attentions and enable interrupts.
5750         */
5751        bnx2x_schedule_sp_task(bp);
5752
5753        return IRQ_HANDLED;
5754}
5755
5756/* end of slow path */
5757
5758void bnx2x_drv_pulse(struct bnx2x *bp)
5759{
5760        SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5761                 bp->fw_drv_pulse_wr_seq);
5762}
5763
5764static void bnx2x_timer(struct timer_list *t)
5765{
5766        struct bnx2x *bp = from_timer(bp, t, timer);
5767
5768        if (!netif_running(bp->dev))
5769                return;
5770
5771        if (IS_PF(bp) &&
5772            !BP_NOMCP(bp)) {
5773                int mb_idx = BP_FW_MB_IDX(bp);
5774                u16 drv_pulse;
5775                u16 mcp_pulse;
5776
5777                ++bp->fw_drv_pulse_wr_seq;
5778                bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5779                drv_pulse = bp->fw_drv_pulse_wr_seq;
5780                bnx2x_drv_pulse(bp);
5781
5782                mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5783                             MCP_PULSE_SEQ_MASK);
5784                /* The delta between driver pulse and mcp response
5785                 * should not get too big. If the MFW is more than 5 pulses
5786                 * behind, we should worry about it enough to generate an error
5787                 * log.
5788                 */
5789                if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5790                        BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5791                                  drv_pulse, mcp_pulse);
5792        }
5793
5794        if (bp->state == BNX2X_STATE_OPEN)
5795                bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5796
5797        /* sample pf vf bulletin board for new posts from pf */
5798        if (IS_VF(bp))
5799                bnx2x_timer_sriov(bp);
5800
5801        mod_timer(&bp->timer, jiffies + bp->current_interval);
5802}
5803
5804/* end of Statistics */
5805
5806/* nic init */
5807
5808/*
5809 * nic init service functions
5810 */
5811
5812static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5813{
5814        u32 i;
5815        if (!(len%4) && !(addr%4))
5816                for (i = 0; i < len; i += 4)
5817                        REG_WR(bp, addr + i, fill);
5818        else
5819                for (i = 0; i < len; i++)
5820                        REG_WR8(bp, addr + i, fill);
5821}
5822
5823/* helper: writes FP SP data to FW - data_size in dwords */
5824static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5825                                int fw_sb_id,
5826                                u32 *sb_data_p,
5827                                u32 data_size)
5828{
5829        int index;
5830        for (index = 0; index < data_size; index++)
5831                REG_WR(bp, BAR_CSTRORM_INTMEM +
5832                        CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5833                        sizeof(u32)*index,
5834                        *(sb_data_p + index));
5835}
5836
5837static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5838{
5839        u32 *sb_data_p;
5840        u32 data_size = 0;
5841        struct hc_status_block_data_e2 sb_data_e2;
5842        struct hc_status_block_data_e1x sb_data_e1x;
5843
5844        /* disable the function first */
5845        if (!CHIP_IS_E1x(bp)) {
5846                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5847                sb_data_e2.common.state = SB_DISABLED;
5848                sb_data_e2.common.p_func.vf_valid = false;
5849                sb_data_p = (u32 *)&sb_data_e2;
5850                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5851        } else {
5852                memset(&sb_data_e1x, 0,
5853                       sizeof(struct hc_status_block_data_e1x));
5854                sb_data_e1x.common.state = SB_DISABLED;
5855                sb_data_e1x.common.p_func.vf_valid = false;
5856                sb_data_p = (u32 *)&sb_data_e1x;
5857                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5858        }
5859        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5860
5861        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5862                        CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5863                        CSTORM_STATUS_BLOCK_SIZE);
5864        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5865                        CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5866                        CSTORM_SYNC_BLOCK_SIZE);
5867}
5868
5869/* helper:  writes SP SB data to FW */
5870static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5871                struct hc_sp_status_block_data *sp_sb_data)
5872{
5873        int func = BP_FUNC(bp);
5874        int i;
5875        for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5876                REG_WR(bp, BAR_CSTRORM_INTMEM +
5877                        CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5878                        i*sizeof(u32),
5879                        *((u32 *)sp_sb_data + i));
5880}
5881
5882static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5883{
5884        int func = BP_FUNC(bp);
5885        struct hc_sp_status_block_data sp_sb_data;
5886        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5887
5888        sp_sb_data.state = SB_DISABLED;
5889        sp_sb_data.p_func.vf_valid = false;
5890
5891        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5892
5893        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5894                        CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5895                        CSTORM_SP_STATUS_BLOCK_SIZE);
5896        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5897                        CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5898                        CSTORM_SP_SYNC_BLOCK_SIZE);
5899}
5900
5901static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5902                                           int igu_sb_id, int igu_seg_id)
5903{
5904        hc_sm->igu_sb_id = igu_sb_id;
5905        hc_sm->igu_seg_id = igu_seg_id;
5906        hc_sm->timer_value = 0xFF;
5907        hc_sm->time_to_expire = 0xFFFFFFFF;
5908}
5909
5910/* allocates state machine ids. */
5911static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5912{
5913        /* zero out state machine indices */
5914        /* rx indices */
5915        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5916
5917        /* tx indices */
5918        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5919        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5920        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5921        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5922
5923        /* map indices */
5924        /* rx indices */
5925        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5926                SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5927
5928        /* tx indices */
5929        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5930                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5932                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5934                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5936                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937}
5938
5939void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5940                          u8 vf_valid, int fw_sb_id, int igu_sb_id)
5941{
5942        int igu_seg_id;
5943
5944        struct hc_status_block_data_e2 sb_data_e2;
5945        struct hc_status_block_data_e1x sb_data_e1x;
5946        struct hc_status_block_sm  *hc_sm_p;
5947        int data_size;
5948        u32 *sb_data_p;
5949
5950        if (CHIP_INT_MODE_IS_BC(bp))
5951                igu_seg_id = HC_SEG_ACCESS_NORM;
5952        else
5953                igu_seg_id = IGU_SEG_ACCESS_NORM;
5954
5955        bnx2x_zero_fp_sb(bp, fw_sb_id);
5956
5957        if (!CHIP_IS_E1x(bp)) {
5958                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5959                sb_data_e2.common.state = SB_ENABLED;
5960                sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5961                sb_data_e2.common.p_func.vf_id = vfid;
5962                sb_data_e2.common.p_func.vf_valid = vf_valid;
5963                sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5964                sb_data_e2.common.same_igu_sb_1b = true;
5965                sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5966                sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5967                hc_sm_p = sb_data_e2.common.state_machine;
5968                sb_data_p = (u32 *)&sb_data_e2;
5969                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5970                bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5971        } else {
5972                memset(&sb_data_e1x, 0,
5973                       sizeof(struct hc_status_block_data_e1x));
5974                sb_data_e1x.common.state = SB_ENABLED;
5975                sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5976                sb_data_e1x.common.p_func.vf_id = 0xff;
5977                sb_data_e1x.common.p_func.vf_valid = false;
5978                sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5979                sb_data_e1x.common.same_igu_sb_1b = true;
5980                sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5981                sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5982                hc_sm_p = sb_data_e1x.common.state_machine;
5983                sb_data_p = (u32 *)&sb_data_e1x;
5984                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5985                bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5986        }
5987
5988        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5989                                       igu_sb_id, igu_seg_id);
5990        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5991                                       igu_sb_id, igu_seg_id);
5992
5993        DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5994
5995        /* write indices to HW - PCI guarantees endianity of regpairs */
5996        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5997}
5998
5999static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6000                                     u16 tx_usec, u16 rx_usec)
6001{
6002        bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6003                                    false, rx_usec);
6004        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6005                                       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6006                                       tx_usec);
6007        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6008                                       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6009                                       tx_usec);
6010        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6011                                       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6012                                       tx_usec);
6013}
6014
6015static void bnx2x_init_def_sb(struct bnx2x *bp)
6016{
6017        struct host_sp_status_block *def_sb = bp->def_status_blk;
6018        dma_addr_t mapping = bp->def_status_blk_mapping;
6019        int igu_sp_sb_index;
6020        int igu_seg_id;
6021        int port = BP_PORT(bp);
6022        int func = BP_FUNC(bp);
6023        int reg_offset, reg_offset_en5;
6024        u64 section;
6025        int index;
6026        struct hc_sp_status_block_data sp_sb_data;
6027        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6028
6029        if (CHIP_INT_MODE_IS_BC(bp)) {
6030                igu_sp_sb_index = DEF_SB_IGU_ID;
6031                igu_seg_id = HC_SEG_ACCESS_DEF;
6032        } else {
6033                igu_sp_sb_index = bp->igu_dsb_id;
6034                igu_seg_id = IGU_SEG_ACCESS_DEF;
6035        }
6036
6037        /* ATTN */
6038        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6039                                            atten_status_block);
6040        def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6041
6042        bp->attn_state = 0;
6043
6044        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6045                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6046        reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6047                                 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6048        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6049                int sindex;
6050                /* take care of sig[0]..sig[4] */
6051                for (sindex = 0; sindex < 4; sindex++)
6052                        bp->attn_group[index].sig[sindex] =
6053                           REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6054
6055                if (!CHIP_IS_E1x(bp))
6056                        /*
6057                         * enable5 is separate from the rest of the registers,
6058                         * and therefore the address skip is 4
6059                         * and not 16 between the different groups
6060                         */
6061                        bp->attn_group[index].sig[4] = REG_RD(bp,
6062                                        reg_offset_en5 + 0x4*index);
6063                else
6064                        bp->attn_group[index].sig[4] = 0;
6065        }
6066
6067        if (bp->common.int_block == INT_BLOCK_HC) {
6068                reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6069                                     HC_REG_ATTN_MSG0_ADDR_L);
6070
6071                REG_WR(bp, reg_offset, U64_LO(section));
6072                REG_WR(bp, reg_offset + 4, U64_HI(section));
6073        } else if (!CHIP_IS_E1x(bp)) {
6074                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6075                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6076        }
6077
6078        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6079                                            sp_sb);
6080
6081        bnx2x_zero_sp_sb(bp);
6082
6083        /* PCI guarantees endianity of regpairs */
6084        sp_sb_data.state                = SB_ENABLED;
6085        sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6086        sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6087        sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6088        sp_sb_data.igu_seg_id           = igu_seg_id;
6089        sp_sb_data.p_func.pf_id         = func;
6090        sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6091        sp_sb_data.p_func.vf_id         = 0xff;
6092
6093        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6094
6095        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6096}
6097
6098void bnx2x_update_coalesce(struct bnx2x *bp)
6099{
6100        int i;
6101
6102        for_each_eth_queue(bp, i)
6103                bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6104                                         bp->tx_ticks, bp->rx_ticks);
6105}
6106
6107static void bnx2x_init_sp_ring(struct bnx2x *bp)
6108{
6109        spin_lock_init(&bp->spq_lock);
6110        atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6111
6112        bp->spq_prod_idx = 0;
6113        bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6114        bp->spq_prod_bd = bp->spq;
6115        bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6116}
6117
6118static void bnx2x_init_eq_ring(struct bnx2x *bp)
6119{
6120        int i;
6121        for (i = 1; i <= NUM_EQ_PAGES; i++) {
6122                union event_ring_elem *elem =
6123                        &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6124
6125                elem->next_page.addr.hi =
6126                        cpu_to_le32(U64_HI(bp->eq_mapping +
6127                                   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6128                elem->next_page.addr.lo =
6129                        cpu_to_le32(U64_LO(bp->eq_mapping +
6130                                   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6131        }
6132        bp->eq_cons = 0;
6133        bp->eq_prod = NUM_EQ_DESC;
6134        bp->eq_cons_sb = BNX2X_EQ_INDEX;
6135        /* we want a warning message before it gets wrought... */
6136        atomic_set(&bp->eq_spq_left,
6137                min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6138}
6139
6140/* called with netif_addr_lock_bh() */
6141static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6142                               unsigned long rx_mode_flags,
6143                               unsigned long rx_accept_flags,
6144                               unsigned long tx_accept_flags,
6145                               unsigned long ramrod_flags)
6146{
6147        struct bnx2x_rx_mode_ramrod_params ramrod_param;
6148        int rc;
6149
6150        memset(&ramrod_param, 0, sizeof(ramrod_param));
6151
6152        /* Prepare ramrod parameters */
6153        ramrod_param.cid = 0;
6154        ramrod_param.cl_id = cl_id;
6155        ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6156        ramrod_param.func_id = BP_FUNC(bp);
6157
6158        ramrod_param.pstate = &bp->sp_state;
6159        ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6160
6161        ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6162        ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6163
6164        set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6165
6166        ramrod_param.ramrod_flags = ramrod_flags;
6167        ramrod_param.rx_mode_flags = rx_mode_flags;
6168
6169        ramrod_param.rx_accept_flags = rx_accept_flags;
6170        ramrod_param.tx_accept_flags = tx_accept_flags;
6171
6172        rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6173        if (rc < 0) {
6174                BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6175                return rc;
6176        }
6177
6178        return 0;
6179}
6180
6181static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6182                                   unsigned long *rx_accept_flags,
6183                                   unsigned long *tx_accept_flags)
6184{
6185        /* Clear the flags first */
6186        *rx_accept_flags = 0;
6187        *tx_accept_flags = 0;
6188
6189        switch (rx_mode) {
6190        case BNX2X_RX_MODE_NONE:
6191                /*
6192                 * 'drop all' supersedes any accept flags that may have been
6193                 * passed to the function.
6194                 */
6195                break;
6196        case BNX2X_RX_MODE_NORMAL:
6197                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6198                __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6199                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6200
6201                /* internal switching mode */
6202                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6203                __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6204                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6205
6206                if (bp->accept_any_vlan) {
6207                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209                }
6210
6211                break;
6212        case BNX2X_RX_MODE_ALLMULTI:
6213                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6214                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6215                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6216
6217                /* internal switching mode */
6218                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6219                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6220                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6221
6222                if (bp->accept_any_vlan) {
6223                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6224                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6225                }
6226
6227                break;
6228        case BNX2X_RX_MODE_PROMISC:
6229                /* According to definition of SI mode, iface in promisc mode
6230                 * should receive matched and unmatched (in resolution of port)
6231                 * unicast packets.
6232                 */
6233                __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6234                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237
6238                /* internal switching mode */
6239                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241
6242                if (IS_MF_SI(bp))
6243                        __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6244                else
6245                        __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6246
6247                __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6248                __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6249
6250                break;
6251        default:
6252                BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6253                return -EINVAL;
6254        }
6255
6256        return 0;
6257}
6258
6259/* called with netif_addr_lock_bh() */
6260static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6261{
6262        unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6263        unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6264        int rc;
6265
6266        if (!NO_FCOE(bp))
6267                /* Configure rx_mode of FCoE Queue */
6268                __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6269
6270        rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6271                                     &tx_accept_flags);
6272        if (rc)
6273                return rc;
6274
6275        __set_bit(RAMROD_RX, &ramrod_flags);
6276        __set_bit(RAMROD_TX, &ramrod_flags);
6277
6278        return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6279                                   rx_accept_flags, tx_accept_flags,
6280                                   ramrod_flags);
6281}
6282
6283static void bnx2x_init_internal_common(struct bnx2x *bp)
6284{
6285        int i;
6286
6287        /* Zero this manually as its initialization is
6288           currently missing in the initTool */
6289        for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6290                REG_WR(bp, BAR_USTRORM_INTMEM +
6291                       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6292        if (!CHIP_IS_E1x(bp)) {
6293                REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6294                        CHIP_INT_MODE_IS_BC(bp) ?
6295                        HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6296        }
6297}
6298
6299static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6300{
6301        switch (load_code) {
6302        case FW_MSG_CODE_DRV_LOAD_COMMON:
6303        case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6304                bnx2x_init_internal_common(bp);
6305                /* no break */
6306
6307        case FW_MSG_CODE_DRV_LOAD_PORT:
6308                /* nothing to do */
6309                /* no break */
6310
6311        case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6312                /* internal memory per function is
6313                   initialized inside bnx2x_pf_init */
6314                break;
6315
6316        default:
6317                BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6318                break;
6319        }
6320}
6321
6322static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6323{
6324        return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6325}
6326
6327static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6328{
6329        return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6330}
6331
6332static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6333{
6334        if (CHIP_IS_E1x(fp->bp))
6335                return BP_L_ID(fp->bp) + fp->index;
6336        else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6337                return bnx2x_fp_igu_sb_id(fp);
6338}
6339
6340static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6341{
6342        struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6343        u8 cos;
6344        unsigned long q_type = 0;
6345        u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6346        fp->rx_queue = fp_idx;
6347        fp->cid = fp_idx;
6348        fp->cl_id = bnx2x_fp_cl_id(fp);
6349        fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6350        fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6351        /* qZone id equals to FW (per path) client id */
6352        fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6353
6354        /* init shortcut */
6355        fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6356
6357        /* Setup SB indices */
6358        fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6359
6360        /* Configure Queue State object */
6361        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6362        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6363
6364        BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6365
6366        /* init tx data */
6367        for_each_cos_in_tx_queue(fp, cos) {
6368                bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6369                                  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6370                                  FP_COS_TO_TXQ(fp, cos, bp),
6371                                  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6372                cids[cos] = fp->txdata_ptr[cos]->cid;
6373        }
6374
6375        /* nothing more for vf to do here */
6376        if (IS_VF(bp))
6377                return;
6378
6379        bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6380                      fp->fw_sb_id, fp->igu_sb_id);
6381        bnx2x_update_fpsb_idx(fp);
6382        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6383                             fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6384                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6385
6386        /**
6387         * Configure classification DBs: Always enable Tx switching
6388         */
6389        bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6390
6391        DP(NETIF_MSG_IFUP,
6392           "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6393           fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6394           fp->igu_sb_id);
6395}
6396
6397static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6398{
6399        int i;
6400
6401        for (i = 1; i <= NUM_TX_RINGS; i++) {
6402                struct eth_tx_next_bd *tx_next_bd =
6403                        &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6404
6405                tx_next_bd->addr_hi =
6406                        cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6407                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6408                tx_next_bd->addr_lo =
6409                        cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6410                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6411        }
6412
6413        *txdata->tx_cons_sb = cpu_to_le16(0);
6414
6415        SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6416        txdata->tx_db.data.zero_fill1 = 0;
6417        txdata->tx_db.data.prod = 0;
6418
6419        txdata->tx_pkt_prod = 0;
6420        txdata->tx_pkt_cons = 0;
6421        txdata->tx_bd_prod = 0;
6422        txdata->tx_bd_cons = 0;
6423        txdata->tx_pkt = 0;
6424}
6425
6426static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6427{
6428        int i;
6429
6430        for_each_tx_queue_cnic(bp, i)
6431                bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6432}
6433
6434static void bnx2x_init_tx_rings(struct bnx2x *bp)
6435{
6436        int i;
6437        u8 cos;
6438
6439        for_each_eth_queue(bp, i)
6440                for_each_cos_in_tx_queue(&bp->fp[i], cos)
6441                        bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6442}
6443
6444static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6445{
6446        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6447        unsigned long q_type = 0;
6448
6449        bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6450        bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6451                                                     BNX2X_FCOE_ETH_CL_ID_IDX);
6452        bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6453        bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6454        bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6455        bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6456        bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6457                          fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6458                          fp);
6459
6460        DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6461
6462        /* qZone id equals to FW (per path) client id */
6463        bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6464        /* init shortcut */
6465        bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6466                bnx2x_rx_ustorm_prods_offset(fp);
6467
6468        /* Configure Queue State object */
6469        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6470        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6471
6472        /* No multi-CoS for FCoE L2 client */
6473        BUG_ON(fp->max_cos != 1);
6474
6475        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6476                             &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6477                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6478
6479        DP(NETIF_MSG_IFUP,
6480           "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6481           fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6482           fp->igu_sb_id);
6483}
6484
6485void bnx2x_nic_init_cnic(struct bnx2x *bp)
6486{
6487        if (!NO_FCOE(bp))
6488                bnx2x_init_fcoe_fp(bp);
6489
6490        bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6491                      BNX2X_VF_ID_INVALID, false,
6492                      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6493
6494        /* ensure status block indices were read */
6495        rmb();
6496        bnx2x_init_rx_rings_cnic(bp);
6497        bnx2x_init_tx_rings_cnic(bp);
6498
6499        /* flush all */
6500        mb();
6501}
6502
6503void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6504{
6505        int i;
6506
6507        /* Setup NIC internals and enable interrupts */
6508        for_each_eth_queue(bp, i)
6509                bnx2x_init_eth_fp(bp, i);
6510
6511        /* ensure status block indices were read */
6512        rmb();
6513        bnx2x_init_rx_rings(bp);
6514        bnx2x_init_tx_rings(bp);
6515
6516        if (IS_PF(bp)) {
6517                /* Initialize MOD_ABS interrupts */
6518                bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6519                                       bp->common.shmem_base,
6520                                       bp->common.shmem2_base, BP_PORT(bp));
6521
6522                /* initialize the default status block and sp ring */
6523                bnx2x_init_def_sb(bp);
6524                bnx2x_update_dsb_idx(bp);
6525                bnx2x_init_sp_ring(bp);
6526        } else {
6527                bnx2x_memset_stats(bp);
6528        }
6529}
6530
6531void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6532{
6533        bnx2x_init_eq_ring(bp);
6534        bnx2x_init_internal(bp, load_code);
6535        bnx2x_pf_init(bp);
6536        bnx2x_stats_init(bp);
6537
6538        /* flush all before enabling interrupts */
6539        mb();
6540
6541        bnx2x_int_enable(bp);
6542
6543        /* Check for SPIO5 */
6544        bnx2x_attn_int_deasserted0(bp,
6545                REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6546                                   AEU_INPUTS_ATTN_BITS_SPIO5);
6547}
6548
6549/* gzip service functions */
6550static int bnx2x_gunzip_init(struct bnx2x *bp)
6551{
6552        bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6553                                            &bp->gunzip_mapping, GFP_KERNEL);
6554        if (bp->gunzip_buf  == NULL)
6555                goto gunzip_nomem1;
6556
6557        bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6558        if (bp->strm  == NULL)
6559                goto gunzip_nomem2;
6560
6561        bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6562        if (bp->strm->workspace == NULL)
6563                goto gunzip_nomem3;
6564
6565        return 0;
6566
6567gunzip_nomem3:
6568        kfree(bp->strm);
6569        bp->strm = NULL;
6570
6571gunzip_nomem2:
6572        dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6573                          bp->gunzip_mapping);
6574        bp->gunzip_buf = NULL;
6575
6576gunzip_nomem1:
6577        BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6578        return -ENOMEM;
6579}
6580
6581static void bnx2x_gunzip_end(struct bnx2x *bp)
6582{
6583        if (bp->strm) {
6584                vfree(bp->strm->workspace);
6585                kfree(bp->strm);
6586                bp->strm = NULL;
6587        }
6588
6589        if (bp->gunzip_buf) {
6590                dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6591                                  bp->gunzip_mapping);
6592                bp->gunzip_buf = NULL;
6593        }
6594}
6595
6596static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6597{
6598        int n, rc;
6599
6600        /* check gzip header */
6601        if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6602                BNX2X_ERR("Bad gzip header\n");
6603                return -EINVAL;
6604        }
6605
6606        n = 10;
6607
6608#define FNAME                           0x8
6609
6610        if (zbuf[3] & FNAME)
6611                while ((zbuf[n++] != 0) && (n < len));
6612
6613        bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6614        bp->strm->avail_in = len - n;
6615        bp->strm->next_out = bp->gunzip_buf;
6616        bp->strm->avail_out = FW_BUF_SIZE;
6617
6618        rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6619        if (rc != Z_OK)
6620                return rc;
6621
6622        rc = zlib_inflate(bp->strm, Z_FINISH);
6623        if ((rc != Z_OK) && (rc != Z_STREAM_END))
6624                netdev_err(bp->dev, "Firmware decompression error: %s\n",
6625                           bp->strm->msg);
6626
6627        bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6628        if (bp->gunzip_outlen & 0x3)
6629                netdev_err(bp->dev,
6630                           "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6631                                bp->gunzip_outlen);
6632        bp->gunzip_outlen >>= 2;
6633
6634        zlib_inflateEnd(bp->strm);
6635
6636        if (rc == Z_STREAM_END)
6637                return 0;
6638
6639        return rc;
6640}
6641
6642/* nic load/unload */
6643
6644/*
6645 * General service functions
6646 */
6647
6648/* send a NIG loopback debug packet */
6649static void bnx2x_lb_pckt(struct bnx2x *bp)
6650{
6651        u32 wb_write[3];
6652
6653        /* Ethernet source and destination addresses */
6654        wb_write[0] = 0x55555555;
6655        wb_write[1] = 0x55555555;
6656        wb_write[2] = 0x20;             /* SOP */
6657        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6658
6659        /* NON-IP protocol */
6660        wb_write[0] = 0x09000000;
6661        wb_write[1] = 0x55555555;
6662        wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6663        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6664}
6665
6666/* some of the internal memories
6667 * are not directly readable from the driver
6668 * to test them we send debug packets
6669 */
6670static int bnx2x_int_mem_test(struct bnx2x *bp)
6671{
6672        int factor;
6673        int count, i;
6674        u32 val = 0;
6675
6676        if (CHIP_REV_IS_FPGA(bp))
6677                factor = 120;
6678        else if (CHIP_REV_IS_EMUL(bp))
6679                factor = 200;
6680        else
6681                factor = 1;
6682
6683        /* Disable inputs of parser neighbor blocks */
6684        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6685        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6686        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6687        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6688
6689        /*  Write 0 to parser credits for CFC search request */
6690        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6691
6692        /* send Ethernet packet */
6693        bnx2x_lb_pckt(bp);
6694
6695        /* TODO do i reset NIG statistic? */
6696        /* Wait until NIG register shows 1 packet of size 0x10 */
6697        count = 1000 * factor;
6698        while (count) {
6699
6700                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6701                val = *bnx2x_sp(bp, wb_data[0]);
6702                if (val == 0x10)
6703                        break;
6704
6705                usleep_range(10000, 20000);
6706                count--;
6707        }
6708        if (val != 0x10) {
6709                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6710                return -1;
6711        }
6712
6713        /* Wait until PRS register shows 1 packet */
6714        count = 1000 * factor;
6715        while (count) {
6716                val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6717                if (val == 1)
6718                        break;
6719
6720                usleep_range(10000, 20000);
6721                count--;
6722        }
6723        if (val != 0x1) {
6724                BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6725                return -2;
6726        }
6727
6728        /* Reset and init BRB, PRS */
6729        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6730        msleep(50);
6731        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6732        msleep(50);
6733        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6734        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6735
6736        DP(NETIF_MSG_HW, "part2\n");
6737
6738        /* Disable inputs of parser neighbor blocks */
6739        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6740        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6741        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6742        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6743
6744        /* Write 0 to parser credits for CFC search request */
6745        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6746
6747        /* send 10 Ethernet packets */
6748        for (i = 0; i < 10; i++)
6749                bnx2x_lb_pckt(bp);
6750
6751        /* Wait until NIG register shows 10 + 1
6752           packets of size 11*0x10 = 0xb0 */
6753        count = 1000 * factor;
6754        while (count) {
6755
6756                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6757                val = *bnx2x_sp(bp, wb_data[0]);
6758                if (val == 0xb0)
6759                        break;
6760
6761                usleep_range(10000, 20000);
6762                count--;
6763        }
6764        if (val != 0xb0) {
6765                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6766                return -3;
6767        }
6768
6769        /* Wait until PRS register shows 2 packets */
6770        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6771        if (val != 2)
6772                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6773
6774        /* Write 1 to parser credits for CFC search request */
6775        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6776
6777        /* Wait until PRS register shows 3 packets */
6778        msleep(10 * factor);
6779        /* Wait until NIG register shows 1 packet of size 0x10 */
6780        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781        if (val != 3)
6782                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6783
6784        /* clear NIG EOP FIFO */
6785        for (i = 0; i < 11; i++)
6786                REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6787        val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6788        if (val != 1) {
6789                BNX2X_ERR("clear of NIG failed\n");
6790                return -4;
6791        }
6792
6793        /* Reset and init BRB, PRS, NIG */
6794        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6795        msleep(50);
6796        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6797        msleep(50);
6798        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6799        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6800        if (!CNIC_SUPPORT(bp))
6801                /* set NIC mode */
6802                REG_WR(bp, PRS_REG_NIC_MODE, 1);
6803
6804        /* Enable inputs of parser neighbor blocks */
6805        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6806        REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6807        REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6808        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6809
6810        DP(NETIF_MSG_HW, "done\n");
6811
6812        return 0; /* OK */
6813}
6814
6815static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6816{
6817        u32 val;
6818
6819        REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6820        if (!CHIP_IS_E1x(bp))
6821                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6822        else
6823                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6824        REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6825        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6826        /*
6827         * mask read length error interrupts in brb for parser
6828         * (parsing unit and 'checksum and crc' unit)
6829         * these errors are legal (PU reads fixed length and CAC can cause
6830         * read length error on truncated packets)
6831         */
6832        REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6833        REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6834        REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6835        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6836        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6837        REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6838/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6839/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6840        REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6841        REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6842        REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6843/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6844/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6845        REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6846        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6847        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6848        REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6849/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6850/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6851
6852        val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6853                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6854                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6855        if (!CHIP_IS_E1x(bp))
6856                val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6857                        PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6858        REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6859
6860        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6861        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6862        REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6863/*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6864
6865        if (!CHIP_IS_E1x(bp))
6866                /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6867                REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6868
6869        REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6870        REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6871/*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6872        REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6873}
6874
6875static void bnx2x_reset_common(struct bnx2x *bp)
6876{
6877        u32 val = 0x1400;
6878
6879        /* reset_common */
6880        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6881               0xd3ffff7f);
6882
6883        if (CHIP_IS_E3(bp)) {
6884                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6885                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6886        }
6887
6888        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6889}
6890
6891static void bnx2x_setup_dmae(struct bnx2x *bp)
6892{
6893        bp->dmae_ready = 0;
6894        spin_lock_init(&bp->dmae_lock);
6895}
6896
6897static void bnx2x_init_pxp(struct bnx2x *bp)
6898{
6899        u16 devctl;
6900        int r_order, w_order;
6901
6902        pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6903        DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6904        w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6905        if (bp->mrrs == -1)
6906                r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6907        else {
6908                DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6909                r_order = bp->mrrs;
6910        }
6911
6912        bnx2x_init_pxp_arb(bp, r_order, w_order);
6913}
6914
6915static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6916{
6917        int is_required;
6918        u32 val;
6919        int port;
6920
6921        if (BP_NOMCP(bp))
6922                return;
6923
6924        is_required = 0;
6925        val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6926              SHARED_HW_CFG_FAN_FAILURE_MASK;
6927
6928        if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6929                is_required = 1;
6930
6931        /*
6932         * The fan failure mechanism is usually related to the PHY type since
6933         * the power consumption of the board is affected by the PHY. Currently,
6934         * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6935         */
6936        else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6937                for (port = PORT_0; port < PORT_MAX; port++) {
6938                        is_required |=
6939                                bnx2x_fan_failure_det_req(
6940                                        bp,
6941                                        bp->common.shmem_base,
6942                                        bp->common.shmem2_base,
6943                                        port);
6944                }
6945
6946        DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6947
6948        if (is_required == 0)
6949                return;
6950
6951        /* Fan failure is indicated by SPIO 5 */
6952        bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6953
6954        /* set to active low mode */
6955        val = REG_RD(bp, MISC_REG_SPIO_INT);
6956        val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6957        REG_WR(bp, MISC_REG_SPIO_INT, val);
6958
6959        /* enable interrupt to signal the IGU */
6960        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6961        val |= MISC_SPIO_SPIO5;
6962        REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6963}
6964
6965void bnx2x_pf_disable(struct bnx2x *bp)
6966{
6967        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6968        val &= ~IGU_PF_CONF_FUNC_EN;
6969
6970        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6971        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6972        REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6973}
6974
6975static void bnx2x__common_init_phy(struct bnx2x *bp)
6976{
6977        u32 shmem_base[2], shmem2_base[2];
6978        /* Avoid common init in case MFW supports LFA */
6979        if (SHMEM2_RD(bp, size) >
6980            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6981                return;
6982        shmem_base[0] =  bp->common.shmem_base;
6983        shmem2_base[0] = bp->common.shmem2_base;
6984        if (!CHIP_IS_E1x(bp)) {
6985                shmem_base[1] =
6986                        SHMEM2_RD(bp, other_shmem_base_addr);
6987                shmem2_base[1] =
6988                        SHMEM2_RD(bp, other_shmem2_base_addr);
6989        }
6990        bnx2x_acquire_phy_lock(bp);
6991        bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6992                              bp->common.chip_id);
6993        bnx2x_release_phy_lock(bp);
6994}
6995
6996static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6997{
6998        REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6999        REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7000        REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7001        REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7002        REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7003
7004        /* make sure this value is 0 */
7005        REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7006
7007        REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7008        REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7009        REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7010        REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7011}
7012
7013static void bnx2x_set_endianity(struct bnx2x *bp)
7014{
7015#ifdef __BIG_ENDIAN
7016        bnx2x_config_endianity(bp, 1);
7017#else
7018        bnx2x_config_endianity(bp, 0);
7019#endif
7020}
7021
7022static void bnx2x_reset_endianity(struct bnx2x *bp)
7023{
7024        bnx2x_config_endianity(bp, 0);
7025}
7026
7027/**
7028 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7029 *
7030 * @bp:         driver handle
7031 */
7032static int bnx2x_init_hw_common(struct bnx2x *bp)
7033{
7034        u32 val;
7035
7036        DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7037
7038        /*
7039         * take the RESET lock to protect undi_unload flow from accessing
7040         * registers while we're resetting the chip
7041         */
7042        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7043
7044        bnx2x_reset_common(bp);
7045        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7046
7047        val = 0xfffc;
7048        if (CHIP_IS_E3(bp)) {
7049                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7050                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7051        }
7052        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7053
7054        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055
7056        bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7057
7058        if (!CHIP_IS_E1x(bp)) {
7059                u8 abs_func_id;
7060
7061                /**
7062                 * 4-port mode or 2-port mode we need to turn of master-enable
7063                 * for everyone, after that, turn it back on for self.
7064                 * so, we disregard multi-function or not, and always disable
7065                 * for all functions on the given path, this means 0,2,4,6 for
7066                 * path 0 and 1,3,5,7 for path 1
7067                 */
7068                for (abs_func_id = BP_PATH(bp);
7069                     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7070                        if (abs_func_id == BP_ABS_FUNC(bp)) {
7071                                REG_WR(bp,
7072                                    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7073                                    1);
7074                                continue;
7075                        }
7076
7077                        bnx2x_pretend_func(bp, abs_func_id);
7078                        /* clear pf enable */
7079                        bnx2x_pf_disable(bp);
7080                        bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7081                }
7082        }
7083
7084        bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7085        if (CHIP_IS_E1(bp)) {
7086                /* enable HW interrupt from PXP on USDM overflow
7087                   bit 16 on INT_MASK_0 */
7088                REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7089        }
7090
7091        bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7092        bnx2x_init_pxp(bp);
7093        bnx2x_set_endianity(bp);
7094        bnx2x_ilt_init_page_size(bp, INITOP_SET);
7095
7096        if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7097                REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7098
7099        /* let the HW do it's magic ... */
7100        msleep(100);
7101        /* finish PXP init */
7102        val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7103        if (val != 1) {
7104                BNX2X_ERR("PXP2 CFG failed\n");
7105                return -EBUSY;
7106        }
7107        val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7108        if (val != 1) {
7109                BNX2X_ERR("PXP2 RD_INIT failed\n");
7110                return -EBUSY;
7111        }
7112
7113        /* Timers bug workaround E2 only. We need to set the entire ILT to
7114         * have entries with value "0" and valid bit on.
7115         * This needs to be done by the first PF that is loaded in a path
7116         * (i.e. common phase)
7117         */
7118        if (!CHIP_IS_E1x(bp)) {
7119/* In E2 there is a bug in the timers block that can cause function 6 / 7
7120 * (i.e. vnic3) to start even if it is marked as "scan-off".
7121 * This occurs when a different function (func2,3) is being marked
7122 * as "scan-off". Real-life scenario for example: if a driver is being
7123 * load-unloaded while func6,7 are down. This will cause the timer to access
7124 * the ilt, translate to a logical address and send a request to read/write.
7125 * Since the ilt for the function that is down is not valid, this will cause
7126 * a translation error which is unrecoverable.
7127 * The Workaround is intended to make sure that when this happens nothing fatal
7128 * will occur. The workaround:
7129 *      1.  First PF driver which loads on a path will:
7130 *              a.  After taking the chip out of reset, by using pretend,
7131 *                  it will write "0" to the following registers of
7132 *                  the other vnics.
7133 *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7134 *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7135 *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7136 *                  And for itself it will write '1' to
7137 *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7138 *                  dmae-operations (writing to pram for example.)
7139 *                  note: can be done for only function 6,7 but cleaner this
7140 *                        way.
7141 *              b.  Write zero+valid to the entire ILT.
7142 *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7143 *                  VNIC3 (of that port). The range allocated will be the
7144 *                  entire ILT. This is needed to prevent  ILT range error.
7145 *      2.  Any PF driver load flow:
7146 *              a.  ILT update with the physical addresses of the allocated
7147 *                  logical pages.
7148 *              b.  Wait 20msec. - note that this timeout is needed to make
7149 *                  sure there are no requests in one of the PXP internal
7150 *                  queues with "old" ILT addresses.
7151 *              c.  PF enable in the PGLC.
7152 *              d.  Clear the was_error of the PF in the PGLC. (could have
7153 *                  occurred while driver was down)
7154 *              e.  PF enable in the CFC (WEAK + STRONG)
7155 *              f.  Timers scan enable
7156 *      3.  PF driver unload flow:
7157 *              a.  Clear the Timers scan_en.
7158 *              b.  Polling for scan_on=0 for that PF.
7159 *              c.  Clear the PF enable bit in the PXP.
7160 *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7161 *              e.  Write zero+valid to all ILT entries (The valid bit must
7162 *                  stay set)
7163 *              f.  If this is VNIC 3 of a port then also init
7164 *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7165 *                  to the last entry in the ILT.
7166 *
7167 *      Notes:
7168 *      Currently the PF error in the PGLC is non recoverable.
7169 *      In the future the there will be a recovery routine for this error.
7170 *      Currently attention is masked.
7171 *      Having an MCP lock on the load/unload process does not guarantee that
7172 *      there is no Timer disable during Func6/7 enable. This is because the
7173 *      Timers scan is currently being cleared by the MCP on FLR.
7174 *      Step 2.d can be done only for PF6/7 and the driver can also check if
7175 *      there is error before clearing it. But the flow above is simpler and
7176 *      more general.
7177 *      All ILT entries are written by zero+valid and not just PF6/7
7178 *      ILT entries since in the future the ILT entries allocation for
7179 *      PF-s might be dynamic.
7180 */
7181                struct ilt_client_info ilt_cli;
7182                struct bnx2x_ilt ilt;
7183                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7184                memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7185
7186                /* initialize dummy TM client */
7187                ilt_cli.start = 0;
7188                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7189                ilt_cli.client_num = ILT_CLIENT_TM;
7190
7191                /* Step 1: set zeroes to all ilt page entries with valid bit on
7192                 * Step 2: set the timers first/last ilt entry to point
7193                 * to the entire range to prevent ILT range error for 3rd/4th
7194                 * vnic (this code assumes existence of the vnic)
7195                 *
7196                 * both steps performed by call to bnx2x_ilt_client_init_op()
7197                 * with dummy TM client
7198                 *
7199                 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7200                 * and his brother are split registers
7201                 */
7202                bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7203                bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7204                bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7205
7206                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7207                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7208                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7209        }
7210
7211        REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7212        REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7213
7214        if (!CHIP_IS_E1x(bp)) {
7215                int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7216                                (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7217                bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7218
7219                bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7220
7221                /* let the HW do it's magic ... */
7222                do {
7223                        msleep(200);
7224                        val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7225                } while (factor-- && (val != 1));
7226
7227                if (val != 1) {
7228                        BNX2X_ERR("ATC_INIT failed\n");
7229                        return -EBUSY;
7230                }
7231        }
7232
7233        bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7234
7235        bnx2x_iov_init_dmae(bp);
7236
7237        /* clean the DMAE memory */
7238        bp->dmae_ready = 1;
7239        bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7240
7241        bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7242
7243        bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7244
7245        bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7246
7247        bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7248
7249        bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7250        bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7251        bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7252        bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7253
7254        bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7255
7256        /* QM queues pointers table */
7257        bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7258
7259        /* soft reset pulse */
7260        REG_WR(bp, QM_REG_SOFT_RESET, 1);
7261        REG_WR(bp, QM_REG_SOFT_RESET, 0);
7262
7263        if (CNIC_SUPPORT(bp))
7264                bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7265
7266        bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7267
7268        if (!CHIP_REV_IS_SLOW(bp))
7269                /* enable hw interrupt from doorbell Q */
7270                REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7271
7272        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7273
7274        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7275        REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7276
7277        if (!CHIP_IS_E1(bp))
7278                REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7279
7280        if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7281                if (IS_MF_AFEX(bp)) {
7282                        /* configure that VNTag and VLAN headers must be
7283                         * received in afex mode
7284                         */
7285                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7286                        REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7287                        REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7288                        REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7289                        REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7290                } else {
7291                        /* Bit-map indicating which L2 hdrs may appear
7292                         * after the basic Ethernet header
7293                         */
7294                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7295                               bp->path_has_ovlan ? 7 : 6);
7296                }
7297        }
7298
7299        bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7300        bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7301        bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7302        bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7303
7304        if (!CHIP_IS_E1x(bp)) {
7305                /* reset VFC memories */
7306                REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307                           VFC_MEMORIES_RST_REG_CAM_RST |
7308                           VFC_MEMORIES_RST_REG_RAM_RST);
7309                REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7310                           VFC_MEMORIES_RST_REG_CAM_RST |
7311                           VFC_MEMORIES_RST_REG_RAM_RST);
7312
7313                msleep(20);
7314        }
7315
7316        bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7317        bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7318        bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7319        bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7320
7321        /* sync semi rtc */
7322        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7323               0x80000000);
7324        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7325               0x80000000);
7326
7327        bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7328        bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7329        bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7330
7331        if (!CHIP_IS_E1x(bp)) {
7332                if (IS_MF_AFEX(bp)) {
7333                        /* configure that VNTag and VLAN headers must be
7334                         * sent in afex mode
7335                         */
7336                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7337                        REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7338                        REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7339                        REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7340                        REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7341                } else {
7342                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7343                               bp->path_has_ovlan ? 7 : 6);
7344                }
7345        }
7346
7347        REG_WR(bp, SRC_REG_SOFT_RST, 1);
7348
7349        bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7350
7351        if (CNIC_SUPPORT(bp)) {
7352                REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7353                REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7354                REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7355                REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7356                REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7357                REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7358                REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7359                REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7360                REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7361                REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7362        }
7363        REG_WR(bp, SRC_REG_SOFT_RST, 0);
7364
7365        if (sizeof(union cdu_context) != 1024)
7366                /* we currently assume that a context is 1024 bytes */
7367                dev_alert(&bp->pdev->dev,
7368                          "please adjust the size of cdu_context(%ld)\n",
7369                          (long)sizeof(union cdu_context));
7370
7371        bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7372        val = (4 << 24) + (0 << 12) + 1024;
7373        REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7374
7375        bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7376        REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7377        /* enable context validation interrupt from CFC */
7378        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7379
7380        /* set the thresholds to prevent CFC/CDU race */
7381        REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7382
7383        bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7384
7385        if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7386                REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7387
7388        bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7389        bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7390
7391        /* Reset PCIE errors for debug */
7392        REG_WR(bp, 0x2814, 0xffffffff);
7393        REG_WR(bp, 0x3820, 0xffffffff);
7394
7395        if (!CHIP_IS_E1x(bp)) {
7396                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7397                           (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7398                                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7399                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7400                           (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7401                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7402                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7403                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7404                           (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7405                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7406                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7407        }
7408
7409        bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7410        if (!CHIP_IS_E1(bp)) {
7411                /* in E3 this done in per-port section */
7412                if (!CHIP_IS_E3(bp))
7413                        REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7414        }
7415        if (CHIP_IS_E1H(bp))
7416                /* not applicable for E2 (and above ...) */
7417                REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7418
7419        if (CHIP_REV_IS_SLOW(bp))
7420                msleep(200);
7421
7422        /* finish CFC init */
7423        val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7424        if (val != 1) {
7425                BNX2X_ERR("CFC LL_INIT failed\n");
7426                return -EBUSY;
7427        }
7428        val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7429        if (val != 1) {
7430                BNX2X_ERR("CFC AC_INIT failed\n");
7431                return -EBUSY;
7432        }
7433        val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7434        if (val != 1) {
7435                BNX2X_ERR("CFC CAM_INIT failed\n");
7436                return -EBUSY;
7437        }
7438        REG_WR(bp, CFC_REG_DEBUG0, 0);
7439
7440        if (CHIP_IS_E1(bp)) {
7441                /* read NIG statistic
7442                   to see if this is our first up since powerup */
7443                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7444                val = *bnx2x_sp(bp, wb_data[0]);
7445
7446                /* do internal memory self test */
7447                if ((val == 0) && bnx2x_int_mem_test(bp)) {
7448                        BNX2X_ERR("internal mem self test failed\n");
7449                        return -EBUSY;
7450                }
7451        }
7452
7453        bnx2x_setup_fan_failure_detection(bp);
7454
7455        /* clear PXP2 attentions */
7456        REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7457
7458        bnx2x_enable_blocks_attention(bp);
7459        bnx2x_enable_blocks_parity(bp);
7460
7461        if (!BP_NOMCP(bp)) {
7462                if (CHIP_IS_E1x(bp))
7463                        bnx2x__common_init_phy(bp);
7464        } else
7465                BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7466
7467        if (SHMEM2_HAS(bp, netproc_fw_ver))
7468                SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7469
7470        return 0;
7471}
7472
7473/**
7474 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7475 *
7476 * @bp:         driver handle
7477 */
7478static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7479{
7480        int rc = bnx2x_init_hw_common(bp);
7481
7482        if (rc)
7483                return rc;
7484
7485        /* In E2 2-PORT mode, same ext phy is used for the two paths */
7486        if (!BP_NOMCP(bp))
7487                bnx2x__common_init_phy(bp);
7488
7489        return 0;
7490}
7491
7492static int bnx2x_init_hw_port(struct bnx2x *bp)
7493{
7494        int port = BP_PORT(bp);
7495        int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7496        u32 low, high;
7497        u32 val, reg;
7498
7499        DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7500
7501        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7502
7503        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7504        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7505        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7506
7507        /* Timers bug workaround: disables the pf_master bit in pglue at
7508         * common phase, we need to enable it here before any dmae access are
7509         * attempted. Therefore we manually added the enable-master to the
7510         * port phase (it also happens in the function phase)
7511         */
7512        if (!CHIP_IS_E1x(bp))
7513                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7514
7515        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7516        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7517        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7518        bnx2x_init_block(bp, BLOCK_QM, init_phase);
7519
7520        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7521        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7522        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7523        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7524
7525        /* QM cid (connection) count */
7526        bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7527
7528        if (CNIC_SUPPORT(bp)) {
7529                bnx2x_init_block(bp, BLOCK_TM, init_phase);
7530                REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7531                REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7532        }
7533
7534        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7535
7536        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7537
7538        if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7539
7540                if (IS_MF(bp))
7541                        low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7542                else if (bp->dev->mtu > 4096) {
7543                        if (bp->flags & ONE_PORT_FLAG)
7544                                low = 160;
7545                        else {
7546                                val = bp->dev->mtu;
7547                                /* (24*1024 + val*4)/256 */
7548                                low = 96 + (val/64) +
7549                                                ((val % 64) ? 1 : 0);
7550                        }
7551                } else
7552                        low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7553                high = low + 56;        /* 14*1024/256 */
7554                REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7555                REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7556        }
7557
7558        if (CHIP_MODE_IS_4_PORT(bp))
7559                REG_WR(bp, (BP_PORT(bp) ?
7560                            BRB1_REG_MAC_GUARANTIED_1 :
7561                            BRB1_REG_MAC_GUARANTIED_0), 40);
7562
7563        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7564        if (CHIP_IS_E3B0(bp)) {
7565                if (IS_MF_AFEX(bp)) {
7566                        /* configure headers for AFEX mode */
7567                        REG_WR(bp, BP_PORT(bp) ?
7568                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7569                               PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7570                        REG_WR(bp, BP_PORT(bp) ?
7571                               PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7572                               PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7573                        REG_WR(bp, BP_PORT(bp) ?
7574                               PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7575                               PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7576                } else {
7577                        /* Ovlan exists only if we are in multi-function +
7578                         * switch-dependent mode, in switch-independent there
7579                         * is no ovlan headers
7580                         */
7581                        REG_WR(bp, BP_PORT(bp) ?
7582                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7583                               PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7584                               (bp->path_has_ovlan ? 7 : 6));
7585                }
7586        }
7587
7588        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7589        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7590        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7591        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7592
7593        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7594        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7595        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7596        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7597
7598        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7599        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7600
7601        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7602
7603        if (CHIP_IS_E1x(bp)) {
7604                /* configure PBF to work without PAUSE mtu 9000 */
7605                REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7606
7607                /* update threshold */
7608                REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7609                /* update init credit */
7610                REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7611
7612                /* probe changes */
7613                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7614                udelay(50);
7615                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7616        }
7617
7618        if (CNIC_SUPPORT(bp))
7619                bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7620
7621        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7622        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7623
7624        if (CHIP_IS_E1(bp)) {
7625                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7626                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7627        }
7628        bnx2x_init_block(bp, BLOCK_HC, init_phase);
7629
7630        bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7631
7632        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7633        /* init aeu_mask_attn_func_0/1:
7634         *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7635         *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7636         *             bits 4-7 are used for "per vn group attention" */
7637        val = IS_MF(bp) ? 0xF7 : 0x7;
7638        /* Enable DCBX attention for all but E1 */
7639        val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7640        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7641
7642        /* SCPAD_PARITY should NOT trigger close the gates */
7643        reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7644        REG_WR(bp, reg,
7645               REG_RD(bp, reg) &
7646               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7647
7648        reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7649        REG_WR(bp, reg,
7650               REG_RD(bp, reg) &
7651               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7652
7653        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7654
7655        if (!CHIP_IS_E1x(bp)) {
7656                /* Bit-map indicating which L2 hdrs may appear after the
7657                 * basic Ethernet header
7658                 */
7659                if (IS_MF_AFEX(bp))
7660                        REG_WR(bp, BP_PORT(bp) ?
7661                               NIG_REG_P1_HDRS_AFTER_BASIC :
7662                               NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7663                else
7664                        REG_WR(bp, BP_PORT(bp) ?
7665                               NIG_REG_P1_HDRS_AFTER_BASIC :
7666                               NIG_REG_P0_HDRS_AFTER_BASIC,
7667                               IS_MF_SD(bp) ? 7 : 6);
7668
7669                if (CHIP_IS_E3(bp))
7670                        REG_WR(bp, BP_PORT(bp) ?
7671                                   NIG_REG_LLH1_MF_MODE :
7672                                   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7673        }
7674        if (!CHIP_IS_E3(bp))
7675                REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7676
7677        if (!CHIP_IS_E1(bp)) {
7678                /* 0x2 disable mf_ov, 0x1 enable */
7679                REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7680                       (IS_MF_SD(bp) ? 0x1 : 0x2));
7681
7682                if (!CHIP_IS_E1x(bp)) {
7683                        val = 0;
7684                        switch (bp->mf_mode) {
7685                        case MULTI_FUNCTION_SD:
7686                                val = 1;
7687                                break;
7688                        case MULTI_FUNCTION_SI:
7689                        case MULTI_FUNCTION_AFEX:
7690                                val = 2;
7691                                break;
7692                        }
7693
7694                        REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7695                                                  NIG_REG_LLH0_CLS_TYPE), val);
7696                }
7697                {
7698                        REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7699                        REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7700                        REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7701                }
7702        }
7703
7704        /* If SPIO5 is set to generate interrupts, enable it for this port */
7705        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7706        if (val & MISC_SPIO_SPIO5) {
7707                u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7708                                       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7709                val = REG_RD(bp, reg_addr);
7710                val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7711                REG_WR(bp, reg_addr, val);
7712        }
7713
7714        if (CHIP_IS_E3B0(bp))
7715                bp->flags |= PTP_SUPPORTED;
7716
7717        return 0;
7718}
7719
7720static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7721{
7722        int reg;
7723        u32 wb_write[2];
7724
7725        if (CHIP_IS_E1(bp))
7726                reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7727        else
7728                reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7729
7730        wb_write[0] = ONCHIP_ADDR1(addr);
7731        wb_write[1] = ONCHIP_ADDR2(addr);
7732        REG_WR_DMAE(bp, reg, wb_write, 2);
7733}
7734
7735void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7736{
7737        u32 data, ctl, cnt = 100;
7738        u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7739        u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7740        u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7741        u32 sb_bit =  1 << (idu_sb_id%32);
7742        u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7743        u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7744
7745        /* Not supported in BC mode */
7746        if (CHIP_INT_MODE_IS_BC(bp))
7747                return;
7748
7749        data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7750                        << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7751                IGU_REGULAR_CLEANUP_SET                         |
7752                IGU_REGULAR_BCLEANUP;
7753
7754        ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7755              func_encode << IGU_CTRL_REG_FID_SHIFT             |
7756              IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7757
7758        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7759                         data, igu_addr_data);
7760        REG_WR(bp, igu_addr_data, data);
7761        barrier();
7762        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7763                          ctl, igu_addr_ctl);
7764        REG_WR(bp, igu_addr_ctl, ctl);
7765        barrier();
7766
7767        /* wait for clean up to finish */
7768        while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7769                msleep(20);
7770
7771        if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7772                DP(NETIF_MSG_HW,
7773                   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7774                          idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7775        }
7776}
7777
7778static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7779{
7780        bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7781}
7782
7783static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7784{
7785        u32 i, base = FUNC_ILT_BASE(func);
7786        for (i = base; i < base + ILT_PER_FUNC; i++)
7787                bnx2x_ilt_wr(bp, i, 0);
7788}
7789
7790static void bnx2x_init_searcher(struct bnx2x *bp)
7791{
7792        int port = BP_PORT(bp);
7793        bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7794        /* T1 hash bits value determines the T1 number of entries */
7795        REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7796}
7797
7798static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7799{
7800        int rc;
7801        struct bnx2x_func_state_params func_params = {NULL};
7802        struct bnx2x_func_switch_update_params *switch_update_params =
7803                &func_params.params.switch_update;
7804
7805        /* Prepare parameters for function state transitions */
7806        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7807        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7808
7809        func_params.f_obj = &bp->func_obj;
7810        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7811
7812        /* Function parameters */
7813        __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7814                  &switch_update_params->changes);
7815        if (suspend)
7816                __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7817                          &switch_update_params->changes);
7818
7819        rc = bnx2x_func_state_change(bp, &func_params);
7820
7821        return rc;
7822}
7823
7824static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7825{
7826        int rc, i, port = BP_PORT(bp);
7827        int vlan_en = 0, mac_en[NUM_MACS];
7828
7829        /* Close input from network */
7830        if (bp->mf_mode == SINGLE_FUNCTION) {
7831                bnx2x_set_rx_filter(&bp->link_params, 0);
7832        } else {
7833                vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7834                                   NIG_REG_LLH0_FUNC_EN);
7835                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7836                          NIG_REG_LLH0_FUNC_EN, 0);
7837                for (i = 0; i < NUM_MACS; i++) {
7838                        mac_en[i] = REG_RD(bp, port ?
7839                                             (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7840                                              4 * i) :
7841                                             (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7842                                              4 * i));
7843                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7844                                              4 * i) :
7845                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7846                }
7847        }
7848
7849        /* Close BMC to host */
7850        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7851               NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7852
7853        /* Suspend Tx switching to the PF. Completion of this ramrod
7854         * further guarantees that all the packets of that PF / child
7855         * VFs in BRB were processed by the Parser, so it is safe to
7856         * change the NIC_MODE register.
7857         */
7858        rc = bnx2x_func_switch_update(bp, 1);
7859        if (rc) {
7860                BNX2X_ERR("Can't suspend tx-switching!\n");
7861                return rc;
7862        }
7863
7864        /* Change NIC_MODE register */
7865        REG_WR(bp, PRS_REG_NIC_MODE, 0);
7866
7867        /* Open input from network */
7868        if (bp->mf_mode == SINGLE_FUNCTION) {
7869                bnx2x_set_rx_filter(&bp->link_params, 1);
7870        } else {
7871                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7872                          NIG_REG_LLH0_FUNC_EN, vlan_en);
7873                for (i = 0; i < NUM_MACS; i++) {
7874                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7875                                              4 * i) :
7876                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7877                                  mac_en[i]);
7878                }
7879        }
7880
7881        /* Enable BMC to host */
7882        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7883               NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7884
7885        /* Resume Tx switching to the PF */
7886        rc = bnx2x_func_switch_update(bp, 0);
7887        if (rc) {
7888                BNX2X_ERR("Can't resume tx-switching!\n");
7889                return rc;
7890        }
7891
7892        DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7893        return 0;
7894}
7895
7896int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7897{
7898        int rc;
7899
7900        bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7901
7902        if (CONFIGURE_NIC_MODE(bp)) {
7903                /* Configure searcher as part of function hw init */
7904                bnx2x_init_searcher(bp);
7905
7906                /* Reset NIC mode */
7907                rc = bnx2x_reset_nic_mode(bp);
7908                if (rc)
7909                        BNX2X_ERR("Can't change NIC mode!\n");
7910                return rc;
7911        }
7912
7913        return 0;
7914}
7915
7916/* previous driver DMAE transaction may have occurred when pre-boot stage ended
7917 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7918 * the addresses of the transaction, resulting in was-error bit set in the pci
7919 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7920 * to clear the interrupt which detected this from the pglueb and the was done
7921 * bit
7922 */
7923static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7924{
7925        if (!CHIP_IS_E1x(bp))
7926                REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7927                       1 << BP_ABS_FUNC(bp));
7928}
7929
7930static int bnx2x_init_hw_func(struct bnx2x *bp)
7931{
7932        int port = BP_PORT(bp);
7933        int func = BP_FUNC(bp);
7934        int init_phase = PHASE_PF0 + func;
7935        struct bnx2x_ilt *ilt = BP_ILT(bp);
7936        u16 cdu_ilt_start;
7937        u32 addr, val;
7938        u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7939        int i, main_mem_width, rc;
7940
7941        DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7942
7943        /* FLR cleanup - hmmm */
7944        if (!CHIP_IS_E1x(bp)) {
7945                rc = bnx2x_pf_flr_clnup(bp);
7946                if (rc) {
7947                        bnx2x_fw_dump(bp);
7948                        return rc;
7949                }
7950        }
7951
7952        /* set MSI reconfigure capability */
7953        if (bp->common.int_block == INT_BLOCK_HC) {
7954                addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7955                val = REG_RD(bp, addr);
7956                val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7957                REG_WR(bp, addr, val);
7958        }
7959
7960        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7961        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7962
7963        ilt = BP_ILT(bp);
7964        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7965
7966        if (IS_SRIOV(bp))
7967                cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7968        cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7969
7970        /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7971         * those of the VFs, so start line should be reset
7972         */
7973        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7974        for (i = 0; i < L2_ILT_LINES(bp); i++) {
7975                ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7976                ilt->lines[cdu_ilt_start + i].page_mapping =
7977                        bp->context[i].cxt_mapping;
7978                ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7979        }
7980
7981        bnx2x_ilt_init_op(bp, INITOP_SET);
7982
7983        if (!CONFIGURE_NIC_MODE(bp)) {
7984                bnx2x_init_searcher(bp);
7985                REG_WR(bp, PRS_REG_NIC_MODE, 0);
7986                DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7987        } else {
7988                /* Set NIC mode */
7989                REG_WR(bp, PRS_REG_NIC_MODE, 1);
7990                DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7991        }
7992
7993        if (!CHIP_IS_E1x(bp)) {
7994                u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7995
7996                /* Turn on a single ISR mode in IGU if driver is going to use
7997                 * INT#x or MSI
7998                 */
7999                if (!(bp->flags & USING_MSIX_FLAG))
8000                        pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8001                /*
8002                 * Timers workaround bug: function init part.
8003                 * Need to wait 20msec after initializing ILT,
8004                 * needed to make sure there are no requests in
8005                 * one of the PXP internal queues with "old" ILT addresses
8006                 */
8007                msleep(20);
8008                /*
8009                 * Master enable - Due to WB DMAE writes performed before this
8010                 * register is re-initialized as part of the regular function
8011                 * init
8012                 */
8013                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8014                /* Enable the function in IGU */
8015                REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8016        }
8017
8018        bp->dmae_ready = 1;
8019
8020        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8021
8022        bnx2x_clean_pglue_errors(bp);
8023
8024        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8025        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8026        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8027        bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8028        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8029        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8030        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8031        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8032        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8033        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8034        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8035        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8036        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8037
8038        if (!CHIP_IS_E1x(bp))
8039                REG_WR(bp, QM_REG_PF_EN, 1);
8040
8041        if (!CHIP_IS_E1x(bp)) {
8042                REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8043                REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044                REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045                REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8046        }
8047        bnx2x_init_block(bp, BLOCK_QM, init_phase);
8048
8049        bnx2x_init_block(bp, BLOCK_TM, init_phase);
8050        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8051        REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8052
8053        bnx2x_iov_init_dq(bp);
8054
8055        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8056        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8057        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8058        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8059        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8060        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8061        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8062        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8063        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8064        if (!CHIP_IS_E1x(bp))
8065                REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8066
8067        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8068
8069        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8070
8071        if (!CHIP_IS_E1x(bp))
8072                REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8073
8074        if (IS_MF(bp)) {
8075                if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8076                        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8077                        REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8078                               bp->mf_ov);
8079                }
8080        }
8081
8082        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8083
8084        /* HC init per function */
8085        if (bp->common.int_block == INT_BLOCK_HC) {
8086                if (CHIP_IS_E1H(bp)) {
8087                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8088
8089                        REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8090                        REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8091                }
8092                bnx2x_init_block(bp, BLOCK_HC, init_phase);
8093
8094        } else {
8095                int num_segs, sb_idx, prod_offset;
8096
8097                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8098
8099                if (!CHIP_IS_E1x(bp)) {
8100                        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8101                        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8102                }
8103
8104                bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8105
8106                if (!CHIP_IS_E1x(bp)) {
8107                        int dsb_idx = 0;
8108                        /**
8109                         * Producer memory:
8110                         * E2 mode: address 0-135 match to the mapping memory;
8111                         * 136 - PF0 default prod; 137 - PF1 default prod;
8112                         * 138 - PF2 default prod; 139 - PF3 default prod;
8113                         * 140 - PF0 attn prod;    141 - PF1 attn prod;
8114                         * 142 - PF2 attn prod;    143 - PF3 attn prod;
8115                         * 144-147 reserved.
8116                         *
8117                         * E1.5 mode - In backward compatible mode;
8118                         * for non default SB; each even line in the memory
8119                         * holds the U producer and each odd line hold
8120                         * the C producer. The first 128 producers are for
8121                         * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8122                         * producers are for the DSB for each PF.
8123                         * Each PF has five segments: (the order inside each
8124                         * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8125                         * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8126                         * 144-147 attn prods;
8127                         */
8128                        /* non-default-status-blocks */
8129                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8130                                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8131                        for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8132                                prod_offset = (bp->igu_base_sb + sb_idx) *
8133                                        num_segs;
8134
8135                                for (i = 0; i < num_segs; i++) {
8136                                        addr = IGU_REG_PROD_CONS_MEMORY +
8137                                                        (prod_offset + i) * 4;
8138                                        REG_WR(bp, addr, 0);
8139                                }
8140                                /* send consumer update with value 0 */
8141                                bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8142                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8143                                bnx2x_igu_clear_sb(bp,
8144                                                   bp->igu_base_sb + sb_idx);
8145                        }
8146
8147                        /* default-status-blocks */
8148                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8149                                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8150
8151                        if (CHIP_MODE_IS_4_PORT(bp))
8152                                dsb_idx = BP_FUNC(bp);
8153                        else
8154                                dsb_idx = BP_VN(bp);
8155
8156                        prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8157                                       IGU_BC_BASE_DSB_PROD + dsb_idx :
8158                                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8159
8160                        /*
8161                         * igu prods come in chunks of E1HVN_MAX (4) -
8162                         * does not matters what is the current chip mode
8163                         */
8164                        for (i = 0; i < (num_segs * E1HVN_MAX);
8165                             i += E1HVN_MAX) {
8166                                addr = IGU_REG_PROD_CONS_MEMORY +
8167                                                        (prod_offset + i)*4;
8168                                REG_WR(bp, addr, 0);
8169                        }
8170                        /* send consumer update with 0 */
8171                        if (CHIP_INT_MODE_IS_BC(bp)) {
8172                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8173                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8174                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8175                                             CSTORM_ID, 0, IGU_INT_NOP, 1);
8176                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8177                                             XSTORM_ID, 0, IGU_INT_NOP, 1);
8178                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8179                                             TSTORM_ID, 0, IGU_INT_NOP, 1);
8180                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8181                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8182                        } else {
8183                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8184                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8185                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8186                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8187                        }
8188                        bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8189
8190                        /* !!! These should become driver const once
8191                           rf-tool supports split-68 const */
8192                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8193                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8194                        REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8195                        REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8196                        REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8197                        REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8198                }
8199        }
8200
8201        /* Reset PCIE errors for debug */
8202        REG_WR(bp, 0x2114, 0xffffffff);
8203        REG_WR(bp, 0x2120, 0xffffffff);
8204
8205        if (CHIP_IS_E1x(bp)) {
8206                main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8207                main_mem_base = HC_REG_MAIN_MEMORY +
8208                                BP_PORT(bp) * (main_mem_size * 4);
8209                main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8210                main_mem_width = 8;
8211
8212                val = REG_RD(bp, main_mem_prty_clr);
8213                if (val)
8214                        DP(NETIF_MSG_HW,
8215                           "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8216                           val);
8217
8218                /* Clear "false" parity errors in MSI-X table */
8219                for (i = main_mem_base;
8220                     i < main_mem_base + main_mem_size * 4;
8221                     i += main_mem_width) {
8222                        bnx2x_read_dmae(bp, i, main_mem_width / 4);
8223                        bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8224                                         i, main_mem_width / 4);
8225                }
8226                /* Clear HC parity attention */
8227                REG_RD(bp, main_mem_prty_clr);
8228        }
8229
8230#ifdef BNX2X_STOP_ON_ERROR
8231        /* Enable STORMs SP logging */
8232        REG_WR8(bp, BAR_USTRORM_INTMEM +
8233               USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8234        REG_WR8(bp, BAR_TSTRORM_INTMEM +
8235               TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8236        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8237               CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8238        REG_WR8(bp, BAR_XSTRORM_INTMEM +
8239               XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8240#endif
8241
8242        bnx2x_phy_probe(&bp->link_params);
8243
8244        return 0;
8245}
8246
8247void bnx2x_free_mem_cnic(struct bnx2x *bp)
8248{
8249        bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8250
8251        if (!CHIP_IS_E1x(bp))
8252                BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8253                               sizeof(struct host_hc_status_block_e2));
8254        else
8255                BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8256                               sizeof(struct host_hc_status_block_e1x));
8257
8258        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8259}
8260
8261void bnx2x_free_mem(struct bnx2x *bp)
8262{
8263        int i;
8264
8265        BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8266                       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8267
8268        if (IS_VF(bp))
8269                return;
8270
8271        BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8272                       sizeof(struct host_sp_status_block));
8273
8274        BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8275                       sizeof(struct bnx2x_slowpath));
8276
8277        for (i = 0; i < L2_ILT_LINES(bp); i++)
8278                BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8279                               bp->context[i].size);
8280        bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8281
8282        BNX2X_FREE(bp->ilt->lines);
8283
8284        BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8285
8286        BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8287                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8288
8289        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8290
8291        bnx2x_iov_free_mem(bp);
8292}
8293
8294int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8295{
8296        if (!CHIP_IS_E1x(bp)) {
8297                /* size = the status block + ramrod buffers */
8298                bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8299                                                    sizeof(struct host_hc_status_block_e2));
8300                if (!bp->cnic_sb.e2_sb)
8301                        goto alloc_mem_err;
8302        } else {
8303                bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8304                                                     sizeof(struct host_hc_status_block_e1x));
8305                if (!bp->cnic_sb.e1x_sb)
8306                        goto alloc_mem_err;
8307        }
8308
8309        if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8310                /* allocate searcher T2 table, as it wasn't allocated before */
8311                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8312                if (!bp->t2)
8313                        goto alloc_mem_err;
8314        }
8315
8316        /* write address to which L5 should insert its values */
8317        bp->cnic_eth_dev.addr_drv_info_to_mcp =
8318                &bp->slowpath->drv_info_to_mcp;
8319
8320        if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8321                goto alloc_mem_err;
8322
8323        return 0;
8324
8325alloc_mem_err:
8326        bnx2x_free_mem_cnic(bp);
8327        BNX2X_ERR("Can't allocate memory\n");
8328        return -ENOMEM;
8329}
8330
8331int bnx2x_alloc_mem(struct bnx2x *bp)
8332{
8333        int i, allocated, context_size;
8334
8335        if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8336                /* allocate searcher T2 table */
8337                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8338                if (!bp->t2)
8339                        goto alloc_mem_err;
8340        }
8341
8342        bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8343                                             sizeof(struct host_sp_status_block));
8344        if (!bp->def_status_blk)
8345                goto alloc_mem_err;
8346
8347        bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8348                                       sizeof(struct bnx2x_slowpath));
8349        if (!bp->slowpath)
8350                goto alloc_mem_err;
8351
8352        /* Allocate memory for CDU context:
8353         * This memory is allocated separately and not in the generic ILT
8354         * functions because CDU differs in few aspects:
8355         * 1. There are multiple entities allocating memory for context -
8356         * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8357         * its own ILT lines.
8358         * 2. Since CDU page-size is not a single 4KB page (which is the case
8359         * for the other ILT clients), to be efficient we want to support
8360         * allocation of sub-page-size in the last entry.
8361         * 3. Context pointers are used by the driver to pass to FW / update
8362         * the context (for the other ILT clients the pointers are used just to
8363         * free the memory during unload).
8364         */
8365        context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8366
8367        for (i = 0, allocated = 0; allocated < context_size; i++) {
8368                bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8369                                          (context_size - allocated));
8370                bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8371                                                      bp->context[i].size);
8372                if (!bp->context[i].vcxt)
8373                        goto alloc_mem_err;
8374                allocated += bp->context[i].size;
8375        }
8376        bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8377                                 GFP_KERNEL);
8378        if (!bp->ilt->lines)
8379                goto alloc_mem_err;
8380
8381        if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8382                goto alloc_mem_err;
8383
8384        if (bnx2x_iov_alloc_mem(bp))
8385                goto alloc_mem_err;
8386
8387        /* Slow path ring */
8388        bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8389        if (!bp->spq)
8390                goto alloc_mem_err;
8391
8392        /* EQ */
8393        bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8394                                      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8395        if (!bp->eq_ring)
8396                goto alloc_mem_err;
8397
8398        return 0;
8399
8400alloc_mem_err:
8401        bnx2x_free_mem(bp);
8402        BNX2X_ERR("Can't allocate memory\n");
8403        return -ENOMEM;
8404}
8405
8406/*
8407 * Init service functions
8408 */
8409
8410int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8411                      struct bnx2x_vlan_mac_obj *obj, bool set,
8412                      int mac_type, unsigned long *ramrod_flags)
8413{
8414        int rc;
8415        struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8416
8417        memset(&ramrod_param, 0, sizeof(ramrod_param));
8418
8419        /* Fill general parameters */
8420        ramrod_param.vlan_mac_obj = obj;
8421        ramrod_param.ramrod_flags = *ramrod_flags;
8422
8423        /* Fill a user request section if needed */
8424        if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8425                memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8426
8427                __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8428
8429                /* Set the command: ADD or DEL */
8430                if (set)
8431                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8432                else
8433                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8434        }
8435
8436        rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8437
8438        if (rc == -EEXIST) {
8439                DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8440                /* do not treat adding same MAC as error */
8441                rc = 0;
8442        } else if (rc < 0)
8443                BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8444
8445        return rc;
8446}
8447
8448int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8449                       struct bnx2x_vlan_mac_obj *obj, bool set,
8450                       unsigned long *ramrod_flags)
8451{
8452        int rc;
8453        struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8454
8455        memset(&ramrod_param, 0, sizeof(ramrod_param));
8456
8457        /* Fill general parameters */
8458        ramrod_param.vlan_mac_obj = obj;
8459        ramrod_param.ramrod_flags = *ramrod_flags;
8460
8461        /* Fill a user request section if needed */
8462        if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8463                ramrod_param.user_req.u.vlan.vlan = vlan;
8464                __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8465                /* Set the command: ADD or DEL */
8466                if (set)
8467                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8468                else
8469                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8470        }
8471
8472        rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8473
8474        if (rc == -EEXIST) {
8475                /* Do not treat adding same vlan as error. */
8476                DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8477                rc = 0;
8478        } else if (rc < 0) {
8479                BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8480        }
8481
8482        return rc;
8483}
8484
8485void bnx2x_clear_vlan_info(struct bnx2x *bp)
8486{
8487        struct bnx2x_vlan_entry *vlan;
8488
8489        /* Mark that hw forgot all entries */
8490        list_for_each_entry(vlan, &bp->vlan_reg, link)
8491                vlan->hw = false;
8492
8493        bp->vlan_cnt = 0;
8494}
8495
8496static int bnx2x_del_all_vlans(struct bnx2x *bp)
8497{
8498        struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8499        unsigned long ramrod_flags = 0, vlan_flags = 0;
8500        int rc;
8501
8502        __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8503        __set_bit(BNX2X_VLAN, &vlan_flags);
8504        rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8505        if (rc)
8506                return rc;
8507
8508        bnx2x_clear_vlan_info(bp);
8509
8510        return 0;
8511}
8512
8513int bnx2x_del_all_macs(struct bnx2x *bp,
8514                       struct bnx2x_vlan_mac_obj *mac_obj,
8515                       int mac_type, bool wait_for_comp)
8516{
8517        int rc;
8518        unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8519
8520        /* Wait for completion of requested */
8521        if (wait_for_comp)
8522                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8523
8524        /* Set the mac type of addresses we want to clear */
8525        __set_bit(mac_type, &vlan_mac_flags);
8526
8527        rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8528        if (rc < 0)
8529                BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8530
8531        return rc;
8532}
8533
8534int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8535{
8536        if (IS_PF(bp)) {
8537                unsigned long ramrod_flags = 0;
8538
8539                DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8540                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8541                return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8542                                         &bp->sp_objs->mac_obj, set,
8543                                         BNX2X_ETH_MAC, &ramrod_flags);
8544        } else { /* vf */
8545                return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8546                                             bp->fp->index, set);
8547        }
8548}
8549
8550int bnx2x_setup_leading(struct bnx2x *bp)
8551{
8552        if (IS_PF(bp))
8553                return bnx2x_setup_queue(bp, &bp->fp[0], true);
8554        else /* VF */
8555                return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8556}
8557
8558/**
8559 * bnx2x_set_int_mode - configure interrupt mode
8560 *
8561 * @bp:         driver handle
8562 *
8563 * In case of MSI-X it will also try to enable MSI-X.
8564 */
8565int bnx2x_set_int_mode(struct bnx2x *bp)
8566{
8567        int rc = 0;
8568
8569        if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8570                BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8571                return -EINVAL;
8572        }
8573
8574        switch (int_mode) {
8575        case BNX2X_INT_MODE_MSIX:
8576                /* attempt to enable msix */
8577                rc = bnx2x_enable_msix(bp);
8578
8579                /* msix attained */
8580                if (!rc)
8581                        return 0;
8582
8583                /* vfs use only msix */
8584                if (rc && IS_VF(bp))
8585                        return rc;
8586
8587                /* failed to enable multiple MSI-X */
8588                BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8589                               bp->num_queues,
8590                               1 + bp->num_cnic_queues);
8591
8592                /* fall through */
8593        case BNX2X_INT_MODE_MSI:
8594                bnx2x_enable_msi(bp);
8595
8596                /* fall through */
8597        case BNX2X_INT_MODE_INTX:
8598                bp->num_ethernet_queues = 1;
8599                bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8600                BNX2X_DEV_INFO("set number of queues to 1\n");
8601                break;
8602        default:
8603                BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8604                return -EINVAL;
8605        }
8606        return 0;
8607}
8608
8609/* must be called prior to any HW initializations */
8610static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8611{
8612        if (IS_SRIOV(bp))
8613                return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8614        return L2_ILT_LINES(bp);
8615}
8616
8617void bnx2x_ilt_set_info(struct bnx2x *bp)
8618{
8619        struct ilt_client_info *ilt_client;
8620        struct bnx2x_ilt *ilt = BP_ILT(bp);
8621        u16 line = 0;
8622
8623        ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8624        DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8625
8626        /* CDU */
8627        ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8628        ilt_client->client_num = ILT_CLIENT_CDU;
8629        ilt_client->page_size = CDU_ILT_PAGE_SZ;
8630        ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8631        ilt_client->start = line;
8632        line += bnx2x_cid_ilt_lines(bp);
8633
8634        if (CNIC_SUPPORT(bp))
8635                line += CNIC_ILT_LINES;
8636        ilt_client->end = line - 1;
8637
8638        DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8639           ilt_client->start,
8640           ilt_client->end,
8641           ilt_client->page_size,
8642           ilt_client->flags,
8643           ilog2(ilt_client->page_size >> 12));
8644
8645        /* QM */
8646        if (QM_INIT(bp->qm_cid_count)) {
8647                ilt_client = &ilt->clients[ILT_CLIENT_QM];
8648                ilt_client->client_num = ILT_CLIENT_QM;
8649                ilt_client->page_size = QM_ILT_PAGE_SZ;
8650                ilt_client->flags = 0;
8651                ilt_client->start = line;
8652
8653                /* 4 bytes for each cid */
8654                line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8655                                                         QM_ILT_PAGE_SZ);
8656
8657                ilt_client->end = line - 1;
8658
8659                DP(NETIF_MSG_IFUP,
8660                   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8661                   ilt_client->start,
8662                   ilt_client->end,
8663                   ilt_client->page_size,
8664                   ilt_client->flags,
8665                   ilog2(ilt_client->page_size >> 12));
8666        }
8667
8668        if (CNIC_SUPPORT(bp)) {
8669                /* SRC */
8670                ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8671                ilt_client->client_num = ILT_CLIENT_SRC;
8672                ilt_client->page_size = SRC_ILT_PAGE_SZ;
8673                ilt_client->flags = 0;
8674                ilt_client->start = line;
8675                line += SRC_ILT_LINES;
8676                ilt_client->end = line - 1;
8677
8678                DP(NETIF_MSG_IFUP,
8679                   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8680                   ilt_client->start,
8681                   ilt_client->end,
8682                   ilt_client->page_size,
8683                   ilt_client->flags,
8684                   ilog2(ilt_client->page_size >> 12));
8685
8686                /* TM */
8687                ilt_client = &ilt->clients[ILT_CLIENT_TM];
8688                ilt_client->client_num = ILT_CLIENT_TM;
8689                ilt_client->page_size = TM_ILT_PAGE_SZ;
8690                ilt_client->flags = 0;
8691                ilt_client->start = line;
8692                line += TM_ILT_LINES;
8693                ilt_client->end = line - 1;
8694
8695                DP(NETIF_MSG_IFUP,
8696                   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8697                   ilt_client->start,
8698                   ilt_client->end,
8699                   ilt_client->page_size,
8700                   ilt_client->flags,
8701                   ilog2(ilt_client->page_size >> 12));
8702        }
8703
8704        BUG_ON(line > ILT_MAX_LINES);
8705}
8706
8707/**
8708 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8709 *
8710 * @bp:                 driver handle
8711 * @fp:                 pointer to fastpath
8712 * @init_params:        pointer to parameters structure
8713 *
8714 * parameters configured:
8715 *      - HC configuration
8716 *      - Queue's CDU context
8717 */
8718static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8719        struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8720{
8721        u8 cos;
8722        int cxt_index, cxt_offset;
8723
8724        /* FCoE Queue uses Default SB, thus has no HC capabilities */
8725        if (!IS_FCOE_FP(fp)) {
8726                __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8727                __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8728
8729                /* If HC is supported, enable host coalescing in the transition
8730                 * to INIT state.
8731                 */
8732                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8733                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8734
8735                /* HC rate */
8736                init_params->rx.hc_rate = bp->rx_ticks ?
8737                        (1000000 / bp->rx_ticks) : 0;
8738                init_params->tx.hc_rate = bp->tx_ticks ?
8739                        (1000000 / bp->tx_ticks) : 0;
8740
8741                /* FW SB ID */
8742                init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8743                        fp->fw_sb_id;
8744
8745                /*
8746                 * CQ index among the SB indices: FCoE clients uses the default
8747                 * SB, therefore it's different.
8748                 */
8749                init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8750                init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8751        }
8752
8753        /* set maximum number of COSs supported by this queue */
8754        init_params->max_cos = fp->max_cos;
8755
8756        DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8757            fp->index, init_params->max_cos);
8758
8759        /* set the context pointers queue object */
8760        for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8761                cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8762                cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8763                                ILT_PAGE_CIDS);
8764                init_params->cxts[cos] =
8765                        &bp->context[cxt_index].vcxt[cxt_offset].eth;
8766        }
8767}
8768
8769static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8770                        struct bnx2x_queue_state_params *q_params,
8771                        struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8772                        int tx_index, bool leading)
8773{
8774        memset(tx_only_params, 0, sizeof(*tx_only_params));
8775
8776        /* Set the command */
8777        q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8778
8779        /* Set tx-only QUEUE flags: don't zero statistics */
8780        tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8781
8782        /* choose the index of the cid to send the slow path on */
8783        tx_only_params->cid_index = tx_index;
8784
8785        /* Set general TX_ONLY_SETUP parameters */
8786        bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8787
8788        /* Set Tx TX_ONLY_SETUP parameters */
8789        bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8790
8791        DP(NETIF_MSG_IFUP,
8792           "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8793           tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8794           q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8795           tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8796
8797        /* send the ramrod */
8798        return bnx2x_queue_state_change(bp, q_params);
8799}
8800
8801/**
8802 * bnx2x_setup_queue - setup queue
8803 *
8804 * @bp:         driver handle
8805 * @fp:         pointer to fastpath
8806 * @leading:    is leading
8807 *
8808 * This function performs 2 steps in a Queue state machine
8809 *      actually: 1) RESET->INIT 2) INIT->SETUP
8810 */
8811
8812int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8813                       bool leading)
8814{
8815        struct bnx2x_queue_state_params q_params = {NULL};
8816        struct bnx2x_queue_setup_params *setup_params =
8817                                                &q_params.params.setup;
8818        struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8819                                                &q_params.params.tx_only;
8820        int rc;
8821        u8 tx_index;
8822
8823        DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8824
8825        /* reset IGU state skip FCoE L2 queue */
8826        if (!IS_FCOE_FP(fp))
8827                bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8828                             IGU_INT_ENABLE, 0);
8829
8830        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8831        /* We want to wait for completion in this context */
8832        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8833
8834        /* Prepare the INIT parameters */
8835        bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8836
8837        /* Set the command */
8838        q_params.cmd = BNX2X_Q_CMD_INIT;
8839
8840        /* Change the state to INIT */
8841        rc = bnx2x_queue_state_change(bp, &q_params);
8842        if (rc) {
8843                BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8844                return rc;
8845        }
8846
8847        DP(NETIF_MSG_IFUP, "init complete\n");
8848
8849        /* Now move the Queue to the SETUP state... */
8850        memset(setup_params, 0, sizeof(*setup_params));
8851
8852        /* Set QUEUE flags */
8853        setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8854
8855        /* Set general SETUP parameters */
8856        bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8857                                FIRST_TX_COS_INDEX);
8858
8859        bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8860                            &setup_params->rxq_params);
8861
8862        bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8863                           FIRST_TX_COS_INDEX);
8864
8865        /* Set the command */
8866        q_params.cmd = BNX2X_Q_CMD_SETUP;
8867
8868        if (IS_FCOE_FP(fp))
8869                bp->fcoe_init = true;
8870
8871        /* Change the state to SETUP */
8872        rc = bnx2x_queue_state_change(bp, &q_params);
8873        if (rc) {
8874                BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8875                return rc;
8876        }
8877
8878        /* loop through the relevant tx-only indices */
8879        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8880              tx_index < fp->max_cos;
8881              tx_index++) {
8882
8883                /* prepare and send tx-only ramrod*/
8884                rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8885                                          tx_only_params, tx_index, leading);
8886                if (rc) {
8887                        BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8888                                  fp->index, tx_index);
8889                        return rc;
8890                }
8891        }
8892
8893        return rc;
8894}
8895
8896static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8897{
8898        struct bnx2x_fastpath *fp = &bp->fp[index];
8899        struct bnx2x_fp_txdata *txdata;
8900        struct bnx2x_queue_state_params q_params = {NULL};
8901        int rc, tx_index;
8902
8903        DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8904
8905        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8906        /* We want to wait for completion in this context */
8907        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8908
8909        /* close tx-only connections */
8910        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8911             tx_index < fp->max_cos;
8912             tx_index++){
8913
8914                /* ascertain this is a normal queue*/
8915                txdata = fp->txdata_ptr[tx_index];
8916
8917                DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8918                                                        txdata->txq_index);
8919
8920                /* send halt terminate on tx-only connection */
8921                q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8922                memset(&q_params.params.terminate, 0,
8923                       sizeof(q_params.params.terminate));
8924                q_params.params.terminate.cid_index = tx_index;
8925
8926                rc = bnx2x_queue_state_change(bp, &q_params);
8927                if (rc)
8928                        return rc;
8929
8930                /* send halt terminate on tx-only connection */
8931                q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8932                memset(&q_params.params.cfc_del, 0,
8933                       sizeof(q_params.params.cfc_del));
8934                q_params.params.cfc_del.cid_index = tx_index;
8935                rc = bnx2x_queue_state_change(bp, &q_params);
8936                if (rc)
8937                        return rc;
8938        }
8939        /* Stop the primary connection: */
8940        /* ...halt the connection */
8941        q_params.cmd = BNX2X_Q_CMD_HALT;
8942        rc = bnx2x_queue_state_change(bp, &q_params);
8943        if (rc)
8944                return rc;
8945
8946        /* ...terminate the connection */
8947        q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8948        memset(&q_params.params.terminate, 0,
8949               sizeof(q_params.params.terminate));
8950        q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8951        rc = bnx2x_queue_state_change(bp, &q_params);
8952        if (rc)
8953                return rc;
8954        /* ...delete cfc entry */
8955        q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8956        memset(&q_params.params.cfc_del, 0,
8957               sizeof(q_params.params.cfc_del));
8958        q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8959        return bnx2x_queue_state_change(bp, &q_params);
8960}
8961
8962static void bnx2x_reset_func(struct bnx2x *bp)
8963{
8964        int port = BP_PORT(bp);
8965        int func = BP_FUNC(bp);
8966        int i;
8967
8968        /* Disable the function in the FW */
8969        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8970        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8971        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8972        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8973
8974        /* FP SBs */
8975        for_each_eth_queue(bp, i) {
8976                struct bnx2x_fastpath *fp = &bp->fp[i];
8977                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8978                           CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8979                           SB_DISABLED);
8980        }
8981
8982        if (CNIC_LOADED(bp))
8983                /* CNIC SB */
8984                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8985                        CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8986                        (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8987
8988        /* SP SB */
8989        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8990                CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8991                SB_DISABLED);
8992
8993        for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8994                REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8995                       0);
8996
8997        /* Configure IGU */
8998        if (bp->common.int_block == INT_BLOCK_HC) {
8999                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9000                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9001        } else {
9002                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9003                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9004        }
9005
9006        if (CNIC_LOADED(bp)) {
9007                /* Disable Timer scan */
9008                REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9009                /*
9010                 * Wait for at least 10ms and up to 2 second for the timers
9011                 * scan to complete
9012                 */
9013                for (i = 0; i < 200; i++) {
9014                        usleep_range(10000, 20000);
9015                        if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9016                                break;
9017                }
9018        }
9019        /* Clear ILT */
9020        bnx2x_clear_func_ilt(bp, func);
9021
9022        /* Timers workaround bug for E2: if this is vnic-3,
9023         * we need to set the entire ilt range for this timers.
9024         */
9025        if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9026                struct ilt_client_info ilt_cli;
9027                /* use dummy TM client */
9028                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9029                ilt_cli.start = 0;
9030                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9031                ilt_cli.client_num = ILT_CLIENT_TM;
9032
9033                bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9034        }
9035
9036        /* this assumes that reset_port() called before reset_func()*/
9037        if (!CHIP_IS_E1x(bp))
9038                bnx2x_pf_disable(bp);
9039
9040        bp->dmae_ready = 0;
9041}
9042
9043static void bnx2x_reset_port(struct bnx2x *bp)
9044{
9045        int port = BP_PORT(bp);
9046        u32 val;
9047
9048        /* Reset physical Link */
9049        bnx2x__link_reset(bp);
9050
9051        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9052
9053        /* Do not rcv packets to BRB */
9054        REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9055        /* Do not direct rcv packets that are not for MCP to the BRB */
9056        REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9057                           NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9058
9059        /* Configure AEU */
9060        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9061
9062        msleep(100);
9063        /* Check for BRB port occupancy */
9064        val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9065        if (val)
9066                DP(NETIF_MSG_IFDOWN,
9067                   "BRB1 is not empty  %d blocks are occupied\n", val);
9068
9069        /* TODO: Close Doorbell port? */
9070}
9071
9072static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9073{
9074        struct bnx2x_func_state_params func_params = {NULL};
9075
9076        /* Prepare parameters for function state transitions */
9077        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9078
9079        func_params.f_obj = &bp->func_obj;
9080        func_params.cmd = BNX2X_F_CMD_HW_RESET;
9081
9082        func_params.params.hw_init.load_phase = load_code;
9083
9084        return bnx2x_func_state_change(bp, &func_params);
9085}
9086
9087static int bnx2x_func_stop(struct bnx2x *bp)
9088{
9089        struct bnx2x_func_state_params func_params = {NULL};
9090        int rc;
9091
9092        /* Prepare parameters for function state transitions */
9093        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9094        func_params.f_obj = &bp->func_obj;
9095        func_params.cmd = BNX2X_F_CMD_STOP;
9096
9097        /*
9098         * Try to stop the function the 'good way'. If fails (in case
9099         * of a parity error during bnx2x_chip_cleanup()) and we are
9100         * not in a debug mode, perform a state transaction in order to
9101         * enable further HW_RESET transaction.
9102         */
9103        rc = bnx2x_func_state_change(bp, &func_params);
9104        if (rc) {
9105#ifdef BNX2X_STOP_ON_ERROR
9106                return rc;
9107#else
9108                BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9109                __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9110                return bnx2x_func_state_change(bp, &func_params);
9111#endif
9112        }
9113
9114        return 0;
9115}
9116
9117/**
9118 * bnx2x_send_unload_req - request unload mode from the MCP.
9119 *
9120 * @bp:                 driver handle
9121 * @unload_mode:        requested function's unload mode
9122 *
9123 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9124 */
9125u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9126{
9127        u32 reset_code = 0;
9128        int port = BP_PORT(bp);
9129
9130        /* Select the UNLOAD request mode */
9131        if (unload_mode == UNLOAD_NORMAL)
9132                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9133
9134        else if (bp->flags & NO_WOL_FLAG)
9135                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9136
9137        else if (bp->wol) {
9138                u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9139                u8 *mac_addr = bp->dev->dev_addr;
9140                struct pci_dev *pdev = bp->pdev;
9141                u32 val;
9142                u16 pmc;
9143
9144                /* The mac address is written to entries 1-4 to
9145                 * preserve entry 0 which is used by the PMF
9146                 */
9147                u8 entry = (BP_VN(bp) + 1)*8;
9148
9149                val = (mac_addr[0] << 8) | mac_addr[1];
9150                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9151
9152                val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9153                      (mac_addr[4] << 8) | mac_addr[5];
9154                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9155
9156                /* Enable the PME and clear the status */
9157                pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9158                pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9159                pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9160
9161                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9162
9163        } else
9164                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9165
9166        /* Send the request to the MCP */
9167        if (!BP_NOMCP(bp))
9168                reset_code = bnx2x_fw_command(bp, reset_code, 0);
9169        else {
9170                int path = BP_PATH(bp);
9171
9172                DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9173                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9174                   bnx2x_load_count[path][2]);
9175                bnx2x_load_count[path][0]--;
9176                bnx2x_load_count[path][1 + port]--;
9177                DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9178                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9179                   bnx2x_load_count[path][2]);
9180                if (bnx2x_load_count[path][0] == 0)
9181                        reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9182                else if (bnx2x_load_count[path][1 + port] == 0)
9183                        reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9184                else
9185                        reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9186        }
9187
9188        return reset_code;
9189}
9190
9191/**
9192 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9193 *
9194 * @bp:         driver handle
9195 * @keep_link:          true iff link should be kept up
9196 */
9197void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9198{
9199        u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9200
9201        /* Report UNLOAD_DONE to MCP */
9202        if (!BP_NOMCP(bp))
9203                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9204}
9205
9206static int bnx2x_func_wait_started(struct bnx2x *bp)
9207{
9208        int tout = 50;
9209        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9210
9211        if (!bp->port.pmf)
9212                return 0;
9213
9214        /*
9215         * (assumption: No Attention from MCP at this stage)
9216         * PMF probably in the middle of TX disable/enable transaction
9217         * 1. Sync IRS for default SB
9218         * 2. Sync SP queue - this guarantees us that attention handling started
9219         * 3. Wait, that TX disable/enable transaction completes
9220         *
9221         * 1+2 guarantee that if DCBx attention was scheduled it already changed
9222         * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9223         * received completion for the transaction the state is TX_STOPPED.
9224         * State will return to STARTED after completion of TX_STOPPED-->STARTED
9225         * transaction.
9226         */
9227
9228        /* make sure default SB ISR is done */
9229        if (msix)
9230                synchronize_irq(bp->msix_table[0].vector);
9231        else
9232                synchronize_irq(bp->pdev->irq);
9233
9234        flush_workqueue(bnx2x_wq);
9235        flush_workqueue(bnx2x_iov_wq);
9236
9237        while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9238                                BNX2X_F_STATE_STARTED && tout--)
9239                msleep(20);
9240
9241        if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9242                                                BNX2X_F_STATE_STARTED) {
9243#ifdef BNX2X_STOP_ON_ERROR
9244                BNX2X_ERR("Wrong function state\n");
9245                return -EBUSY;
9246#else
9247                /*
9248                 * Failed to complete the transaction in a "good way"
9249                 * Force both transactions with CLR bit
9250                 */
9251                struct bnx2x_func_state_params func_params = {NULL};
9252
9253                DP(NETIF_MSG_IFDOWN,
9254                   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9255
9256                func_params.f_obj = &bp->func_obj;
9257                __set_bit(RAMROD_DRV_CLR_ONLY,
9258                                        &func_params.ramrod_flags);
9259
9260                /* STARTED-->TX_ST0PPED */
9261                func_params.cmd = BNX2X_F_CMD_TX_STOP;
9262                bnx2x_func_state_change(bp, &func_params);
9263
9264                /* TX_ST0PPED-->STARTED */
9265                func_params.cmd = BNX2X_F_CMD_TX_START;
9266                return bnx2x_func_state_change(bp, &func_params);
9267#endif
9268        }
9269
9270        return 0;
9271}
9272
9273static void bnx2x_disable_ptp(struct bnx2x *bp)
9274{
9275        int port = BP_PORT(bp);
9276
9277        /* Disable sending PTP packets to host */
9278        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9279               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9280
9281        /* Reset PTP event detection rules */
9282        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9283               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9284        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9285               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9286        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9287               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9288        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9289               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9290
9291        /* Disable the PTP feature */
9292        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9293               NIG_REG_P0_PTP_EN, 0x0);
9294}
9295
9296/* Called during unload, to stop PTP-related stuff */
9297static void bnx2x_stop_ptp(struct bnx2x *bp)
9298{
9299        /* Cancel PTP work queue. Should be done after the Tx queues are
9300         * drained to prevent additional scheduling.
9301         */
9302        cancel_work_sync(&bp->ptp_task);
9303
9304        if (bp->ptp_tx_skb) {
9305                dev_kfree_skb_any(bp->ptp_tx_skb);
9306                bp->ptp_tx_skb = NULL;
9307        }
9308
9309        /* Disable PTP in HW */
9310        bnx2x_disable_ptp(bp);
9311
9312        DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9313}
9314
9315void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9316{
9317        int port = BP_PORT(bp);
9318        int i, rc = 0;
9319        u8 cos;
9320        struct bnx2x_mcast_ramrod_params rparam = {NULL};
9321        u32 reset_code;
9322
9323        /* Wait until tx fastpath tasks complete */
9324        for_each_tx_queue(bp, i) {
9325                struct bnx2x_fastpath *fp = &bp->fp[i];
9326
9327                for_each_cos_in_tx_queue(fp, cos)
9328                        rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9329#ifdef BNX2X_STOP_ON_ERROR
9330                if (rc)
9331                        return;
9332#endif
9333        }
9334
9335        /* Give HW time to discard old tx messages */
9336        usleep_range(1000, 2000);
9337
9338        /* Clean all ETH MACs */
9339        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9340                                false);
9341        if (rc < 0)
9342                BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9343
9344        /* Clean up UC list  */
9345        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9346                                true);
9347        if (rc < 0)
9348                BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9349                          rc);
9350
9351        /* The whole *vlan_obj structure may be not initialized if VLAN
9352         * filtering offload is not supported by hardware. Currently this is
9353         * true for all hardware covered by CHIP_IS_E1x().
9354         */
9355        if (!CHIP_IS_E1x(bp)) {
9356                /* Remove all currently configured VLANs */
9357                rc = bnx2x_del_all_vlans(bp);
9358                if (rc < 0)
9359                        BNX2X_ERR("Failed to delete all VLANs\n");
9360        }
9361
9362        /* Disable LLH */
9363        if (!CHIP_IS_E1(bp))
9364                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9365
9366        /* Set "drop all" (stop Rx).
9367         * We need to take a netif_addr_lock() here in order to prevent
9368         * a race between the completion code and this code.
9369         */
9370        netif_addr_lock_bh(bp->dev);
9371        /* Schedule the rx_mode command */
9372        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9373                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9374        else if (bp->slowpath)
9375                bnx2x_set_storm_rx_mode(bp);
9376
9377        /* Cleanup multicast configuration */
9378        rparam.mcast_obj = &bp->mcast_obj;
9379        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9380        if (rc < 0)
9381                BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9382
9383        netif_addr_unlock_bh(bp->dev);
9384
9385        bnx2x_iov_chip_cleanup(bp);
9386
9387        /*
9388         * Send the UNLOAD_REQUEST to the MCP. This will return if
9389         * this function should perform FUNC, PORT or COMMON HW
9390         * reset.
9391         */
9392        reset_code = bnx2x_send_unload_req(bp, unload_mode);
9393
9394        /*
9395         * (assumption: No Attention from MCP at this stage)
9396         * PMF probably in the middle of TX disable/enable transaction
9397         */
9398        rc = bnx2x_func_wait_started(bp);
9399        if (rc) {
9400                BNX2X_ERR("bnx2x_func_wait_started failed\n");
9401#ifdef BNX2X_STOP_ON_ERROR
9402                return;
9403#endif
9404        }
9405
9406        /* Close multi and leading connections
9407         * Completions for ramrods are collected in a synchronous way
9408         */
9409        for_each_eth_queue(bp, i)
9410                if (bnx2x_stop_queue(bp, i))
9411#ifdef BNX2X_STOP_ON_ERROR
9412                        return;
9413#else
9414                        goto unload_error;
9415#endif
9416
9417        if (CNIC_LOADED(bp)) {
9418                for_each_cnic_queue(bp, i)
9419                        if (bnx2x_stop_queue(bp, i))
9420#ifdef BNX2X_STOP_ON_ERROR
9421                                return;
9422#else
9423                                goto unload_error;
9424#endif
9425        }
9426
9427        /* If SP settings didn't get completed so far - something
9428         * very wrong has happen.
9429         */
9430        if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9431                BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9432
9433#ifndef BNX2X_STOP_ON_ERROR
9434unload_error:
9435#endif
9436        rc = bnx2x_func_stop(bp);
9437        if (rc) {
9438                BNX2X_ERR("Function stop failed!\n");
9439#ifdef BNX2X_STOP_ON_ERROR
9440                return;
9441#endif
9442        }
9443
9444        /* stop_ptp should be after the Tx queues are drained to prevent
9445         * scheduling to the cancelled PTP work queue. It should also be after
9446         * function stop ramrod is sent, since as part of this ramrod FW access
9447         * PTP registers.
9448         */
9449        if (bp->flags & PTP_SUPPORTED) {
9450                bnx2x_stop_ptp(bp);
9451                if (bp->ptp_clock) {
9452                        ptp_clock_unregister(bp->ptp_clock);
9453                        bp->ptp_clock = NULL;
9454                }
9455        }
9456
9457        /* Disable HW interrupts, NAPI */
9458        bnx2x_netif_stop(bp, 1);
9459        /* Delete all NAPI objects */
9460        bnx2x_del_all_napi(bp);
9461        if (CNIC_LOADED(bp))
9462                bnx2x_del_all_napi_cnic(bp);
9463
9464        /* Release IRQs */
9465        bnx2x_free_irq(bp);
9466
9467        /* Reset the chip, unless PCI function is offline. If we reach this
9468         * point following a PCI error handling, it means device is really
9469         * in a bad state and we're about to remove it, so reset the chip
9470         * is not a good idea.
9471         */
9472        if (!pci_channel_offline(bp->pdev)) {
9473                rc = bnx2x_reset_hw(bp, reset_code);
9474                if (rc)
9475                        BNX2X_ERR("HW_RESET failed\n");
9476        }
9477
9478        /* Report UNLOAD_DONE to MCP */
9479        bnx2x_send_unload_done(bp, keep_link);
9480}
9481
9482void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9483{
9484        u32 val;
9485
9486        DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9487
9488        if (CHIP_IS_E1(bp)) {
9489                int port = BP_PORT(bp);
9490                u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9491                        MISC_REG_AEU_MASK_ATTN_FUNC_0;
9492
9493                val = REG_RD(bp, addr);
9494                val &= ~(0x300);
9495                REG_WR(bp, addr, val);
9496        } else {
9497                val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9498                val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9499                         MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9500                REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9501        }
9502}
9503
9504/* Close gates #2, #3 and #4: */
9505static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9506{
9507        u32 val;
9508
9509        /* Gates #2 and #4a are closed/opened for "not E1" only */
9510        if (!CHIP_IS_E1(bp)) {
9511                /* #4 */
9512                REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9513                /* #2 */
9514                REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9515        }
9516
9517        /* #3 */
9518        if (CHIP_IS_E1x(bp)) {
9519                /* Prevent interrupts from HC on both ports */
9520                val = REG_RD(bp, HC_REG_CONFIG_1);
9521                REG_WR(bp, HC_REG_CONFIG_1,
9522                       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9523                       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9524
9525                val = REG_RD(bp, HC_REG_CONFIG_0);
9526                REG_WR(bp, HC_REG_CONFIG_0,
9527                       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9528                       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9529        } else {
9530                /* Prevent incoming interrupts in IGU */
9531                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9532
9533                REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9534                       (!close) ?
9535                       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9536                       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9537        }
9538
9539        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9540                close ? "closing" : "opening");
9541}
9542
9543#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9544
9545static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9546{
9547        /* Do some magic... */
9548        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9549        *magic_val = val & SHARED_MF_CLP_MAGIC;
9550        MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9551}
9552
9553/**
9554 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9555 *
9556 * @bp:         driver handle
9557 * @magic_val:  old value of the `magic' bit.
9558 */
9559static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9560{
9561        /* Restore the `magic' bit value... */
9562        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9563        MF_CFG_WR(bp, shared_mf_config.clp_mb,
9564                (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9565}
9566
9567/**
9568 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9569 *
9570 * @bp:         driver handle
9571 * @magic_val:  old value of 'magic' bit.
9572 *
9573 * Takes care of CLP configurations.
9574 */
9575static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9576{
9577        u32 shmem;
9578        u32 validity_offset;
9579
9580        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9581
9582        /* Set `magic' bit in order to save MF config */
9583        if (!CHIP_IS_E1(bp))
9584                bnx2x_clp_reset_prep(bp, magic_val);
9585
9586        /* Get shmem offset */
9587        shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9588        validity_offset =
9589                offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9590
9591        /* Clear validity map flags */
9592        if (shmem > 0)
9593                REG_WR(bp, shmem + validity_offset, 0);
9594}
9595
9596#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9597#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9598
9599/**
9600 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9601 *
9602 * @bp: driver handle
9603 */
9604static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9605{
9606        /* special handling for emulation and FPGA,
9607           wait 10 times longer */
9608        if (CHIP_REV_IS_SLOW(bp))
9609                msleep(MCP_ONE_TIMEOUT*10);
9610        else
9611                msleep(MCP_ONE_TIMEOUT);
9612}
9613
9614/*
9615 * initializes bp->common.shmem_base and waits for validity signature to appear
9616 */
9617static int bnx2x_init_shmem(struct bnx2x *bp)
9618{
9619        int cnt = 0;
9620        u32 val = 0;
9621
9622        do {
9623                bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9624
9625                /* If we read all 0xFFs, means we are in PCI error state and
9626                 * should bail out to avoid crashes on adapter's FW reads.
9627                 */
9628                if (bp->common.shmem_base == 0xFFFFFFFF) {
9629                        bp->flags |= NO_MCP_FLAG;
9630                        return -ENODEV;
9631                }
9632
9633                if (bp->common.shmem_base) {
9634                        val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9635                        if (val & SHR_MEM_VALIDITY_MB)
9636                                return 0;
9637                }
9638
9639                bnx2x_mcp_wait_one(bp);
9640
9641        } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9642
9643        BNX2X_ERR("BAD MCP validity signature\n");
9644
9645        return -ENODEV;
9646}
9647
9648static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9649{
9650        int rc = bnx2x_init_shmem(bp);
9651
9652        /* Restore the `magic' bit value */
9653        if (!CHIP_IS_E1(bp))
9654                bnx2x_clp_reset_done(bp, magic_val);
9655
9656        return rc;
9657}
9658
9659static void bnx2x_pxp_prep(struct bnx2x *bp)
9660{
9661        if (!CHIP_IS_E1(bp)) {
9662                REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9663                REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9664        }
9665}
9666
9667/*
9668 * Reset the whole chip except for:
9669 *      - PCIE core
9670 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9671 *              one reset bit)
9672 *      - IGU
9673 *      - MISC (including AEU)
9674 *      - GRC
9675 *      - RBCN, RBCP
9676 */
9677static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9678{
9679        u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9680        u32 global_bits2, stay_reset2;
9681
9682        /*
9683         * Bits that have to be set in reset_mask2 if we want to reset 'global'
9684         * (per chip) blocks.
9685         */
9686        global_bits2 =
9687                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9688                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9689
9690        /* Don't reset the following blocks.
9691         * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9692         *            reset, as in 4 port device they might still be owned
9693         *            by the MCP (there is only one leader per path).
9694         */
9695        not_reset_mask1 =
9696                MISC_REGISTERS_RESET_REG_1_RST_HC |
9697                MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9698                MISC_REGISTERS_RESET_REG_1_RST_PXP;
9699
9700        not_reset_mask2 =
9701                MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9702                MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9703                MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9704                MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9705                MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9706                MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9707                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9708                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9709                MISC_REGISTERS_RESET_REG_2_RST_ATC |
9710                MISC_REGISTERS_RESET_REG_2_PGLC |
9711                MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9712                MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9713                MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9714                MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9715                MISC_REGISTERS_RESET_REG_2_UMAC0 |
9716                MISC_REGISTERS_RESET_REG_2_UMAC1;
9717
9718        /*
9719         * Keep the following blocks in reset:
9720         *  - all xxMACs are handled by the bnx2x_link code.
9721         */
9722        stay_reset2 =
9723                MISC_REGISTERS_RESET_REG_2_XMAC |
9724                MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9725
9726        /* Full reset masks according to the chip */
9727        reset_mask1 = 0xffffffff;
9728
9729        if (CHIP_IS_E1(bp))
9730                reset_mask2 = 0xffff;
9731        else if (CHIP_IS_E1H(bp))
9732                reset_mask2 = 0x1ffff;
9733        else if (CHIP_IS_E2(bp))
9734                reset_mask2 = 0xfffff;
9735        else /* CHIP_IS_E3 */
9736                reset_mask2 = 0x3ffffff;
9737
9738        /* Don't reset global blocks unless we need to */
9739        if (!global)
9740                reset_mask2 &= ~global_bits2;
9741
9742        /*
9743         * In case of attention in the QM, we need to reset PXP
9744         * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9745         * because otherwise QM reset would release 'close the gates' shortly
9746         * before resetting the PXP, then the PSWRQ would send a write
9747         * request to PGLUE. Then when PXP is reset, PGLUE would try to
9748         * read the payload data from PSWWR, but PSWWR would not
9749         * respond. The write queue in PGLUE would stuck, dmae commands
9750         * would not return. Therefore it's important to reset the second
9751         * reset register (containing the
9752         * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9753         * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9754         * bit).
9755         */
9756        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9757               reset_mask2 & (~not_reset_mask2));
9758
9759        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9760               reset_mask1 & (~not_reset_mask1));
9761
9762        barrier();
9763
9764        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9765               reset_mask2 & (~stay_reset2));
9766
9767        barrier();
9768
9769        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9770}
9771
9772/**
9773 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9774 * It should get cleared in no more than 1s.
9775 *
9776 * @bp: driver handle
9777 *
9778 * It should get cleared in no more than 1s. Returns 0 if
9779 * pending writes bit gets cleared.
9780 */
9781static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9782{
9783        u32 cnt = 1000;
9784        u32 pend_bits = 0;
9785
9786        do {
9787                pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9788
9789                if (pend_bits == 0)
9790                        break;
9791
9792                usleep_range(1000, 2000);
9793        } while (cnt-- > 0);
9794
9795        if (cnt <= 0) {
9796                BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9797                          pend_bits);
9798                return -EBUSY;
9799        }
9800
9801        return 0;
9802}
9803
9804static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9805{
9806        int cnt = 1000;
9807        u32 val = 0;
9808        u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9809        u32 tags_63_32 = 0;
9810
9811        /* Empty the Tetris buffer, wait for 1s */
9812        do {
9813                sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9814                blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9815                port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9816                port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9817                pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9818                if (CHIP_IS_E3(bp))
9819                        tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9820
9821                if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9822                    ((port_is_idle_0 & 0x1) == 0x1) &&
9823                    ((port_is_idle_1 & 0x1) == 0x1) &&
9824                    (pgl_exp_rom2 == 0xffffffff) &&
9825                    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9826                        break;
9827                usleep_range(1000, 2000);
9828        } while (cnt-- > 0);
9829
9830        if (cnt <= 0) {
9831                BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9832                BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9833                          sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9834                          pgl_exp_rom2);
9835                return -EAGAIN;
9836        }
9837
9838        barrier();
9839
9840        /* Close gates #2, #3 and #4 */
9841        bnx2x_set_234_gates(bp, true);
9842
9843        /* Poll for IGU VQs for 57712 and newer chips */
9844        if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9845                return -EAGAIN;
9846
9847        /* TBD: Indicate that "process kill" is in progress to MCP */
9848
9849        /* Clear "unprepared" bit */
9850        REG_WR(bp, MISC_REG_UNPREPARED, 0);
9851        barrier();
9852
9853        /* Wait for 1ms to empty GLUE and PCI-E core queues,
9854         * PSWHST, GRC and PSWRD Tetris buffer.
9855         */
9856        usleep_range(1000, 2000);
9857
9858        /* Prepare to chip reset: */
9859        /* MCP */
9860        if (global)
9861                bnx2x_reset_mcp_prep(bp, &val);
9862
9863        /* PXP */
9864        bnx2x_pxp_prep(bp);
9865        barrier();
9866
9867        /* reset the chip */
9868        bnx2x_process_kill_chip_reset(bp, global);
9869        barrier();
9870
9871        /* clear errors in PGB */
9872        if (!CHIP_IS_E1x(bp))
9873                REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9874
9875        /* Recover after reset: */
9876        /* MCP */
9877        if (global && bnx2x_reset_mcp_comp(bp, val))
9878                return -EAGAIN;
9879
9880        /* TBD: Add resetting the NO_MCP mode DB here */
9881
9882        /* Open the gates #2, #3 and #4 */
9883        bnx2x_set_234_gates(bp, false);
9884
9885        /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9886         * reset state, re-enable attentions. */
9887
9888        return 0;
9889}
9890
9891static int bnx2x_leader_reset(struct bnx2x *bp)
9892{
9893        int rc = 0;
9894        bool global = bnx2x_reset_is_global(bp);
9895        u32 load_code;
9896
9897        /* if not going to reset MCP - load "fake" driver to reset HW while
9898         * driver is owner of the HW
9899         */
9900        if (!global && !BP_NOMCP(bp)) {
9901                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9902                                             DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9903                if (!load_code) {
9904                        BNX2X_ERR("MCP response failure, aborting\n");
9905                        rc = -EAGAIN;
9906                        goto exit_leader_reset;
9907                }
9908                if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9909                    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9910                        BNX2X_ERR("MCP unexpected resp, aborting\n");
9911                        rc = -EAGAIN;
9912                        goto exit_leader_reset2;
9913                }
9914                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9915                if (!load_code) {
9916                        BNX2X_ERR("MCP response failure, aborting\n");
9917                        rc = -EAGAIN;
9918                        goto exit_leader_reset2;
9919                }
9920        }
9921
9922        /* Try to recover after the failure */
9923        if (bnx2x_process_kill(bp, global)) {
9924                BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9925                          BP_PATH(bp));
9926                rc = -EAGAIN;
9927                goto exit_leader_reset2;
9928        }
9929
9930        /*
9931         * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9932         * state.
9933         */
9934        bnx2x_set_reset_done(bp);
9935        if (global)
9936                bnx2x_clear_reset_global(bp);
9937
9938exit_leader_reset2:
9939        /* unload "fake driver" if it was loaded */
9940        if (!global && !BP_NOMCP(bp)) {
9941                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9942                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9943        }
9944exit_leader_reset:
9945        bp->is_leader = 0;
9946        bnx2x_release_leader_lock(bp);
9947        smp_mb();
9948        return rc;
9949}
9950
9951static void bnx2x_recovery_failed(struct bnx2x *bp)
9952{
9953        netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9954
9955        /* Disconnect this device */
9956        netif_device_detach(bp->dev);
9957
9958        /*
9959         * Block ifup for all function on this engine until "process kill"
9960         * or power cycle.
9961         */
9962        bnx2x_set_reset_in_progress(bp);
9963
9964        /* Shut down the power */
9965        bnx2x_set_power_state(bp, PCI_D3hot);
9966
9967        bp->recovery_state = BNX2X_RECOVERY_FAILED;
9968
9969        smp_mb();
9970}
9971
9972/*
9973 * Assumption: runs under rtnl lock. This together with the fact
9974 * that it's called only from bnx2x_sp_rtnl() ensure that it
9975 * will never be called when netif_running(bp->dev) is false.
9976 */
9977static void bnx2x_parity_recover(struct bnx2x *bp)
9978{
9979        bool global = false;
9980        u32 error_recovered, error_unrecovered;
9981        bool is_parity;
9982
9983        DP(NETIF_MSG_HW, "Handling parity\n");
9984        while (1) {
9985                switch (bp->recovery_state) {
9986                case BNX2X_RECOVERY_INIT:
9987                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9988                        is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9989                        WARN_ON(!is_parity);
9990
9991                        /* Try to get a LEADER_LOCK HW lock */
9992                        if (bnx2x_trylock_leader_lock(bp)) {
9993                                bnx2x_set_reset_in_progress(bp);
9994                                /*
9995                                 * Check if there is a global attention and if
9996                                 * there was a global attention, set the global
9997                                 * reset bit.
9998                                 */
9999
10000                                if (global)
10001                                        bnx2x_set_reset_global(bp);
10002
10003                                bp->is_leader = 1;
10004                        }
10005
10006                        /* Stop the driver */
10007                        /* If interface has been removed - break */
10008                        if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10009                                return;
10010
10011                        bp->recovery_state = BNX2X_RECOVERY_WAIT;
10012
10013                        /* Ensure "is_leader", MCP command sequence and
10014                         * "recovery_state" update values are seen on other
10015                         * CPUs.
10016                         */
10017                        smp_mb();
10018                        break;
10019
10020                case BNX2X_RECOVERY_WAIT:
10021                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10022                        if (bp->is_leader) {
10023                                int other_engine = BP_PATH(bp) ? 0 : 1;
10024                                bool other_load_status =
10025                                        bnx2x_get_load_status(bp, other_engine);
10026                                bool load_status =
10027                                        bnx2x_get_load_status(bp, BP_PATH(bp));
10028                                global = bnx2x_reset_is_global(bp);
10029
10030                                /*
10031                                 * In case of a parity in a global block, let
10032                                 * the first leader that performs a
10033                                 * leader_reset() reset the global blocks in
10034                                 * order to clear global attentions. Otherwise
10035                                 * the gates will remain closed for that
10036                                 * engine.
10037                                 */
10038                                if (load_status ||
10039                                    (global && other_load_status)) {
10040                                        /* Wait until all other functions get
10041                                         * down.
10042                                         */
10043                                        schedule_delayed_work(&bp->sp_rtnl_task,
10044                                                                HZ/10);
10045                                        return;
10046                                } else {
10047                                        /* If all other functions got down -
10048                                         * try to bring the chip back to
10049                                         * normal. In any case it's an exit
10050                                         * point for a leader.
10051                                         */
10052                                        if (bnx2x_leader_reset(bp)) {
10053                                                bnx2x_recovery_failed(bp);
10054                                                return;
10055                                        }
10056
10057                                        /* If we are here, means that the
10058                                         * leader has succeeded and doesn't
10059                                         * want to be a leader any more. Try
10060                                         * to continue as a none-leader.
10061                                         */
10062                                        break;
10063                                }
10064                        } else { /* non-leader */
10065                                if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10066                                        /* Try to get a LEADER_LOCK HW lock as
10067                                         * long as a former leader may have
10068                                         * been unloaded by the user or
10069                                         * released a leadership by another
10070                                         * reason.
10071                                         */
10072                                        if (bnx2x_trylock_leader_lock(bp)) {
10073                                                /* I'm a leader now! Restart a
10074                                                 * switch case.
10075                                                 */
10076                                                bp->is_leader = 1;
10077                                                break;
10078                                        }
10079
10080                                        schedule_delayed_work(&bp->sp_rtnl_task,
10081                                                                HZ/10);
10082                                        return;
10083
10084                                } else {
10085                                        /*
10086                                         * If there was a global attention, wait
10087                                         * for it to be cleared.
10088                                         */
10089                                        if (bnx2x_reset_is_global(bp)) {
10090                                                schedule_delayed_work(
10091                                                        &bp->sp_rtnl_task,
10092                                                        HZ/10);
10093                                                return;
10094                                        }
10095
10096                                        error_recovered =
10097                                          bp->eth_stats.recoverable_error;
10098                                        error_unrecovered =
10099                                          bp->eth_stats.unrecoverable_error;
10100                                        bp->recovery_state =
10101                                                BNX2X_RECOVERY_NIC_LOADING;
10102                                        if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10103                                                error_unrecovered++;
10104                                                netdev_err(bp->dev,
10105                                                           "Recovery failed. Power cycle needed\n");
10106                                                /* Disconnect this device */
10107                                                netif_device_detach(bp->dev);
10108                                                /* Shut down the power */
10109                                                bnx2x_set_power_state(
10110                                                        bp, PCI_D3hot);
10111                                                smp_mb();
10112                                        } else {
10113                                                bp->recovery_state =
10114                                                        BNX2X_RECOVERY_DONE;
10115                                                error_recovered++;
10116                                                smp_mb();
10117                                        }
10118                                        bp->eth_stats.recoverable_error =
10119                                                error_recovered;
10120                                        bp->eth_stats.unrecoverable_error =
10121                                                error_unrecovered;
10122
10123                                        return;
10124                                }
10125                        }
10126                default:
10127                        return;
10128                }
10129        }
10130}
10131
10132static int bnx2x_udp_port_update(struct bnx2x *bp)
10133{
10134        struct bnx2x_func_switch_update_params *switch_update_params;
10135        struct bnx2x_func_state_params func_params = {NULL};
10136        struct bnx2x_udp_tunnel *udp_tunnel;
10137        u16 vxlan_port = 0, geneve_port = 0;
10138        int rc;
10139
10140        switch_update_params = &func_params.params.switch_update;
10141
10142        /* Prepare parameters for function state transitions */
10143        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10144        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10145
10146        func_params.f_obj = &bp->func_obj;
10147        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10148
10149        /* Function parameters */
10150        __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10151                  &switch_update_params->changes);
10152
10153        if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10154                udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10155                geneve_port = udp_tunnel->dst_port;
10156                switch_update_params->geneve_dst_port = geneve_port;
10157        }
10158
10159        if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10160                udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10161                vxlan_port = udp_tunnel->dst_port;
10162                switch_update_params->vxlan_dst_port = vxlan_port;
10163        }
10164
10165        /* Re-enable inner-rss for the offloaded UDP tunnels */
10166        __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10167                  &switch_update_params->changes);
10168
10169        rc = bnx2x_func_state_change(bp, &func_params);
10170        if (rc)
10171                BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10172                          vxlan_port, geneve_port, rc);
10173        else
10174                DP(BNX2X_MSG_SP,
10175                   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10176                   vxlan_port, geneve_port);
10177
10178        return rc;
10179}
10180
10181static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10182                                 enum bnx2x_udp_port_type type)
10183{
10184        struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10185
10186        if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10187                return;
10188
10189        if (udp_port->count && udp_port->dst_port == port) {
10190                udp_port->count++;
10191                return;
10192        }
10193
10194        if (udp_port->count) {
10195                DP(BNX2X_MSG_SP,
10196                   "UDP tunnel [%d] -  destination port limit reached\n",
10197                   type);
10198                return;
10199        }
10200
10201        udp_port->dst_port = port;
10202        udp_port->count = 1;
10203        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10204}
10205
10206static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10207                                 enum bnx2x_udp_port_type type)
10208{
10209        struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10210
10211        if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10212                return;
10213
10214        if (!udp_port->count || udp_port->dst_port != port) {
10215                DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10216                   type);
10217                return;
10218        }
10219
10220        /* Remove reference, and make certain it's no longer in use */
10221        udp_port->count--;
10222        if (udp_port->count)
10223                return;
10224        udp_port->dst_port = 0;
10225
10226        if (netif_running(bp->dev))
10227                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10228        else
10229                DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10230                   type, port);
10231}
10232
10233static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10234                                 struct udp_tunnel_info *ti)
10235{
10236        struct bnx2x *bp = netdev_priv(netdev);
10237        u16 t_port = ntohs(ti->port);
10238
10239        switch (ti->type) {
10240        case UDP_TUNNEL_TYPE_VXLAN:
10241                __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10242                break;
10243        case UDP_TUNNEL_TYPE_GENEVE:
10244                __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10245                break;
10246        default:
10247                break;
10248        }
10249}
10250
10251static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10252                                 struct udp_tunnel_info *ti)
10253{
10254        struct bnx2x *bp = netdev_priv(netdev);
10255        u16 t_port = ntohs(ti->port);
10256
10257        switch (ti->type) {
10258        case UDP_TUNNEL_TYPE_VXLAN:
10259                __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10260                break;
10261        case UDP_TUNNEL_TYPE_GENEVE:
10262                __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10263                break;
10264        default:
10265                break;
10266        }
10267}
10268
10269static int bnx2x_close(struct net_device *dev);
10270
10271/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10272 * scheduled on a general queue in order to prevent a dead lock.
10273 */
10274static void bnx2x_sp_rtnl_task(struct work_struct *work)
10275{
10276        struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10277
10278        rtnl_lock();
10279
10280        if (!netif_running(bp->dev)) {
10281                rtnl_unlock();
10282                return;
10283        }
10284
10285        if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10286#ifdef BNX2X_STOP_ON_ERROR
10287                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10288                          "you will need to reboot when done\n");
10289                goto sp_rtnl_not_reset;
10290#endif
10291                /*
10292                 * Clear all pending SP commands as we are going to reset the
10293                 * function anyway.
10294                 */
10295                bp->sp_rtnl_state = 0;
10296                smp_mb();
10297
10298                bnx2x_parity_recover(bp);
10299
10300                rtnl_unlock();
10301                return;
10302        }
10303
10304        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10305#ifdef BNX2X_STOP_ON_ERROR
10306                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10307                          "you will need to reboot when done\n");
10308                goto sp_rtnl_not_reset;
10309#endif
10310
10311                /*
10312                 * Clear all pending SP commands as we are going to reset the
10313                 * function anyway.
10314                 */
10315                bp->sp_rtnl_state = 0;
10316                smp_mb();
10317
10318                /* Immediately indicate link as down */
10319                bp->link_vars.link_up = 0;
10320                bp->force_link_down = true;
10321                netif_carrier_off(bp->dev);
10322                BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10323
10324                bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10325                /* When ret value shows failure of allocation failure,
10326                 * the nic is rebooted again. If open still fails, a error
10327                 * message to notify the user.
10328                 */
10329                if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10330                        bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10331                        if (bnx2x_nic_load(bp, LOAD_NORMAL))
10332                                BNX2X_ERR("Open the NIC fails again!\n");
10333                }
10334                rtnl_unlock();
10335                return;
10336        }
10337#ifdef BNX2X_STOP_ON_ERROR
10338sp_rtnl_not_reset:
10339#endif
10340        if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10341                bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10342        if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10343                bnx2x_after_function_update(bp);
10344        /*
10345         * in case of fan failure we need to reset id if the "stop on error"
10346         * debug flag is set, since we trying to prevent permanent overheating
10347         * damage
10348         */
10349        if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10350                DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10351                netif_device_detach(bp->dev);
10352                bnx2x_close(bp->dev);
10353                rtnl_unlock();
10354                return;
10355        }
10356
10357        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10358                DP(BNX2X_MSG_SP,
10359                   "sending set mcast vf pf channel message from rtnl sp-task\n");
10360                bnx2x_vfpf_set_mcast(bp->dev);
10361        }
10362        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10363                               &bp->sp_rtnl_state)){
10364                if (netif_carrier_ok(bp->dev)) {
10365                        bnx2x_tx_disable(bp);
10366                        BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10367                }
10368        }
10369
10370        if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10371                DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10372                bnx2x_set_rx_mode_inner(bp);
10373        }
10374
10375        if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10376                               &bp->sp_rtnl_state))
10377                bnx2x_pf_set_vfs_vlan(bp);
10378
10379        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10380                bnx2x_dcbx_stop_hw_tx(bp);
10381                bnx2x_dcbx_resume_hw_tx(bp);
10382        }
10383
10384        if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10385                               &bp->sp_rtnl_state))
10386                bnx2x_update_mng_version(bp);
10387
10388        if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10389                bnx2x_handle_update_svid_cmd(bp);
10390
10391        if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10392                               &bp->sp_rtnl_state)) {
10393                if (bnx2x_udp_port_update(bp)) {
10394                        /* On error, forget configuration */
10395                        memset(bp->udp_tunnel_ports, 0,
10396                               sizeof(struct bnx2x_udp_tunnel) *
10397                               BNX2X_UDP_PORT_MAX);
10398                } else {
10399                        /* Since we don't store additional port information,
10400                         * if no ports are configured for any feature ask for
10401                         * information about currently configured ports.
10402                         */
10403                        if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10404                            !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10405                                udp_tunnel_get_rx_info(bp->dev);
10406                }
10407        }
10408
10409        /* work which needs rtnl lock not-taken (as it takes the lock itself and
10410         * can be called from other contexts as well)
10411         */
10412        rtnl_unlock();
10413
10414        /* enable SR-IOV if applicable */
10415        if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10416                                               &bp->sp_rtnl_state)) {
10417                bnx2x_disable_sriov(bp);
10418                bnx2x_enable_sriov(bp);
10419        }
10420}
10421
10422static void bnx2x_period_task(struct work_struct *work)
10423{
10424        struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10425
10426        if (!netif_running(bp->dev))
10427                goto period_task_exit;
10428
10429        if (CHIP_REV_IS_SLOW(bp)) {
10430                BNX2X_ERR("period task called on emulation, ignoring\n");
10431                goto period_task_exit;
10432        }
10433
10434        bnx2x_acquire_phy_lock(bp);
10435        /*
10436         * The barrier is needed to ensure the ordering between the writing to
10437         * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10438         * the reading here.
10439         */
10440        smp_mb();
10441        if (bp->port.pmf) {
10442                bnx2x_period_func(&bp->link_params, &bp->link_vars);
10443
10444                /* Re-queue task in 1 sec */
10445                queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10446        }
10447
10448        bnx2x_release_phy_lock(bp);
10449period_task_exit:
10450        return;
10451}
10452
10453/*
10454 * Init service functions
10455 */
10456
10457static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10458{
10459        u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10460        u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10461        return base + (BP_ABS_FUNC(bp)) * stride;
10462}
10463
10464static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10465                                         u8 port, u32 reset_reg,
10466                                         struct bnx2x_mac_vals *vals)
10467{
10468        u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10469        u32 base_addr;
10470
10471        if (!(mask & reset_reg))
10472                return false;
10473
10474        BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10475        base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10476        vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10477        vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10478        REG_WR(bp, vals->umac_addr[port], 0);
10479
10480        return true;
10481}
10482
10483static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10484                                        struct bnx2x_mac_vals *vals)
10485{
10486        u32 val, base_addr, offset, mask, reset_reg;
10487        bool mac_stopped = false;
10488        u8 port = BP_PORT(bp);
10489
10490        /* reset addresses as they also mark which values were changed */
10491        memset(vals, 0, sizeof(*vals));
10492
10493        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10494
10495        if (!CHIP_IS_E3(bp)) {
10496                val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10497                mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10498                if ((mask & reset_reg) && val) {
10499                        u32 wb_data[2];
10500                        BNX2X_DEV_INFO("Disable bmac Rx\n");
10501                        base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10502                                                : NIG_REG_INGRESS_BMAC0_MEM;
10503                        offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10504                                                : BIGMAC_REGISTER_BMAC_CONTROL;
10505
10506                        /*
10507                         * use rd/wr since we cannot use dmae. This is safe
10508                         * since MCP won't access the bus due to the request
10509                         * to unload, and no function on the path can be
10510                         * loaded at this time.
10511                         */
10512                        wb_data[0] = REG_RD(bp, base_addr + offset);
10513                        wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10514                        vals->bmac_addr = base_addr + offset;
10515                        vals->bmac_val[0] = wb_data[0];
10516                        vals->bmac_val[1] = wb_data[1];
10517                        wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10518                        REG_WR(bp, vals->bmac_addr, wb_data[0]);
10519                        REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10520                }
10521                BNX2X_DEV_INFO("Disable emac Rx\n");
10522                vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10523                vals->emac_val = REG_RD(bp, vals->emac_addr);
10524                REG_WR(bp, vals->emac_addr, 0);
10525                mac_stopped = true;
10526        } else {
10527                if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10528                        BNX2X_DEV_INFO("Disable xmac Rx\n");
10529                        base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10530                        val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10531                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10532                               val & ~(1 << 1));
10533                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10534                               val | (1 << 1));
10535                        vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10536                        vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10537                        REG_WR(bp, vals->xmac_addr, 0);
10538                        mac_stopped = true;
10539                }
10540
10541                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10542                                                            reset_reg, vals);
10543                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10544                                                            reset_reg, vals);
10545        }
10546
10547        if (mac_stopped)
10548                msleep(20);
10549}
10550
10551#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10552#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10553                                        0x1848 + ((f) << 4))
10554#define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10555#define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10556#define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10557
10558#define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10559#define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10560#define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10561
10562static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10563{
10564        /* UNDI marks its presence in DORQ -
10565         * it initializes CID offset for normal bell to 0x7
10566         */
10567        if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10568            MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10569                return false;
10570
10571        if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10572                BNX2X_DEV_INFO("UNDI previously loaded\n");
10573                return true;
10574        }
10575
10576        return false;
10577}
10578
10579static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10580{
10581        u16 rcq, bd;
10582        u32 addr, tmp_reg;
10583
10584        if (BP_FUNC(bp) < 2)
10585                addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10586        else
10587                addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10588
10589        tmp_reg = REG_RD(bp, addr);
10590        rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10591        bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10592
10593        tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10594        REG_WR(bp, addr, tmp_reg);
10595
10596        BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10597                       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10598}
10599
10600static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10601{
10602        u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10603                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10604        if (!rc) {
10605                BNX2X_ERR("MCP response failure, aborting\n");
10606                return -EBUSY;
10607        }
10608
10609        return 0;
10610}
10611
10612static struct bnx2x_prev_path_list *
10613                bnx2x_prev_path_get_entry(struct bnx2x *bp)
10614{
10615        struct bnx2x_prev_path_list *tmp_list;
10616
10617        list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10618                if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10619                    bp->pdev->bus->number == tmp_list->bus &&
10620                    BP_PATH(bp) == tmp_list->path)
10621                        return tmp_list;
10622
10623        return NULL;
10624}
10625
10626static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10627{
10628        struct bnx2x_prev_path_list *tmp_list;
10629        int rc;
10630
10631        rc = down_interruptible(&bnx2x_prev_sem);
10632        if (rc) {
10633                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10634                return rc;
10635        }
10636
10637        tmp_list = bnx2x_prev_path_get_entry(bp);
10638        if (tmp_list) {
10639                tmp_list->aer = 1;
10640                rc = 0;
10641        } else {
10642                BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10643                          BP_PATH(bp));
10644        }
10645
10646        up(&bnx2x_prev_sem);
10647
10648        return rc;
10649}
10650
10651static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10652{
10653        struct bnx2x_prev_path_list *tmp_list;
10654        bool rc = false;
10655
10656        if (down_trylock(&bnx2x_prev_sem))
10657                return false;
10658
10659        tmp_list = bnx2x_prev_path_get_entry(bp);
10660        if (tmp_list) {
10661                if (tmp_list->aer) {
10662                        DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10663                           BP_PATH(bp));
10664                } else {
10665                        rc = true;
10666                        BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10667                                       BP_PATH(bp));
10668                }
10669        }
10670
10671        up(&bnx2x_prev_sem);
10672
10673        return rc;
10674}
10675
10676bool bnx2x_port_after_undi(struct bnx2x *bp)
10677{
10678        struct bnx2x_prev_path_list *entry;
10679        bool val;
10680
10681        down(&bnx2x_prev_sem);
10682
10683        entry = bnx2x_prev_path_get_entry(bp);
10684        val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10685
10686        up(&bnx2x_prev_sem);
10687
10688        return val;
10689}
10690
10691static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10692{
10693        struct bnx2x_prev_path_list *tmp_list;
10694        int rc;
10695
10696        rc = down_interruptible(&bnx2x_prev_sem);
10697        if (rc) {
10698                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10699                return rc;
10700        }
10701
10702        /* Check whether the entry for this path already exists */
10703        tmp_list = bnx2x_prev_path_get_entry(bp);
10704        if (tmp_list) {
10705                if (!tmp_list->aer) {
10706                        BNX2X_ERR("Re-Marking the path.\n");
10707                } else {
10708                        DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10709                           BP_PATH(bp));
10710                        tmp_list->aer = 0;
10711                }
10712                up(&bnx2x_prev_sem);
10713                return 0;
10714        }
10715        up(&bnx2x_prev_sem);
10716
10717        /* Create an entry for this path and add it */
10718        tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10719        if (!tmp_list) {
10720                BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10721                return -ENOMEM;
10722        }
10723
10724        tmp_list->bus = bp->pdev->bus->number;
10725        tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10726        tmp_list->path = BP_PATH(bp);
10727        tmp_list->aer = 0;
10728        tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10729
10730        rc = down_interruptible(&bnx2x_prev_sem);
10731        if (rc) {
10732                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10733                kfree(tmp_list);
10734        } else {
10735                DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10736                   BP_PATH(bp));
10737                list_add(&tmp_list->list, &bnx2x_prev_list);
10738                up(&bnx2x_prev_sem);
10739        }
10740
10741        return rc;
10742}
10743
10744static int bnx2x_do_flr(struct bnx2x *bp)
10745{
10746        struct pci_dev *dev = bp->pdev;
10747
10748        if (CHIP_IS_E1x(bp)) {
10749                BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10750                return -EINVAL;
10751        }
10752
10753        /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10754        if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10755                BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10756                          bp->common.bc_ver);
10757                return -EINVAL;
10758        }
10759
10760        if (!pci_wait_for_pending_transaction(dev))
10761                dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10762
10763        BNX2X_DEV_INFO("Initiating FLR\n");
10764        bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10765
10766        return 0;
10767}
10768
10769static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10770{
10771        int rc;
10772
10773        BNX2X_DEV_INFO("Uncommon unload Flow\n");
10774
10775        /* Test if previous unload process was already finished for this path */
10776        if (bnx2x_prev_is_path_marked(bp))
10777                return bnx2x_prev_mcp_done(bp);
10778
10779        BNX2X_DEV_INFO("Path is unmarked\n");
10780
10781        /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10782        if (bnx2x_prev_is_after_undi(bp))
10783                goto out;
10784
10785        /* If function has FLR capabilities, and existing FW version matches
10786         * the one required, then FLR will be sufficient to clean any residue
10787         * left by previous driver
10788         */
10789        rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10790
10791        if (!rc) {
10792                /* fw version is good */
10793                BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10794                rc = bnx2x_do_flr(bp);
10795        }
10796
10797        if (!rc) {
10798                /* FLR was performed */
10799                BNX2X_DEV_INFO("FLR successful\n");
10800                return 0;
10801        }
10802
10803        BNX2X_DEV_INFO("Could not FLR\n");
10804
10805out:
10806        /* Close the MCP request, return failure*/
10807        rc = bnx2x_prev_mcp_done(bp);
10808        if (!rc)
10809                rc = BNX2X_PREV_WAIT_NEEDED;
10810
10811        return rc;
10812}
10813
10814static int bnx2x_prev_unload_common(struct bnx2x *bp)
10815{
10816        u32 reset_reg, tmp_reg = 0, rc;
10817        bool prev_undi = false;
10818        struct bnx2x_mac_vals mac_vals;
10819
10820        /* It is possible a previous function received 'common' answer,
10821         * but hasn't loaded yet, therefore creating a scenario of
10822         * multiple functions receiving 'common' on the same path.
10823         */
10824        BNX2X_DEV_INFO("Common unload Flow\n");
10825
10826        memset(&mac_vals, 0, sizeof(mac_vals));
10827
10828        if (bnx2x_prev_is_path_marked(bp))
10829                return bnx2x_prev_mcp_done(bp);
10830
10831        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10832
10833        /* Reset should be performed after BRB is emptied */
10834        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10835                u32 timer_count = 1000;
10836
10837                /* Close the MAC Rx to prevent BRB from filling up */
10838                bnx2x_prev_unload_close_mac(bp, &mac_vals);
10839
10840                /* close LLH filters for both ports towards the BRB */
10841                bnx2x_set_rx_filter(&bp->link_params, 0);
10842                bp->link_params.port ^= 1;
10843                bnx2x_set_rx_filter(&bp->link_params, 0);
10844                bp->link_params.port ^= 1;
10845
10846                /* Check if the UNDI driver was previously loaded */
10847                if (bnx2x_prev_is_after_undi(bp)) {
10848                        prev_undi = true;
10849                        /* clear the UNDI indication */
10850                        REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10851                        /* clear possible idle check errors */
10852                        REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10853                }
10854                if (!CHIP_IS_E1x(bp))
10855                        /* block FW from writing to host */
10856                        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10857
10858                /* wait until BRB is empty */
10859                tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10860                while (timer_count) {
10861                        u32 prev_brb = tmp_reg;
10862
10863                        tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10864                        if (!tmp_reg)
10865                                break;
10866
10867                        BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10868
10869                        /* reset timer as long as BRB actually gets emptied */
10870                        if (prev_brb > tmp_reg)
10871                                timer_count = 1000;
10872                        else
10873                                timer_count--;
10874
10875                        /* If UNDI resides in memory, manually increment it */
10876                        if (prev_undi)
10877                                bnx2x_prev_unload_undi_inc(bp, 1);
10878
10879                        udelay(10);
10880                }
10881
10882                if (!timer_count)
10883                        BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10884        }
10885
10886        /* No packets are in the pipeline, path is ready for reset */
10887        bnx2x_reset_common(bp);
10888
10889        if (mac_vals.xmac_addr)
10890                REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10891        if (mac_vals.umac_addr[0])
10892                REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10893        if (mac_vals.umac_addr[1])
10894                REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10895        if (mac_vals.emac_addr)
10896                REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10897        if (mac_vals.bmac_addr) {
10898                REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10899                REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10900        }
10901
10902        rc = bnx2x_prev_mark_path(bp, prev_undi);
10903        if (rc) {
10904                bnx2x_prev_mcp_done(bp);
10905                return rc;
10906        }
10907
10908        return bnx2x_prev_mcp_done(bp);
10909}
10910
10911static int bnx2x_prev_unload(struct bnx2x *bp)
10912{
10913        int time_counter = 10;
10914        u32 rc, fw, hw_lock_reg, hw_lock_val;
10915        BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10916
10917        /* clear hw from errors which may have resulted from an interrupted
10918         * dmae transaction.
10919         */
10920        bnx2x_clean_pglue_errors(bp);
10921
10922        /* Release previously held locks */
10923        hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10924                      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10925                      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10926
10927        hw_lock_val = REG_RD(bp, hw_lock_reg);
10928        if (hw_lock_val) {
10929                if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10930                        BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10931                        REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10932                               (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10933                }
10934
10935                BNX2X_DEV_INFO("Release Previously held hw lock\n");
10936                REG_WR(bp, hw_lock_reg, 0xffffffff);
10937        } else
10938                BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10939
10940        if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10941                BNX2X_DEV_INFO("Release previously held alr\n");
10942                bnx2x_release_alr(bp);
10943        }
10944
10945        do {
10946                int aer = 0;
10947                /* Lock MCP using an unload request */
10948                fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10949                if (!fw) {
10950                        BNX2X_ERR("MCP response failure, aborting\n");
10951                        rc = -EBUSY;
10952                        break;
10953                }
10954
10955                rc = down_interruptible(&bnx2x_prev_sem);
10956                if (rc) {
10957                        BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10958                                  rc);
10959                } else {
10960                        /* If Path is marked by EEH, ignore unload status */
10961                        aer = !!(bnx2x_prev_path_get_entry(bp) &&
10962                                 bnx2x_prev_path_get_entry(bp)->aer);
10963                        up(&bnx2x_prev_sem);
10964                }
10965
10966                if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10967                        rc = bnx2x_prev_unload_common(bp);
10968                        break;
10969                }
10970
10971                /* non-common reply from MCP might require looping */
10972                rc = bnx2x_prev_unload_uncommon(bp);
10973                if (rc != BNX2X_PREV_WAIT_NEEDED)
10974                        break;
10975
10976                msleep(20);
10977        } while (--time_counter);
10978
10979        if (!time_counter || rc) {
10980                BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10981                rc = -EPROBE_DEFER;
10982        }
10983
10984        /* Mark function if its port was used to boot from SAN */
10985        if (bnx2x_port_after_undi(bp))
10986                bp->link_params.feature_config_flags |=
10987                        FEATURE_CONFIG_BOOT_FROM_SAN;
10988
10989        BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10990
10991        return rc;
10992}
10993
10994static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10995{
10996        u32 val, val2, val3, val4, id, boot_mode;
10997        u16 pmc;
10998
10999        /* Get the chip revision id and number. */
11000        /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
11001        val = REG_RD(bp, MISC_REG_CHIP_NUM);
11002        id = ((val & 0xffff) << 16);
11003        val = REG_RD(bp, MISC_REG_CHIP_REV);
11004        id |= ((val & 0xf) << 12);
11005
11006        /* Metal is read from PCI regs, but we can't access >=0x400 from
11007         * the configuration space (so we need to reg_rd)
11008         */
11009        val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
11010        id |= (((val >> 24) & 0xf) << 4);
11011        val = REG_RD(bp, MISC_REG_BOND_ID);
11012        id |= (val & 0xf);
11013        bp->common.chip_id = id;
11014
11015        /* force 57811 according to MISC register */
11016        if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
11017                if (CHIP_IS_57810(bp))
11018                        bp->common.chip_id = (CHIP_NUM_57811 << 16) |
11019                                (bp->common.chip_id & 0x0000FFFF);
11020                else if (CHIP_IS_57810_MF(bp))
11021                        bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
11022                                (bp->common.chip_id & 0x0000FFFF);
11023                bp->common.chip_id |= 0x1;
11024        }
11025
11026        /* Set doorbell size */
11027        bp->db_size = (1 << BNX2X_DB_SHIFT);
11028
11029        if (!CHIP_IS_E1x(bp)) {
11030                val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
11031                if ((val & 1) == 0)
11032                        val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
11033                else
11034                        val = (val >> 1) & 1;
11035                BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
11036                                                       "2_PORT_MODE");
11037                bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
11038                                                 CHIP_2_PORT_MODE;
11039
11040                if (CHIP_MODE_IS_4_PORT(bp))
11041                        bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
11042                else
11043                        bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
11044        } else {
11045                bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
11046                bp->pfid = bp->pf_num;                  /* 0..7 */
11047        }
11048
11049        BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
11050
11051        bp->link_params.chip_id = bp->common.chip_id;
11052        BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
11053
11054        val = (REG_RD(bp, 0x2874) & 0x55);
11055        if ((bp->common.chip_id & 0x1) ||
11056            (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11057                bp->flags |= ONE_PORT_FLAG;
11058                BNX2X_DEV_INFO("single port device\n");
11059        }
11060
11061        val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11062        bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11063                                 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11064        BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11065                       bp->common.flash_size, bp->common.flash_size);
11066
11067        bnx2x_init_shmem(bp);
11068
11069        bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11070                                        MISC_REG_GENERIC_CR_1 :
11071                                        MISC_REG_GENERIC_CR_0));
11072
11073        bp->link_params.shmem_base = bp->common.shmem_base;
11074        bp->link_params.shmem2_base = bp->common.shmem2_base;
11075        if (SHMEM2_RD(bp, size) >
11076            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11077                bp->link_params.lfa_base =
11078                REG_RD(bp, bp->common.shmem2_base +
11079                       (u32)offsetof(struct shmem2_region,
11080                                     lfa_host_addr[BP_PORT(bp)]));
11081        else
11082                bp->link_params.lfa_base = 0;
11083        BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11084                       bp->common.shmem_base, bp->common.shmem2_base);
11085
11086        if (!bp->common.shmem_base) {
11087                BNX2X_DEV_INFO("MCP not active\n");
11088                bp->flags |= NO_MCP_FLAG;
11089                return;
11090        }
11091
11092        bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11093        BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11094
11095        bp->link_params.hw_led_mode = ((bp->common.hw_config &
11096                                        SHARED_HW_CFG_LED_MODE_MASK) >>
11097                                       SHARED_HW_CFG_LED_MODE_SHIFT);
11098
11099        bp->link_params.feature_config_flags = 0;
11100        val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11101        if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11102                bp->link_params.feature_config_flags |=
11103                                FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11104        else
11105                bp->link_params.feature_config_flags &=
11106                                ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11107
11108        val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11109        bp->common.bc_ver = val;
11110        BNX2X_DEV_INFO("bc_ver %X\n", val);
11111        if (val < BNX2X_BC_VER) {
11112                /* for now only warn
11113                 * later we might need to enforce this */
11114                BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11115                          BNX2X_BC_VER, val);
11116        }
11117        bp->link_params.feature_config_flags |=
11118                                (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11119                                FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11120
11121        bp->link_params.feature_config_flags |=
11122                (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11123                FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11124        bp->link_params.feature_config_flags |=
11125                (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11126                FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11127        bp->link_params.feature_config_flags |=
11128                (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11129                FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11130
11131        bp->link_params.feature_config_flags |=
11132                (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11133                FEATURE_CONFIG_MT_SUPPORT : 0;
11134
11135        bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11136                        BC_SUPPORTS_PFC_STATS : 0;
11137
11138        bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11139                        BC_SUPPORTS_FCOE_FEATURES : 0;
11140
11141        bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11142                        BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11143
11144        bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11145                        BC_SUPPORTS_RMMOD_CMD : 0;
11146
11147        boot_mode = SHMEM_RD(bp,
11148                        dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11149                        PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11150        switch (boot_mode) {
11151        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11152                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11153                break;
11154        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11155                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11156                break;
11157        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11158                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11159                break;
11160        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11161                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11162                break;
11163        }
11164
11165        pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11166        bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11167
11168        BNX2X_DEV_INFO("%sWoL capable\n",
11169                       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11170
11171        val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11172        val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11173        val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11174        val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11175
11176        dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11177                 val, val2, val3, val4);
11178}
11179
11180#define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11181#define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11182
11183static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11184{
11185        int pfid = BP_FUNC(bp);
11186        int igu_sb_id;
11187        u32 val;
11188        u8 fid, igu_sb_cnt = 0;
11189
11190        bp->igu_base_sb = 0xff;
11191        if (CHIP_INT_MODE_IS_BC(bp)) {
11192                int vn = BP_VN(bp);
11193                igu_sb_cnt = bp->igu_sb_cnt;
11194                bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11195                        FP_SB_MAX_E1x;
11196
11197                bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11198                        (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11199
11200                return 0;
11201        }
11202
11203        /* IGU in normal mode - read CAM */
11204        for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11205             igu_sb_id++) {
11206                val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11207                if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11208                        continue;
11209                fid = IGU_FID(val);
11210                if ((fid & IGU_FID_ENCODE_IS_PF)) {
11211                        if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11212                                continue;
11213                        if (IGU_VEC(val) == 0)
11214                                /* default status block */
11215                                bp->igu_dsb_id = igu_sb_id;
11216                        else {
11217                                if (bp->igu_base_sb == 0xff)
11218                                        bp->igu_base_sb = igu_sb_id;
11219                                igu_sb_cnt++;
11220                        }
11221                }
11222        }
11223
11224#ifdef CONFIG_PCI_MSI
11225        /* Due to new PF resource allocation by MFW T7.4 and above, it's
11226         * optional that number of CAM entries will not be equal to the value
11227         * advertised in PCI.
11228         * Driver should use the minimal value of both as the actual status
11229         * block count
11230         */
11231        bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11232#endif
11233
11234        if (igu_sb_cnt == 0) {
11235                BNX2X_ERR("CAM configuration error\n");
11236                return -EINVAL;
11237        }
11238
11239        return 0;
11240}
11241
11242static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11243{
11244        int cfg_size = 0, idx, port = BP_PORT(bp);
11245
11246        /* Aggregation of supported attributes of all external phys */
11247        bp->port.supported[0] = 0;
11248        bp->port.supported[1] = 0;
11249        switch (bp->link_params.num_phys) {
11250        case 1:
11251                bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11252                cfg_size = 1;
11253                break;
11254        case 2:
11255                bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11256                cfg_size = 1;
11257                break;
11258        case 3:
11259                if (bp->link_params.multi_phy_config &
11260                    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11261                        bp->port.supported[1] =
11262                                bp->link_params.phy[EXT_PHY1].supported;
11263                        bp->port.supported[0] =
11264                                bp->link_params.phy[EXT_PHY2].supported;
11265                } else {
11266                        bp->port.supported[0] =
11267                                bp->link_params.phy[EXT_PHY1].supported;
11268                        bp->port.supported[1] =
11269                                bp->link_params.phy[EXT_PHY2].supported;
11270                }
11271                cfg_size = 2;
11272                break;
11273        }
11274
11275        if (!(bp->port.supported[0] || bp->port.supported[1])) {
11276                BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11277                           SHMEM_RD(bp,
11278                           dev_info.port_hw_config[port].external_phy_config),
11279                           SHMEM_RD(bp,
11280                           dev_info.port_hw_config[port].external_phy_config2));
11281                return;
11282        }
11283
11284        if (CHIP_IS_E3(bp))
11285                bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11286        else {
11287                switch (switch_cfg) {
11288                case SWITCH_CFG_1G:
11289                        bp->port.phy_addr = REG_RD(
11290                                bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11291                        break;
11292                case SWITCH_CFG_10G:
11293                        bp->port.phy_addr = REG_RD(
11294                                bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11295                        break;
11296                default:
11297                        BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11298                                  bp->port.link_config[0]);
11299                        return;
11300                }
11301        }
11302        BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11303        /* mask what we support according to speed_cap_mask per configuration */
11304        for (idx = 0; idx < cfg_size; idx++) {
11305                if (!(bp->link_params.speed_cap_mask[idx] &
11306                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11307                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11308
11309                if (!(bp->link_params.speed_cap_mask[idx] &
11310                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11311                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11312
11313                if (!(bp->link_params.speed_cap_mask[idx] &
11314                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11315                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11316
11317                if (!(bp->link_params.speed_cap_mask[idx] &
11318                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11319                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11320
11321                if (!(bp->link_params.speed_cap_mask[idx] &
11322                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11323                        bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11324                                                     SUPPORTED_1000baseT_Full);
11325
11326                if (!(bp->link_params.speed_cap_mask[idx] &
11327                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11328                        bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11329
11330                if (!(bp->link_params.speed_cap_mask[idx] &
11331                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11332                        bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11333
11334                if (!(bp->link_params.speed_cap_mask[idx] &
11335                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11336                        bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11337        }
11338
11339        BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11340                       bp->port.supported[1]);
11341}
11342
11343static void bnx2x_link_settings_requested(struct bnx2x *bp)
11344{
11345        u32 link_config, idx, cfg_size = 0;
11346        bp->port.advertising[0] = 0;
11347        bp->port.advertising[1] = 0;
11348        switch (bp->link_params.num_phys) {
11349        case 1:
11350        case 2:
11351                cfg_size = 1;
11352                break;
11353        case 3:
11354                cfg_size = 2;
11355                break;
11356        }
11357        for (idx = 0; idx < cfg_size; idx++) {
11358                bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11359                link_config = bp->port.link_config[idx];
11360                switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11361                case PORT_FEATURE_LINK_SPEED_AUTO:
11362                        if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11363                                bp->link_params.req_line_speed[idx] =
11364                                        SPEED_AUTO_NEG;
11365                                bp->port.advertising[idx] |=
11366                                        bp->port.supported[idx];
11367                                if (bp->link_params.phy[EXT_PHY1].type ==
11368                                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11369                                        bp->port.advertising[idx] |=
11370                                        (SUPPORTED_100baseT_Half |
11371                                         SUPPORTED_100baseT_Full);
11372                        } else {
11373                                /* force 10G, no AN */
11374                                bp->link_params.req_line_speed[idx] =
11375                                        SPEED_10000;
11376                                bp->port.advertising[idx] |=
11377                                        (ADVERTISED_10000baseT_Full |
11378                                         ADVERTISED_FIBRE);
11379                                continue;
11380                        }
11381                        break;
11382
11383                case PORT_FEATURE_LINK_SPEED_10M_FULL:
11384                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11385                                bp->link_params.req_line_speed[idx] =
11386                                        SPEED_10;
11387                                bp->port.advertising[idx] |=
11388                                        (ADVERTISED_10baseT_Full |
11389                                         ADVERTISED_TP);
11390                        } else {
11391                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11392                                            link_config,
11393                                    bp->link_params.speed_cap_mask[idx]);
11394                                return;
11395                        }
11396                        break;
11397
11398                case PORT_FEATURE_LINK_SPEED_10M_HALF:
11399                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11400                                bp->link_params.req_line_speed[idx] =
11401                                        SPEED_10;
11402                                bp->link_params.req_duplex[idx] =
11403                                        DUPLEX_HALF;
11404                                bp->port.advertising[idx] |=
11405                                        (ADVERTISED_10baseT_Half |
11406                                         ADVERTISED_TP);
11407                        } else {
11408                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11409                                            link_config,
11410                                          bp->link_params.speed_cap_mask[idx]);
11411                                return;
11412                        }
11413                        break;
11414
11415                case PORT_FEATURE_LINK_SPEED_100M_FULL:
11416                        if (bp->port.supported[idx] &
11417                            SUPPORTED_100baseT_Full) {
11418                                bp->link_params.req_line_speed[idx] =
11419                                        SPEED_100;
11420                                bp->port.advertising[idx] |=
11421                                        (ADVERTISED_100baseT_Full |
11422                                         ADVERTISED_TP);
11423                        } else {
11424                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11425                                            link_config,
11426                                          bp->link_params.speed_cap_mask[idx]);
11427                                return;
11428                        }
11429                        break;
11430
11431                case PORT_FEATURE_LINK_SPEED_100M_HALF:
11432                        if (bp->port.supported[idx] &
11433                            SUPPORTED_100baseT_Half) {
11434                                bp->link_params.req_line_speed[idx] =
11435                                                                SPEED_100;
11436                                bp->link_params.req_duplex[idx] =
11437                                                                DUPLEX_HALF;
11438                                bp->port.advertising[idx] |=
11439                                        (ADVERTISED_100baseT_Half |
11440                                         ADVERTISED_TP);
11441                        } else {
11442                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11443                                    link_config,
11444                                    bp->link_params.speed_cap_mask[idx]);
11445                                return;
11446                        }
11447                        break;
11448
11449                case PORT_FEATURE_LINK_SPEED_1G:
11450                        if (bp->port.supported[idx] &
11451                            SUPPORTED_1000baseT_Full) {
11452                                bp->link_params.req_line_speed[idx] =
11453                                        SPEED_1000;
11454                                bp->port.advertising[idx] |=
11455                                        (ADVERTISED_1000baseT_Full |
11456                                         ADVERTISED_TP);
11457                        } else if (bp->port.supported[idx] &
11458                                   SUPPORTED_1000baseKX_Full) {
11459                                bp->link_params.req_line_speed[idx] =
11460                                        SPEED_1000;
11461                                bp->port.advertising[idx] |=
11462                                        ADVERTISED_1000baseKX_Full;
11463                        } else {
11464                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11465                                    link_config,
11466                                    bp->link_params.speed_cap_mask[idx]);
11467                                return;
11468                        }
11469                        break;
11470
11471                case PORT_FEATURE_LINK_SPEED_2_5G:
11472                        if (bp->port.supported[idx] &
11473                            SUPPORTED_2500baseX_Full) {
11474                                bp->link_params.req_line_speed[idx] =
11475                                        SPEED_2500;
11476                                bp->port.advertising[idx] |=
11477                                        (ADVERTISED_2500baseX_Full |
11478                                                ADVERTISED_TP);
11479                        } else {
11480                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11481                                    link_config,
11482                                    bp->link_params.speed_cap_mask[idx]);
11483                                return;
11484                        }
11485                        break;
11486
11487                case PORT_FEATURE_LINK_SPEED_10G_CX4:
11488                        if (bp->port.supported[idx] &
11489                            SUPPORTED_10000baseT_Full) {
11490                                bp->link_params.req_line_speed[idx] =
11491                                        SPEED_10000;
11492                                bp->port.advertising[idx] |=
11493                                        (ADVERTISED_10000baseT_Full |
11494                                                ADVERTISED_FIBRE);
11495                        } else if (bp->port.supported[idx] &
11496                                   SUPPORTED_10000baseKR_Full) {
11497                                bp->link_params.req_line_speed[idx] =
11498                                        SPEED_10000;
11499                                bp->port.advertising[idx] |=
11500                                        (ADVERTISED_10000baseKR_Full |
11501                                                ADVERTISED_FIBRE);
11502                        } else {
11503                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11504                                    link_config,
11505                                    bp->link_params.speed_cap_mask[idx]);
11506                                return;
11507                        }
11508                        break;
11509                case PORT_FEATURE_LINK_SPEED_20G:
11510                        bp->link_params.req_line_speed[idx] = SPEED_20000;
11511
11512                        break;
11513                default:
11514                        BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11515                                  link_config);
11516                                bp->link_params.req_line_speed[idx] =
11517                                                        SPEED_AUTO_NEG;
11518                                bp->port.advertising[idx] =
11519                                                bp->port.supported[idx];
11520                        break;
11521                }
11522
11523                bp->link_params.req_flow_ctrl[idx] = (link_config &
11524                                         PORT_FEATURE_FLOW_CONTROL_MASK);
11525                if (bp->link_params.req_flow_ctrl[idx] ==
11526                    BNX2X_FLOW_CTRL_AUTO) {
11527                        if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11528                                bp->link_params.req_flow_ctrl[idx] =
11529                                                        BNX2X_FLOW_CTRL_NONE;
11530                        else
11531                                bnx2x_set_requested_fc(bp);
11532                }
11533
11534                BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11535                               bp->link_params.req_line_speed[idx],
11536                               bp->link_params.req_duplex[idx],
11537                               bp->link_params.req_flow_ctrl[idx],
11538                               bp->port.advertising[idx]);
11539        }
11540}
11541
11542static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11543{
11544        __be16 mac_hi_be = cpu_to_be16(mac_hi);
11545        __be32 mac_lo_be = cpu_to_be32(mac_lo);
11546        memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11547        memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11548}
11549
11550static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11551{
11552        int port = BP_PORT(bp);
11553        u32 config;
11554        u32 ext_phy_type, ext_phy_config, eee_mode;
11555
11556        bp->link_params.bp = bp;
11557        bp->link_params.port = port;
11558
11559        bp->link_params.lane_config =
11560                SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11561
11562        bp->link_params.speed_cap_mask[0] =
11563                SHMEM_RD(bp,
11564                         dev_info.port_hw_config[port].speed_capability_mask) &
11565                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11566        bp->link_params.speed_cap_mask[1] =
11567                SHMEM_RD(bp,
11568                         dev_info.port_hw_config[port].speed_capability_mask2) &
11569                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11570        bp->port.link_config[0] =
11571                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11572
11573        bp->port.link_config[1] =
11574                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11575
11576        bp->link_params.multi_phy_config =
11577                SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11578        /* If the device is capable of WoL, set the default state according
11579         * to the HW
11580         */
11581        config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11582        bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11583                   (config & PORT_FEATURE_WOL_ENABLED));
11584
11585        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11586            PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11587                bp->flags |= NO_ISCSI_FLAG;
11588        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11589            PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11590                bp->flags |= NO_FCOE_FLAG;
11591
11592        BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11593                       bp->link_params.lane_config,
11594                       bp->link_params.speed_cap_mask[0],
11595                       bp->port.link_config[0]);
11596
11597        bp->link_params.switch_cfg = (bp->port.link_config[0] &
11598                                      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11599        bnx2x_phy_probe(&bp->link_params);
11600        bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11601
11602        bnx2x_link_settings_requested(bp);
11603
11604        /*
11605         * If connected directly, work with the internal PHY, otherwise, work
11606         * with the external PHY
11607         */
11608        ext_phy_config =
11609                SHMEM_RD(bp,
11610                         dev_info.port_hw_config[port].external_phy_config);
11611        ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11612        if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11613                bp->mdio.prtad = bp->port.phy_addr;
11614
11615        else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11616                 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11617                bp->mdio.prtad =
11618                        XGXS_EXT_PHY_ADDR(ext_phy_config);
11619
11620        /* Configure link feature according to nvram value */
11621        eee_mode = (((SHMEM_RD(bp, dev_info.
11622                      port_feature_config[port].eee_power_mode)) &
11623                     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11624                    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11625        if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11626                bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11627                                           EEE_MODE_ENABLE_LPI |
11628                                           EEE_MODE_OUTPUT_TIME;
11629        } else {
11630                bp->link_params.eee_mode = 0;
11631        }
11632}
11633
11634void bnx2x_get_iscsi_info(struct bnx2x *bp)
11635{
11636        u32 no_flags = NO_ISCSI_FLAG;
11637        int port = BP_PORT(bp);
11638        u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11639                                drv_lic_key[port].max_iscsi_conn);
11640
11641        if (!CNIC_SUPPORT(bp)) {
11642                bp->flags |= no_flags;
11643                return;
11644        }
11645
11646        /* Get the number of maximum allowed iSCSI connections */
11647        bp->cnic_eth_dev.max_iscsi_conn =
11648                (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11649                BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11650
11651        BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11652                       bp->cnic_eth_dev.max_iscsi_conn);
11653
11654        /*
11655         * If maximum allowed number of connections is zero -
11656         * disable the feature.
11657         */
11658        if (!bp->cnic_eth_dev.max_iscsi_conn)
11659                bp->flags |= no_flags;
11660}
11661
11662static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11663{
11664        /* Port info */
11665        bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11666                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11667        bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11668                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11669
11670        /* Node info */
11671        bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11672                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11673        bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11674                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11675}
11676
11677static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11678{
11679        u8 count = 0;
11680
11681        if (IS_MF(bp)) {
11682                u8 fid;
11683
11684                /* iterate over absolute function ids for this path: */
11685                for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11686                        if (IS_MF_SD(bp)) {
11687                                u32 cfg = MF_CFG_RD(bp,
11688                                                    func_mf_config[fid].config);
11689
11690                                if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11691                                    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11692                                            FUNC_MF_CFG_PROTOCOL_FCOE))
11693                                        count++;
11694                        } else {
11695                                u32 cfg = MF_CFG_RD(bp,
11696                                                    func_ext_config[fid].
11697                                                                      func_cfg);
11698
11699                                if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11700                                    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11701                                        count++;
11702                        }
11703                }
11704        } else { /* SF */
11705                int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11706
11707                for (port = 0; port < port_cnt; port++) {
11708                        u32 lic = SHMEM_RD(bp,
11709                                           drv_lic_key[port].max_fcoe_conn) ^
11710                                  FW_ENCODE_32BIT_PATTERN;
11711                        if (lic)
11712                                count++;
11713                }
11714        }
11715
11716        return count;
11717}
11718
11719static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11720{
11721        int port = BP_PORT(bp);
11722        int func = BP_ABS_FUNC(bp);
11723        u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11724                                drv_lic_key[port].max_fcoe_conn);
11725        u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11726
11727        if (!CNIC_SUPPORT(bp)) {
11728                bp->flags |= NO_FCOE_FLAG;
11729                return;
11730        }
11731
11732        /* Get the number of maximum allowed FCoE connections */
11733        bp->cnic_eth_dev.max_fcoe_conn =
11734                (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11735                BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11736
11737        /* Calculate the number of maximum allowed FCoE tasks */
11738        bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11739
11740        /* check if FCoE resources must be shared between different functions */
11741        if (num_fcoe_func)
11742                bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11743
11744        /* Read the WWN: */
11745        if (!IS_MF(bp)) {
11746                /* Port info */
11747                bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11748                        SHMEM_RD(bp,
11749                                 dev_info.port_hw_config[port].
11750                                 fcoe_wwn_port_name_upper);
11751                bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11752                        SHMEM_RD(bp,
11753                                 dev_info.port_hw_config[port].
11754                                 fcoe_wwn_port_name_lower);
11755
11756                /* Node info */
11757                bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11758                        SHMEM_RD(bp,
11759                                 dev_info.port_hw_config[port].
11760                                 fcoe_wwn_node_name_upper);
11761                bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11762                        SHMEM_RD(bp,
11763                                 dev_info.port_hw_config[port].
11764                                 fcoe_wwn_node_name_lower);
11765        } else if (!IS_MF_SD(bp)) {
11766                /* Read the WWN info only if the FCoE feature is enabled for
11767                 * this function.
11768                 */
11769                if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11770                        bnx2x_get_ext_wwn_info(bp, func);
11771        } else {
11772                if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11773                        bnx2x_get_ext_wwn_info(bp, func);
11774        }
11775
11776        BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11777
11778        /*
11779         * If maximum allowed number of connections is zero -
11780         * disable the feature.
11781         */
11782        if (!bp->cnic_eth_dev.max_fcoe_conn) {
11783                bp->flags |= NO_FCOE_FLAG;
11784                eth_zero_addr(bp->fip_mac);
11785        }
11786}
11787
11788static void bnx2x_get_cnic_info(struct bnx2x *bp)
11789{
11790        /*
11791         * iSCSI may be dynamically disabled but reading
11792         * info here we will decrease memory usage by driver
11793         * if the feature is disabled for good
11794         */
11795        bnx2x_get_iscsi_info(bp);
11796        bnx2x_get_fcoe_info(bp);
11797}
11798
11799static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11800{
11801        u32 val, val2;
11802        int func = BP_ABS_FUNC(bp);
11803        int port = BP_PORT(bp);
11804        u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11805        u8 *fip_mac = bp->fip_mac;
11806
11807        if (IS_MF(bp)) {
11808                /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11809                 * FCoE MAC then the appropriate feature should be disabled.
11810                 * In non SD mode features configuration comes from struct
11811                 * func_ext_config.
11812                 */
11813                if (!IS_MF_SD(bp)) {
11814                        u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11815                        if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11816                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11817                                                 iscsi_mac_addr_upper);
11818                                val = MF_CFG_RD(bp, func_ext_config[func].
11819                                                iscsi_mac_addr_lower);
11820                                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11821                                BNX2X_DEV_INFO
11822                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11823                        } else {
11824                                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11825                        }
11826
11827                        if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11828                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11829                                                 fcoe_mac_addr_upper);
11830                                val = MF_CFG_RD(bp, func_ext_config[func].
11831                                                fcoe_mac_addr_lower);
11832                                bnx2x_set_mac_buf(fip_mac, val, val2);
11833                                BNX2X_DEV_INFO
11834                                        ("Read FCoE L2 MAC: %pM\n", fip_mac);
11835                        } else {
11836                                bp->flags |= NO_FCOE_FLAG;
11837                        }
11838
11839                        bp->mf_ext_config = cfg;
11840
11841                } else { /* SD MODE */
11842                        if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11843                                /* use primary mac as iscsi mac */
11844                                memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11845
11846                                BNX2X_DEV_INFO("SD ISCSI MODE\n");
11847                                BNX2X_DEV_INFO
11848                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11849                        } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11850                                /* use primary mac as fip mac */
11851                                memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11852                                BNX2X_DEV_INFO("SD FCoE MODE\n");
11853                                BNX2X_DEV_INFO
11854                                        ("Read FIP MAC: %pM\n", fip_mac);
11855                        }
11856                }
11857
11858                /* If this is a storage-only interface, use SAN mac as
11859                 * primary MAC. Notice that for SD this is already the case,
11860                 * as the SAN mac was copied from the primary MAC.
11861                 */
11862                if (IS_MF_FCOE_AFEX(bp))
11863                        memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11864        } else {
11865                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11866                                iscsi_mac_upper);
11867                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11868                               iscsi_mac_lower);
11869                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11870
11871                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11872                                fcoe_fip_mac_upper);
11873                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11874                               fcoe_fip_mac_lower);
11875                bnx2x_set_mac_buf(fip_mac, val, val2);
11876        }
11877
11878        /* Disable iSCSI OOO if MAC configuration is invalid. */
11879        if (!is_valid_ether_addr(iscsi_mac)) {
11880                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11881                eth_zero_addr(iscsi_mac);
11882        }
11883
11884        /* Disable FCoE if MAC configuration is invalid. */
11885        if (!is_valid_ether_addr(fip_mac)) {
11886                bp->flags |= NO_FCOE_FLAG;
11887                eth_zero_addr(bp->fip_mac);
11888        }
11889}
11890
11891static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11892{
11893        u32 val, val2;
11894        int func = BP_ABS_FUNC(bp);
11895        int port = BP_PORT(bp);
11896
11897        /* Zero primary MAC configuration */
11898        eth_zero_addr(bp->dev->dev_addr);
11899
11900        if (BP_NOMCP(bp)) {
11901                BNX2X_ERROR("warning: random MAC workaround active\n");
11902                eth_hw_addr_random(bp->dev);
11903        } else if (IS_MF(bp)) {
11904                val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11905                val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11906                if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11907                    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11908                        bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11909
11910                if (CNIC_SUPPORT(bp))
11911                        bnx2x_get_cnic_mac_hwinfo(bp);
11912        } else {
11913                /* in SF read MACs from port configuration */
11914                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11915                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11916                bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11917
11918                if (CNIC_SUPPORT(bp))
11919                        bnx2x_get_cnic_mac_hwinfo(bp);
11920        }
11921
11922        if (!BP_NOMCP(bp)) {
11923                /* Read physical port identifier from shmem */
11924                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11925                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11926                bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11927                bp->flags |= HAS_PHYS_PORT_ID;
11928        }
11929
11930        memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11931
11932        if (!is_valid_ether_addr(bp->dev->dev_addr))
11933                dev_err(&bp->pdev->dev,
11934                        "bad Ethernet MAC address configuration: %pM\n"
11935                        "change it manually before bringing up the appropriate network interface\n",
11936                        bp->dev->dev_addr);
11937}
11938
11939static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11940{
11941        int tmp;
11942        u32 cfg;
11943
11944        if (IS_VF(bp))
11945                return false;
11946
11947        if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11948                /* Take function: tmp = func */
11949                tmp = BP_ABS_FUNC(bp);
11950                cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11951                cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11952        } else {
11953                /* Take port: tmp = port */
11954                tmp = BP_PORT(bp);
11955                cfg = SHMEM_RD(bp,
11956                               dev_info.port_hw_config[tmp].generic_features);
11957                cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11958        }
11959        return cfg;
11960}
11961
11962static void validate_set_si_mode(struct bnx2x *bp)
11963{
11964        u8 func = BP_ABS_FUNC(bp);
11965        u32 val;
11966
11967        val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11968
11969        /* check for legal mac (upper bytes) */
11970        if (val != 0xffff) {
11971                bp->mf_mode = MULTI_FUNCTION_SI;
11972                bp->mf_config[BP_VN(bp)] =
11973                        MF_CFG_RD(bp, func_mf_config[func].config);
11974        } else
11975                BNX2X_DEV_INFO("illegal MAC address for SI\n");
11976}
11977
11978static int bnx2x_get_hwinfo(struct bnx2x *bp)
11979{
11980        int /*abs*/func = BP_ABS_FUNC(bp);
11981        int vn;
11982        u32 val = 0, val2 = 0;
11983        int rc = 0;
11984
11985        /* Validate that chip access is feasible */
11986        if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11987                dev_err(&bp->pdev->dev,
11988                        "Chip read returns all Fs. Preventing probe from continuing\n");
11989                return -EINVAL;
11990        }
11991
11992        bnx2x_get_common_hwinfo(bp);
11993
11994        /*
11995         * initialize IGU parameters
11996         */
11997        if (CHIP_IS_E1x(bp)) {
11998                bp->common.int_block = INT_BLOCK_HC;
11999
12000                bp->igu_dsb_id = DEF_SB_IGU_ID;
12001                bp->igu_base_sb = 0;
12002        } else {
12003                bp->common.int_block = INT_BLOCK_IGU;
12004
12005                /* do not allow device reset during IGU info processing */
12006                bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12007
12008                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
12009
12010                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12011                        int tout = 5000;
12012
12013                        BNX2X_DEV_INFO("FORCING Normal Mode\n");
12014
12015                        val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
12016                        REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
12017                        REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
12018
12019                        while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12020                                tout--;
12021                                usleep_range(1000, 2000);
12022                        }
12023
12024                        if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12025                                dev_err(&bp->pdev->dev,
12026                                        "FORCING Normal Mode failed!!!\n");
12027                                bnx2x_release_hw_lock(bp,
12028                                                      HW_LOCK_RESOURCE_RESET);
12029                                return -EPERM;
12030                        }
12031                }
12032
12033                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12034                        BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
12035                        bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
12036                } else
12037                        BNX2X_DEV_INFO("IGU Normal Mode\n");
12038
12039                rc = bnx2x_get_igu_cam_info(bp);
12040                bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12041                if (rc)
12042                        return rc;
12043        }
12044
12045        /*
12046         * set base FW non-default (fast path) status block id, this value is
12047         * used to initialize the fw_sb_id saved on the fp/queue structure to
12048         * determine the id used by the FW.
12049         */
12050        if (CHIP_IS_E1x(bp))
12051                bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
12052        else /*
12053              * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12054              * the same queue are indicated on the same IGU SB). So we prefer
12055              * FW and IGU SBs to be the same value.
12056              */
12057                bp->base_fw_ndsb = bp->igu_base_sb;
12058
12059        BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12060                       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12061                       bp->igu_sb_cnt, bp->base_fw_ndsb);
12062
12063        /*
12064         * Initialize MF configuration
12065         */
12066        bp->mf_ov = 0;
12067        bp->mf_mode = 0;
12068        bp->mf_sub_mode = 0;
12069        vn = BP_VN(bp);
12070
12071        if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12072                BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12073                               bp->common.shmem2_base, SHMEM2_RD(bp, size),
12074                              (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12075
12076                if (SHMEM2_HAS(bp, mf_cfg_addr))
12077                        bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12078                else
12079                        bp->common.mf_cfg_base = bp->common.shmem_base +
12080                                offsetof(struct shmem_region, func_mb) +
12081                                E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12082                /*
12083                 * get mf configuration:
12084                 * 1. Existence of MF configuration
12085                 * 2. MAC address must be legal (check only upper bytes)
12086                 *    for  Switch-Independent mode;
12087                 *    OVLAN must be legal for Switch-Dependent mode
12088                 * 3. SF_MODE configures specific MF mode
12089                 */
12090                if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12091                        /* get mf configuration */
12092                        val = SHMEM_RD(bp,
12093                                       dev_info.shared_feature_config.config);
12094                        val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12095
12096                        switch (val) {
12097                        case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12098                                validate_set_si_mode(bp);
12099                                break;
12100                        case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12101                                if ((!CHIP_IS_E1x(bp)) &&
12102                                    (MF_CFG_RD(bp, func_mf_config[func].
12103                                               mac_upper) != 0xffff) &&
12104                                    (SHMEM2_HAS(bp,
12105                                                afex_driver_support))) {
12106                                        bp->mf_mode = MULTI_FUNCTION_AFEX;
12107                                        bp->mf_config[vn] = MF_CFG_RD(bp,
12108                                                func_mf_config[func].config);
12109                                } else {
12110                                        BNX2X_DEV_INFO("can not configure afex mode\n");
12111                                }
12112                                break;
12113                        case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12114                                /* get OV configuration */
12115                                val = MF_CFG_RD(bp,
12116                                        func_mf_config[FUNC_0].e1hov_tag);
12117                                val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12118
12119                                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12120                                        bp->mf_mode = MULTI_FUNCTION_SD;
12121                                        bp->mf_config[vn] = MF_CFG_RD(bp,
12122                                                func_mf_config[func].config);
12123                                } else
12124                                        BNX2X_DEV_INFO("illegal OV for SD\n");
12125                                break;
12126                        case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12127                                bp->mf_mode = MULTI_FUNCTION_SD;
12128                                bp->mf_sub_mode = SUB_MF_MODE_BD;
12129                                bp->mf_config[vn] =
12130                                        MF_CFG_RD(bp,
12131                                                  func_mf_config[func].config);
12132
12133                                if (SHMEM2_HAS(bp, mtu_size)) {
12134                                        int mtu_idx = BP_FW_MB_IDX(bp);
12135                                        u16 mtu_size;
12136                                        u32 mtu;
12137
12138                                        mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12139                                        mtu_size = (u16)mtu;
12140                                        DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12141                                           mtu_size, mtu);
12142
12143                                        /* if valid: update device mtu */
12144                                        if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12145                                            (mtu_size <=
12146                                             ETH_MAX_JUMBO_PACKET_SIZE))
12147                                                bp->dev->mtu = mtu_size;
12148                                }
12149                                break;
12150                        case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12151                                bp->mf_mode = MULTI_FUNCTION_SD;
12152                                bp->mf_sub_mode = SUB_MF_MODE_UFP;
12153                                bp->mf_config[vn] =
12154                                        MF_CFG_RD(bp,
12155                                                  func_mf_config[func].config);
12156                                break;
12157                        case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12158                                bp->mf_config[vn] = 0;
12159                                break;
12160                        case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12161                                val2 = SHMEM_RD(bp,
12162                                        dev_info.shared_hw_config.config_3);
12163                                val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12164                                switch (val2) {
12165                                case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12166                                        validate_set_si_mode(bp);
12167                                        bp->mf_sub_mode =
12168                                                        SUB_MF_MODE_NPAR1_DOT_5;
12169                                        break;
12170                                default:
12171                                        /* Unknown configuration */
12172                                        bp->mf_config[vn] = 0;
12173                                        BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12174                                                       val);
12175                                }
12176                                break;
12177                        default:
12178                                /* Unknown configuration: reset mf_config */
12179                                bp->mf_config[vn] = 0;
12180                                BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12181                        }
12182                }
12183
12184                BNX2X_DEV_INFO("%s function mode\n",
12185                               IS_MF(bp) ? "multi" : "single");
12186
12187                switch (bp->mf_mode) {
12188                case MULTI_FUNCTION_SD:
12189                        val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12190                              FUNC_MF_CFG_E1HOV_TAG_MASK;
12191                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12192                                bp->mf_ov = val;
12193                                bp->path_has_ovlan = true;
12194
12195                                BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12196                                               func, bp->mf_ov, bp->mf_ov);
12197                        } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12198                                   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12199                                dev_err(&bp->pdev->dev,
12200                                        "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12201                                        func);
12202                                bp->path_has_ovlan = true;
12203                        } else {
12204                                dev_err(&bp->pdev->dev,
12205                                        "No valid MF OV for func %d, aborting\n",
12206                                        func);
12207                                return -EPERM;
12208                        }
12209                        break;
12210                case MULTI_FUNCTION_AFEX:
12211                        BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12212                        break;
12213                case MULTI_FUNCTION_SI:
12214                        BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12215                                       func);
12216                        break;
12217                default:
12218                        if (vn) {
12219                                dev_err(&bp->pdev->dev,
12220                                        "VN %d is in a single function mode, aborting\n",
12221                                        vn);
12222                                return -EPERM;
12223                        }
12224                        break;
12225                }
12226
12227                /* check if other port on the path needs ovlan:
12228                 * Since MF configuration is shared between ports
12229                 * Possible mixed modes are only
12230                 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12231                 */
12232                if (CHIP_MODE_IS_4_PORT(bp) &&
12233                    !bp->path_has_ovlan &&
12234                    !IS_MF(bp) &&
12235                    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12236                        u8 other_port = !BP_PORT(bp);
12237                        u8 other_func = BP_PATH(bp) + 2*other_port;
12238                        val = MF_CFG_RD(bp,
12239                                        func_mf_config[other_func].e1hov_tag);
12240                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12241                                bp->path_has_ovlan = true;
12242                }
12243        }
12244
12245        /* adjust igu_sb_cnt to MF for E1H */
12246        if (CHIP_IS_E1H(bp) && IS_MF(bp))
12247                bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12248
12249        /* port info */
12250        bnx2x_get_port_hwinfo(bp);
12251
12252        /* Get MAC addresses */
12253        bnx2x_get_mac_hwinfo(bp);
12254
12255        bnx2x_get_cnic_info(bp);
12256
12257        return rc;
12258}
12259
12260static void bnx2x_read_fwinfo(struct bnx2x *bp)
12261{
12262        int cnt, i, block_end, rodi;
12263        char vpd_start[BNX2X_VPD_LEN+1];
12264        char str_id_reg[VENDOR_ID_LEN+1];
12265        char str_id_cap[VENDOR_ID_LEN+1];
12266        char *vpd_data;
12267        char *vpd_extended_data = NULL;
12268        u8 len;
12269
12270        cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12271        memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12272
12273        if (cnt < BNX2X_VPD_LEN)
12274                goto out_not_found;
12275
12276        /* VPD RO tag should be first tag after identifier string, hence
12277         * we should be able to find it in first BNX2X_VPD_LEN chars
12278         */
12279        i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12280                             PCI_VPD_LRDT_RO_DATA);
12281        if (i < 0)
12282                goto out_not_found;
12283
12284        block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12285                    pci_vpd_lrdt_size(&vpd_start[i]);
12286
12287        i += PCI_VPD_LRDT_TAG_SIZE;
12288
12289        if (block_end > BNX2X_VPD_LEN) {
12290                vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12291                if (vpd_extended_data  == NULL)
12292                        goto out_not_found;
12293
12294                /* read rest of vpd image into vpd_extended_data */
12295                memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12296                cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12297                                   block_end - BNX2X_VPD_LEN,
12298                                   vpd_extended_data + BNX2X_VPD_LEN);
12299                if (cnt < (block_end - BNX2X_VPD_LEN))
12300                        goto out_not_found;
12301                vpd_data = vpd_extended_data;
12302        } else
12303                vpd_data = vpd_start;
12304
12305        /* now vpd_data holds full vpd content in both cases */
12306
12307        rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12308                                   PCI_VPD_RO_KEYWORD_MFR_ID);
12309        if (rodi < 0)
12310                goto out_not_found;
12311
12312        len = pci_vpd_info_field_size(&vpd_data[rodi]);
12313
12314        if (len != VENDOR_ID_LEN)
12315                goto out_not_found;
12316
12317        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12318
12319        /* vendor specific info */
12320        snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12321        snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12322        if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12323            !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12324
12325                rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12326                                                PCI_VPD_RO_KEYWORD_VENDOR0);
12327                if (rodi >= 0) {
12328                        len = pci_vpd_info_field_size(&vpd_data[rodi]);
12329
12330                        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12331
12332                        if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12333                                memcpy(bp->fw_ver, &vpd_data[rodi], len);
12334                                bp->fw_ver[len] = ' ';
12335                        }
12336                }
12337                kfree(vpd_extended_data);
12338                return;
12339        }
12340out_not_found:
12341        kfree(vpd_extended_data);
12342        return;
12343}
12344
12345static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12346{
12347        u32 flags = 0;
12348
12349        if (CHIP_REV_IS_FPGA(bp))
12350                SET_FLAGS(flags, MODE_FPGA);
12351        else if (CHIP_REV_IS_EMUL(bp))
12352                SET_FLAGS(flags, MODE_EMUL);
12353        else
12354                SET_FLAGS(flags, MODE_ASIC);
12355
12356        if (CHIP_MODE_IS_4_PORT(bp))
12357                SET_FLAGS(flags, MODE_PORT4);
12358        else
12359                SET_FLAGS(flags, MODE_PORT2);
12360
12361        if (CHIP_IS_E2(bp))
12362                SET_FLAGS(flags, MODE_E2);
12363        else if (CHIP_IS_E3(bp)) {
12364                SET_FLAGS(flags, MODE_E3);
12365                if (CHIP_REV(bp) == CHIP_REV_Ax)
12366                        SET_FLAGS(flags, MODE_E3_A0);
12367                else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12368                        SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12369        }
12370
12371        if (IS_MF(bp)) {
12372                SET_FLAGS(flags, MODE_MF);
12373                switch (bp->mf_mode) {
12374                case MULTI_FUNCTION_SD:
12375                        SET_FLAGS(flags, MODE_MF_SD);
12376                        break;
12377                case MULTI_FUNCTION_SI:
12378                        SET_FLAGS(flags, MODE_MF_SI);
12379                        break;
12380                case MULTI_FUNCTION_AFEX:
12381                        SET_FLAGS(flags, MODE_MF_AFEX);
12382                        break;
12383                }
12384        } else
12385                SET_FLAGS(flags, MODE_SF);
12386
12387#if defined(__LITTLE_ENDIAN)
12388        SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12389#else /*(__BIG_ENDIAN)*/
12390        SET_FLAGS(flags, MODE_BIG_ENDIAN);
12391#endif
12392        INIT_MODE_FLAGS(bp) = flags;
12393}
12394
12395static int bnx2x_init_bp(struct bnx2x *bp)
12396{
12397        int func;
12398        int rc;
12399
12400        mutex_init(&bp->port.phy_mutex);
12401        mutex_init(&bp->fw_mb_mutex);
12402        mutex_init(&bp->drv_info_mutex);
12403        sema_init(&bp->stats_lock, 1);
12404        bp->drv_info_mng_owner = false;
12405        INIT_LIST_HEAD(&bp->vlan_reg);
12406
12407        INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12408        INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12409        INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12410        INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12411        if (IS_PF(bp)) {
12412                rc = bnx2x_get_hwinfo(bp);
12413                if (rc)
12414                        return rc;
12415        } else {
12416                eth_zero_addr(bp->dev->dev_addr);
12417        }
12418
12419        bnx2x_set_modes_bitmap(bp);
12420
12421        rc = bnx2x_alloc_mem_bp(bp);
12422        if (rc)
12423                return rc;
12424
12425        bnx2x_read_fwinfo(bp);
12426
12427        func = BP_FUNC(bp);
12428
12429        /* need to reset chip if undi was active */
12430        if (IS_PF(bp) && !BP_NOMCP(bp)) {
12431                /* init fw_seq */
12432                bp->fw_seq =
12433                        SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12434                                                        DRV_MSG_SEQ_NUMBER_MASK;
12435                BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12436
12437                rc = bnx2x_prev_unload(bp);
12438                if (rc) {
12439                        bnx2x_free_mem_bp(bp);
12440                        return rc;
12441                }
12442        }
12443
12444        if (CHIP_REV_IS_FPGA(bp))
12445                dev_err(&bp->pdev->dev, "FPGA detected\n");
12446
12447        if (BP_NOMCP(bp) && (func == 0))
12448                dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12449
12450        bp->disable_tpa = disable_tpa;
12451        bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12452        /* Reduce memory usage in kdump environment by disabling TPA */
12453        bp->disable_tpa |= is_kdump_kernel();
12454
12455        /* Set TPA flags */
12456        if (bp->disable_tpa) {
12457                bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12458                bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12459        }
12460
12461        if (CHIP_IS_E1(bp))
12462                bp->dropless_fc = 0;
12463        else
12464                bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12465
12466        bp->mrrs = mrrs;
12467
12468        bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12469        if (IS_VF(bp))
12470                bp->rx_ring_size = MAX_RX_AVAIL;
12471
12472        /* make sure that the numbers are in the right granularity */
12473        bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12474        bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12475
12476        bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12477
12478        timer_setup(&bp->timer, bnx2x_timer, 0);
12479        bp->timer.expires = jiffies + bp->current_interval;
12480
12481        if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12482            SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12483            SHMEM2_HAS(bp, dcbx_en) &&
12484            SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12485            SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12486            SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12487                bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12488                bnx2x_dcbx_init_params(bp);
12489        } else {
12490                bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12491        }
12492
12493        if (CHIP_IS_E1x(bp))
12494                bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12495        else
12496                bp->cnic_base_cl_id = FP_SB_MAX_E2;
12497
12498        /* multiple tx priority */
12499        if (IS_VF(bp))
12500                bp->max_cos = 1;
12501        else if (CHIP_IS_E1x(bp))
12502                bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12503        else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12504                bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12505        else if (CHIP_IS_E3B0(bp))
12506                bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12507        else
12508                BNX2X_ERR("unknown chip %x revision %x\n",
12509                          CHIP_NUM(bp), CHIP_REV(bp));
12510        BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12511
12512        /* We need at least one default status block for slow-path events,
12513         * second status block for the L2 queue, and a third status block for
12514         * CNIC if supported.
12515         */
12516        if (IS_VF(bp))
12517                bp->min_msix_vec_cnt = 1;
12518        else if (CNIC_SUPPORT(bp))
12519                bp->min_msix_vec_cnt = 3;
12520        else /* PF w/o cnic */
12521                bp->min_msix_vec_cnt = 2;
12522        BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12523
12524        bp->dump_preset_idx = 1;
12525
12526        return rc;
12527}
12528
12529/****************************************************************************
12530* General service functions
12531****************************************************************************/
12532
12533/*
12534 * net_device service functions
12535 */
12536
12537/* called with rtnl_lock */
12538static int bnx2x_open(struct net_device *dev)
12539{
12540        struct bnx2x *bp = netdev_priv(dev);
12541        int rc;
12542
12543        bp->stats_init = true;
12544
12545        netif_carrier_off(dev);
12546
12547        bnx2x_set_power_state(bp, PCI_D0);
12548
12549        /* If parity had happen during the unload, then attentions
12550         * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12551         * want the first function loaded on the current engine to
12552         * complete the recovery.
12553         * Parity recovery is only relevant for PF driver.
12554         */
12555        if (IS_PF(bp)) {
12556                int other_engine = BP_PATH(bp) ? 0 : 1;
12557                bool other_load_status, load_status;
12558                bool global = false;
12559
12560                other_load_status = bnx2x_get_load_status(bp, other_engine);
12561                load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12562                if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12563                    bnx2x_chk_parity_attn(bp, &global, true)) {
12564                        do {
12565                                /* If there are attentions and they are in a
12566                                 * global blocks, set the GLOBAL_RESET bit
12567                                 * regardless whether it will be this function
12568                                 * that will complete the recovery or not.
12569                                 */
12570                                if (global)
12571                                        bnx2x_set_reset_global(bp);
12572
12573                                /* Only the first function on the current
12574                                 * engine should try to recover in open. In case
12575                                 * of attentions in global blocks only the first
12576                                 * in the chip should try to recover.
12577                                 */
12578                                if ((!load_status &&
12579                                     (!global || !other_load_status)) &&
12580                                      bnx2x_trylock_leader_lock(bp) &&
12581                                      !bnx2x_leader_reset(bp)) {
12582                                        netdev_info(bp->dev,
12583                                                    "Recovered in open\n");
12584                                        break;
12585                                }
12586
12587                                /* recovery has failed... */
12588                                bnx2x_set_power_state(bp, PCI_D3hot);
12589                                bp->recovery_state = BNX2X_RECOVERY_FAILED;
12590
12591                                BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12592                                          "If you still see this message after a few retries then power cycle is required.\n");
12593
12594                                return -EAGAIN;
12595                        } while (0);
12596                }
12597        }
12598
12599        bp->recovery_state = BNX2X_RECOVERY_DONE;
12600        rc = bnx2x_nic_load(bp, LOAD_OPEN);
12601        if (rc)
12602                return rc;
12603
12604        if (IS_PF(bp))
12605                udp_tunnel_get_rx_info(dev);
12606
12607        return 0;
12608}
12609
12610/* called with rtnl_lock */
12611static int bnx2x_close(struct net_device *dev)
12612{
12613        struct bnx2x *bp = netdev_priv(dev);
12614
12615        /* Unload the driver, release IRQs */
12616        bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12617
12618        return 0;
12619}
12620
12621struct bnx2x_mcast_list_elem_group
12622{
12623        struct list_head mcast_group_link;
12624        struct bnx2x_mcast_list_elem mcast_elems[];
12625};
12626
12627#define MCAST_ELEMS_PER_PG \
12628        ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12629        sizeof(struct bnx2x_mcast_list_elem))
12630
12631static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12632{
12633        struct bnx2x_mcast_list_elem_group *current_mcast_group;
12634
12635        while (!list_empty(mcast_group_list)) {
12636                current_mcast_group = list_first_entry(mcast_group_list,
12637                                      struct bnx2x_mcast_list_elem_group,
12638                                      mcast_group_link);
12639                list_del(&current_mcast_group->mcast_group_link);
12640                free_page((unsigned long)current_mcast_group);
12641        }
12642}
12643
12644static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12645                                      struct bnx2x_mcast_ramrod_params *p,
12646                                      struct list_head *mcast_group_list)
12647{
12648        struct bnx2x_mcast_list_elem *mc_mac;
12649        struct netdev_hw_addr *ha;
12650        struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12651        int mc_count = netdev_mc_count(bp->dev);
12652        int offset = 0;
12653
12654        INIT_LIST_HEAD(&p->mcast_list);
12655        netdev_for_each_mc_addr(ha, bp->dev) {
12656                if (!offset) {
12657                        current_mcast_group =
12658                                (struct bnx2x_mcast_list_elem_group *)
12659                                __get_free_page(GFP_ATOMIC);
12660                        if (!current_mcast_group) {
12661                                bnx2x_free_mcast_macs_list(mcast_group_list);
12662                                BNX2X_ERR("Failed to allocate mc MAC list\n");
12663                                return -ENOMEM;
12664                        }
12665                        list_add(&current_mcast_group->mcast_group_link,
12666                                 mcast_group_list);
12667                }
12668                mc_mac = &current_mcast_group->mcast_elems[offset];
12669                mc_mac->mac = bnx2x_mc_addr(ha);
12670                list_add_tail(&mc_mac->link, &p->mcast_list);
12671                offset++;
12672                if (offset == MCAST_ELEMS_PER_PG)
12673                        offset = 0;
12674        }
12675        p->mcast_list_len = mc_count;
12676        return 0;
12677}
12678
12679/**
12680 * bnx2x_set_uc_list - configure a new unicast MACs list.
12681 *
12682 * @bp: driver handle
12683 *
12684 * We will use zero (0) as a MAC type for these MACs.
12685 */
12686static int bnx2x_set_uc_list(struct bnx2x *bp)
12687{
12688        int rc;
12689        struct net_device *dev = bp->dev;
12690        struct netdev_hw_addr *ha;
12691        struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12692        unsigned long ramrod_flags = 0;
12693
12694        /* First schedule a cleanup up of old configuration */
12695        rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12696        if (rc < 0) {
12697                BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12698                return rc;
12699        }
12700
12701        netdev_for_each_uc_addr(ha, dev) {
12702                rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12703                                       BNX2X_UC_LIST_MAC, &ramrod_flags);
12704                if (rc == -EEXIST) {
12705                        DP(BNX2X_MSG_SP,
12706                           "Failed to schedule ADD operations: %d\n", rc);
12707                        /* do not treat adding same MAC as error */
12708                        rc = 0;
12709
12710                } else if (rc < 0) {
12711
12712                        BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12713                                  rc);
12714                        return rc;
12715                }
12716        }
12717
12718        /* Execute the pending commands */
12719        __set_bit(RAMROD_CONT, &ramrod_flags);
12720        return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12721                                 BNX2X_UC_LIST_MAC, &ramrod_flags);
12722}
12723
12724static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12725{
12726        LIST_HEAD(mcast_group_list);
12727        struct net_device *dev = bp->dev;
12728        struct bnx2x_mcast_ramrod_params rparam = {NULL};
12729        int rc = 0;
12730
12731        rparam.mcast_obj = &bp->mcast_obj;
12732
12733        /* first, clear all configured multicast MACs */
12734        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12735        if (rc < 0) {
12736                BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12737                return rc;
12738        }
12739
12740        /* then, configure a new MACs list */
12741        if (netdev_mc_count(dev)) {
12742                rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12743                if (rc)
12744                        return rc;
12745
12746                /* Now add the new MACs */
12747                rc = bnx2x_config_mcast(bp, &rparam,
12748                                        BNX2X_MCAST_CMD_ADD);
12749                if (rc < 0)
12750                        BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12751                                  rc);
12752
12753                bnx2x_free_mcast_macs_list(&mcast_group_list);
12754        }
12755
12756        return rc;
12757}
12758
12759static int bnx2x_set_mc_list(struct bnx2x *bp)
12760{
12761        LIST_HEAD(mcast_group_list);
12762        struct bnx2x_mcast_ramrod_params rparam = {NULL};
12763        struct net_device *dev = bp->dev;
12764        int rc = 0;
12765
12766        /* On older adapters, we need to flush and re-add filters */
12767        if (CHIP_IS_E1x(bp))
12768                return bnx2x_set_mc_list_e1x(bp);
12769
12770        rparam.mcast_obj = &bp->mcast_obj;
12771
12772        if (netdev_mc_count(dev)) {
12773                rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12774                if (rc)
12775                        return rc;
12776
12777                /* Override the curently configured set of mc filters */
12778                rc = bnx2x_config_mcast(bp, &rparam,
12779                                        BNX2X_MCAST_CMD_SET);
12780                if (rc < 0)
12781                        BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12782                                  rc);
12783
12784                bnx2x_free_mcast_macs_list(&mcast_group_list);
12785        } else {
12786                /* If no mc addresses are required, flush the configuration */
12787                rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12788                if (rc < 0)
12789                        BNX2X_ERR("Failed to clear multicast configuration %d\n",
12790                                  rc);
12791        }
12792
12793        return rc;
12794}
12795
12796/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12797static void bnx2x_set_rx_mode(struct net_device *dev)
12798{
12799        struct bnx2x *bp = netdev_priv(dev);
12800
12801        if (bp->state != BNX2X_STATE_OPEN) {
12802                DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12803                return;
12804        } else {
12805                /* Schedule an SP task to handle rest of change */
12806                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12807                                       NETIF_MSG_IFUP);
12808        }
12809}
12810
12811void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12812{
12813        u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12814
12815        DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12816
12817        netif_addr_lock_bh(bp->dev);
12818
12819        if (bp->dev->flags & IFF_PROMISC) {
12820                rx_mode = BNX2X_RX_MODE_PROMISC;
12821        } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12822                   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12823                    CHIP_IS_E1(bp))) {
12824                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12825        } else {
12826                if (IS_PF(bp)) {
12827                        /* some multicasts */
12828                        if (bnx2x_set_mc_list(bp) < 0)
12829                                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12830
12831                        /* release bh lock, as bnx2x_set_uc_list might sleep */
12832                        netif_addr_unlock_bh(bp->dev);
12833                        if (bnx2x_set_uc_list(bp) < 0)
12834                                rx_mode = BNX2X_RX_MODE_PROMISC;
12835                        netif_addr_lock_bh(bp->dev);
12836                } else {
12837                        /* configuring mcast to a vf involves sleeping (when we
12838                         * wait for the pf's response).
12839                         */
12840                        bnx2x_schedule_sp_rtnl(bp,
12841                                               BNX2X_SP_RTNL_VFPF_MCAST, 0);
12842                }
12843        }
12844
12845        bp->rx_mode = rx_mode;
12846        /* handle ISCSI SD mode */
12847        if (IS_MF_ISCSI_ONLY(bp))
12848                bp->rx_mode = BNX2X_RX_MODE_NONE;
12849
12850        /* Schedule the rx_mode command */
12851        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12852                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12853                netif_addr_unlock_bh(bp->dev);
12854                return;
12855        }
12856
12857        if (IS_PF(bp)) {
12858                bnx2x_set_storm_rx_mode(bp);
12859                netif_addr_unlock_bh(bp->dev);
12860        } else {
12861                /* VF will need to request the PF to make this change, and so
12862                 * the VF needs to release the bottom-half lock prior to the
12863                 * request (as it will likely require sleep on the VF side)
12864                 */
12865                netif_addr_unlock_bh(bp->dev);
12866                bnx2x_vfpf_storm_rx_mode(bp);
12867        }
12868}
12869
12870/* called with rtnl_lock */
12871static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12872                           int devad, u16 addr)
12873{
12874        struct bnx2x *bp = netdev_priv(netdev);
12875        u16 value;
12876        int rc;
12877
12878        DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12879           prtad, devad, addr);
12880
12881        /* The HW expects different devad if CL22 is used */
12882        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12883
12884        bnx2x_acquire_phy_lock(bp);
12885        rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12886        bnx2x_release_phy_lock(bp);
12887        DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12888
12889        if (!rc)
12890                rc = value;
12891        return rc;
12892}
12893
12894/* called with rtnl_lock */
12895static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12896                            u16 addr, u16 value)
12897{
12898        struct bnx2x *bp = netdev_priv(netdev);
12899        int rc;
12900
12901        DP(NETIF_MSG_LINK,
12902           "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12903           prtad, devad, addr, value);
12904
12905        /* The HW expects different devad if CL22 is used */
12906        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12907
12908        bnx2x_acquire_phy_lock(bp);
12909        rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12910        bnx2x_release_phy_lock(bp);
12911        return rc;
12912}
12913
12914/* called with rtnl_lock */
12915static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12916{
12917        struct bnx2x *bp = netdev_priv(dev);
12918        struct mii_ioctl_data *mdio = if_mii(ifr);
12919
12920        if (!netif_running(dev))
12921                return -EAGAIN;
12922
12923        switch (cmd) {
12924        case SIOCSHWTSTAMP:
12925                return bnx2x_hwtstamp_ioctl(bp, ifr);
12926        default:
12927                DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12928                   mdio->phy_id, mdio->reg_num, mdio->val_in);
12929                return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12930        }
12931}
12932
12933static int bnx2x_validate_addr(struct net_device *dev)
12934{
12935        struct bnx2x *bp = netdev_priv(dev);
12936
12937        /* query the bulletin board for mac address configured by the PF */
12938        if (IS_VF(bp))
12939                bnx2x_sample_bulletin(bp);
12940
12941        if (!is_valid_ether_addr(dev->dev_addr)) {
12942                BNX2X_ERR("Non-valid Ethernet address\n");
12943                return -EADDRNOTAVAIL;
12944        }
12945        return 0;
12946}
12947
12948static int bnx2x_get_phys_port_id(struct net_device *netdev,
12949                                  struct netdev_phys_item_id *ppid)
12950{
12951        struct bnx2x *bp = netdev_priv(netdev);
12952
12953        if (!(bp->flags & HAS_PHYS_PORT_ID))
12954                return -EOPNOTSUPP;
12955
12956        ppid->id_len = sizeof(bp->phys_port_id);
12957        memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12958
12959        return 0;
12960}
12961
12962static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12963                                              struct net_device *dev,
12964                                              netdev_features_t features)
12965{
12966        /*
12967         * A skb with gso_size + header length > 9700 will cause a
12968         * firmware panic. Drop GSO support.
12969         *
12970         * Eventually the upper layer should not pass these packets down.
12971         *
12972         * For speed, if the gso_size is <= 9000, assume there will
12973         * not be 700 bytes of headers and pass it through. Only do a
12974         * full (slow) validation if the gso_size is > 9000.
12975         *
12976         * (Due to the way SKB_BY_FRAGS works this will also do a full
12977         * validation in that case.)
12978         */
12979        if (unlikely(skb_is_gso(skb) &&
12980                     (skb_shinfo(skb)->gso_size > 9000) &&
12981                     !skb_gso_validate_mac_len(skb, 9700)))
12982                features &= ~NETIF_F_GSO_MASK;
12983
12984        features = vlan_features_check(skb, features);
12985        return vxlan_features_check(skb, features);
12986}
12987
12988static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12989{
12990        int rc;
12991
12992        if (IS_PF(bp)) {
12993                unsigned long ramrod_flags = 0;
12994
12995                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12996                rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12997                                        add, &ramrod_flags);
12998        } else {
12999                rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
13000        }
13001
13002        return rc;
13003}
13004
13005static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
13006{
13007        struct bnx2x_vlan_entry *vlan;
13008        int rc = 0;
13009
13010        /* Configure all non-configured entries */
13011        list_for_each_entry(vlan, &bp->vlan_reg, link) {
13012                if (vlan->hw)
13013                        continue;
13014
13015                if (bp->vlan_cnt >= bp->vlan_credit)
13016                        return -ENOBUFS;
13017
13018                rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
13019                if (rc) {
13020                        BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
13021                        return rc;
13022                }
13023
13024                DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
13025                vlan->hw = true;
13026                bp->vlan_cnt++;
13027        }
13028
13029        return 0;
13030}
13031
13032static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
13033{
13034        bool need_accept_any_vlan;
13035
13036        need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
13037
13038        if (bp->accept_any_vlan != need_accept_any_vlan) {
13039                bp->accept_any_vlan = need_accept_any_vlan;
13040                DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
13041                   bp->accept_any_vlan ? "raised" : "cleared");
13042                if (set_rx_mode) {
13043                        if (IS_PF(bp))
13044                                bnx2x_set_rx_mode_inner(bp);
13045                        else
13046                                bnx2x_vfpf_storm_rx_mode(bp);
13047                }
13048        }
13049}
13050
13051int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
13052{
13053        /* Don't set rx mode here. Our caller will do it. */
13054        bnx2x_vlan_configure(bp, false);
13055
13056        return 0;
13057}
13058
13059static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13060{
13061        struct bnx2x *bp = netdev_priv(dev);
13062        struct bnx2x_vlan_entry *vlan;
13063
13064        DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13065
13066        vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13067        if (!vlan)
13068                return -ENOMEM;
13069
13070        vlan->vid = vid;
13071        vlan->hw = false;
13072        list_add_tail(&vlan->link, &bp->vlan_reg);
13073
13074        if (netif_running(dev))
13075                bnx2x_vlan_configure(bp, true);
13076
13077        return 0;
13078}
13079
13080static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13081{
13082        struct bnx2x *bp = netdev_priv(dev);
13083        struct bnx2x_vlan_entry *vlan;
13084        bool found = false;
13085        int rc = 0;
13086
13087        DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13088
13089        list_for_each_entry(vlan, &bp->vlan_reg, link)
13090                if (vlan->vid == vid) {
13091                        found = true;
13092                        break;
13093                }
13094
13095        if (!found) {
13096                BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13097                return -EINVAL;
13098        }
13099
13100        if (netif_running(dev) && vlan->hw) {
13101                rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13102                DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13103                bp->vlan_cnt--;
13104        }
13105
13106        list_del(&vlan->link);
13107        kfree(vlan);
13108
13109        if (netif_running(dev))
13110                bnx2x_vlan_configure(bp, true);
13111
13112        DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13113
13114        return rc;
13115}
13116
13117static const struct net_device_ops bnx2x_netdev_ops = {
13118        .ndo_open               = bnx2x_open,
13119        .ndo_stop               = bnx2x_close,
13120        .ndo_start_xmit         = bnx2x_start_xmit,
13121        .ndo_select_queue       = bnx2x_select_queue,
13122        .ndo_set_rx_mode        = bnx2x_set_rx_mode,
13123        .ndo_set_mac_address    = bnx2x_change_mac_addr,
13124        .ndo_validate_addr      = bnx2x_validate_addr,
13125        .ndo_do_ioctl           = bnx2x_ioctl,
13126        .ndo_change_mtu         = bnx2x_change_mtu,
13127        .ndo_fix_features       = bnx2x_fix_features,
13128        .ndo_set_features       = bnx2x_set_features,
13129        .ndo_tx_timeout         = bnx2x_tx_timeout,
13130        .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13131        .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13132        .ndo_setup_tc           = __bnx2x_setup_tc,
13133#ifdef CONFIG_BNX2X_SRIOV
13134        .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13135        .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13136        .ndo_get_vf_config      = bnx2x_get_vf_config,
13137        .ndo_set_vf_spoofchk    = bnx2x_set_vf_spoofchk,
13138#endif
13139#ifdef NETDEV_FCOE_WWNN
13140        .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13141#endif
13142
13143        .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13144        .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13145        .ndo_features_check     = bnx2x_features_check,
13146        .ndo_udp_tunnel_add     = bnx2x_udp_tunnel_add,
13147        .ndo_udp_tunnel_del     = bnx2x_udp_tunnel_del,
13148};
13149
13150static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13151{
13152        struct device *dev = &bp->pdev->dev;
13153
13154        if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13155            dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13156                dev_err(dev, "System does not support DMA, aborting\n");
13157                return -EIO;
13158        }
13159
13160        return 0;
13161}
13162
13163static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13164{
13165        if (bp->flags & AER_ENABLED) {
13166                pci_disable_pcie_error_reporting(bp->pdev);
13167                bp->flags &= ~AER_ENABLED;
13168        }
13169}
13170
13171static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13172                          struct net_device *dev, unsigned long board_type)
13173{
13174        int rc;
13175        u32 pci_cfg_dword;
13176        bool chip_is_e1x = (board_type == BCM57710 ||
13177                            board_type == BCM57711 ||
13178                            board_type == BCM57711E);
13179
13180        SET_NETDEV_DEV(dev, &pdev->dev);
13181
13182        bp->dev = dev;
13183        bp->pdev = pdev;
13184
13185        rc = pci_enable_device(pdev);
13186        if (rc) {
13187                dev_err(&bp->pdev->dev,
13188                        "Cannot enable PCI device, aborting\n");
13189                goto err_out;
13190        }
13191
13192        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13193                dev_err(&bp->pdev->dev,
13194                        "Cannot find PCI device base address, aborting\n");
13195                rc = -ENODEV;
13196                goto err_out_disable;
13197        }
13198
13199        if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13200                dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13201                rc = -ENODEV;
13202                goto err_out_disable;
13203        }
13204
13205        pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13206        if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13207            PCICFG_REVESION_ID_ERROR_VAL) {
13208                pr_err("PCI device error, probably due to fan failure, aborting\n");
13209                rc = -ENODEV;
13210                goto err_out_disable;
13211        }
13212
13213        if (atomic_read(&pdev->enable_cnt) == 1) {
13214                rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13215                if (rc) {
13216                        dev_err(&bp->pdev->dev,
13217                                "Cannot obtain PCI resources, aborting\n");
13218                        goto err_out_disable;
13219                }
13220
13221                pci_set_master(pdev);
13222                pci_save_state(pdev);
13223        }
13224
13225        if (IS_PF(bp)) {
13226                if (!pdev->pm_cap) {
13227                        dev_err(&bp->pdev->dev,
13228                                "Cannot find power management capability, aborting\n");
13229                        rc = -EIO;
13230                        goto err_out_release;
13231                }
13232        }
13233
13234        if (!pci_is_pcie(pdev)) {
13235                dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13236                rc = -EIO;
13237                goto err_out_release;
13238        }
13239
13240        rc = bnx2x_set_coherency_mask(bp);
13241        if (rc)
13242                goto err_out_release;
13243
13244        dev->mem_start = pci_resource_start(pdev, 0);
13245        dev->base_addr = dev->mem_start;
13246        dev->mem_end = pci_resource_end(pdev, 0);
13247
13248        dev->irq = pdev->irq;
13249
13250        bp->regview = pci_ioremap_bar(pdev, 0);
13251        if (!bp->regview) {
13252                dev_err(&bp->pdev->dev,
13253                        "Cannot map register space, aborting\n");
13254                rc = -ENOMEM;
13255                goto err_out_release;
13256        }
13257
13258        /* In E1/E1H use pci device function given by kernel.
13259         * In E2/E3 read physical function from ME register since these chips
13260         * support Physical Device Assignment where kernel BDF maybe arbitrary
13261         * (depending on hypervisor).
13262         */
13263        if (chip_is_e1x) {
13264                bp->pf_num = PCI_FUNC(pdev->devfn);
13265        } else {
13266                /* chip is E2/3*/
13267                pci_read_config_dword(bp->pdev,
13268                                      PCICFG_ME_REGISTER, &pci_cfg_dword);
13269                bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13270                                  ME_REG_ABS_PF_NUM_SHIFT);
13271        }
13272        BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13273
13274        /* clean indirect addresses */
13275        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13276                               PCICFG_VENDOR_ID_OFFSET);
13277
13278        /* Set PCIe reset type to fundamental for EEH recovery */
13279        pdev->needs_freset = 1;
13280
13281        /* AER (Advanced Error reporting) configuration */
13282        rc = pci_enable_pcie_error_reporting(pdev);
13283        if (!rc)
13284                bp->flags |= AER_ENABLED;
13285        else
13286                BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13287
13288        /*
13289         * Clean the following indirect addresses for all functions since it
13290         * is not used by the driver.
13291         */
13292        if (IS_PF(bp)) {
13293                REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13294                REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13295                REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13296                REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13297
13298                if (chip_is_e1x) {
13299                        REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13300                        REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13301                        REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13302                        REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13303                }
13304
13305                /* Enable internal target-read (in case we are probed after PF
13306                 * FLR). Must be done prior to any BAR read access. Only for
13307                 * 57712 and up
13308                 */
13309                if (!chip_is_e1x)
13310                        REG_WR(bp,
13311                               PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13312        }
13313
13314        dev->watchdog_timeo = TX_TIMEOUT;
13315
13316        dev->netdev_ops = &bnx2x_netdev_ops;
13317        bnx2x_set_ethtool_ops(bp, dev);
13318
13319        dev->priv_flags |= IFF_UNICAST_FLT;
13320
13321        dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13322                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13323                NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13324                NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13325        if (!chip_is_e1x) {
13326                dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13327                                    NETIF_F_GSO_IPXIP4 |
13328                                    NETIF_F_GSO_UDP_TUNNEL |
13329                                    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13330                                    NETIF_F_GSO_PARTIAL;
13331
13332                dev->hw_enc_features =
13333                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13334                        NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13335                        NETIF_F_GSO_IPXIP4 |
13336                        NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13337                        NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13338                        NETIF_F_GSO_PARTIAL;
13339
13340                dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13341                                            NETIF_F_GSO_UDP_TUNNEL_CSUM;
13342        }
13343
13344        dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13345                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13346
13347        if (IS_PF(bp)) {
13348                if (chip_is_e1x)
13349                        bp->accept_any_vlan = true;
13350                else
13351                        dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13352        }
13353        /* For VF we'll know whether to enable VLAN filtering after
13354         * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13355         */
13356
13357        dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13358        dev->features |= NETIF_F_HIGHDMA;
13359        if (dev->features & NETIF_F_LRO)
13360                dev->features &= ~NETIF_F_GRO_HW;
13361
13362        /* Add Loopback capability to the device */
13363        dev->hw_features |= NETIF_F_LOOPBACK;
13364
13365#ifdef BCM_DCBNL
13366        dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13367#endif
13368
13369        /* MTU range, 46 - 9600 */
13370        dev->min_mtu = ETH_MIN_PACKET_SIZE;
13371        dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13372
13373        /* get_port_hwinfo() will set prtad and mmds properly */
13374        bp->mdio.prtad = MDIO_PRTAD_NONE;
13375        bp->mdio.mmds = 0;
13376        bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13377        bp->mdio.dev = dev;
13378        bp->mdio.mdio_read = bnx2x_mdio_read;
13379        bp->mdio.mdio_write = bnx2x_mdio_write;
13380
13381        return 0;
13382
13383err_out_release:
13384        if (atomic_read(&pdev->enable_cnt) == 1)
13385                pci_release_regions(pdev);
13386
13387err_out_disable:
13388        pci_disable_device(pdev);
13389
13390err_out:
13391        return rc;
13392}
13393
13394static int bnx2x_check_firmware(struct bnx2x *bp)
13395{
13396        const struct firmware *firmware = bp->firmware;
13397        struct bnx2x_fw_file_hdr *fw_hdr;
13398        struct bnx2x_fw_file_section *sections;
13399        u32 offset, len, num_ops;
13400        __be16 *ops_offsets;
13401        int i;
13402        const u8 *fw_ver;
13403
13404        if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13405                BNX2X_ERR("Wrong FW size\n");
13406                return -EINVAL;
13407        }
13408
13409        fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13410        sections = (struct bnx2x_fw_file_section *)fw_hdr;
13411
13412        /* Make sure none of the offsets and sizes make us read beyond
13413         * the end of the firmware data */
13414        for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13415                offset = be32_to_cpu(sections[i].offset);
13416                len = be32_to_cpu(sections[i].len);
13417                if (offset + len > firmware->size) {
13418                        BNX2X_ERR("Section %d length is out of bounds\n", i);
13419                        return -EINVAL;
13420                }
13421        }
13422
13423        /* Likewise for the init_ops offsets */
13424        offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13425        ops_offsets = (__force __be16 *)(firmware->data + offset);
13426        num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13427
13428        for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13429                if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13430                        BNX2X_ERR("Section offset %d is out of bounds\n", i);
13431                        return -EINVAL;
13432                }
13433        }
13434
13435        /* Check FW version */
13436        offset = be32_to_cpu(fw_hdr->fw_version.offset);
13437        fw_ver = firmware->data + offset;
13438        if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13439            (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13440            (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13441            (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13442                BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13443                       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13444                       BCM_5710_FW_MAJOR_VERSION,
13445                       BCM_5710_FW_MINOR_VERSION,
13446                       BCM_5710_FW_REVISION_VERSION,
13447                       BCM_5710_FW_ENGINEERING_VERSION);
13448                return -EINVAL;
13449        }
13450
13451        return 0;
13452}
13453
13454static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13455{
13456        const __be32 *source = (const __be32 *)_source;
13457        u32 *target = (u32 *)_target;
13458        u32 i;
13459
13460        for (i = 0; i < n/4; i++)
13461                target[i] = be32_to_cpu(source[i]);
13462}
13463
13464/*
13465   Ops array is stored in the following format:
13466   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13467 */
13468static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13469{
13470        const __be32 *source = (const __be32 *)_source;
13471        struct raw_op *target = (struct raw_op *)_target;
13472        u32 i, j, tmp;
13473
13474        for (i = 0, j = 0; i < n/8; i++, j += 2) {
13475                tmp = be32_to_cpu(source[j]);
13476                target[i].op = (tmp >> 24) & 0xff;
13477                target[i].offset = tmp & 0xffffff;
13478                target[i].raw_data = be32_to_cpu(source[j + 1]);
13479        }
13480}
13481
13482/* IRO array is stored in the following format:
13483 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13484 */
13485static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13486{
13487        const __be32 *source = (const __be32 *)_source;
13488        struct iro *target = (struct iro *)_target;
13489        u32 i, j, tmp;
13490
13491        for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13492                target[i].base = be32_to_cpu(source[j]);
13493                j++;
13494                tmp = be32_to_cpu(source[j]);
13495                target[i].m1 = (tmp >> 16) & 0xffff;
13496                target[i].m2 = tmp & 0xffff;
13497                j++;
13498                tmp = be32_to_cpu(source[j]);
13499                target[i].m3 = (tmp >> 16) & 0xffff;
13500                target[i].size = tmp & 0xffff;
13501                j++;
13502        }
13503}
13504
13505static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13506{
13507        const __be16 *source = (const __be16 *)_source;
13508        u16 *target = (u16 *)_target;
13509        u32 i;
13510
13511        for (i = 0; i < n/2; i++)
13512                target[i] = be16_to_cpu(source[i]);
13513}
13514
13515#define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13516do {                                                                    \
13517        u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13518        bp->arr = kmalloc(len, GFP_KERNEL);                             \
13519        if (!bp->arr)                                                   \
13520                goto lbl;                                               \
13521        func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13522             (u8 *)bp->arr, len);                                       \
13523} while (0)
13524
13525static int bnx2x_init_firmware(struct bnx2x *bp)
13526{
13527        const char *fw_file_name;
13528        struct bnx2x_fw_file_hdr *fw_hdr;
13529        int rc;
13530
13531        if (bp->firmware)
13532                return 0;
13533
13534        if (CHIP_IS_E1(bp))
13535                fw_file_name = FW_FILE_NAME_E1;
13536        else if (CHIP_IS_E1H(bp))
13537                fw_file_name = FW_FILE_NAME_E1H;
13538        else if (!CHIP_IS_E1x(bp))
13539                fw_file_name = FW_FILE_NAME_E2;
13540        else {
13541                BNX2X_ERR("Unsupported chip revision\n");
13542                return -EINVAL;
13543        }
13544        BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13545
13546        rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13547        if (rc) {
13548                BNX2X_ERR("Can't load firmware file %s\n",
13549                          fw_file_name);
13550                goto request_firmware_exit;
13551        }
13552
13553        rc = bnx2x_check_firmware(bp);
13554        if (rc) {
13555                BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13556                goto request_firmware_exit;
13557        }
13558
13559        fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13560
13561        /* Initialize the pointers to the init arrays */
13562        /* Blob */
13563        rc = -ENOMEM;
13564        BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13565
13566        /* Opcodes */
13567        BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13568
13569        /* Offsets */
13570        BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13571                            be16_to_cpu_n);
13572
13573        /* STORMs firmware */
13574        INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13575                        be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13576        INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13577                        be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13578        INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13579                        be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13580        INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13581                        be32_to_cpu(fw_hdr->usem_pram_data.offset);
13582        INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13583                        be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13584        INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13585                        be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13586        INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13587                        be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13588        INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13589                        be32_to_cpu(fw_hdr->csem_pram_data.offset);
13590        /* IRO */
13591        BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13592
13593        return 0;
13594
13595iro_alloc_err:
13596        kfree(bp->init_ops_offsets);
13597init_offsets_alloc_err:
13598        kfree(bp->init_ops);
13599init_ops_alloc_err:
13600        kfree(bp->init_data);
13601request_firmware_exit:
13602        release_firmware(bp->firmware);
13603        bp->firmware = NULL;
13604
13605        return rc;
13606}
13607
13608static void bnx2x_release_firmware(struct bnx2x *bp)
13609{
13610        kfree(bp->init_ops_offsets);
13611        kfree(bp->init_ops);
13612        kfree(bp->init_data);
13613        release_firmware(bp->firmware);
13614        bp->firmware = NULL;
13615}
13616
13617static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13618        .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13619        .init_hw_cmn      = bnx2x_init_hw_common,
13620        .init_hw_port     = bnx2x_init_hw_port,
13621        .init_hw_func     = bnx2x_init_hw_func,
13622
13623        .reset_hw_cmn     = bnx2x_reset_common,
13624        .reset_hw_port    = bnx2x_reset_port,
13625        .reset_hw_func    = bnx2x_reset_func,
13626
13627        .gunzip_init      = bnx2x_gunzip_init,
13628        .gunzip_end       = bnx2x_gunzip_end,
13629
13630        .init_fw          = bnx2x_init_firmware,
13631        .release_fw       = bnx2x_release_firmware,
13632};
13633
13634void bnx2x__init_func_obj(struct bnx2x *bp)
13635{
13636        /* Prepare DMAE related driver resources */
13637        bnx2x_setup_dmae(bp);
13638
13639        bnx2x_init_func_obj(bp, &bp->func_obj,
13640                            bnx2x_sp(bp, func_rdata),
13641                            bnx2x_sp_mapping(bp, func_rdata),
13642                            bnx2x_sp(bp, func_afex_rdata),
13643                            bnx2x_sp_mapping(bp, func_afex_rdata),
13644                            &bnx2x_func_sp_drv);
13645}
13646
13647/* must be called after sriov-enable */
13648static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13649{
13650        int cid_count = BNX2X_L2_MAX_CID(bp);
13651
13652        if (IS_SRIOV(bp))
13653                cid_count += BNX2X_VF_CIDS;
13654
13655        if (CNIC_SUPPORT(bp))
13656                cid_count += CNIC_CID_MAX;
13657
13658        return roundup(cid_count, QM_CID_ROUND);
13659}
13660
13661/**
13662 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13663 *
13664 * @dev:        pci device
13665 *
13666 */
13667static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13668{
13669        int index;
13670        u16 control = 0;
13671
13672        /*
13673         * If MSI-X is not supported - return number of SBs needed to support
13674         * one fast path queue: one FP queue + SB for CNIC
13675         */
13676        if (!pdev->msix_cap) {
13677                dev_info(&pdev->dev, "no msix capability found\n");
13678                return 1 + cnic_cnt;
13679        }
13680        dev_info(&pdev->dev, "msix capability found\n");
13681
13682        /*
13683         * The value in the PCI configuration space is the index of the last
13684         * entry, namely one less than the actual size of the table, which is
13685         * exactly what we want to return from this function: number of all SBs
13686         * without the default SB.
13687         * For VFs there is no default SB, then we return (index+1).
13688         */
13689        pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13690
13691        index = control & PCI_MSIX_FLAGS_QSIZE;
13692
13693        return index;
13694}
13695
13696static int set_max_cos_est(int chip_id)
13697{
13698        switch (chip_id) {
13699        case BCM57710:
13700        case BCM57711:
13701        case BCM57711E:
13702                return BNX2X_MULTI_TX_COS_E1X;
13703        case BCM57712:
13704        case BCM57712_MF:
13705                return BNX2X_MULTI_TX_COS_E2_E3A0;
13706        case BCM57800:
13707        case BCM57800_MF:
13708        case BCM57810:
13709        case BCM57810_MF:
13710        case BCM57840_4_10:
13711        case BCM57840_2_20:
13712        case BCM57840_O:
13713        case BCM57840_MFO:
13714        case BCM57840_MF:
13715        case BCM57811:
13716        case BCM57811_MF:
13717                return BNX2X_MULTI_TX_COS_E3B0;
13718        case BCM57712_VF:
13719        case BCM57800_VF:
13720        case BCM57810_VF:
13721        case BCM57840_VF:
13722        case BCM57811_VF:
13723                return 1;
13724        default:
13725                pr_err("Unknown board_type (%d), aborting\n", chip_id);
13726                return -ENODEV;
13727        }
13728}
13729
13730static int set_is_vf(int chip_id)
13731{
13732        switch (chip_id) {
13733        case BCM57712_VF:
13734        case BCM57800_VF:
13735        case BCM57810_VF:
13736        case BCM57840_VF:
13737        case BCM57811_VF:
13738                return true;
13739        default:
13740                return false;
13741        }
13742}
13743
13744/* nig_tsgen registers relative address */
13745#define tsgen_ctrl 0x0
13746#define tsgen_freecount 0x10
13747#define tsgen_synctime_t0 0x20
13748#define tsgen_offset_t0 0x28
13749#define tsgen_drift_t0 0x30
13750#define tsgen_synctime_t1 0x58
13751#define tsgen_offset_t1 0x60
13752#define tsgen_drift_t1 0x68
13753
13754/* FW workaround for setting drift */
13755static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13756                                          int best_val, int best_period)
13757{
13758        struct bnx2x_func_state_params func_params = {NULL};
13759        struct bnx2x_func_set_timesync_params *set_timesync_params =
13760                &func_params.params.set_timesync;
13761
13762        /* Prepare parameters for function state transitions */
13763        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13764        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13765
13766        func_params.f_obj = &bp->func_obj;
13767        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13768
13769        /* Function parameters */
13770        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13771        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13772        set_timesync_params->add_sub_drift_adjust_value =
13773                drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13774        set_timesync_params->drift_adjust_value = best_val;
13775        set_timesync_params->drift_adjust_period = best_period;
13776
13777        return bnx2x_func_state_change(bp, &func_params);
13778}
13779
13780static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13781{
13782        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13783        int rc;
13784        int drift_dir = 1;
13785        int val, period, period1, period2, dif, dif1, dif2;
13786        int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13787
13788        DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13789
13790        if (!netif_running(bp->dev)) {
13791                DP(BNX2X_MSG_PTP,
13792                   "PTP adjfreq called while the interface is down\n");
13793                return -ENETDOWN;
13794        }
13795
13796        if (ppb < 0) {
13797                ppb = -ppb;
13798                drift_dir = 0;
13799        }
13800
13801        if (ppb == 0) {
13802                best_val = 1;
13803                best_period = 0x1FFFFFF;
13804        } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13805                best_val = 31;
13806                best_period = 1;
13807        } else {
13808                /* Changed not to allow val = 8, 16, 24 as these values
13809                 * are not supported in workaround.
13810                 */
13811                for (val = 0; val <= 31; val++) {
13812                        if ((val & 0x7) == 0)
13813                                continue;
13814                        period1 = val * 1000000 / ppb;
13815                        period2 = period1 + 1;
13816                        if (period1 != 0)
13817                                dif1 = ppb - (val * 1000000 / period1);
13818                        else
13819                                dif1 = BNX2X_MAX_PHC_DRIFT;
13820                        if (dif1 < 0)
13821                                dif1 = -dif1;
13822                        dif2 = ppb - (val * 1000000 / period2);
13823                        if (dif2 < 0)
13824                                dif2 = -dif2;
13825                        dif = (dif1 < dif2) ? dif1 : dif2;
13826                        period = (dif1 < dif2) ? period1 : period2;
13827                        if (dif < best_dif) {
13828                                best_dif = dif;
13829                                best_val = val;
13830                                best_period = period;
13831                        }
13832                }
13833        }
13834
13835        rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13836                                            best_period);
13837        if (rc) {
13838                BNX2X_ERR("Failed to set drift\n");
13839                return -EFAULT;
13840        }
13841
13842        DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13843           best_period);
13844
13845        return 0;
13846}
13847
13848static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13849{
13850        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13851
13852        if (!netif_running(bp->dev)) {
13853                DP(BNX2X_MSG_PTP,
13854                   "PTP adjtime called while the interface is down\n");
13855                return -ENETDOWN;
13856        }
13857
13858        DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13859
13860        timecounter_adjtime(&bp->timecounter, delta);
13861
13862        return 0;
13863}
13864
13865static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13866{
13867        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13868        u64 ns;
13869
13870        if (!netif_running(bp->dev)) {
13871                DP(BNX2X_MSG_PTP,
13872                   "PTP gettime called while the interface is down\n");
13873                return -ENETDOWN;
13874        }
13875
13876        ns = timecounter_read(&bp->timecounter);
13877
13878        DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13879
13880        *ts = ns_to_timespec64(ns);
13881
13882        return 0;
13883}
13884
13885static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13886                             const struct timespec64 *ts)
13887{
13888        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13889        u64 ns;
13890
13891        if (!netif_running(bp->dev)) {
13892                DP(BNX2X_MSG_PTP,
13893                   "PTP settime called while the interface is down\n");
13894                return -ENETDOWN;
13895        }
13896
13897        ns = timespec64_to_ns(ts);
13898
13899        DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13900
13901        /* Re-init the timecounter */
13902        timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13903
13904        return 0;
13905}
13906
13907/* Enable (or disable) ancillary features of the phc subsystem */
13908static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13909                            struct ptp_clock_request *rq, int on)
13910{
13911        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13912
13913        BNX2X_ERR("PHC ancillary features are not supported\n");
13914        return -ENOTSUPP;
13915}
13916
13917void bnx2x_register_phc(struct bnx2x *bp)
13918{
13919        /* Fill the ptp_clock_info struct and register PTP clock*/
13920        bp->ptp_clock_info.owner = THIS_MODULE;
13921        snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13922        bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13923        bp->ptp_clock_info.n_alarm = 0;
13924        bp->ptp_clock_info.n_ext_ts = 0;
13925        bp->ptp_clock_info.n_per_out = 0;
13926        bp->ptp_clock_info.pps = 0;
13927        bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13928        bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13929        bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13930        bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13931        bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13932
13933        bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13934        if (IS_ERR(bp->ptp_clock)) {
13935                bp->ptp_clock = NULL;
13936                BNX2X_ERR("PTP clock registration failed\n");
13937        }
13938}
13939
13940static int bnx2x_init_one(struct pci_dev *pdev,
13941                                    const struct pci_device_id *ent)
13942{
13943        struct net_device *dev = NULL;
13944        struct bnx2x *bp;
13945        int rc, max_non_def_sbs;
13946        int rx_count, tx_count, rss_count, doorbell_size;
13947        int max_cos_est;
13948        bool is_vf;
13949        int cnic_cnt;
13950
13951        /* Management FW 'remembers' living interfaces. Allow it some time
13952         * to forget previously living interfaces, allowing a proper re-load.
13953         */
13954        if (is_kdump_kernel()) {
13955                ktime_t now = ktime_get_boottime();
13956                ktime_t fw_ready_time = ktime_set(5, 0);
13957
13958                if (ktime_before(now, fw_ready_time))
13959                        msleep(ktime_ms_delta(fw_ready_time, now));
13960        }
13961
13962        /* An estimated maximum supported CoS number according to the chip
13963         * version.
13964         * We will try to roughly estimate the maximum number of CoSes this chip
13965         * may support in order to minimize the memory allocated for Tx
13966         * netdev_queue's. This number will be accurately calculated during the
13967         * initialization of bp->max_cos based on the chip versions AND chip
13968         * revision in the bnx2x_init_bp().
13969         */
13970        max_cos_est = set_max_cos_est(ent->driver_data);
13971        if (max_cos_est < 0)
13972                return max_cos_est;
13973        is_vf = set_is_vf(ent->driver_data);
13974        cnic_cnt = is_vf ? 0 : 1;
13975
13976        max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13977
13978        /* add another SB for VF as it has no default SB */
13979        max_non_def_sbs += is_vf ? 1 : 0;
13980
13981        /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13982        rss_count = max_non_def_sbs - cnic_cnt;
13983
13984        if (rss_count < 1)
13985                return -EINVAL;
13986
13987        /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13988        rx_count = rss_count + cnic_cnt;
13989
13990        /* Maximum number of netdev Tx queues:
13991         * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13992         */
13993        tx_count = rss_count * max_cos_est + cnic_cnt;
13994
13995        /* dev zeroed in init_etherdev */
13996        dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13997        if (!dev)
13998                return -ENOMEM;
13999
14000        bp = netdev_priv(dev);
14001
14002        bp->flags = 0;
14003        if (is_vf)
14004                bp->flags |= IS_VF_FLAG;
14005
14006        bp->igu_sb_cnt = max_non_def_sbs;
14007        bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
14008        bp->msg_enable = debug;
14009        bp->cnic_support = cnic_cnt;
14010        bp->cnic_probe = bnx2x_cnic_probe;
14011
14012        pci_set_drvdata(pdev, dev);
14013
14014        rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
14015        if (rc < 0) {
14016                free_netdev(dev);
14017                return rc;
14018        }
14019
14020        BNX2X_DEV_INFO("This is a %s function\n",
14021                       IS_PF(bp) ? "physical" : "virtual");
14022        BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
14023        BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
14024        BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
14025                       tx_count, rx_count);
14026
14027        rc = bnx2x_init_bp(bp);
14028        if (rc)
14029                goto init_one_exit;
14030
14031        /* Map doorbells here as we need the real value of bp->max_cos which
14032         * is initialized in bnx2x_init_bp() to determine the number of
14033         * l2 connections.
14034         */
14035        if (IS_VF(bp)) {
14036                bp->doorbells = bnx2x_vf_doorbells(bp);
14037                rc = bnx2x_vf_pci_alloc(bp);
14038                if (rc)
14039                        goto init_one_freemem;
14040        } else {
14041                doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14042                if (doorbell_size > pci_resource_len(pdev, 2)) {
14043                        dev_err(&bp->pdev->dev,
14044                                "Cannot map doorbells, bar size too small, aborting\n");
14045                        rc = -ENOMEM;
14046                        goto init_one_freemem;
14047                }
14048                bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
14049                                                doorbell_size);
14050        }
14051        if (!bp->doorbells) {
14052                dev_err(&bp->pdev->dev,
14053                        "Cannot map doorbell space, aborting\n");
14054                rc = -ENOMEM;
14055                goto init_one_freemem;
14056        }
14057
14058        if (IS_VF(bp)) {
14059                rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14060                if (rc)
14061                        goto init_one_freemem;
14062
14063#ifdef CONFIG_BNX2X_SRIOV
14064                /* VF with OLD Hypervisor or old PF do not support filtering */
14065                if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14066                        dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14067                        dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14068                }
14069#endif
14070        }
14071
14072        /* Enable SRIOV if capability found in configuration space */
14073        rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14074        if (rc)
14075                goto init_one_freemem;
14076
14077        /* calc qm_cid_count */
14078        bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14079        BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14080
14081        /* disable FCOE L2 queue for E1x*/
14082        if (CHIP_IS_E1x(bp))
14083                bp->flags |= NO_FCOE_FLAG;
14084
14085        /* Set bp->num_queues for MSI-X mode*/
14086        bnx2x_set_num_queues(bp);
14087
14088        /* Configure interrupt mode: try to enable MSI-X/MSI if
14089         * needed.
14090         */
14091        rc = bnx2x_set_int_mode(bp);
14092        if (rc) {
14093                dev_err(&pdev->dev, "Cannot set interrupts\n");
14094                goto init_one_freemem;
14095        }
14096        BNX2X_DEV_INFO("set interrupts successfully\n");
14097
14098        /* register the net device */
14099        rc = register_netdev(dev);
14100        if (rc) {
14101                dev_err(&pdev->dev, "Cannot register net device\n");
14102                goto init_one_freemem;
14103        }
14104        BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14105
14106        if (!NO_FCOE(bp)) {
14107                /* Add storage MAC address */
14108                rtnl_lock();
14109                dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14110                rtnl_unlock();
14111        }
14112        BNX2X_DEV_INFO(
14113               "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14114               board_info[ent->driver_data].name,
14115               (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14116               dev->base_addr, bp->pdev->irq, dev->dev_addr);
14117        pcie_print_link_status(bp->pdev);
14118
14119        if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14120                bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14121
14122        return 0;
14123
14124init_one_freemem:
14125        bnx2x_free_mem_bp(bp);
14126
14127init_one_exit:
14128        bnx2x_disable_pcie_error_reporting(bp);
14129
14130        if (bp->regview)
14131                iounmap(bp->regview);
14132
14133        if (IS_PF(bp) && bp->doorbells)
14134                iounmap(bp->doorbells);
14135
14136        free_netdev(dev);
14137
14138        if (atomic_read(&pdev->enable_cnt) == 1)
14139                pci_release_regions(pdev);
14140
14141        pci_disable_device(pdev);
14142
14143        return rc;
14144}
14145
14146static void __bnx2x_remove(struct pci_dev *pdev,
14147                           struct net_device *dev,
14148                           struct bnx2x *bp,
14149                           bool remove_netdev)
14150{
14151        /* Delete storage MAC address */
14152        if (!NO_FCOE(bp)) {
14153                rtnl_lock();
14154                dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14155                rtnl_unlock();
14156        }
14157
14158#ifdef BCM_DCBNL
14159        /* Delete app tlvs from dcbnl */
14160        bnx2x_dcbnl_update_applist(bp, true);
14161#endif
14162
14163        if (IS_PF(bp) &&
14164            !BP_NOMCP(bp) &&
14165            (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14166                bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14167
14168        /* Close the interface - either directly or implicitly */
14169        if (remove_netdev) {
14170                unregister_netdev(dev);
14171        } else {
14172                rtnl_lock();
14173                dev_close(dev);
14174                rtnl_unlock();
14175        }
14176
14177        bnx2x_iov_remove_one(bp);
14178
14179        /* Power on: we can't let PCI layer write to us while we are in D3 */
14180        if (IS_PF(bp)) {
14181                bnx2x_set_power_state(bp, PCI_D0);
14182                bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14183
14184                /* Set endianity registers to reset values in case next driver
14185                 * boots in different endianty environment.
14186                 */
14187                bnx2x_reset_endianity(bp);
14188        }
14189
14190        /* Disable MSI/MSI-X */
14191        bnx2x_disable_msi(bp);
14192
14193        /* Power off */
14194        if (IS_PF(bp))
14195                bnx2x_set_power_state(bp, PCI_D3hot);
14196
14197        /* Make sure RESET task is not scheduled before continuing */
14198        cancel_delayed_work_sync(&bp->sp_rtnl_task);
14199
14200        /* send message via vfpf channel to release the resources of this vf */
14201        if (IS_VF(bp))
14202                bnx2x_vfpf_release(bp);
14203
14204        /* Assumes no further PCIe PM changes will occur */
14205        if (system_state == SYSTEM_POWER_OFF) {
14206                pci_wake_from_d3(pdev, bp->wol);
14207                pci_set_power_state(pdev, PCI_D3hot);
14208        }
14209
14210        bnx2x_disable_pcie_error_reporting(bp);
14211        if (remove_netdev) {
14212                if (bp->regview)
14213                        iounmap(bp->regview);
14214
14215                /* For vfs, doorbells are part of the regview and were unmapped
14216                 * along with it. FW is only loaded by PF.
14217                 */
14218                if (IS_PF(bp)) {
14219                        if (bp->doorbells)
14220                                iounmap(bp->doorbells);
14221
14222                        bnx2x_release_firmware(bp);
14223                } else {
14224                        bnx2x_vf_pci_dealloc(bp);
14225                }
14226                bnx2x_free_mem_bp(bp);
14227
14228                free_netdev(dev);
14229
14230                if (atomic_read(&pdev->enable_cnt) == 1)
14231                        pci_release_regions(pdev);
14232
14233                pci_disable_device(pdev);
14234        }
14235}
14236
14237static void bnx2x_remove_one(struct pci_dev *pdev)
14238{
14239        struct net_device *dev = pci_get_drvdata(pdev);
14240        struct bnx2x *bp;
14241
14242        if (!dev) {
14243                dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14244                return;
14245        }
14246        bp = netdev_priv(dev);
14247
14248        __bnx2x_remove(pdev, dev, bp, true);
14249}
14250
14251static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14252{
14253        bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14254
14255        bp->rx_mode = BNX2X_RX_MODE_NONE;
14256
14257        if (CNIC_LOADED(bp))
14258                bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14259
14260        /* Stop Tx */
14261        bnx2x_tx_disable(bp);
14262        /* Delete all NAPI objects */
14263        bnx2x_del_all_napi(bp);
14264        if (CNIC_LOADED(bp))
14265                bnx2x_del_all_napi_cnic(bp);
14266        netdev_reset_tc(bp->dev);
14267
14268        del_timer_sync(&bp->timer);
14269        cancel_delayed_work_sync(&bp->sp_task);
14270        cancel_delayed_work_sync(&bp->period_task);
14271
14272        if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14273                bp->stats_state = STATS_STATE_DISABLED;
14274                up(&bp->stats_lock);
14275        }
14276
14277        bnx2x_save_statistics(bp);
14278
14279        netif_carrier_off(bp->dev);
14280
14281        return 0;
14282}
14283
14284/**
14285 * bnx2x_io_error_detected - called when PCI error is detected
14286 * @pdev: Pointer to PCI device
14287 * @state: The current pci connection state
14288 *
14289 * This function is called after a PCI bus error affecting
14290 * this device has been detected.
14291 */
14292static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14293                                                pci_channel_state_t state)
14294{
14295        struct net_device *dev = pci_get_drvdata(pdev);
14296        struct bnx2x *bp = netdev_priv(dev);
14297
14298        rtnl_lock();
14299
14300        BNX2X_ERR("IO error detected\n");
14301
14302        netif_device_detach(dev);
14303
14304        if (state == pci_channel_io_perm_failure) {
14305                rtnl_unlock();
14306                return PCI_ERS_RESULT_DISCONNECT;
14307        }
14308
14309        if (netif_running(dev))
14310                bnx2x_eeh_nic_unload(bp);
14311
14312        bnx2x_prev_path_mark_eeh(bp);
14313
14314        pci_disable_device(pdev);
14315
14316        rtnl_unlock();
14317
14318        /* Request a slot reset */
14319        return PCI_ERS_RESULT_NEED_RESET;
14320}
14321
14322/**
14323 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14324 * @pdev: Pointer to PCI device
14325 *
14326 * Restart the card from scratch, as if from a cold-boot.
14327 */
14328static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14329{
14330        struct net_device *dev = pci_get_drvdata(pdev);
14331        struct bnx2x *bp = netdev_priv(dev);
14332        int i;
14333
14334        rtnl_lock();
14335        BNX2X_ERR("IO slot reset initializing...\n");
14336        if (pci_enable_device(pdev)) {
14337                dev_err(&pdev->dev,
14338                        "Cannot re-enable PCI device after reset\n");
14339                rtnl_unlock();
14340                return PCI_ERS_RESULT_DISCONNECT;
14341        }
14342
14343        pci_set_master(pdev);
14344        pci_restore_state(pdev);
14345        pci_save_state(pdev);
14346
14347        if (netif_running(dev))
14348                bnx2x_set_power_state(bp, PCI_D0);
14349
14350        if (netif_running(dev)) {
14351                BNX2X_ERR("IO slot reset --> driver unload\n");
14352
14353                /* MCP should have been reset; Need to wait for validity */
14354                if (bnx2x_init_shmem(bp)) {
14355                        rtnl_unlock();
14356                        return PCI_ERS_RESULT_DISCONNECT;
14357                }
14358
14359                if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14360                        u32 v;
14361
14362                        v = SHMEM2_RD(bp,
14363                                      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14364                        SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14365                                  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14366                }
14367                bnx2x_drain_tx_queues(bp);
14368                bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14369                bnx2x_netif_stop(bp, 1);
14370                bnx2x_free_irq(bp);
14371
14372                /* Report UNLOAD_DONE to MCP */
14373                bnx2x_send_unload_done(bp, true);
14374
14375                bp->sp_state = 0;
14376                bp->port.pmf = 0;
14377
14378                bnx2x_prev_unload(bp);
14379
14380                /* We should have reseted the engine, so It's fair to
14381                 * assume the FW will no longer write to the bnx2x driver.
14382                 */
14383                bnx2x_squeeze_objects(bp);
14384                bnx2x_free_skbs(bp);
14385                for_each_rx_queue(bp, i)
14386                        bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14387                bnx2x_free_fp_mem(bp);
14388                bnx2x_free_mem(bp);
14389
14390                bp->state = BNX2X_STATE_CLOSED;
14391        }
14392
14393        rtnl_unlock();
14394
14395        return PCI_ERS_RESULT_RECOVERED;
14396}
14397
14398/**
14399 * bnx2x_io_resume - called when traffic can start flowing again
14400 * @pdev: Pointer to PCI device
14401 *
14402 * This callback is called when the error recovery driver tells us that
14403 * its OK to resume normal operation.
14404 */
14405static void bnx2x_io_resume(struct pci_dev *pdev)
14406{
14407        struct net_device *dev = pci_get_drvdata(pdev);
14408        struct bnx2x *bp = netdev_priv(dev);
14409
14410        if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14411                netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14412                return;
14413        }
14414
14415        rtnl_lock();
14416
14417        bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14418                                                        DRV_MSG_SEQ_NUMBER_MASK;
14419
14420        if (netif_running(dev))
14421                bnx2x_nic_load(bp, LOAD_NORMAL);
14422
14423        netif_device_attach(dev);
14424
14425        rtnl_unlock();
14426}
14427
14428static const struct pci_error_handlers bnx2x_err_handler = {
14429        .error_detected = bnx2x_io_error_detected,
14430        .slot_reset     = bnx2x_io_slot_reset,
14431        .resume         = bnx2x_io_resume,
14432};
14433
14434static void bnx2x_shutdown(struct pci_dev *pdev)
14435{
14436        struct net_device *dev = pci_get_drvdata(pdev);
14437        struct bnx2x *bp;
14438
14439        if (!dev)
14440                return;
14441
14442        bp = netdev_priv(dev);
14443        if (!bp)
14444                return;
14445
14446        rtnl_lock();
14447        netif_device_detach(dev);
14448        rtnl_unlock();
14449
14450        /* Don't remove the netdevice, as there are scenarios which will cause
14451         * the kernel to hang, e.g., when trying to remove bnx2i while the
14452         * rootfs is mounted from SAN.
14453         */
14454        __bnx2x_remove(pdev, dev, bp, false);
14455}
14456
14457static struct pci_driver bnx2x_pci_driver = {
14458        .name        = DRV_MODULE_NAME,
14459        .id_table    = bnx2x_pci_tbl,
14460        .probe       = bnx2x_init_one,
14461        .remove      = bnx2x_remove_one,
14462        .suspend     = bnx2x_suspend,
14463        .resume      = bnx2x_resume,
14464        .err_handler = &bnx2x_err_handler,
14465#ifdef CONFIG_BNX2X_SRIOV
14466        .sriov_configure = bnx2x_sriov_configure,
14467#endif
14468        .shutdown    = bnx2x_shutdown,
14469};
14470
14471static int __init bnx2x_init(void)
14472{
14473        int ret;
14474
14475        pr_info("%s", version);
14476
14477        bnx2x_wq = create_singlethread_workqueue("bnx2x");
14478        if (bnx2x_wq == NULL) {
14479                pr_err("Cannot create workqueue\n");
14480                return -ENOMEM;
14481        }
14482        bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14483        if (!bnx2x_iov_wq) {
14484                pr_err("Cannot create iov workqueue\n");
14485                destroy_workqueue(bnx2x_wq);
14486                return -ENOMEM;
14487        }
14488
14489        ret = pci_register_driver(&bnx2x_pci_driver);
14490        if (ret) {
14491                pr_err("Cannot register driver\n");
14492                destroy_workqueue(bnx2x_wq);
14493                destroy_workqueue(bnx2x_iov_wq);
14494        }
14495        return ret;
14496}
14497
14498static void __exit bnx2x_cleanup(void)
14499{
14500        struct list_head *pos, *q;
14501
14502        pci_unregister_driver(&bnx2x_pci_driver);
14503
14504        destroy_workqueue(bnx2x_wq);
14505        destroy_workqueue(bnx2x_iov_wq);
14506
14507        /* Free globally allocated resources */
14508        list_for_each_safe(pos, q, &bnx2x_prev_list) {
14509                struct bnx2x_prev_path_list *tmp =
14510                        list_entry(pos, struct bnx2x_prev_path_list, list);
14511                list_del(pos);
14512                kfree(tmp);
14513        }
14514}
14515
14516void bnx2x_notify_link_changed(struct bnx2x *bp)
14517{
14518        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14519}
14520
14521module_init(bnx2x_init);
14522module_exit(bnx2x_cleanup);
14523
14524/**
14525 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14526 *
14527 * @bp:         driver handle
14528 * @set:        set or clear the CAM entry
14529 *
14530 * This function will wait until the ramrod completion returns.
14531 * Return 0 if success, -ENODEV if ramrod doesn't return.
14532 */
14533static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14534{
14535        unsigned long ramrod_flags = 0;
14536
14537        __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14538        return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14539                                 &bp->iscsi_l2_mac_obj, true,
14540                                 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14541}
14542
14543/* count denotes the number of new completions we have seen */
14544static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14545{
14546        struct eth_spe *spe;
14547        int cxt_index, cxt_offset;
14548
14549#ifdef BNX2X_STOP_ON_ERROR
14550        if (unlikely(bp->panic))
14551                return;
14552#endif
14553
14554        spin_lock_bh(&bp->spq_lock);
14555        BUG_ON(bp->cnic_spq_pending < count);
14556        bp->cnic_spq_pending -= count;
14557
14558        for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14559                u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14560                                & SPE_HDR_CONN_TYPE) >>
14561                                SPE_HDR_CONN_TYPE_SHIFT;
14562                u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14563                                >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14564
14565                /* Set validation for iSCSI L2 client before sending SETUP
14566                 *  ramrod
14567                 */
14568                if (type == ETH_CONNECTION_TYPE) {
14569                        if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14570                                cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14571                                        ILT_PAGE_CIDS;
14572                                cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14573                                        (cxt_index * ILT_PAGE_CIDS);
14574                                bnx2x_set_ctx_validation(bp,
14575                                        &bp->context[cxt_index].
14576                                                         vcxt[cxt_offset].eth,
14577                                        BNX2X_ISCSI_ETH_CID(bp));
14578                        }
14579                }
14580
14581                /*
14582                 * There may be not more than 8 L2, not more than 8 L5 SPEs
14583                 * and in the air. We also check that number of outstanding
14584                 * COMMON ramrods is not more than the EQ and SPQ can
14585                 * accommodate.
14586                 */
14587                if (type == ETH_CONNECTION_TYPE) {
14588                        if (!atomic_read(&bp->cq_spq_left))
14589                                break;
14590                        else
14591                                atomic_dec(&bp->cq_spq_left);
14592                } else if (type == NONE_CONNECTION_TYPE) {
14593                        if (!atomic_read(&bp->eq_spq_left))
14594                                break;
14595                        else
14596                                atomic_dec(&bp->eq_spq_left);
14597                } else if ((type == ISCSI_CONNECTION_TYPE) ||
14598                           (type == FCOE_CONNECTION_TYPE)) {
14599                        if (bp->cnic_spq_pending >=
14600                            bp->cnic_eth_dev.max_kwqe_pending)
14601                                break;
14602                        else
14603                                bp->cnic_spq_pending++;
14604                } else {
14605                        BNX2X_ERR("Unknown SPE type: %d\n", type);
14606                        bnx2x_panic();
14607                        break;
14608                }
14609
14610                spe = bnx2x_sp_get_next(bp);
14611                *spe = *bp->cnic_kwq_cons;
14612
14613                DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14614                   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14615
14616                if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14617                        bp->cnic_kwq_cons = bp->cnic_kwq;
14618                else
14619                        bp->cnic_kwq_cons++;
14620        }
14621        bnx2x_sp_prod_update(bp);
14622        spin_unlock_bh(&bp->spq_lock);
14623}
14624
14625static int bnx2x_cnic_sp_queue(struct net_device *dev,
14626                               struct kwqe_16 *kwqes[], u32 count)
14627{
14628        struct bnx2x *bp = netdev_priv(dev);
14629        int i;
14630
14631#ifdef BNX2X_STOP_ON_ERROR
14632        if (unlikely(bp->panic)) {
14633                BNX2X_ERR("Can't post to SP queue while panic\n");
14634                return -EIO;
14635        }
14636#endif
14637
14638        if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14639            (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14640                BNX2X_ERR("Handling parity error recovery. Try again later\n");
14641                return -EAGAIN;
14642        }
14643
14644        spin_lock_bh(&bp->spq_lock);
14645
14646        for (i = 0; i < count; i++) {
14647                struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14648
14649                if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14650                        break;
14651
14652                *bp->cnic_kwq_prod = *spe;
14653
14654                bp->cnic_kwq_pending++;
14655
14656                DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14657                   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14658                   spe->data.update_data_addr.hi,
14659                   spe->data.update_data_addr.lo,
14660                   bp->cnic_kwq_pending);
14661
14662                if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14663                        bp->cnic_kwq_prod = bp->cnic_kwq;
14664                else
14665                        bp->cnic_kwq_prod++;
14666        }
14667
14668        spin_unlock_bh(&bp->spq_lock);
14669
14670        if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14671                bnx2x_cnic_sp_post(bp, 0);
14672
14673        return i;
14674}
14675
14676static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14677{
14678        struct cnic_ops *c_ops;
14679        int rc = 0;
14680
14681        mutex_lock(&bp->cnic_mutex);
14682        c_ops = rcu_dereference_protected(bp->cnic_ops,
14683                                          lockdep_is_held(&bp->cnic_mutex));
14684        if (c_ops)
14685                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14686        mutex_unlock(&bp->cnic_mutex);
14687
14688        return rc;
14689}
14690
14691static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14692{
14693        struct cnic_ops *c_ops;
14694        int rc = 0;
14695
14696        rcu_read_lock();
14697        c_ops = rcu_dereference(bp->cnic_ops);
14698        if (c_ops)
14699                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14700        rcu_read_unlock();
14701
14702        return rc;
14703}
14704
14705/*
14706 * for commands that have no data
14707 */
14708int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14709{
14710        struct cnic_ctl_info ctl = {0};
14711
14712        ctl.cmd = cmd;
14713
14714        return bnx2x_cnic_ctl_send(bp, &ctl);
14715}
14716
14717static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14718{
14719        struct cnic_ctl_info ctl = {0};
14720
14721        /* first we tell CNIC and only then we count this as a completion */
14722        ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14723        ctl.data.comp.cid = cid;
14724        ctl.data.comp.error = err;
14725
14726        bnx2x_cnic_ctl_send_bh(bp, &ctl);
14727        bnx2x_cnic_sp_post(bp, 0);
14728}
14729
14730/* Called with netif_addr_lock_bh() taken.
14731 * Sets an rx_mode config for an iSCSI ETH client.
14732 * Doesn't block.
14733 * Completion should be checked outside.
14734 */
14735static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14736{
14737        unsigned long accept_flags = 0, ramrod_flags = 0;
14738        u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14739        int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14740
14741        if (start) {
14742                /* Start accepting on iSCSI L2 ring. Accept all multicasts
14743                 * because it's the only way for UIO Queue to accept
14744                 * multicasts (in non-promiscuous mode only one Queue per
14745                 * function will receive multicast packets (leading in our
14746                 * case).
14747                 */
14748                __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14749                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14750                __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14751                __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14752
14753                /* Clear STOP_PENDING bit if START is requested */
14754                clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14755
14756                sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14757        } else
14758                /* Clear START_PENDING bit if STOP is requested */
14759                clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14760
14761        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14762                set_bit(sched_state, &bp->sp_state);
14763        else {
14764                __set_bit(RAMROD_RX, &ramrod_flags);
14765                bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14766                                    ramrod_flags);
14767        }
14768}
14769
14770static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14771{
14772        struct bnx2x *bp = netdev_priv(dev);
14773        int rc = 0;
14774
14775        switch (ctl->cmd) {
14776        case DRV_CTL_CTXTBL_WR_CMD: {
14777                u32 index = ctl->data.io.offset;
14778                dma_addr_t addr = ctl->data.io.dma_addr;
14779
14780                bnx2x_ilt_wr(bp, index, addr);
14781                break;
14782        }
14783
14784        case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14785                int count = ctl->data.credit.credit_count;
14786
14787                bnx2x_cnic_sp_post(bp, count);
14788                break;
14789        }
14790
14791        /* rtnl_lock is held.  */
14792        case DRV_CTL_START_L2_CMD: {
14793                struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14794                unsigned long sp_bits = 0;
14795
14796                /* Configure the iSCSI classification object */
14797                bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14798                                   cp->iscsi_l2_client_id,
14799                                   cp->iscsi_l2_cid, BP_FUNC(bp),
14800                                   bnx2x_sp(bp, mac_rdata),
14801                                   bnx2x_sp_mapping(bp, mac_rdata),
14802                                   BNX2X_FILTER_MAC_PENDING,
14803                                   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14804                                   &bp->macs_pool);
14805
14806                /* Set iSCSI MAC address */
14807                rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14808                if (rc)
14809                        break;
14810
14811                barrier();
14812
14813                /* Start accepting on iSCSI L2 ring */
14814
14815                netif_addr_lock_bh(dev);
14816                bnx2x_set_iscsi_eth_rx_mode(bp, true);
14817                netif_addr_unlock_bh(dev);
14818
14819                /* bits to wait on */
14820                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14821                __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14822
14823                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14824                        BNX2X_ERR("rx_mode completion timed out!\n");
14825
14826                break;
14827        }
14828
14829        /* rtnl_lock is held.  */
14830        case DRV_CTL_STOP_L2_CMD: {
14831                unsigned long sp_bits = 0;
14832
14833                /* Stop accepting on iSCSI L2 ring */
14834                netif_addr_lock_bh(dev);
14835                bnx2x_set_iscsi_eth_rx_mode(bp, false);
14836                netif_addr_unlock_bh(dev);
14837
14838                /* bits to wait on */
14839                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14840                __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14841
14842                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14843                        BNX2X_ERR("rx_mode completion timed out!\n");
14844
14845                barrier();
14846
14847                /* Unset iSCSI L2 MAC */
14848                rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14849                                        BNX2X_ISCSI_ETH_MAC, true);
14850                break;
14851        }
14852        case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14853                int count = ctl->data.credit.credit_count;
14854
14855                smp_mb__before_atomic();
14856                atomic_add(count, &bp->cq_spq_left);
14857                smp_mb__after_atomic();
14858                break;
14859        }
14860        case DRV_CTL_ULP_REGISTER_CMD: {
14861                int ulp_type = ctl->data.register_data.ulp_type;
14862
14863                if (CHIP_IS_E3(bp)) {
14864                        int idx = BP_FW_MB_IDX(bp);
14865                        u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14866                        int path = BP_PATH(bp);
14867                        int port = BP_PORT(bp);
14868                        int i;
14869                        u32 scratch_offset;
14870                        u32 *host_addr;
14871
14872                        /* first write capability to shmem2 */
14873                        if (ulp_type == CNIC_ULP_ISCSI)
14874                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14875                        else if (ulp_type == CNIC_ULP_FCOE)
14876                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14877                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14878
14879                        if ((ulp_type != CNIC_ULP_FCOE) ||
14880                            (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14881                            (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14882                                break;
14883
14884                        /* if reached here - should write fcoe capabilities */
14885                        scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14886                        if (!scratch_offset)
14887                                break;
14888                        scratch_offset += offsetof(struct glob_ncsi_oem_data,
14889                                                   fcoe_features[path][port]);
14890                        host_addr = (u32 *) &(ctl->data.register_data.
14891                                              fcoe_features);
14892                        for (i = 0; i < sizeof(struct fcoe_capabilities);
14893                             i += 4)
14894                                REG_WR(bp, scratch_offset + i,
14895                                       *(host_addr + i/4));
14896                }
14897                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14898                break;
14899        }
14900
14901        case DRV_CTL_ULP_UNREGISTER_CMD: {
14902                int ulp_type = ctl->data.ulp_type;
14903
14904                if (CHIP_IS_E3(bp)) {
14905                        int idx = BP_FW_MB_IDX(bp);
14906                        u32 cap;
14907
14908                        cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14909                        if (ulp_type == CNIC_ULP_ISCSI)
14910                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14911                        else if (ulp_type == CNIC_ULP_FCOE)
14912                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14913                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14914                }
14915                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14916                break;
14917        }
14918
14919        default:
14920                BNX2X_ERR("unknown command %x\n", ctl->cmd);
14921                rc = -EINVAL;
14922        }
14923
14924        /* For storage-only interfaces, change driver state */
14925        if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14926                switch (ctl->drv_state) {
14927                case DRV_NOP:
14928                        break;
14929                case DRV_ACTIVE:
14930                        bnx2x_set_os_driver_state(bp,
14931                                                  OS_DRIVER_STATE_ACTIVE);
14932                        break;
14933                case DRV_INACTIVE:
14934                        bnx2x_set_os_driver_state(bp,
14935                                                  OS_DRIVER_STATE_DISABLED);
14936                        break;
14937                case DRV_UNLOADED:
14938                        bnx2x_set_os_driver_state(bp,
14939                                                  OS_DRIVER_STATE_NOT_LOADED);
14940                        break;
14941                default:
14942                BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14943                }
14944        }
14945
14946        return rc;
14947}
14948
14949static int bnx2x_get_fc_npiv(struct net_device *dev,
14950                             struct cnic_fc_npiv_tbl *cnic_tbl)
14951{
14952        struct bnx2x *bp = netdev_priv(dev);
14953        struct bdn_fc_npiv_tbl *tbl = NULL;
14954        u32 offset, entries;
14955        int rc = -EINVAL;
14956        int i;
14957
14958        if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14959                goto out;
14960
14961        DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14962
14963        tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14964        if (!tbl) {
14965                BNX2X_ERR("Failed to allocate fc_npiv table\n");
14966                goto out;
14967        }
14968
14969        offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14970        if (!offset) {
14971                DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14972                goto out;
14973        }
14974        DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14975
14976        /* Read the table contents from nvram */
14977        if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14978                BNX2X_ERR("Failed to read FC-NPIV table\n");
14979                goto out;
14980        }
14981
14982        /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14983         * the number of entries back to cpu endianness.
14984         */
14985        entries = tbl->fc_npiv_cfg.num_of_npiv;
14986        entries = (__force u32)be32_to_cpu((__force __be32)entries);
14987        tbl->fc_npiv_cfg.num_of_npiv = entries;
14988
14989        if (!tbl->fc_npiv_cfg.num_of_npiv) {
14990                DP(BNX2X_MSG_MCP,
14991                   "No FC-NPIV table [valid, simply not present]\n");
14992                goto out;
14993        } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14994                BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14995                          tbl->fc_npiv_cfg.num_of_npiv);
14996                goto out;
14997        } else {
14998                DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14999                   tbl->fc_npiv_cfg.num_of_npiv);
15000        }
15001
15002        /* Copy the data into cnic-provided struct */
15003        cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
15004        for (i = 0; i < cnic_tbl->count; i++) {
15005                memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
15006                memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
15007        }
15008
15009        rc = 0;
15010out:
15011        kfree(tbl);
15012        return rc;
15013}
15014
15015void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
15016{
15017        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15018
15019        if (bp->flags & USING_MSIX_FLAG) {
15020                cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
15021                cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
15022                cp->irq_arr[0].vector = bp->msix_table[1].vector;
15023        } else {
15024                cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
15025                cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
15026        }
15027        if (!CHIP_IS_E1x(bp))
15028                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15029        else
15030                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15031
15032        cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
15033        cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15034        cp->irq_arr[1].status_blk = bp->def_status_blk;
15035        cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15036        cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15037
15038        cp->num_irq = 2;
15039}
15040
15041void bnx2x_setup_cnic_info(struct bnx2x *bp)
15042{
15043        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15044
15045        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15046                             bnx2x_cid_ilt_lines(bp);
15047        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15048        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15049        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15050
15051        DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15052           BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15053           cp->iscsi_l2_cid);
15054
15055        if (NO_ISCSI_OOO(bp))
15056                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15057}
15058
15059static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15060                               void *data)
15061{
15062        struct bnx2x *bp = netdev_priv(dev);
15063        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15064        int rc;
15065
15066        DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15067
15068        if (ops == NULL) {
15069                BNX2X_ERR("NULL ops received\n");
15070                return -EINVAL;
15071        }
15072
15073        if (!CNIC_SUPPORT(bp)) {
15074                BNX2X_ERR("Can't register CNIC when not supported\n");
15075                return -EOPNOTSUPP;
15076        }
15077
15078        if (!CNIC_LOADED(bp)) {
15079                rc = bnx2x_load_cnic(bp);
15080                if (rc) {
15081                        BNX2X_ERR("CNIC-related load failed\n");
15082                        return rc;
15083                }
15084        }
15085
15086        bp->cnic_enabled = true;
15087
15088        bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15089        if (!bp->cnic_kwq)
15090                return -ENOMEM;
15091
15092        bp->cnic_kwq_cons = bp->cnic_kwq;
15093        bp->cnic_kwq_prod = bp->cnic_kwq;
15094        bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15095
15096        bp->cnic_spq_pending = 0;
15097        bp->cnic_kwq_pending = 0;
15098
15099        bp->cnic_data = data;
15100
15101        cp->num_irq = 0;
15102        cp->drv_state |= CNIC_DRV_STATE_REGD;
15103        cp->iro_arr = bp->iro_arr;
15104
15105        bnx2x_setup_cnic_irq_info(bp);
15106
15107        rcu_assign_pointer(bp->cnic_ops, ops);
15108
15109        /* Schedule driver to read CNIC driver versions */
15110        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15111
15112        return 0;
15113}
15114
15115static int bnx2x_unregister_cnic(struct net_device *dev)
15116{
15117        struct bnx2x *bp = netdev_priv(dev);
15118        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15119
15120        mutex_lock(&bp->cnic_mutex);
15121        cp->drv_state = 0;
15122        RCU_INIT_POINTER(bp->cnic_ops, NULL);
15123        mutex_unlock(&bp->cnic_mutex);
15124        synchronize_rcu();
15125        bp->cnic_enabled = false;
15126        kfree(bp->cnic_kwq);
15127        bp->cnic_kwq = NULL;
15128
15129        return 0;
15130}
15131
15132static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15133{
15134        struct bnx2x *bp = netdev_priv(dev);
15135        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15136
15137        /* If both iSCSI and FCoE are disabled - return NULL in
15138         * order to indicate CNIC that it should not try to work
15139         * with this device.
15140         */
15141        if (NO_ISCSI(bp) && NO_FCOE(bp))
15142                return NULL;
15143
15144        cp->drv_owner = THIS_MODULE;
15145        cp->chip_id = CHIP_ID(bp);
15146        cp->pdev = bp->pdev;
15147        cp->io_base = bp->regview;
15148        cp->io_base2 = bp->doorbells;
15149        cp->max_kwqe_pending = 8;
15150        cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15151        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15152                             bnx2x_cid_ilt_lines(bp);
15153        cp->ctx_tbl_len = CNIC_ILT_LINES;
15154        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15155        cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15156        cp->drv_ctl = bnx2x_drv_ctl;
15157        cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15158        cp->drv_register_cnic = bnx2x_register_cnic;
15159        cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15160        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15161        cp->iscsi_l2_client_id =
15162                bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15163        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15164
15165        if (NO_ISCSI_OOO(bp))
15166                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15167
15168        if (NO_ISCSI(bp))
15169                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15170
15171        if (NO_FCOE(bp))
15172                cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15173
15174        BNX2X_DEV_INFO(
15175                "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15176           cp->ctx_blk_size,
15177           cp->ctx_tbl_offset,
15178           cp->ctx_tbl_len,
15179           cp->starting_cid);
15180        return cp;
15181}
15182
15183static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15184{
15185        struct bnx2x *bp = fp->bp;
15186        u32 offset = BAR_USTRORM_INTMEM;
15187
15188        if (IS_VF(bp))
15189                return bnx2x_vf_ustorm_prods_offset(bp, fp);
15190        else if (!CHIP_IS_E1x(bp))
15191                offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15192        else
15193                offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15194
15195        return offset;
15196}
15197
15198/* called only on E1H or E2.
15199 * When pretending to be PF, the pretend value is the function number 0...7
15200 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15201 * combination
15202 */
15203int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15204{
15205        u32 pretend_reg;
15206
15207        if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15208                return -1;
15209
15210        /* get my own pretend register */
15211        pretend_reg = bnx2x_get_pretend_reg(bp);
15212        REG_WR(bp, pretend_reg, pretend_func_val);
15213        REG_RD(bp, pretend_reg);
15214        return 0;
15215}
15216
15217static void bnx2x_ptp_task(struct work_struct *work)
15218{
15219        struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15220        int port = BP_PORT(bp);
15221        u32 val_seq;
15222        u64 timestamp, ns;
15223        struct skb_shared_hwtstamps shhwtstamps;
15224        bool bail = true;
15225        int i;
15226
15227        /* FW may take a while to complete timestamping; try a bit and if it's
15228         * still not complete, may indicate an error state - bail out then.
15229         */
15230        for (i = 0; i < 10; i++) {
15231                /* Read Tx timestamp registers */
15232                val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15233                                 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15234                if (val_seq & 0x10000) {
15235                        bail = false;
15236                        break;
15237                }
15238                msleep(1 << i);
15239        }
15240
15241        if (!bail) {
15242                /* There is a valid timestamp value */
15243                timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15244                                   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15245                timestamp <<= 32;
15246                timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15247                                    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15248                /* Reset timestamp register to allow new timestamp */
15249                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15250                       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15251                ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15252
15253                memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15254                shhwtstamps.hwtstamp = ns_to_ktime(ns);
15255                skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15256
15257                DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15258                   timestamp, ns);
15259        } else {
15260                DP(BNX2X_MSG_PTP,
15261                   "Tx timestamp is not recorded (register read=%u)\n",
15262                   val_seq);
15263                bp->eth_stats.ptp_skip_tx_ts++;
15264        }
15265
15266        dev_kfree_skb_any(bp->ptp_tx_skb);
15267        bp->ptp_tx_skb = NULL;
15268}
15269
15270void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15271{
15272        int port = BP_PORT(bp);
15273        u64 timestamp, ns;
15274
15275        timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15276                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15277        timestamp <<= 32;
15278        timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15279                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15280
15281        /* Reset timestamp register to allow new timestamp */
15282        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15283               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15284
15285        ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15286
15287        skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15288
15289        DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15290           timestamp, ns);
15291}
15292
15293/* Read the PHC */
15294static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15295{
15296        struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15297        int port = BP_PORT(bp);
15298        u32 wb_data[2];
15299        u64 phc_cycles;
15300
15301        REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15302                    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15303        phc_cycles = wb_data[1];
15304        phc_cycles = (phc_cycles << 32) + wb_data[0];
15305
15306        DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15307
15308        return phc_cycles;
15309}
15310
15311static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15312{
15313        memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15314        bp->cyclecounter.read = bnx2x_cyclecounter_read;
15315        bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15316        bp->cyclecounter.shift = 0;
15317        bp->cyclecounter.mult = 1;
15318}
15319
15320static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15321{
15322        struct bnx2x_func_state_params func_params = {NULL};
15323        struct bnx2x_func_set_timesync_params *set_timesync_params =
15324                &func_params.params.set_timesync;
15325
15326        /* Prepare parameters for function state transitions */
15327        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15328        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15329
15330        func_params.f_obj = &bp->func_obj;
15331        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15332
15333        /* Function parameters */
15334        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15335        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15336
15337        return bnx2x_func_state_change(bp, &func_params);
15338}
15339
15340static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15341{
15342        struct bnx2x_queue_state_params q_params;
15343        int rc, i;
15344
15345        /* send queue update ramrod to enable PTP packets */
15346        memset(&q_params, 0, sizeof(q_params));
15347        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15348        q_params.cmd = BNX2X_Q_CMD_UPDATE;
15349        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15350                  &q_params.params.update.update_flags);
15351        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15352                  &q_params.params.update.update_flags);
15353
15354        /* send the ramrod on all the queues of the PF */
15355        for_each_eth_queue(bp, i) {
15356                struct bnx2x_fastpath *fp = &bp->fp[i];
15357
15358                /* Set the appropriate Queue object */
15359                q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15360
15361                /* Update the Queue state */
15362                rc = bnx2x_queue_state_change(bp, &q_params);
15363                if (rc) {
15364                        BNX2X_ERR("Failed to enable PTP packets\n");
15365                        return rc;
15366                }
15367        }
15368
15369        return 0;
15370}
15371
15372#define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15373#define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15374#define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15375#define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15376#define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15377#define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15378#define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15379#define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15380#define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15381#define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15382#define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15383#define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15384
15385int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15386{
15387        int port = BP_PORT(bp);
15388        u32 param, rule;
15389        int rc;
15390
15391        if (!bp->hwtstamp_ioctl_called)
15392                return 0;
15393
15394        param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15395                NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15396        rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15397                NIG_REG_P0_TLLH_PTP_RULE_MASK;
15398        switch (bp->tx_type) {
15399        case HWTSTAMP_TX_ON:
15400                bp->flags |= TX_TIMESTAMPING_EN;
15401                REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15402                REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15403                break;
15404        case HWTSTAMP_TX_ONESTEP_SYNC:
15405                BNX2X_ERR("One-step timestamping is not supported\n");
15406                return -ERANGE;
15407        }
15408
15409        param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15410                NIG_REG_P0_LLH_PTP_PARAM_MASK;
15411        rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15412                NIG_REG_P0_LLH_PTP_RULE_MASK;
15413        switch (bp->rx_filter) {
15414        case HWTSTAMP_FILTER_NONE:
15415                break;
15416        case HWTSTAMP_FILTER_ALL:
15417        case HWTSTAMP_FILTER_SOME:
15418        case HWTSTAMP_FILTER_NTP_ALL:
15419                bp->rx_filter = HWTSTAMP_FILTER_NONE;
15420                break;
15421        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15422        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15423        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15424                bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15425                /* Initialize PTP detection for UDP/IPv4 events */
15426                REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15427                REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15428                break;
15429        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15430        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15431        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15432                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15433                /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15434                REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15435                REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15436                break;
15437        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15438        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15439        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15440                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15441                /* Initialize PTP detection L2 events */
15442                REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15443                REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15444
15445                break;
15446        case HWTSTAMP_FILTER_PTP_V2_EVENT:
15447        case HWTSTAMP_FILTER_PTP_V2_SYNC:
15448        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15449                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15450                /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15451                REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15452                REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15453                break;
15454        }
15455
15456        /* Indicate to FW that this PF expects recorded PTP packets */
15457        rc = bnx2x_enable_ptp_packets(bp);
15458        if (rc)
15459                return rc;
15460
15461        /* Enable sending PTP packets to host */
15462        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15463               NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15464
15465        return 0;
15466}
15467
15468static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15469{
15470        struct hwtstamp_config config;
15471        int rc;
15472
15473        DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15474
15475        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15476                return -EFAULT;
15477
15478        DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15479           config.tx_type, config.rx_filter);
15480
15481        if (config.flags) {
15482                BNX2X_ERR("config.flags is reserved for future use\n");
15483                return -EINVAL;
15484        }
15485
15486        bp->hwtstamp_ioctl_called = 1;
15487        bp->tx_type = config.tx_type;
15488        bp->rx_filter = config.rx_filter;
15489
15490        rc = bnx2x_configure_ptp_filters(bp);
15491        if (rc)
15492                return rc;
15493
15494        config.rx_filter = bp->rx_filter;
15495
15496        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15497                -EFAULT : 0;
15498}
15499
15500/* Configures HW for PTP */
15501static int bnx2x_configure_ptp(struct bnx2x *bp)
15502{
15503        int rc, port = BP_PORT(bp);
15504        u32 wb_data[2];
15505
15506        /* Reset PTP event detection rules - will be configured in the IOCTL */
15507        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15508               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15509        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15510               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15511        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15512               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15513        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15514               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15515
15516        /* Disable PTP packets to host - will be configured in the IOCTL*/
15517        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15518               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15519
15520        /* Enable the PTP feature */
15521        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15522               NIG_REG_P0_PTP_EN, 0x3F);
15523
15524        /* Enable the free-running counter */
15525        wb_data[0] = 0;
15526        wb_data[1] = 0;
15527        REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15528
15529        /* Reset drift register (offset register is not reset) */
15530        rc = bnx2x_send_reset_timesync_ramrod(bp);
15531        if (rc) {
15532                BNX2X_ERR("Failed to reset PHC drift register\n");
15533                return -EFAULT;
15534        }
15535
15536        /* Reset possibly old timestamps */
15537        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15538               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15539        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15540               NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15541
15542        return 0;
15543}
15544
15545/* Called during load, to initialize PTP-related stuff */
15546void bnx2x_init_ptp(struct bnx2x *bp)
15547{
15548        int rc;
15549
15550        /* Configure PTP in HW */
15551        rc = bnx2x_configure_ptp(bp);
15552        if (rc) {
15553                BNX2X_ERR("Stopping PTP initialization\n");
15554                return;
15555        }
15556
15557        /* Init work queue for Tx timestamping */
15558        INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15559
15560        /* Init cyclecounter and timecounter. This is done only in the first
15561         * load. If done in every load, PTP application will fail when doing
15562         * unload / load (e.g. MTU change) while it is running.
15563         */
15564        if (!bp->timecounter_init_done) {
15565                bnx2x_init_cyclecounter(bp);
15566                timecounter_init(&bp->timecounter, &bp->cyclecounter,
15567                                 ktime_to_ns(ktime_get_real()));
15568                bp->timecounter_init_done = 1;
15569        }
15570
15571        DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15572}
15573