linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/bitmap.h>
  38#include <linux/crc32.h>
  39#include <linux/ctype.h>
  40#include <linux/debugfs.h>
  41#include <linux/err.h>
  42#include <linux/etherdevice.h>
  43#include <linux/firmware.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/init.h>
  47#include <linux/log2.h>
  48#include <linux/mdio.h>
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/mutex.h>
  52#include <linux/netdevice.h>
  53#include <linux/pci.h>
  54#include <linux/aer.h>
  55#include <linux/rtnetlink.h>
  56#include <linux/sched.h>
  57#include <linux/seq_file.h>
  58#include <linux/sockios.h>
  59#include <linux/vmalloc.h>
  60#include <linux/workqueue.h>
  61#include <net/neighbour.h>
  62#include <net/netevent.h>
  63#include <net/addrconf.h>
  64#include <net/bonding.h>
  65#include <linux/uaccess.h>
  66#include <linux/crash_dump.h>
  67#include <net/udp_tunnel.h>
  68
  69#include "cxgb4.h"
  70#include "cxgb4_filter.h"
  71#include "t4_regs.h"
  72#include "t4_values.h"
  73#include "t4_msg.h"
  74#include "t4fw_api.h"
  75#include "t4fw_version.h"
  76#include "cxgb4_dcb.h"
  77#include "srq.h"
  78#include "cxgb4_debugfs.h"
  79#include "clip_tbl.h"
  80#include "l2t.h"
  81#include "smt.h"
  82#include "sched.h"
  83#include "cxgb4_tc_u32.h"
  84#include "cxgb4_tc_flower.h"
  85#include "cxgb4_ptp.h"
  86#include "cxgb4_cudbg.h"
  87
  88char cxgb4_driver_name[] = KBUILD_MODNAME;
  89
  90#ifdef DRV_VERSION
  91#undef DRV_VERSION
  92#endif
  93#define DRV_VERSION "2.0.0-ko"
  94const char cxgb4_driver_version[] = DRV_VERSION;
  95#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
  96
  97#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  98                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  99                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
 100
 101/* Macros needed to support the PCI Device ID Table ...
 102 */
 103#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
 104        static const struct pci_device_id cxgb4_pci_tbl[] = {
 105#define CXGB4_UNIFIED_PF 0x4
 106
 107#define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
 108
 109/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 110 * called for both.
 111 */
 112#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
 113
 114#define CH_PCI_ID_TABLE_ENTRY(devid) \
 115                {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
 116
 117#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
 118                { 0, } \
 119        }
 120
 121#include "t4_pci_id_tbl.h"
 122
 123#define FW4_FNAME "cxgb4/t4fw.bin"
 124#define FW5_FNAME "cxgb4/t5fw.bin"
 125#define FW6_FNAME "cxgb4/t6fw.bin"
 126#define FW4_CFNAME "cxgb4/t4-config.txt"
 127#define FW5_CFNAME "cxgb4/t5-config.txt"
 128#define FW6_CFNAME "cxgb4/t6-config.txt"
 129#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
 130#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
 131#define PHY_AQ1202_DEVICEID 0x4409
 132#define PHY_BCM84834_DEVICEID 0x4486
 133
 134MODULE_DESCRIPTION(DRV_DESC);
 135MODULE_AUTHOR("Chelsio Communications");
 136MODULE_LICENSE("Dual BSD/GPL");
 137MODULE_VERSION(DRV_VERSION);
 138MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
 139MODULE_FIRMWARE(FW4_FNAME);
 140MODULE_FIRMWARE(FW5_FNAME);
 141MODULE_FIRMWARE(FW6_FNAME);
 142
 143/*
 144 * The driver uses the best interrupt scheme available on a platform in the
 145 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 146 * of these schemes the driver may consider as follows:
 147 *
 148 * msi = 2: choose from among all three options
 149 * msi = 1: only consider MSI and INTx interrupts
 150 * msi = 0: force INTx interrupts
 151 */
 152static int msi = 2;
 153
 154module_param(msi, int, 0644);
 155MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
 156
 157/*
 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 160 * boundaries.  This is a requirement for many architectures which will throw
 161 * a machine check fault if an attempt is made to access one of the 4-byte IP
 162 * header fields on a non-4-byte boundary.  And it's a major performance issue
 163 * even on some architectures which allow it like some implementations of the
 164 * x86 ISA.  However, some architectures don't mind this and for some very
 165 * edge-case performance sensitive applications (like forwarding large volumes
 166 * of small packets), setting this DMA offset to 0 will decrease the number of
 167 * PCI-E Bus transfers enough to measurably affect performance.
 168 */
 169static int rx_dma_offset = 2;
 170
 171/* TX Queue select used to determine what algorithm to use for selecting TX
 172 * queue. Select between the kernel provided function (select_queue=0) or user
 173 * cxgb_select_queue function (select_queue=1)
 174 *
 175 * Default: select_queue=0
 176 */
 177static int select_queue;
 178module_param(select_queue, int, 0644);
 179MODULE_PARM_DESC(select_queue,
 180                 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
 181
 182static struct dentry *cxgb4_debugfs_root;
 183
 184LIST_HEAD(adapter_list);
 185DEFINE_MUTEX(uld_mutex);
 186
 187static void link_report(struct net_device *dev)
 188{
 189        if (!netif_carrier_ok(dev))
 190                netdev_info(dev, "link down\n");
 191        else {
 192                static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
 193
 194                const char *s;
 195                const struct port_info *p = netdev_priv(dev);
 196
 197                switch (p->link_cfg.speed) {
 198                case 100:
 199                        s = "100Mbps";
 200                        break;
 201                case 1000:
 202                        s = "1Gbps";
 203                        break;
 204                case 10000:
 205                        s = "10Gbps";
 206                        break;
 207                case 25000:
 208                        s = "25Gbps";
 209                        break;
 210                case 40000:
 211                        s = "40Gbps";
 212                        break;
 213                case 50000:
 214                        s = "50Gbps";
 215                        break;
 216                case 100000:
 217                        s = "100Gbps";
 218                        break;
 219                default:
 220                        pr_info("%s: unsupported speed: %d\n",
 221                                dev->name, p->link_cfg.speed);
 222                        return;
 223                }
 224
 225                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
 226                            fc[p->link_cfg.fc]);
 227        }
 228}
 229
 230#ifdef CONFIG_CHELSIO_T4_DCB
 231/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
 232static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
 233{
 234        struct port_info *pi = netdev_priv(dev);
 235        struct adapter *adap = pi->adapter;
 236        struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
 237        int i;
 238
 239        /* We use a simple mapping of Port TX Queue Index to DCB
 240         * Priority when we're enabling DCB.
 241         */
 242        for (i = 0; i < pi->nqsets; i++, txq++) {
 243                u32 name, value;
 244                int err;
 245
 246                name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 247                        FW_PARAMS_PARAM_X_V(
 248                                FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
 249                        FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
 250                value = enable ? i : 0xffffffff;
 251
 252                /* Since we can be called while atomic (from "interrupt
 253                 * level") we need to issue the Set Parameters Commannd
 254                 * without sleeping (timeout < 0).
 255                 */
 256                err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
 257                                            &name, &value,
 258                                            -FW_CMD_MAX_TIMEOUT);
 259
 260                if (err)
 261                        dev_err(adap->pdev_dev,
 262                                "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
 263                                enable ? "set" : "unset", pi->port_id, i, -err);
 264                else
 265                        txq->dcb_prio = enable ? value : 0;
 266        }
 267}
 268
 269int cxgb4_dcb_enabled(const struct net_device *dev)
 270{
 271        struct port_info *pi = netdev_priv(dev);
 272
 273        if (!pi->dcb.enabled)
 274                return 0;
 275
 276        return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
 277                (pi->dcb.state == CXGB4_DCB_STATE_HOST));
 278}
 279#endif /* CONFIG_CHELSIO_T4_DCB */
 280
 281void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
 282{
 283        struct net_device *dev = adapter->port[port_id];
 284
 285        /* Skip changes from disabled ports. */
 286        if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
 287                if (link_stat)
 288                        netif_carrier_on(dev);
 289                else {
 290#ifdef CONFIG_CHELSIO_T4_DCB
 291                        if (cxgb4_dcb_enabled(dev)) {
 292                                cxgb4_dcb_reset(dev);
 293                                dcb_tx_queue_prio_enable(dev, false);
 294                        }
 295#endif /* CONFIG_CHELSIO_T4_DCB */
 296                        netif_carrier_off(dev);
 297                }
 298
 299                link_report(dev);
 300        }
 301}
 302
 303void t4_os_portmod_changed(struct adapter *adap, int port_id)
 304{
 305        static const char *mod_str[] = {
 306                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 307        };
 308
 309        struct net_device *dev = adap->port[port_id];
 310        struct port_info *pi = netdev_priv(dev);
 311
 312        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 313                netdev_info(dev, "port module unplugged\n");
 314        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 315                netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
 316        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 317                netdev_info(dev, "%s: unsupported port module inserted\n",
 318                            dev->name);
 319        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 320                netdev_info(dev, "%s: unknown port module inserted\n",
 321                            dev->name);
 322        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 323                netdev_info(dev, "%s: transceiver module error\n", dev->name);
 324        else
 325                netdev_info(dev, "%s: unknown module type %d inserted\n",
 326                            dev->name, pi->mod_type);
 327
 328        /* If the interface is running, then we'll need any "sticky" Link
 329         * Parameters redone with a new Transceiver Module.
 330         */
 331        pi->link_cfg.redo_l1cfg = netif_running(dev);
 332}
 333
 334int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
 335module_param(dbfifo_int_thresh, int, 0644);
 336MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
 337
 338/*
 339 * usecs to sleep while draining the dbfifo
 340 */
 341static int dbfifo_drain_delay = 1000;
 342module_param(dbfifo_drain_delay, int, 0644);
 343MODULE_PARM_DESC(dbfifo_drain_delay,
 344                 "usecs to sleep while draining the dbfifo");
 345
 346static inline int cxgb4_set_addr_hash(struct port_info *pi)
 347{
 348        struct adapter *adap = pi->adapter;
 349        u64 vec = 0;
 350        bool ucast = false;
 351        struct hash_mac_addr *entry;
 352
 353        /* Calculate the hash vector for the updated list and program it */
 354        list_for_each_entry(entry, &adap->mac_hlist, list) {
 355                ucast |= is_unicast_ether_addr(entry->addr);
 356                vec |= (1ULL << hash_mac_addr(entry->addr));
 357        }
 358        return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
 359                                vec, false);
 360}
 361
 362static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 363{
 364        struct port_info *pi = netdev_priv(netdev);
 365        struct adapter *adap = pi->adapter;
 366        int ret;
 367        u64 mhash = 0;
 368        u64 uhash = 0;
 369        /* idx stores the index of allocated filters,
 370         * its size should be modified based on the number of
 371         * MAC addresses that we allocate filters for
 372         */
 373
 374        u16 idx[1] = {};
 375        bool free = false;
 376        bool ucast = is_unicast_ether_addr(mac_addr);
 377        const u8 *maclist[1] = {mac_addr};
 378        struct hash_mac_addr *new_entry;
 379
 380        ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
 381                                   idx, ucast ? &uhash : &mhash, false);
 382        if (ret < 0)
 383                goto out;
 384        /* if hash != 0, then add the addr to hash addr list
 385         * so on the end we will calculate the hash for the
 386         * list and program it
 387         */
 388        if (uhash || mhash) {
 389                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 390                if (!new_entry)
 391                        return -ENOMEM;
 392                ether_addr_copy(new_entry->addr, mac_addr);
 393                list_add_tail(&new_entry->list, &adap->mac_hlist);
 394                ret = cxgb4_set_addr_hash(pi);
 395        }
 396out:
 397        return ret < 0 ? ret : 0;
 398}
 399
 400static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 401{
 402        struct port_info *pi = netdev_priv(netdev);
 403        struct adapter *adap = pi->adapter;
 404        int ret;
 405        const u8 *maclist[1] = {mac_addr};
 406        struct hash_mac_addr *entry, *tmp;
 407
 408        /* If the MAC address to be removed is in the hash addr
 409         * list, delete it from the list and update hash vector
 410         */
 411        list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
 412                if (ether_addr_equal(entry->addr, mac_addr)) {
 413                        list_del(&entry->list);
 414                        kfree(entry);
 415                        return cxgb4_set_addr_hash(pi);
 416                }
 417        }
 418
 419        ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
 420        return ret < 0 ? -EINVAL : 0;
 421}
 422
 423/*
 424 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 425 * If @mtu is -1 it is left unchanged.
 426 */
 427static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 428{
 429        struct port_info *pi = netdev_priv(dev);
 430        struct adapter *adapter = pi->adapter;
 431
 432        __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 433        __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 434
 435        return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
 436                             (dev->flags & IFF_PROMISC) ? 1 : 0,
 437                             (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
 438                             sleep_ok);
 439}
 440
 441/**
 442 *      cxgb4_change_mac - Update match filter for a MAC address.
 443 *      @pi: the port_info
 444 *      @viid: the VI id
 445 *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
 446 *                 or -1
 447 *      @addr: the new MAC address value
 448 *      @persist: whether a new MAC allocation should be persistent
 449 *      @add_smt: if true also add the address to the HW SMT
 450 *
 451 *      Modifies an MPS filter and sets it to the new MAC address if
 452 *      @tcam_idx >= 0, or adds the MAC address to a new filter if
 453 *      @tcam_idx < 0. In the latter case the address is added persistently
 454 *      if @persist is %true.
 455 *      Addresses are programmed to hash region, if tcam runs out of entries.
 456 *
 457 */
 458int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
 459                     int *tcam_idx, const u8 *addr, bool persist,
 460                     u8 *smt_idx)
 461{
 462        struct adapter *adapter = pi->adapter;
 463        struct hash_mac_addr *entry, *new_entry;
 464        int ret;
 465
 466        ret = t4_change_mac(adapter, adapter->mbox, viid,
 467                            *tcam_idx, addr, persist, smt_idx);
 468        /* We ran out of TCAM entries. try programming hash region. */
 469        if (ret == -ENOMEM) {
 470                /* If the MAC address to be updated is in the hash addr
 471                 * list, update it from the list
 472                 */
 473                list_for_each_entry(entry, &adapter->mac_hlist, list) {
 474                        if (entry->iface_mac) {
 475                                ether_addr_copy(entry->addr, addr);
 476                                goto set_hash;
 477                        }
 478                }
 479                new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
 480                if (!new_entry)
 481                        return -ENOMEM;
 482                ether_addr_copy(new_entry->addr, addr);
 483                new_entry->iface_mac = true;
 484                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 485set_hash:
 486                ret = cxgb4_set_addr_hash(pi);
 487        } else if (ret >= 0) {
 488                *tcam_idx = ret;
 489                ret = 0;
 490        }
 491
 492        return ret;
 493}
 494
 495/*
 496 *      link_start - enable a port
 497 *      @dev: the port to enable
 498 *
 499 *      Performs the MAC and PHY actions needed to enable a port.
 500 */
 501static int link_start(struct net_device *dev)
 502{
 503        int ret;
 504        struct port_info *pi = netdev_priv(dev);
 505        unsigned int mb = pi->adapter->pf;
 506
 507        /*
 508         * We do not set address filters and promiscuity here, the stack does
 509         * that step explicitly.
 510         */
 511        ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
 512                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
 513        if (ret == 0)
 514                ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
 515                                            dev->dev_addr, true, &pi->smt_idx);
 516        if (ret == 0)
 517                ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
 518                                    &pi->link_cfg);
 519        if (ret == 0) {
 520                local_bh_disable();
 521                ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
 522                                          true, CXGB4_DCB_ENABLED);
 523                local_bh_enable();
 524        }
 525
 526        return ret;
 527}
 528
 529#ifdef CONFIG_CHELSIO_T4_DCB
 530/* Handle a Data Center Bridging update message from the firmware. */
 531static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
 532{
 533        int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
 534        struct net_device *dev = adap->port[adap->chan_map[port]];
 535        int old_dcb_enabled = cxgb4_dcb_enabled(dev);
 536        int new_dcb_enabled;
 537
 538        cxgb4_dcb_handle_fw_update(adap, pcmd);
 539        new_dcb_enabled = cxgb4_dcb_enabled(dev);
 540
 541        /* If the DCB has become enabled or disabled on the port then we're
 542         * going to need to set up/tear down DCB Priority parameters for the
 543         * TX Queues associated with the port.
 544         */
 545        if (new_dcb_enabled != old_dcb_enabled)
 546                dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
 547}
 548#endif /* CONFIG_CHELSIO_T4_DCB */
 549
 550/* Response queue handler for the FW event queue.
 551 */
 552static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
 553                          const struct pkt_gl *gl)
 554{
 555        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 556
 557        rsp++;                                          /* skip RSS header */
 558
 559        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 560         */
 561        if (unlikely(opcode == CPL_FW4_MSG &&
 562           ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
 563                rsp++;
 564                opcode = ((const struct rss_header *)rsp)->opcode;
 565                rsp++;
 566                if (opcode != CPL_SGE_EGR_UPDATE) {
 567                        dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 568                                , opcode);
 569                        goto out;
 570                }
 571        }
 572
 573        if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
 574                const struct cpl_sge_egr_update *p = (void *)rsp;
 575                unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
 576                struct sge_txq *txq;
 577
 578                txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
 579                txq->restarts++;
 580                if (txq->q_type == CXGB4_TXQ_ETH) {
 581                        struct sge_eth_txq *eq;
 582
 583                        eq = container_of(txq, struct sge_eth_txq, q);
 584                        t4_sge_eth_txq_egress_update(q->adap, eq, -1);
 585                } else {
 586                        struct sge_uld_txq *oq;
 587
 588                        oq = container_of(txq, struct sge_uld_txq, q);
 589                        tasklet_schedule(&oq->qresume_tsk);
 590                }
 591        } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
 592                const struct cpl_fw6_msg *p = (void *)rsp;
 593
 594#ifdef CONFIG_CHELSIO_T4_DCB
 595                const struct fw_port_cmd *pcmd = (const void *)p->data;
 596                unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
 597                unsigned int action =
 598                        FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
 599
 600                if (cmd == FW_PORT_CMD &&
 601                    (action == FW_PORT_ACTION_GET_PORT_INFO ||
 602                     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
 603                        int port = FW_PORT_CMD_PORTID_G(
 604                                        be32_to_cpu(pcmd->op_to_portid));
 605                        struct net_device *dev;
 606                        int dcbxdis, state_input;
 607
 608                        dev = q->adap->port[q->adap->chan_map[port]];
 609                        dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
 610                          ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
 611                          : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
 612                               & FW_PORT_CMD_DCBXDIS32_F));
 613                        state_input = (dcbxdis
 614                                       ? CXGB4_DCB_INPUT_FW_DISABLED
 615                                       : CXGB4_DCB_INPUT_FW_ENABLED);
 616
 617                        cxgb4_dcb_state_fsm(dev, state_input);
 618                }
 619
 620                if (cmd == FW_PORT_CMD &&
 621                    action == FW_PORT_ACTION_L2_DCB_CFG)
 622                        dcb_rpl(q->adap, pcmd);
 623                else
 624#endif
 625                        if (p->type == 0)
 626                                t4_handle_fw_rpl(q->adap, p->data);
 627        } else if (opcode == CPL_L2T_WRITE_RPL) {
 628                const struct cpl_l2t_write_rpl *p = (void *)rsp;
 629
 630                do_l2t_write_rpl(q->adap, p);
 631        } else if (opcode == CPL_SMT_WRITE_RPL) {
 632                const struct cpl_smt_write_rpl *p = (void *)rsp;
 633
 634                do_smt_write_rpl(q->adap, p);
 635        } else if (opcode == CPL_SET_TCB_RPL) {
 636                const struct cpl_set_tcb_rpl *p = (void *)rsp;
 637
 638                filter_rpl(q->adap, p);
 639        } else if (opcode == CPL_ACT_OPEN_RPL) {
 640                const struct cpl_act_open_rpl *p = (void *)rsp;
 641
 642                hash_filter_rpl(q->adap, p);
 643        } else if (opcode == CPL_ABORT_RPL_RSS) {
 644                const struct cpl_abort_rpl_rss *p = (void *)rsp;
 645
 646                hash_del_filter_rpl(q->adap, p);
 647        } else if (opcode == CPL_SRQ_TABLE_RPL) {
 648                const struct cpl_srq_table_rpl *p = (void *)rsp;
 649
 650                do_srq_table_rpl(q->adap, p);
 651        } else
 652                dev_err(q->adap->pdev_dev,
 653                        "unexpected CPL %#x on FW event queue\n", opcode);
 654out:
 655        return 0;
 656}
 657
 658static void disable_msi(struct adapter *adapter)
 659{
 660        if (adapter->flags & CXGB4_USING_MSIX) {
 661                pci_disable_msix(adapter->pdev);
 662                adapter->flags &= ~CXGB4_USING_MSIX;
 663        } else if (adapter->flags & CXGB4_USING_MSI) {
 664                pci_disable_msi(adapter->pdev);
 665                adapter->flags &= ~CXGB4_USING_MSI;
 666        }
 667}
 668
 669/*
 670 * Interrupt handler for non-data events used with MSI-X.
 671 */
 672static irqreturn_t t4_nondata_intr(int irq, void *cookie)
 673{
 674        struct adapter *adap = cookie;
 675        u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
 676
 677        if (v & PFSW_F) {
 678                adap->swintr = 1;
 679                t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
 680        }
 681        if (adap->flags & CXGB4_MASTER_PF)
 682                t4_slow_intr_handler(adap);
 683        return IRQ_HANDLED;
 684}
 685
 686/*
 687 * Name the MSI-X interrupts.
 688 */
 689static void name_msix_vecs(struct adapter *adap)
 690{
 691        int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
 692
 693        /* non-data interrupts */
 694        snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
 695
 696        /* FW events */
 697        snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
 698                 adap->port[0]->name);
 699
 700        /* Ethernet queues */
 701        for_each_port(adap, j) {
 702                struct net_device *d = adap->port[j];
 703                const struct port_info *pi = netdev_priv(d);
 704
 705                for (i = 0; i < pi->nqsets; i++, msi_idx++)
 706                        snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
 707                                 d->name, i);
 708        }
 709}
 710
 711int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
 712                       cpumask_var_t *aff_mask, int idx)
 713{
 714        int rv;
 715
 716        if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
 717                dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
 718                return -ENOMEM;
 719        }
 720
 721        cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
 722                        *aff_mask);
 723
 724        rv = irq_set_affinity_hint(vec, *aff_mask);
 725        if (rv)
 726                dev_warn(adap->pdev_dev,
 727                         "irq_set_affinity_hint %u failed %d\n",
 728                         vec, rv);
 729
 730        return 0;
 731}
 732
 733void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
 734{
 735        irq_set_affinity_hint(vec, NULL);
 736        free_cpumask_var(aff_mask);
 737}
 738
 739static int request_msix_queue_irqs(struct adapter *adap)
 740{
 741        struct sge *s = &adap->sge;
 742        struct msix_info *minfo;
 743        int err, ethqidx;
 744        int msi_index = 2;
 745
 746        err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
 747                          adap->msix_info[1].desc, &s->fw_evtq);
 748        if (err)
 749                return err;
 750
 751        for_each_ethrxq(s, ethqidx) {
 752                minfo = &adap->msix_info[msi_index];
 753                err = request_irq(minfo->vec,
 754                                  t4_sge_intr_msix, 0,
 755                                  minfo->desc,
 756                                  &s->ethrxq[ethqidx].rspq);
 757                if (err)
 758                        goto unwind;
 759
 760                cxgb4_set_msix_aff(adap, minfo->vec,
 761                                   &minfo->aff_mask, ethqidx);
 762                msi_index++;
 763        }
 764        return 0;
 765
 766unwind:
 767        while (--ethqidx >= 0) {
 768                msi_index--;
 769                minfo = &adap->msix_info[msi_index];
 770                cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
 771                free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
 772        }
 773        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 774        return err;
 775}
 776
 777static void free_msix_queue_irqs(struct adapter *adap)
 778{
 779        struct sge *s = &adap->sge;
 780        struct msix_info *minfo;
 781        int i, msi_index = 2;
 782
 783        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 784        for_each_ethrxq(s, i) {
 785                minfo = &adap->msix_info[msi_index++];
 786                cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
 787                free_irq(minfo->vec, &s->ethrxq[i].rspq);
 788        }
 789}
 790
 791static int setup_ppod_edram(struct adapter *adap)
 792{
 793        unsigned int param, val;
 794        int ret;
 795
 796        /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
 797         * if firmware supports ppod edram feature or not. If firmware
 798         * returns 1, then driver can enable this feature by sending
 799         * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
 800         * enable ppod edram feature.
 801         */
 802        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 803                FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
 804
 805        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
 806        if (ret < 0) {
 807                dev_warn(adap->pdev_dev,
 808                         "querying PPOD_EDRAM support failed: %d\n",
 809                         ret);
 810                return -1;
 811        }
 812
 813        if (val != 1)
 814                return -1;
 815
 816        ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
 817        if (ret < 0) {
 818                dev_err(adap->pdev_dev,
 819                        "setting PPOD_EDRAM failed: %d\n", ret);
 820                return -1;
 821        }
 822        return 0;
 823}
 824
 825/**
 826 *      cxgb4_write_rss - write the RSS table for a given port
 827 *      @pi: the port
 828 *      @queues: array of queue indices for RSS
 829 *
 830 *      Sets up the portion of the HW RSS table for the port's VI to distribute
 831 *      packets to the Rx queues in @queues.
 832 *      Should never be called before setting up sge eth rx queues
 833 */
 834int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
 835{
 836        u16 *rss;
 837        int i, err;
 838        struct adapter *adapter = pi->adapter;
 839        const struct sge_eth_rxq *rxq;
 840
 841        rxq = &adapter->sge.ethrxq[pi->first_qset];
 842        rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
 843        if (!rss)
 844                return -ENOMEM;
 845
 846        /* map the queue indices to queue ids */
 847        for (i = 0; i < pi->rss_size; i++, queues++)
 848                rss[i] = rxq[*queues].rspq.abs_id;
 849
 850        err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
 851                                  pi->rss_size, rss, pi->rss_size);
 852        /* If Tunnel All Lookup isn't specified in the global RSS
 853         * Configuration, then we need to specify a default Ingress
 854         * Queue for any ingress packets which aren't hashed.  We'll
 855         * use our first ingress queue ...
 856         */
 857        if (!err)
 858                err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
 859                                       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
 860                                       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
 861                                       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
 862                                       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
 863                                       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
 864                                       rss[0]);
 865        kfree(rss);
 866        return err;
 867}
 868
 869/**
 870 *      setup_rss - configure RSS
 871 *      @adap: the adapter
 872 *
 873 *      Sets up RSS for each port.
 874 */
 875static int setup_rss(struct adapter *adap)
 876{
 877        int i, j, err;
 878
 879        for_each_port(adap, i) {
 880                const struct port_info *pi = adap2pinfo(adap, i);
 881
 882                /* Fill default values with equal distribution */
 883                for (j = 0; j < pi->rss_size; j++)
 884                        pi->rss[j] = j % pi->nqsets;
 885
 886                err = cxgb4_write_rss(pi, pi->rss);
 887                if (err)
 888                        return err;
 889        }
 890        return 0;
 891}
 892
 893/*
 894 * Return the channel of the ingress queue with the given qid.
 895 */
 896static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
 897{
 898        qid -= p->ingr_start;
 899        return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
 900}
 901
 902/*
 903 * Wait until all NAPI handlers are descheduled.
 904 */
 905static void quiesce_rx(struct adapter *adap)
 906{
 907        int i;
 908
 909        for (i = 0; i < adap->sge.ingr_sz; i++) {
 910                struct sge_rspq *q = adap->sge.ingr_map[i];
 911
 912                if (q && q->handler)
 913                        napi_disable(&q->napi);
 914        }
 915}
 916
 917/* Disable interrupt and napi handler */
 918static void disable_interrupts(struct adapter *adap)
 919{
 920        if (adap->flags & CXGB4_FULL_INIT_DONE) {
 921                t4_intr_disable(adap);
 922                if (adap->flags & CXGB4_USING_MSIX) {
 923                        free_msix_queue_irqs(adap);
 924                        free_irq(adap->msix_info[0].vec, adap);
 925                } else {
 926                        free_irq(adap->pdev->irq, adap);
 927                }
 928                quiesce_rx(adap);
 929        }
 930}
 931
 932/*
 933 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 934 */
 935static void enable_rx(struct adapter *adap)
 936{
 937        int i;
 938
 939        for (i = 0; i < adap->sge.ingr_sz; i++) {
 940                struct sge_rspq *q = adap->sge.ingr_map[i];
 941
 942                if (!q)
 943                        continue;
 944                if (q->handler)
 945                        napi_enable(&q->napi);
 946
 947                /* 0-increment GTS to start the timer and enable interrupts */
 948                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
 949                             SEINTARM_V(q->intr_params) |
 950                             INGRESSQID_V(q->cntxt_id));
 951        }
 952}
 953
 954
 955static int setup_fw_sge_queues(struct adapter *adap)
 956{
 957        struct sge *s = &adap->sge;
 958        int err = 0;
 959
 960        bitmap_zero(s->starving_fl, s->egr_sz);
 961        bitmap_zero(s->txq_maperr, s->egr_sz);
 962
 963        if (adap->flags & CXGB4_USING_MSIX)
 964                adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
 965        else {
 966                err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
 967                                       NULL, NULL, NULL, -1);
 968                if (err)
 969                        return err;
 970                adap->msi_idx = -((int)s->intrq.abs_id + 1);
 971        }
 972
 973        err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
 974                               adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
 975        return err;
 976}
 977
 978/**
 979 *      setup_sge_queues - configure SGE Tx/Rx/response queues
 980 *      @adap: the adapter
 981 *
 982 *      Determines how many sets of SGE queues to use and initializes them.
 983 *      We support multiple queue sets per port if we have MSI-X, otherwise
 984 *      just one queue set per port.
 985 */
 986static int setup_sge_queues(struct adapter *adap)
 987{
 988        int err, i, j;
 989        struct sge *s = &adap->sge;
 990        struct sge_uld_rxq_info *rxq_info = NULL;
 991        unsigned int cmplqid = 0;
 992
 993        if (is_uld(adap))
 994                rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
 995
 996        for_each_port(adap, i) {
 997                struct net_device *dev = adap->port[i];
 998                struct port_info *pi = netdev_priv(dev);
 999                struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1000                struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1001
1002                for (j = 0; j < pi->nqsets; j++, q++) {
1003                        if (adap->msi_idx > 0)
1004                                adap->msi_idx++;
1005                        err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1006                                               adap->msi_idx, &q->fl,
1007                                               t4_ethrx_handler,
1008                                               NULL,
1009                                               t4_get_tp_ch_map(adap,
1010                                                                pi->tx_chan));
1011                        if (err)
1012                                goto freeout;
1013                        q->rspq.idx = j;
1014                        memset(&q->stats, 0, sizeof(q->stats));
1015                }
1016
1017                q = &s->ethrxq[pi->first_qset];
1018                for (j = 0; j < pi->nqsets; j++, t++, q++) {
1019                        err = t4_sge_alloc_eth_txq(adap, t, dev,
1020                                        netdev_get_tx_queue(dev, j),
1021                                        q->rspq.cntxt_id,
1022                                        !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1023                        if (err)
1024                                goto freeout;
1025                }
1026        }
1027
1028        for_each_port(adap, i) {
1029                /* Note that cmplqid below is 0 if we don't
1030                 * have RDMA queues, and that's the right value.
1031                 */
1032                if (rxq_info)
1033                        cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1034
1035                err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1036                                            s->fw_evtq.cntxt_id, cmplqid);
1037                if (err)
1038                        goto freeout;
1039        }
1040
1041        if (!is_t4(adap->params.chip)) {
1042                err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1043                                           netdev_get_tx_queue(adap->port[0], 0)
1044                                           , s->fw_evtq.cntxt_id, false);
1045                if (err)
1046                        goto freeout;
1047        }
1048
1049        t4_write_reg(adap, is_t4(adap->params.chip) ?
1050                                MPS_TRC_RSS_CONTROL_A :
1051                                MPS_T5_TRC_RSS_CONTROL_A,
1052                     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1053                     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1054        return 0;
1055freeout:
1056        dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1057        t4_free_sge_resources(adap);
1058        return err;
1059}
1060
1061static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1062                             struct net_device *sb_dev)
1063{
1064        int txq;
1065
1066#ifdef CONFIG_CHELSIO_T4_DCB
1067        /* If a Data Center Bridging has been successfully negotiated on this
1068         * link then we'll use the skb's priority to map it to a TX Queue.
1069         * The skb's priority is determined via the VLAN Tag Priority Code
1070         * Point field.
1071         */
1072        if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1073                u16 vlan_tci;
1074                int err;
1075
1076                err = vlan_get_tag(skb, &vlan_tci);
1077                if (unlikely(err)) {
1078                        if (net_ratelimit())
1079                                netdev_warn(dev,
1080                                            "TX Packet without VLAN Tag on DCB Link\n");
1081                        txq = 0;
1082                } else {
1083                        txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1084#ifdef CONFIG_CHELSIO_T4_FCOE
1085                        if (skb->protocol == htons(ETH_P_FCOE))
1086                                txq = skb->priority & 0x7;
1087#endif /* CONFIG_CHELSIO_T4_FCOE */
1088                }
1089                return txq;
1090        }
1091#endif /* CONFIG_CHELSIO_T4_DCB */
1092
1093        if (select_queue) {
1094                txq = (skb_rx_queue_recorded(skb)
1095                        ? skb_get_rx_queue(skb)
1096                        : smp_processor_id());
1097
1098                while (unlikely(txq >= dev->real_num_tx_queues))
1099                        txq -= dev->real_num_tx_queues;
1100
1101                return txq;
1102        }
1103
1104        return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1105}
1106
1107static int closest_timer(const struct sge *s, int time)
1108{
1109        int i, delta, match = 0, min_delta = INT_MAX;
1110
1111        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1112                delta = time - s->timer_val[i];
1113                if (delta < 0)
1114                        delta = -delta;
1115                if (delta < min_delta) {
1116                        min_delta = delta;
1117                        match = i;
1118                }
1119        }
1120        return match;
1121}
1122
1123static int closest_thres(const struct sge *s, int thres)
1124{
1125        int i, delta, match = 0, min_delta = INT_MAX;
1126
1127        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1128                delta = thres - s->counter_val[i];
1129                if (delta < 0)
1130                        delta = -delta;
1131                if (delta < min_delta) {
1132                        min_delta = delta;
1133                        match = i;
1134                }
1135        }
1136        return match;
1137}
1138
1139/**
1140 *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1141 *      @q: the Rx queue
1142 *      @us: the hold-off time in us, or 0 to disable timer
1143 *      @cnt: the hold-off packet count, or 0 to disable counter
1144 *
1145 *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1146 *      one of the two needs to be enabled for the queue to generate interrupts.
1147 */
1148int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1149                               unsigned int us, unsigned int cnt)
1150{
1151        struct adapter *adap = q->adap;
1152
1153        if ((us | cnt) == 0)
1154                cnt = 1;
1155
1156        if (cnt) {
1157                int err;
1158                u32 v, new_idx;
1159
1160                new_idx = closest_thres(&adap->sge, cnt);
1161                if (q->desc && q->pktcnt_idx != new_idx) {
1162                        /* the queue has already been created, update it */
1163                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1164                            FW_PARAMS_PARAM_X_V(
1165                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1166                            FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1167                        err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1168                                            &v, &new_idx);
1169                        if (err)
1170                                return err;
1171                }
1172                q->pktcnt_idx = new_idx;
1173        }
1174
1175        us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1176        q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1177        return 0;
1178}
1179
1180static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1181{
1182        const struct port_info *pi = netdev_priv(dev);
1183        netdev_features_t changed = dev->features ^ features;
1184        int err;
1185
1186        if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1187                return 0;
1188
1189        err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1190                            -1, -1, -1,
1191                            !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1192        if (unlikely(err))
1193                dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1194        return err;
1195}
1196
1197static int setup_debugfs(struct adapter *adap)
1198{
1199        if (IS_ERR_OR_NULL(adap->debugfs_root))
1200                return -1;
1201
1202#ifdef CONFIG_DEBUG_FS
1203        t4_setup_debugfs(adap);
1204#endif
1205        return 0;
1206}
1207
1208/*
1209 * upper-layer driver support
1210 */
1211
1212/*
1213 * Allocate an active-open TID and set it to the supplied value.
1214 */
1215int cxgb4_alloc_atid(struct tid_info *t, void *data)
1216{
1217        int atid = -1;
1218
1219        spin_lock_bh(&t->atid_lock);
1220        if (t->afree) {
1221                union aopen_entry *p = t->afree;
1222
1223                atid = (p - t->atid_tab) + t->atid_base;
1224                t->afree = p->next;
1225                p->data = data;
1226                t->atids_in_use++;
1227        }
1228        spin_unlock_bh(&t->atid_lock);
1229        return atid;
1230}
1231EXPORT_SYMBOL(cxgb4_alloc_atid);
1232
1233/*
1234 * Release an active-open TID.
1235 */
1236void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1237{
1238        union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1239
1240        spin_lock_bh(&t->atid_lock);
1241        p->next = t->afree;
1242        t->afree = p;
1243        t->atids_in_use--;
1244        spin_unlock_bh(&t->atid_lock);
1245}
1246EXPORT_SYMBOL(cxgb4_free_atid);
1247
1248/*
1249 * Allocate a server TID and set it to the supplied value.
1250 */
1251int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1252{
1253        int stid;
1254
1255        spin_lock_bh(&t->stid_lock);
1256        if (family == PF_INET) {
1257                stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1258                if (stid < t->nstids)
1259                        __set_bit(stid, t->stid_bmap);
1260                else
1261                        stid = -1;
1262        } else {
1263                stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1264                if (stid < 0)
1265                        stid = -1;
1266        }
1267        if (stid >= 0) {
1268                t->stid_tab[stid].data = data;
1269                stid += t->stid_base;
1270                /* IPv6 requires max of 520 bits or 16 cells in TCAM
1271                 * This is equivalent to 4 TIDs. With CLIP enabled it
1272                 * needs 2 TIDs.
1273                 */
1274                if (family == PF_INET6) {
1275                        t->stids_in_use += 2;
1276                        t->v6_stids_in_use += 2;
1277                } else {
1278                        t->stids_in_use++;
1279                }
1280        }
1281        spin_unlock_bh(&t->stid_lock);
1282        return stid;
1283}
1284EXPORT_SYMBOL(cxgb4_alloc_stid);
1285
1286/* Allocate a server filter TID and set it to the supplied value.
1287 */
1288int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1289{
1290        int stid;
1291
1292        spin_lock_bh(&t->stid_lock);
1293        if (family == PF_INET) {
1294                stid = find_next_zero_bit(t->stid_bmap,
1295                                t->nstids + t->nsftids, t->nstids);
1296                if (stid < (t->nstids + t->nsftids))
1297                        __set_bit(stid, t->stid_bmap);
1298                else
1299                        stid = -1;
1300        } else {
1301                stid = -1;
1302        }
1303        if (stid >= 0) {
1304                t->stid_tab[stid].data = data;
1305                stid -= t->nstids;
1306                stid += t->sftid_base;
1307                t->sftids_in_use++;
1308        }
1309        spin_unlock_bh(&t->stid_lock);
1310        return stid;
1311}
1312EXPORT_SYMBOL(cxgb4_alloc_sftid);
1313
1314/* Release a server TID.
1315 */
1316void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1317{
1318        /* Is it a server filter TID? */
1319        if (t->nsftids && (stid >= t->sftid_base)) {
1320                stid -= t->sftid_base;
1321                stid += t->nstids;
1322        } else {
1323                stid -= t->stid_base;
1324        }
1325
1326        spin_lock_bh(&t->stid_lock);
1327        if (family == PF_INET)
1328                __clear_bit(stid, t->stid_bmap);
1329        else
1330                bitmap_release_region(t->stid_bmap, stid, 1);
1331        t->stid_tab[stid].data = NULL;
1332        if (stid < t->nstids) {
1333                if (family == PF_INET6) {
1334                        t->stids_in_use -= 2;
1335                        t->v6_stids_in_use -= 2;
1336                } else {
1337                        t->stids_in_use--;
1338                }
1339        } else {
1340                t->sftids_in_use--;
1341        }
1342
1343        spin_unlock_bh(&t->stid_lock);
1344}
1345EXPORT_SYMBOL(cxgb4_free_stid);
1346
1347/*
1348 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1349 */
1350static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1351                           unsigned int tid)
1352{
1353        struct cpl_tid_release *req;
1354
1355        set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1356        req = __skb_put(skb, sizeof(*req));
1357        INIT_TP_WR(req, tid);
1358        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1359}
1360
1361/*
1362 * Queue a TID release request and if necessary schedule a work queue to
1363 * process it.
1364 */
1365static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1366                                    unsigned int tid)
1367{
1368        void **p = &t->tid_tab[tid];
1369        struct adapter *adap = container_of(t, struct adapter, tids);
1370
1371        spin_lock_bh(&adap->tid_release_lock);
1372        *p = adap->tid_release_head;
1373        /* Low 2 bits encode the Tx channel number */
1374        adap->tid_release_head = (void **)((uintptr_t)p | chan);
1375        if (!adap->tid_release_task_busy) {
1376                adap->tid_release_task_busy = true;
1377                queue_work(adap->workq, &adap->tid_release_task);
1378        }
1379        spin_unlock_bh(&adap->tid_release_lock);
1380}
1381
1382/*
1383 * Process the list of pending TID release requests.
1384 */
1385static void process_tid_release_list(struct work_struct *work)
1386{
1387        struct sk_buff *skb;
1388        struct adapter *adap;
1389
1390        adap = container_of(work, struct adapter, tid_release_task);
1391
1392        spin_lock_bh(&adap->tid_release_lock);
1393        while (adap->tid_release_head) {
1394                void **p = adap->tid_release_head;
1395                unsigned int chan = (uintptr_t)p & 3;
1396                p = (void *)p - chan;
1397
1398                adap->tid_release_head = *p;
1399                *p = NULL;
1400                spin_unlock_bh(&adap->tid_release_lock);
1401
1402                while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1403                                         GFP_KERNEL)))
1404                        schedule_timeout_uninterruptible(1);
1405
1406                mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1407                t4_ofld_send(adap, skb);
1408                spin_lock_bh(&adap->tid_release_lock);
1409        }
1410        adap->tid_release_task_busy = false;
1411        spin_unlock_bh(&adap->tid_release_lock);
1412}
1413
1414/*
1415 * Release a TID and inform HW.  If we are unable to allocate the release
1416 * message we defer to a work queue.
1417 */
1418void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1419                      unsigned short family)
1420{
1421        struct sk_buff *skb;
1422        struct adapter *adap = container_of(t, struct adapter, tids);
1423
1424        WARN_ON(tid >= t->ntids);
1425
1426        if (t->tid_tab[tid]) {
1427                t->tid_tab[tid] = NULL;
1428                atomic_dec(&t->conns_in_use);
1429                if (t->hash_base && (tid >= t->hash_base)) {
1430                        if (family == AF_INET6)
1431                                atomic_sub(2, &t->hash_tids_in_use);
1432                        else
1433                                atomic_dec(&t->hash_tids_in_use);
1434                } else {
1435                        if (family == AF_INET6)
1436                                atomic_sub(2, &t->tids_in_use);
1437                        else
1438                                atomic_dec(&t->tids_in_use);
1439                }
1440        }
1441
1442        skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1443        if (likely(skb)) {
1444                mk_tid_release(skb, chan, tid);
1445                t4_ofld_send(adap, skb);
1446        } else
1447                cxgb4_queue_tid_release(t, chan, tid);
1448}
1449EXPORT_SYMBOL(cxgb4_remove_tid);
1450
1451/*
1452 * Allocate and initialize the TID tables.  Returns 0 on success.
1453 */
1454static int tid_init(struct tid_info *t)
1455{
1456        struct adapter *adap = container_of(t, struct adapter, tids);
1457        unsigned int max_ftids = t->nftids + t->nsftids;
1458        unsigned int natids = t->natids;
1459        unsigned int stid_bmap_size;
1460        unsigned int ftid_bmap_size;
1461        size_t size;
1462
1463        stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1464        ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1465        size = t->ntids * sizeof(*t->tid_tab) +
1466               natids * sizeof(*t->atid_tab) +
1467               t->nstids * sizeof(*t->stid_tab) +
1468               t->nsftids * sizeof(*t->stid_tab) +
1469               stid_bmap_size * sizeof(long) +
1470               max_ftids * sizeof(*t->ftid_tab) +
1471               ftid_bmap_size * sizeof(long);
1472
1473        t->tid_tab = kvzalloc(size, GFP_KERNEL);
1474        if (!t->tid_tab)
1475                return -ENOMEM;
1476
1477        t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1478        t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1479        t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1480        t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1481        t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1482        spin_lock_init(&t->stid_lock);
1483        spin_lock_init(&t->atid_lock);
1484        spin_lock_init(&t->ftid_lock);
1485
1486        t->stids_in_use = 0;
1487        t->v6_stids_in_use = 0;
1488        t->sftids_in_use = 0;
1489        t->afree = NULL;
1490        t->atids_in_use = 0;
1491        atomic_set(&t->tids_in_use, 0);
1492        atomic_set(&t->conns_in_use, 0);
1493        atomic_set(&t->hash_tids_in_use, 0);
1494
1495        /* Setup the free list for atid_tab and clear the stid bitmap. */
1496        if (natids) {
1497                while (--natids)
1498                        t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1499                t->afree = t->atid_tab;
1500        }
1501
1502        if (is_offload(adap)) {
1503                bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1504                /* Reserve stid 0 for T4/T5 adapters */
1505                if (!t->stid_base &&
1506                    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1507                        __set_bit(0, t->stid_bmap);
1508        }
1509
1510        bitmap_zero(t->ftid_bmap, t->nftids);
1511        return 0;
1512}
1513
1514/**
1515 *      cxgb4_create_server - create an IP server
1516 *      @dev: the device
1517 *      @stid: the server TID
1518 *      @sip: local IP address to bind server to
1519 *      @sport: the server's TCP port
1520 *      @queue: queue to direct messages from this server to
1521 *
1522 *      Create an IP server for the given port and address.
1523 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1524 */
1525int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1526                        __be32 sip, __be16 sport, __be16 vlan,
1527                        unsigned int queue)
1528{
1529        unsigned int chan;
1530        struct sk_buff *skb;
1531        struct adapter *adap;
1532        struct cpl_pass_open_req *req;
1533        int ret;
1534
1535        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1536        if (!skb)
1537                return -ENOMEM;
1538
1539        adap = netdev2adap(dev);
1540        req = __skb_put(skb, sizeof(*req));
1541        INIT_TP_WR(req, 0);
1542        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1543        req->local_port = sport;
1544        req->peer_port = htons(0);
1545        req->local_ip = sip;
1546        req->peer_ip = htonl(0);
1547        chan = rxq_to_chan(&adap->sge, queue);
1548        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1549        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1550                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1551        ret = t4_mgmt_tx(adap, skb);
1552        return net_xmit_eval(ret);
1553}
1554EXPORT_SYMBOL(cxgb4_create_server);
1555
1556/*      cxgb4_create_server6 - create an IPv6 server
1557 *      @dev: the device
1558 *      @stid: the server TID
1559 *      @sip: local IPv6 address to bind server to
1560 *      @sport: the server's TCP port
1561 *      @queue: queue to direct messages from this server to
1562 *
1563 *      Create an IPv6 server for the given port and address.
1564 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1565 */
1566int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1567                         const struct in6_addr *sip, __be16 sport,
1568                         unsigned int queue)
1569{
1570        unsigned int chan;
1571        struct sk_buff *skb;
1572        struct adapter *adap;
1573        struct cpl_pass_open_req6 *req;
1574        int ret;
1575
1576        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1577        if (!skb)
1578                return -ENOMEM;
1579
1580        adap = netdev2adap(dev);
1581        req = __skb_put(skb, sizeof(*req));
1582        INIT_TP_WR(req, 0);
1583        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1584        req->local_port = sport;
1585        req->peer_port = htons(0);
1586        req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1587        req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1588        req->peer_ip_hi = cpu_to_be64(0);
1589        req->peer_ip_lo = cpu_to_be64(0);
1590        chan = rxq_to_chan(&adap->sge, queue);
1591        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1592        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1593                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1594        ret = t4_mgmt_tx(adap, skb);
1595        return net_xmit_eval(ret);
1596}
1597EXPORT_SYMBOL(cxgb4_create_server6);
1598
1599int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1600                        unsigned int queue, bool ipv6)
1601{
1602        struct sk_buff *skb;
1603        struct adapter *adap;
1604        struct cpl_close_listsvr_req *req;
1605        int ret;
1606
1607        adap = netdev2adap(dev);
1608
1609        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1610        if (!skb)
1611                return -ENOMEM;
1612
1613        req = __skb_put(skb, sizeof(*req));
1614        INIT_TP_WR(req, 0);
1615        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1616        req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1617                                LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1618        ret = t4_mgmt_tx(adap, skb);
1619        return net_xmit_eval(ret);
1620}
1621EXPORT_SYMBOL(cxgb4_remove_server);
1622
1623/**
1624 *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1625 *      @mtus: the HW MTU table
1626 *      @mtu: the target MTU
1627 *      @idx: index of selected entry in the MTU table
1628 *
1629 *      Returns the index and the value in the HW MTU table that is closest to
1630 *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1631 *      table, in which case that smallest available value is selected.
1632 */
1633unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1634                            unsigned int *idx)
1635{
1636        unsigned int i = 0;
1637
1638        while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1639                ++i;
1640        if (idx)
1641                *idx = i;
1642        return mtus[i];
1643}
1644EXPORT_SYMBOL(cxgb4_best_mtu);
1645
1646/**
1647 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1648 *     @mtus: the HW MTU table
1649 *     @header_size: Header Size
1650 *     @data_size_max: maximum Data Segment Size
1651 *     @data_size_align: desired Data Segment Size Alignment (2^N)
1652 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1653 *
1654 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1655 *     MTU Table based solely on a Maximum MTU parameter, we break that
1656 *     parameter up into a Header Size and Maximum Data Segment Size, and
1657 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1658 *     the Hardware MTU Table which will result in a Data Segment Size with
1659 *     the requested alignment _and_ that MTU isn't "too far" from the
1660 *     closest MTU, then we'll return that rather than the closest MTU.
1661 */
1662unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1663                                    unsigned short header_size,
1664                                    unsigned short data_size_max,
1665                                    unsigned short data_size_align,
1666                                    unsigned int *mtu_idxp)
1667{
1668        unsigned short max_mtu = header_size + data_size_max;
1669        unsigned short data_size_align_mask = data_size_align - 1;
1670        int mtu_idx, aligned_mtu_idx;
1671
1672        /* Scan the MTU Table till we find an MTU which is larger than our
1673         * Maximum MTU or we reach the end of the table.  Along the way,
1674         * record the last MTU found, if any, which will result in a Data
1675         * Segment Length matching the requested alignment.
1676         */
1677        for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1678                unsigned short data_size = mtus[mtu_idx] - header_size;
1679
1680                /* If this MTU minus the Header Size would result in a
1681                 * Data Segment Size of the desired alignment, remember it.
1682                 */
1683                if ((data_size & data_size_align_mask) == 0)
1684                        aligned_mtu_idx = mtu_idx;
1685
1686                /* If we're not at the end of the Hardware MTU Table and the
1687                 * next element is larger than our Maximum MTU, drop out of
1688                 * the loop.
1689                 */
1690                if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1691                        break;
1692        }
1693
1694        /* If we fell out of the loop because we ran to the end of the table,
1695         * then we just have to use the last [largest] entry.
1696         */
1697        if (mtu_idx == NMTUS)
1698                mtu_idx--;
1699
1700        /* If we found an MTU which resulted in the requested Data Segment
1701         * Length alignment and that's "not far" from the largest MTU which is
1702         * less than or equal to the maximum MTU, then use that.
1703         */
1704        if (aligned_mtu_idx >= 0 &&
1705            mtu_idx - aligned_mtu_idx <= 1)
1706                mtu_idx = aligned_mtu_idx;
1707
1708        /* If the caller has passed in an MTU Index pointer, pass the
1709         * MTU Index back.  Return the MTU value.
1710         */
1711        if (mtu_idxp)
1712                *mtu_idxp = mtu_idx;
1713        return mtus[mtu_idx];
1714}
1715EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1716
1717/**
1718 *      cxgb4_port_chan - get the HW channel of a port
1719 *      @dev: the net device for the port
1720 *
1721 *      Return the HW Tx channel of the given port.
1722 */
1723unsigned int cxgb4_port_chan(const struct net_device *dev)
1724{
1725        return netdev2pinfo(dev)->tx_chan;
1726}
1727EXPORT_SYMBOL(cxgb4_port_chan);
1728
1729/**
1730 *      cxgb4_port_e2cchan - get the HW c-channel of a port
1731 *      @dev: the net device for the port
1732 *
1733 *      Return the HW RX c-channel of the given port.
1734 */
1735unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
1736{
1737        return netdev2pinfo(dev)->rx_cchan;
1738}
1739EXPORT_SYMBOL(cxgb4_port_e2cchan);
1740
1741unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1742{
1743        struct adapter *adap = netdev2adap(dev);
1744        u32 v1, v2, lp_count, hp_count;
1745
1746        v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1747        v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1748        if (is_t4(adap->params.chip)) {
1749                lp_count = LP_COUNT_G(v1);
1750                hp_count = HP_COUNT_G(v1);
1751        } else {
1752                lp_count = LP_COUNT_T5_G(v1);
1753                hp_count = HP_COUNT_T5_G(v2);
1754        }
1755        return lpfifo ? lp_count : hp_count;
1756}
1757EXPORT_SYMBOL(cxgb4_dbfifo_count);
1758
1759/**
1760 *      cxgb4_port_viid - get the VI id of a port
1761 *      @dev: the net device for the port
1762 *
1763 *      Return the VI id of the given port.
1764 */
1765unsigned int cxgb4_port_viid(const struct net_device *dev)
1766{
1767        return netdev2pinfo(dev)->viid;
1768}
1769EXPORT_SYMBOL(cxgb4_port_viid);
1770
1771/**
1772 *      cxgb4_port_idx - get the index of a port
1773 *      @dev: the net device for the port
1774 *
1775 *      Return the index of the given port.
1776 */
1777unsigned int cxgb4_port_idx(const struct net_device *dev)
1778{
1779        return netdev2pinfo(dev)->port_id;
1780}
1781EXPORT_SYMBOL(cxgb4_port_idx);
1782
1783void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1784                         struct tp_tcp_stats *v6)
1785{
1786        struct adapter *adap = pci_get_drvdata(pdev);
1787
1788        spin_lock(&adap->stats_lock);
1789        t4_tp_get_tcp_stats(adap, v4, v6, false);
1790        spin_unlock(&adap->stats_lock);
1791}
1792EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1793
1794void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1795                      const unsigned int *pgsz_order)
1796{
1797        struct adapter *adap = netdev2adap(dev);
1798
1799        t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1800        t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1801                     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1802                     HPZ3_V(pgsz_order[3]));
1803}
1804EXPORT_SYMBOL(cxgb4_iscsi_init);
1805
1806int cxgb4_flush_eq_cache(struct net_device *dev)
1807{
1808        struct adapter *adap = netdev2adap(dev);
1809
1810        return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1811}
1812EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1813
1814static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1815{
1816        u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1817        __be64 indices;
1818        int ret;
1819
1820        spin_lock(&adap->win0_lock);
1821        ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1822                           sizeof(indices), (__be32 *)&indices,
1823                           T4_MEMORY_READ);
1824        spin_unlock(&adap->win0_lock);
1825        if (!ret) {
1826                *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1827                *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1828        }
1829        return ret;
1830}
1831
1832int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1833                        u16 size)
1834{
1835        struct adapter *adap = netdev2adap(dev);
1836        u16 hw_pidx, hw_cidx;
1837        int ret;
1838
1839        ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1840        if (ret)
1841                goto out;
1842
1843        if (pidx != hw_pidx) {
1844                u16 delta;
1845                u32 val;
1846
1847                if (pidx >= hw_pidx)
1848                        delta = pidx - hw_pidx;
1849                else
1850                        delta = size - hw_pidx + pidx;
1851
1852                if (is_t4(adap->params.chip))
1853                        val = PIDX_V(delta);
1854                else
1855                        val = PIDX_T5_V(delta);
1856                wmb();
1857                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1858                             QID_V(qid) | val);
1859        }
1860out:
1861        return ret;
1862}
1863EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1864
1865int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1866{
1867        u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1868        u32 edc0_end, edc1_end, mc0_end, mc1_end;
1869        u32 offset, memtype, memaddr;
1870        struct adapter *adap;
1871        u32 hma_size = 0;
1872        int ret;
1873
1874        adap = netdev2adap(dev);
1875
1876        offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1877
1878        /* Figure out where the offset lands in the Memory Type/Address scheme.
1879         * This code assumes that the memory is laid out starting at offset 0
1880         * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1881         * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1882         * MC0, and some have both MC0 and MC1.
1883         */
1884        size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1885        edc0_size = EDRAM0_SIZE_G(size) << 20;
1886        size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1887        edc1_size = EDRAM1_SIZE_G(size) << 20;
1888        size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1889        mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1890
1891        if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1892                size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1893                hma_size = EXT_MEM1_SIZE_G(size) << 20;
1894        }
1895        edc0_end = edc0_size;
1896        edc1_end = edc0_end + edc1_size;
1897        mc0_end = edc1_end + mc0_size;
1898
1899        if (offset < edc0_end) {
1900                memtype = MEM_EDC0;
1901                memaddr = offset;
1902        } else if (offset < edc1_end) {
1903                memtype = MEM_EDC1;
1904                memaddr = offset - edc0_end;
1905        } else {
1906                if (hma_size && (offset < (edc1_end + hma_size))) {
1907                        memtype = MEM_HMA;
1908                        memaddr = offset - edc1_end;
1909                } else if (offset < mc0_end) {
1910                        memtype = MEM_MC0;
1911                        memaddr = offset - edc1_end;
1912                } else if (is_t5(adap->params.chip)) {
1913                        size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1914                        mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1915                        mc1_end = mc0_end + mc1_size;
1916                        if (offset < mc1_end) {
1917                                memtype = MEM_MC1;
1918                                memaddr = offset - mc0_end;
1919                        } else {
1920                                /* offset beyond the end of any memory */
1921                                goto err;
1922                        }
1923                } else {
1924                        /* T4/T6 only has a single memory channel */
1925                        goto err;
1926                }
1927        }
1928
1929        spin_lock(&adap->win0_lock);
1930        ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1931        spin_unlock(&adap->win0_lock);
1932        return ret;
1933
1934err:
1935        dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1936                stag, offset);
1937        return -EINVAL;
1938}
1939EXPORT_SYMBOL(cxgb4_read_tpte);
1940
1941u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1942{
1943        u32 hi, lo;
1944        struct adapter *adap;
1945
1946        adap = netdev2adap(dev);
1947        lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1948        hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1949
1950        return ((u64)hi << 32) | (u64)lo;
1951}
1952EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1953
1954int cxgb4_bar2_sge_qregs(struct net_device *dev,
1955                         unsigned int qid,
1956                         enum cxgb4_bar2_qtype qtype,
1957                         int user,
1958                         u64 *pbar2_qoffset,
1959                         unsigned int *pbar2_qid)
1960{
1961        return t4_bar2_sge_qregs(netdev2adap(dev),
1962                                 qid,
1963                                 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1964                                  ? T4_BAR2_QTYPE_EGRESS
1965                                  : T4_BAR2_QTYPE_INGRESS),
1966                                 user,
1967                                 pbar2_qoffset,
1968                                 pbar2_qid);
1969}
1970EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1971
1972static struct pci_driver cxgb4_driver;
1973
1974static void check_neigh_update(struct neighbour *neigh)
1975{
1976        const struct device *parent;
1977        const struct net_device *netdev = neigh->dev;
1978
1979        if (is_vlan_dev(netdev))
1980                netdev = vlan_dev_real_dev(netdev);
1981        parent = netdev->dev.parent;
1982        if (parent && parent->driver == &cxgb4_driver.driver)
1983                t4_l2t_update(dev_get_drvdata(parent), neigh);
1984}
1985
1986static int netevent_cb(struct notifier_block *nb, unsigned long event,
1987                       void *data)
1988{
1989        switch (event) {
1990        case NETEVENT_NEIGH_UPDATE:
1991                check_neigh_update(data);
1992                break;
1993        case NETEVENT_REDIRECT:
1994        default:
1995                break;
1996        }
1997        return 0;
1998}
1999
2000static bool netevent_registered;
2001static struct notifier_block cxgb4_netevent_nb = {
2002        .notifier_call = netevent_cb
2003};
2004
2005static void drain_db_fifo(struct adapter *adap, int usecs)
2006{
2007        u32 v1, v2, lp_count, hp_count;
2008
2009        do {
2010                v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2011                v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2012                if (is_t4(adap->params.chip)) {
2013                        lp_count = LP_COUNT_G(v1);
2014                        hp_count = HP_COUNT_G(v1);
2015                } else {
2016                        lp_count = LP_COUNT_T5_G(v1);
2017                        hp_count = HP_COUNT_T5_G(v2);
2018                }
2019
2020                if (lp_count == 0 && hp_count == 0)
2021                        break;
2022                set_current_state(TASK_UNINTERRUPTIBLE);
2023                schedule_timeout(usecs_to_jiffies(usecs));
2024        } while (1);
2025}
2026
2027static void disable_txq_db(struct sge_txq *q)
2028{
2029        unsigned long flags;
2030
2031        spin_lock_irqsave(&q->db_lock, flags);
2032        q->db_disabled = 1;
2033        spin_unlock_irqrestore(&q->db_lock, flags);
2034}
2035
2036static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2037{
2038        spin_lock_irq(&q->db_lock);
2039        if (q->db_pidx_inc) {
2040                /* Make sure that all writes to the TX descriptors
2041                 * are committed before we tell HW about them.
2042                 */
2043                wmb();
2044                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2045                             QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2046                q->db_pidx_inc = 0;
2047        }
2048        q->db_disabled = 0;
2049        spin_unlock_irq(&q->db_lock);
2050}
2051
2052static void disable_dbs(struct adapter *adap)
2053{
2054        int i;
2055
2056        for_each_ethrxq(&adap->sge, i)
2057                disable_txq_db(&adap->sge.ethtxq[i].q);
2058        if (is_offload(adap)) {
2059                struct sge_uld_txq_info *txq_info =
2060                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2061
2062                if (txq_info) {
2063                        for_each_ofldtxq(&adap->sge, i) {
2064                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2065
2066                                disable_txq_db(&txq->q);
2067                        }
2068                }
2069        }
2070        for_each_port(adap, i)
2071                disable_txq_db(&adap->sge.ctrlq[i].q);
2072}
2073
2074static void enable_dbs(struct adapter *adap)
2075{
2076        int i;
2077
2078        for_each_ethrxq(&adap->sge, i)
2079                enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2080        if (is_offload(adap)) {
2081                struct sge_uld_txq_info *txq_info =
2082                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2083
2084                if (txq_info) {
2085                        for_each_ofldtxq(&adap->sge, i) {
2086                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2087
2088                                enable_txq_db(adap, &txq->q);
2089                        }
2090                }
2091        }
2092        for_each_port(adap, i)
2093                enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2094}
2095
2096static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2097{
2098        enum cxgb4_uld type = CXGB4_ULD_RDMA;
2099
2100        if (adap->uld && adap->uld[type].handle)
2101                adap->uld[type].control(adap->uld[type].handle, cmd);
2102}
2103
2104static void process_db_full(struct work_struct *work)
2105{
2106        struct adapter *adap;
2107
2108        adap = container_of(work, struct adapter, db_full_task);
2109
2110        drain_db_fifo(adap, dbfifo_drain_delay);
2111        enable_dbs(adap);
2112        notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2113        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2114                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2115                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2116                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2117        else
2118                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2119                                 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2120}
2121
2122static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2123{
2124        u16 hw_pidx, hw_cidx;
2125        int ret;
2126
2127        spin_lock_irq(&q->db_lock);
2128        ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2129        if (ret)
2130                goto out;
2131        if (q->db_pidx != hw_pidx) {
2132                u16 delta;
2133                u32 val;
2134
2135                if (q->db_pidx >= hw_pidx)
2136                        delta = q->db_pidx - hw_pidx;
2137                else
2138                        delta = q->size - hw_pidx + q->db_pidx;
2139
2140                if (is_t4(adap->params.chip))
2141                        val = PIDX_V(delta);
2142                else
2143                        val = PIDX_T5_V(delta);
2144                wmb();
2145                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2146                             QID_V(q->cntxt_id) | val);
2147        }
2148out:
2149        q->db_disabled = 0;
2150        q->db_pidx_inc = 0;
2151        spin_unlock_irq(&q->db_lock);
2152        if (ret)
2153                CH_WARN(adap, "DB drop recovery failed.\n");
2154}
2155
2156static void recover_all_queues(struct adapter *adap)
2157{
2158        int i;
2159
2160        for_each_ethrxq(&adap->sge, i)
2161                sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2162        if (is_offload(adap)) {
2163                struct sge_uld_txq_info *txq_info =
2164                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2165                if (txq_info) {
2166                        for_each_ofldtxq(&adap->sge, i) {
2167                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2168
2169                                sync_txq_pidx(adap, &txq->q);
2170                        }
2171                }
2172        }
2173        for_each_port(adap, i)
2174                sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2175}
2176
2177static void process_db_drop(struct work_struct *work)
2178{
2179        struct adapter *adap;
2180
2181        adap = container_of(work, struct adapter, db_drop_task);
2182
2183        if (is_t4(adap->params.chip)) {
2184                drain_db_fifo(adap, dbfifo_drain_delay);
2185                notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2186                drain_db_fifo(adap, dbfifo_drain_delay);
2187                recover_all_queues(adap);
2188                drain_db_fifo(adap, dbfifo_drain_delay);
2189                enable_dbs(adap);
2190                notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2191        } else if (is_t5(adap->params.chip)) {
2192                u32 dropped_db = t4_read_reg(adap, 0x010ac);
2193                u16 qid = (dropped_db >> 15) & 0x1ffff;
2194                u16 pidx_inc = dropped_db & 0x1fff;
2195                u64 bar2_qoffset;
2196                unsigned int bar2_qid;
2197                int ret;
2198
2199                ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2200                                        0, &bar2_qoffset, &bar2_qid);
2201                if (ret)
2202                        dev_err(adap->pdev_dev, "doorbell drop recovery: "
2203                                "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2204                else
2205                        writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2206                               adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2207
2208                /* Re-enable BAR2 WC */
2209                t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2210        }
2211
2212        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2213                t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2214}
2215
2216void t4_db_full(struct adapter *adap)
2217{
2218        if (is_t4(adap->params.chip)) {
2219                disable_dbs(adap);
2220                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2221                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2222                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2223                queue_work(adap->workq, &adap->db_full_task);
2224        }
2225}
2226
2227void t4_db_dropped(struct adapter *adap)
2228{
2229        if (is_t4(adap->params.chip)) {
2230                disable_dbs(adap);
2231                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2232        }
2233        queue_work(adap->workq, &adap->db_drop_task);
2234}
2235
2236void t4_register_netevent_notifier(void)
2237{
2238        if (!netevent_registered) {
2239                register_netevent_notifier(&cxgb4_netevent_nb);
2240                netevent_registered = true;
2241        }
2242}
2243
2244static void detach_ulds(struct adapter *adap)
2245{
2246        unsigned int i;
2247
2248        mutex_lock(&uld_mutex);
2249        list_del(&adap->list_node);
2250
2251        for (i = 0; i < CXGB4_ULD_MAX; i++)
2252                if (adap->uld && adap->uld[i].handle)
2253                        adap->uld[i].state_change(adap->uld[i].handle,
2254                                             CXGB4_STATE_DETACH);
2255
2256        if (netevent_registered && list_empty(&adapter_list)) {
2257                unregister_netevent_notifier(&cxgb4_netevent_nb);
2258                netevent_registered = false;
2259        }
2260        mutex_unlock(&uld_mutex);
2261}
2262
2263static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2264{
2265        unsigned int i;
2266
2267        mutex_lock(&uld_mutex);
2268        for (i = 0; i < CXGB4_ULD_MAX; i++)
2269                if (adap->uld && adap->uld[i].handle)
2270                        adap->uld[i].state_change(adap->uld[i].handle,
2271                                                  new_state);
2272        mutex_unlock(&uld_mutex);
2273}
2274
2275#if IS_ENABLED(CONFIG_IPV6)
2276static int cxgb4_inet6addr_handler(struct notifier_block *this,
2277                                   unsigned long event, void *data)
2278{
2279        struct inet6_ifaddr *ifa = data;
2280        struct net_device *event_dev = ifa->idev->dev;
2281        const struct device *parent = NULL;
2282#if IS_ENABLED(CONFIG_BONDING)
2283        struct adapter *adap;
2284#endif
2285        if (is_vlan_dev(event_dev))
2286                event_dev = vlan_dev_real_dev(event_dev);
2287#if IS_ENABLED(CONFIG_BONDING)
2288        if (event_dev->flags & IFF_MASTER) {
2289                list_for_each_entry(adap, &adapter_list, list_node) {
2290                        switch (event) {
2291                        case NETDEV_UP:
2292                                cxgb4_clip_get(adap->port[0],
2293                                               (const u32 *)ifa, 1);
2294                                break;
2295                        case NETDEV_DOWN:
2296                                cxgb4_clip_release(adap->port[0],
2297                                                   (const u32 *)ifa, 1);
2298                                break;
2299                        default:
2300                                break;
2301                        }
2302                }
2303                return NOTIFY_OK;
2304        }
2305#endif
2306
2307        if (event_dev)
2308                parent = event_dev->dev.parent;
2309
2310        if (parent && parent->driver == &cxgb4_driver.driver) {
2311                switch (event) {
2312                case NETDEV_UP:
2313                        cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2314                        break;
2315                case NETDEV_DOWN:
2316                        cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2317                        break;
2318                default:
2319                        break;
2320                }
2321        }
2322        return NOTIFY_OK;
2323}
2324
2325static bool inet6addr_registered;
2326static struct notifier_block cxgb4_inet6addr_notifier = {
2327        .notifier_call = cxgb4_inet6addr_handler
2328};
2329
2330static void update_clip(const struct adapter *adap)
2331{
2332        int i;
2333        struct net_device *dev;
2334        int ret;
2335
2336        rcu_read_lock();
2337
2338        for (i = 0; i < MAX_NPORTS; i++) {
2339                dev = adap->port[i];
2340                ret = 0;
2341
2342                if (dev)
2343                        ret = cxgb4_update_root_dev_clip(dev);
2344
2345                if (ret < 0)
2346                        break;
2347        }
2348        rcu_read_unlock();
2349}
2350#endif /* IS_ENABLED(CONFIG_IPV6) */
2351
2352/**
2353 *      cxgb_up - enable the adapter
2354 *      @adap: adapter being enabled
2355 *
2356 *      Called when the first port is enabled, this function performs the
2357 *      actions necessary to make an adapter operational, such as completing
2358 *      the initialization of HW modules, and enabling interrupts.
2359 *
2360 *      Must be called with the rtnl lock held.
2361 */
2362static int cxgb_up(struct adapter *adap)
2363{
2364        int err;
2365
2366        mutex_lock(&uld_mutex);
2367        err = setup_sge_queues(adap);
2368        if (err)
2369                goto rel_lock;
2370        err = setup_rss(adap);
2371        if (err)
2372                goto freeq;
2373
2374        if (adap->flags & CXGB4_USING_MSIX) {
2375                name_msix_vecs(adap);
2376                err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2377                                  adap->msix_info[0].desc, adap);
2378                if (err)
2379                        goto irq_err;
2380                err = request_msix_queue_irqs(adap);
2381                if (err) {
2382                        free_irq(adap->msix_info[0].vec, adap);
2383                        goto irq_err;
2384                }
2385        } else {
2386                err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2387                                  (adap->flags & CXGB4_USING_MSI) ? 0
2388                                                                  : IRQF_SHARED,
2389                                  adap->port[0]->name, adap);
2390                if (err)
2391                        goto irq_err;
2392        }
2393
2394        enable_rx(adap);
2395        t4_sge_start(adap);
2396        t4_intr_enable(adap);
2397        adap->flags |= CXGB4_FULL_INIT_DONE;
2398        mutex_unlock(&uld_mutex);
2399
2400        notify_ulds(adap, CXGB4_STATE_UP);
2401#if IS_ENABLED(CONFIG_IPV6)
2402        update_clip(adap);
2403#endif
2404        return err;
2405
2406 irq_err:
2407        dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2408 freeq:
2409        t4_free_sge_resources(adap);
2410 rel_lock:
2411        mutex_unlock(&uld_mutex);
2412        return err;
2413}
2414
2415static void cxgb_down(struct adapter *adapter)
2416{
2417        cancel_work_sync(&adapter->tid_release_task);
2418        cancel_work_sync(&adapter->db_full_task);
2419        cancel_work_sync(&adapter->db_drop_task);
2420        adapter->tid_release_task_busy = false;
2421        adapter->tid_release_head = NULL;
2422
2423        t4_sge_stop(adapter);
2424        t4_free_sge_resources(adapter);
2425
2426        adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2427}
2428
2429/*
2430 * net_device operations
2431 */
2432static int cxgb_open(struct net_device *dev)
2433{
2434        int err;
2435        struct port_info *pi = netdev_priv(dev);
2436        struct adapter *adapter = pi->adapter;
2437
2438        netif_carrier_off(dev);
2439
2440        if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2441                err = cxgb_up(adapter);
2442                if (err < 0)
2443                        return err;
2444        }
2445
2446        /* It's possible that the basic port information could have
2447         * changed since we first read it.
2448         */
2449        err = t4_update_port_info(pi);
2450        if (err < 0)
2451                return err;
2452
2453        err = link_start(dev);
2454        if (!err)
2455                netif_tx_start_all_queues(dev);
2456        return err;
2457}
2458
2459static int cxgb_close(struct net_device *dev)
2460{
2461        struct port_info *pi = netdev_priv(dev);
2462        struct adapter *adapter = pi->adapter;
2463        int ret;
2464
2465        netif_tx_stop_all_queues(dev);
2466        netif_carrier_off(dev);
2467        ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2468                                  false, false, false);
2469#ifdef CONFIG_CHELSIO_T4_DCB
2470        cxgb4_dcb_reset(dev);
2471        dcb_tx_queue_prio_enable(dev, false);
2472#endif
2473        return ret;
2474}
2475
2476int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2477                __be32 sip, __be16 sport, __be16 vlan,
2478                unsigned int queue, unsigned char port, unsigned char mask)
2479{
2480        int ret;
2481        struct filter_entry *f;
2482        struct adapter *adap;
2483        int i;
2484        u8 *val;
2485
2486        adap = netdev2adap(dev);
2487
2488        /* Adjust stid to correct filter index */
2489        stid -= adap->tids.sftid_base;
2490        stid += adap->tids.nftids;
2491
2492        /* Check to make sure the filter requested is writable ...
2493         */
2494        f = &adap->tids.ftid_tab[stid];
2495        ret = writable_filter(f);
2496        if (ret)
2497                return ret;
2498
2499        /* Clear out any old resources being used by the filter before
2500         * we start constructing the new filter.
2501         */
2502        if (f->valid)
2503                clear_filter(adap, f);
2504
2505        /* Clear out filter specifications */
2506        memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2507        f->fs.val.lport = cpu_to_be16(sport);
2508        f->fs.mask.lport  = ~0;
2509        val = (u8 *)&sip;
2510        if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2511                for (i = 0; i < 4; i++) {
2512                        f->fs.val.lip[i] = val[i];
2513                        f->fs.mask.lip[i] = ~0;
2514                }
2515                if (adap->params.tp.vlan_pri_map & PORT_F) {
2516                        f->fs.val.iport = port;
2517                        f->fs.mask.iport = mask;
2518                }
2519        }
2520
2521        if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2522                f->fs.val.proto = IPPROTO_TCP;
2523                f->fs.mask.proto = ~0;
2524        }
2525
2526        f->fs.dirsteer = 1;
2527        f->fs.iq = queue;
2528        /* Mark filter as locked */
2529        f->locked = 1;
2530        f->fs.rpttid = 1;
2531
2532        /* Save the actual tid. We need this to get the corresponding
2533         * filter entry structure in filter_rpl.
2534         */
2535        f->tid = stid + adap->tids.ftid_base;
2536        ret = set_filter_wr(adap, stid);
2537        if (ret) {
2538                clear_filter(adap, f);
2539                return ret;
2540        }
2541
2542        return 0;
2543}
2544EXPORT_SYMBOL(cxgb4_create_server_filter);
2545
2546int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2547                unsigned int queue, bool ipv6)
2548{
2549        struct filter_entry *f;
2550        struct adapter *adap;
2551
2552        adap = netdev2adap(dev);
2553
2554        /* Adjust stid to correct filter index */
2555        stid -= adap->tids.sftid_base;
2556        stid += adap->tids.nftids;
2557
2558        f = &adap->tids.ftid_tab[stid];
2559        /* Unlock the filter */
2560        f->locked = 0;
2561
2562        return delete_filter(adap, stid);
2563}
2564EXPORT_SYMBOL(cxgb4_remove_server_filter);
2565
2566static void cxgb_get_stats(struct net_device *dev,
2567                           struct rtnl_link_stats64 *ns)
2568{
2569        struct port_stats stats;
2570        struct port_info *p = netdev_priv(dev);
2571        struct adapter *adapter = p->adapter;
2572
2573        /* Block retrieving statistics during EEH error
2574         * recovery. Otherwise, the recovery might fail
2575         * and the PCI device will be removed permanently
2576         */
2577        spin_lock(&adapter->stats_lock);
2578        if (!netif_device_present(dev)) {
2579                spin_unlock(&adapter->stats_lock);
2580                return;
2581        }
2582        t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2583                                 &p->stats_base);
2584        spin_unlock(&adapter->stats_lock);
2585
2586        ns->tx_bytes   = stats.tx_octets;
2587        ns->tx_packets = stats.tx_frames;
2588        ns->rx_bytes   = stats.rx_octets;
2589        ns->rx_packets = stats.rx_frames;
2590        ns->multicast  = stats.rx_mcast_frames;
2591
2592        /* detailed rx_errors */
2593        ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2594                               stats.rx_runt;
2595        ns->rx_over_errors   = 0;
2596        ns->rx_crc_errors    = stats.rx_fcs_err;
2597        ns->rx_frame_errors  = stats.rx_symbol_err;
2598        ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2599                               stats.rx_ovflow2 + stats.rx_ovflow3 +
2600                               stats.rx_trunc0 + stats.rx_trunc1 +
2601                               stats.rx_trunc2 + stats.rx_trunc3;
2602        ns->rx_missed_errors = 0;
2603
2604        /* detailed tx_errors */
2605        ns->tx_aborted_errors   = 0;
2606        ns->tx_carrier_errors   = 0;
2607        ns->tx_fifo_errors      = 0;
2608        ns->tx_heartbeat_errors = 0;
2609        ns->tx_window_errors    = 0;
2610
2611        ns->tx_errors = stats.tx_error_frames;
2612        ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2613                ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2614}
2615
2616static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2617{
2618        unsigned int mbox;
2619        int ret = 0, prtad, devad;
2620        struct port_info *pi = netdev_priv(dev);
2621        struct adapter *adapter = pi->adapter;
2622        struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2623
2624        switch (cmd) {
2625        case SIOCGMIIPHY:
2626                if (pi->mdio_addr < 0)
2627                        return -EOPNOTSUPP;
2628                data->phy_id = pi->mdio_addr;
2629                break;
2630        case SIOCGMIIREG:
2631        case SIOCSMIIREG:
2632                if (mdio_phy_id_is_c45(data->phy_id)) {
2633                        prtad = mdio_phy_id_prtad(data->phy_id);
2634                        devad = mdio_phy_id_devad(data->phy_id);
2635                } else if (data->phy_id < 32) {
2636                        prtad = data->phy_id;
2637                        devad = 0;
2638                        data->reg_num &= 0x1f;
2639                } else
2640                        return -EINVAL;
2641
2642                mbox = pi->adapter->pf;
2643                if (cmd == SIOCGMIIREG)
2644                        ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2645                                         data->reg_num, &data->val_out);
2646                else
2647                        ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2648                                         data->reg_num, data->val_in);
2649                break;
2650        case SIOCGHWTSTAMP:
2651                return copy_to_user(req->ifr_data, &pi->tstamp_config,
2652                                    sizeof(pi->tstamp_config)) ?
2653                        -EFAULT : 0;
2654        case SIOCSHWTSTAMP:
2655                if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2656                                   sizeof(pi->tstamp_config)))
2657                        return -EFAULT;
2658
2659                if (!is_t4(adapter->params.chip)) {
2660                        switch (pi->tstamp_config.tx_type) {
2661                        case HWTSTAMP_TX_OFF:
2662                        case HWTSTAMP_TX_ON:
2663                                break;
2664                        default:
2665                                return -ERANGE;
2666                        }
2667
2668                        switch (pi->tstamp_config.rx_filter) {
2669                        case HWTSTAMP_FILTER_NONE:
2670                                pi->rxtstamp = false;
2671                                break;
2672                        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2673                        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2674                                cxgb4_ptprx_timestamping(pi, pi->port_id,
2675                                                         PTP_TS_L4);
2676                                break;
2677                        case HWTSTAMP_FILTER_PTP_V2_EVENT:
2678                                cxgb4_ptprx_timestamping(pi, pi->port_id,
2679                                                         PTP_TS_L2_L4);
2680                                break;
2681                        case HWTSTAMP_FILTER_ALL:
2682                        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2683                        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2684                        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2685                        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2686                                pi->rxtstamp = true;
2687                                break;
2688                        default:
2689                                pi->tstamp_config.rx_filter =
2690                                        HWTSTAMP_FILTER_NONE;
2691                                return -ERANGE;
2692                        }
2693
2694                        if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2695                            (pi->tstamp_config.rx_filter ==
2696                                HWTSTAMP_FILTER_NONE)) {
2697                                if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2698                                        pi->ptp_enable = false;
2699                        }
2700
2701                        if (pi->tstamp_config.rx_filter !=
2702                                HWTSTAMP_FILTER_NONE) {
2703                                if (cxgb4_ptp_redirect_rx_packet(adapter,
2704                                                                 pi) >= 0)
2705                                        pi->ptp_enable = true;
2706                        }
2707                } else {
2708                        /* For T4 Adapters */
2709                        switch (pi->tstamp_config.rx_filter) {
2710                        case HWTSTAMP_FILTER_NONE:
2711                        pi->rxtstamp = false;
2712                        break;
2713                        case HWTSTAMP_FILTER_ALL:
2714                        pi->rxtstamp = true;
2715                        break;
2716                        default:
2717                        pi->tstamp_config.rx_filter =
2718                        HWTSTAMP_FILTER_NONE;
2719                        return -ERANGE;
2720                        }
2721                }
2722                return copy_to_user(req->ifr_data, &pi->tstamp_config,
2723                                    sizeof(pi->tstamp_config)) ?
2724                        -EFAULT : 0;
2725        default:
2726                return -EOPNOTSUPP;
2727        }
2728        return ret;
2729}
2730
2731static void cxgb_set_rxmode(struct net_device *dev)
2732{
2733        /* unfortunately we can't return errors to the stack */
2734        set_rxmode(dev, -1, false);
2735}
2736
2737static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2738{
2739        int ret;
2740        struct port_info *pi = netdev_priv(dev);
2741
2742        ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2743                            -1, -1, -1, true);
2744        if (!ret)
2745                dev->mtu = new_mtu;
2746        return ret;
2747}
2748
2749#ifdef CONFIG_PCI_IOV
2750static int cxgb4_mgmt_open(struct net_device *dev)
2751{
2752        /* Turn carrier off since we don't have to transmit anything on this
2753         * interface.
2754         */
2755        netif_carrier_off(dev);
2756        return 0;
2757}
2758
2759/* Fill MAC address that will be assigned by the FW */
2760static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2761{
2762        u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2763        unsigned int i, vf, nvfs;
2764        u16 a, b;
2765        int err;
2766        u8 *na;
2767
2768        adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2769                                                            PCI_CAP_ID_VPD);
2770        err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2771        if (err)
2772                return;
2773
2774        na = adap->params.vpd.na;
2775        for (i = 0; i < ETH_ALEN; i++)
2776                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2777                              hex2val(na[2 * i + 1]));
2778
2779        a = (hw_addr[0] << 8) | hw_addr[1];
2780        b = (hw_addr[1] << 8) | hw_addr[2];
2781        a ^= b;
2782        a |= 0x0200;    /* locally assigned Ethernet MAC address */
2783        a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2784        macaddr[0] = a >> 8;
2785        macaddr[1] = a & 0xff;
2786
2787        for (i = 2; i < 5; i++)
2788                macaddr[i] = hw_addr[i + 1];
2789
2790        for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2791                vf < nvfs; vf++) {
2792                macaddr[5] = adap->pf * nvfs + vf;
2793                ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2794        }
2795}
2796
2797static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2798{
2799        struct port_info *pi = netdev_priv(dev);
2800        struct adapter *adap = pi->adapter;
2801        int ret;
2802
2803        /* verify MAC addr is valid */
2804        if (!is_valid_ether_addr(mac)) {
2805                dev_err(pi->adapter->pdev_dev,
2806                        "Invalid Ethernet address %pM for VF %d\n",
2807                        mac, vf);
2808                return -EINVAL;
2809        }
2810
2811        dev_info(pi->adapter->pdev_dev,
2812                 "Setting MAC %pM on VF %d\n", mac, vf);
2813        ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2814        if (!ret)
2815                ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2816        return ret;
2817}
2818
2819static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2820                                    int vf, struct ifla_vf_info *ivi)
2821{
2822        struct port_info *pi = netdev_priv(dev);
2823        struct adapter *adap = pi->adapter;
2824        struct vf_info *vfinfo;
2825
2826        if (vf >= adap->num_vfs)
2827                return -EINVAL;
2828        vfinfo = &adap->vfinfo[vf];
2829
2830        ivi->vf = vf;
2831        ivi->max_tx_rate = vfinfo->tx_rate;
2832        ivi->min_tx_rate = 0;
2833        ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2834        ivi->vlan = vfinfo->vlan;
2835        ivi->linkstate = vfinfo->link_state;
2836        return 0;
2837}
2838
2839static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2840                                       struct netdev_phys_item_id *ppid)
2841{
2842        struct port_info *pi = netdev_priv(dev);
2843        unsigned int phy_port_id;
2844
2845        phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2846        ppid->id_len = sizeof(phy_port_id);
2847        memcpy(ppid->id, &phy_port_id, ppid->id_len);
2848        return 0;
2849}
2850
2851static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2852                                  int min_tx_rate, int max_tx_rate)
2853{
2854        struct port_info *pi = netdev_priv(dev);
2855        struct adapter *adap = pi->adapter;
2856        unsigned int link_ok, speed, mtu;
2857        u32 fw_pfvf, fw_class;
2858        int class_id = vf;
2859        int ret;
2860        u16 pktsize;
2861
2862        if (vf >= adap->num_vfs)
2863                return -EINVAL;
2864
2865        if (min_tx_rate) {
2866                dev_err(adap->pdev_dev,
2867                        "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2868                        min_tx_rate, vf);
2869                return -EINVAL;
2870        }
2871
2872        if (max_tx_rate == 0) {
2873                /* unbind VF to to any Traffic Class */
2874                fw_pfvf =
2875                    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2876                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2877                fw_class = 0xffffffff;
2878                ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2879                                    &fw_pfvf, &fw_class);
2880                if (ret) {
2881                        dev_err(adap->pdev_dev,
2882                                "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2883                                ret, adap->pf, vf);
2884                        return -EINVAL;
2885                }
2886                dev_info(adap->pdev_dev,
2887                         "PF %d VF %d is unbound from TX Rate Limiting\n",
2888                         adap->pf, vf);
2889                adap->vfinfo[vf].tx_rate = 0;
2890                return 0;
2891        }
2892
2893        ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2894        if (ret != FW_SUCCESS) {
2895                dev_err(adap->pdev_dev,
2896                        "Failed to get link information for VF %d\n", vf);
2897                return -EINVAL;
2898        }
2899
2900        if (!link_ok) {
2901                dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2902                return -EINVAL;
2903        }
2904
2905        if (max_tx_rate > speed) {
2906                dev_err(adap->pdev_dev,
2907                        "Max tx rate %d for VF %d can't be > link-speed %u",
2908                        max_tx_rate, vf, speed);
2909                return -EINVAL;
2910        }
2911
2912        pktsize = mtu;
2913        /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2914        pktsize = pktsize - sizeof(struct ethhdr) - 4;
2915        /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2916        pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2917        /* configure Traffic Class for rate-limiting */
2918        ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2919                              SCHED_CLASS_LEVEL_CL_RL,
2920                              SCHED_CLASS_MODE_CLASS,
2921                              SCHED_CLASS_RATEUNIT_BITS,
2922                              SCHED_CLASS_RATEMODE_ABS,
2923                              pi->tx_chan, class_id, 0,
2924                              max_tx_rate * 1000, 0, pktsize);
2925        if (ret) {
2926                dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2927                        ret);
2928                return -EINVAL;
2929        }
2930        dev_info(adap->pdev_dev,
2931                 "Class %d with MSS %u configured with rate %u\n",
2932                 class_id, pktsize, max_tx_rate);
2933
2934        /* bind VF to configured Traffic Class */
2935        fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2936                   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2937        fw_class = class_id;
2938        ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2939                            &fw_class);
2940        if (ret) {
2941                dev_err(adap->pdev_dev,
2942                        "Err %d in binding PF %d VF %d to Traffic Class %d\n",
2943                        ret, adap->pf, vf, class_id);
2944                return -EINVAL;
2945        }
2946        dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2947                 adap->pf, vf, class_id);
2948        adap->vfinfo[vf].tx_rate = max_tx_rate;
2949        return 0;
2950}
2951
2952static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2953                                  u16 vlan, u8 qos, __be16 vlan_proto)
2954{
2955        struct port_info *pi = netdev_priv(dev);
2956        struct adapter *adap = pi->adapter;
2957        int ret;
2958
2959        if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2960                return -EINVAL;
2961
2962        if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2963                return -EPROTONOSUPPORT;
2964
2965        ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2966        if (!ret) {
2967                adap->vfinfo[vf].vlan = vlan;
2968                return 0;
2969        }
2970
2971        dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2972                ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2973        return ret;
2974}
2975
2976static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
2977                                        int link)
2978{
2979        struct port_info *pi = netdev_priv(dev);
2980        struct adapter *adap = pi->adapter;
2981        u32 param, val;
2982        int ret = 0;
2983
2984        if (vf >= adap->num_vfs)
2985                return -EINVAL;
2986
2987        switch (link) {
2988        case IFLA_VF_LINK_STATE_AUTO:
2989                val = FW_VF_LINK_STATE_AUTO;
2990                break;
2991
2992        case IFLA_VF_LINK_STATE_ENABLE:
2993                val = FW_VF_LINK_STATE_ENABLE;
2994                break;
2995
2996        case IFLA_VF_LINK_STATE_DISABLE:
2997                val = FW_VF_LINK_STATE_DISABLE;
2998                break;
2999
3000        default:
3001                return -EINVAL;
3002        }
3003
3004        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3005                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3006        ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3007                            &param, &val);
3008        if (ret) {
3009                dev_err(adap->pdev_dev,
3010                        "Error %d in setting PF %d VF %d link state\n",
3011                        ret, adap->pf, vf);
3012                return -EINVAL;
3013        }
3014
3015        adap->vfinfo[vf].link_state = link;
3016        return ret;
3017}
3018#endif /* CONFIG_PCI_IOV */
3019
3020static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3021{
3022        int ret;
3023        struct sockaddr *addr = p;
3024        struct port_info *pi = netdev_priv(dev);
3025
3026        if (!is_valid_ether_addr(addr->sa_data))
3027                return -EADDRNOTAVAIL;
3028
3029        ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3030                                    addr->sa_data, true, &pi->smt_idx);
3031        if (ret < 0)
3032                return ret;
3033
3034        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3035        pi->xact_addr_filt = ret;
3036        return 0;
3037}
3038
3039#ifdef CONFIG_NET_POLL_CONTROLLER
3040static void cxgb_netpoll(struct net_device *dev)
3041{
3042        struct port_info *pi = netdev_priv(dev);
3043        struct adapter *adap = pi->adapter;
3044
3045        if (adap->flags & CXGB4_USING_MSIX) {
3046                int i;
3047                struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3048
3049                for (i = pi->nqsets; i; i--, rx++)
3050                        t4_sge_intr_msix(0, &rx->rspq);
3051        } else
3052                t4_intr_handler(adap)(0, adap);
3053}
3054#endif
3055
3056static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3057{
3058        struct port_info *pi = netdev_priv(dev);
3059        struct adapter *adap = pi->adapter;
3060        struct sched_class *e;
3061        struct ch_sched_params p;
3062        struct ch_sched_queue qe;
3063        u32 req_rate;
3064        int err = 0;
3065
3066        if (!can_sched(dev))
3067                return -ENOTSUPP;
3068
3069        if (index < 0 || index > pi->nqsets - 1)
3070                return -EINVAL;
3071
3072        if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3073                dev_err(adap->pdev_dev,
3074                        "Failed to rate limit on queue %d. Link Down?\n",
3075                        index);
3076                return -EINVAL;
3077        }
3078
3079        /* Convert from Mbps to Kbps */
3080        req_rate = rate * 1000;
3081
3082        /* Max rate is 100 Gbps */
3083        if (req_rate > SCHED_MAX_RATE_KBPS) {
3084                dev_err(adap->pdev_dev,
3085                        "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3086                        rate, SCHED_MAX_RATE_KBPS / 1000);
3087                return -ERANGE;
3088        }
3089
3090        /* First unbind the queue from any existing class */
3091        memset(&qe, 0, sizeof(qe));
3092        qe.queue = index;
3093        qe.class = SCHED_CLS_NONE;
3094
3095        err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3096        if (err) {
3097                dev_err(adap->pdev_dev,
3098                        "Unbinding Queue %d on port %d fail. Err: %d\n",
3099                        index, pi->port_id, err);
3100                return err;
3101        }
3102
3103        /* Queue already unbound */
3104        if (!req_rate)
3105                return 0;
3106
3107        /* Fetch any available unused or matching scheduling class */
3108        memset(&p, 0, sizeof(p));
3109        p.type = SCHED_CLASS_TYPE_PACKET;
3110        p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3111        p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3112        p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3113        p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3114        p.u.params.channel  = pi->tx_chan;
3115        p.u.params.class    = SCHED_CLS_NONE;
3116        p.u.params.minrate  = 0;
3117        p.u.params.maxrate  = req_rate;
3118        p.u.params.weight   = 0;
3119        p.u.params.pktsize  = dev->mtu;
3120
3121        e = cxgb4_sched_class_alloc(dev, &p);
3122        if (!e)
3123                return -ENOMEM;
3124
3125        /* Bind the queue to a scheduling class */
3126        memset(&qe, 0, sizeof(qe));
3127        qe.queue = index;
3128        qe.class = e->idx;
3129
3130        err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3131        if (err)
3132                dev_err(adap->pdev_dev,
3133                        "Queue rate limiting failed. Err: %d\n", err);
3134        return err;
3135}
3136
3137static int cxgb_setup_tc_flower(struct net_device *dev,
3138                                struct flow_cls_offload *cls_flower)
3139{
3140        switch (cls_flower->command) {
3141        case FLOW_CLS_REPLACE:
3142                return cxgb4_tc_flower_replace(dev, cls_flower);
3143        case FLOW_CLS_DESTROY:
3144                return cxgb4_tc_flower_destroy(dev, cls_flower);
3145        case FLOW_CLS_STATS:
3146                return cxgb4_tc_flower_stats(dev, cls_flower);
3147        default:
3148                return -EOPNOTSUPP;
3149        }
3150}
3151
3152static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3153                                 struct tc_cls_u32_offload *cls_u32)
3154{
3155        switch (cls_u32->command) {
3156        case TC_CLSU32_NEW_KNODE:
3157        case TC_CLSU32_REPLACE_KNODE:
3158                return cxgb4_config_knode(dev, cls_u32);
3159        case TC_CLSU32_DELETE_KNODE:
3160                return cxgb4_delete_knode(dev, cls_u32);
3161        default:
3162                return -EOPNOTSUPP;
3163        }
3164}
3165
3166static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3167                                  void *cb_priv)
3168{
3169        struct net_device *dev = cb_priv;
3170        struct port_info *pi = netdev2pinfo(dev);
3171        struct adapter *adap = netdev2adap(dev);
3172
3173        if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3174                dev_err(adap->pdev_dev,
3175                        "Failed to setup tc on port %d. Link Down?\n",
3176                        pi->port_id);
3177                return -EINVAL;
3178        }
3179
3180        if (!tc_cls_can_offload_and_chain0(dev, type_data))
3181                return -EOPNOTSUPP;
3182
3183        switch (type) {
3184        case TC_SETUP_CLSU32:
3185                return cxgb_setup_tc_cls_u32(dev, type_data);
3186        case TC_SETUP_CLSFLOWER:
3187                return cxgb_setup_tc_flower(dev, type_data);
3188        default:
3189                return -EOPNOTSUPP;
3190        }
3191}
3192
3193static LIST_HEAD(cxgb_block_cb_list);
3194
3195static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3196                         void *type_data)
3197{
3198        struct port_info *pi = netdev2pinfo(dev);
3199
3200        switch (type) {
3201        case TC_SETUP_BLOCK:
3202                return flow_block_cb_setup_simple(type_data,
3203                                                  &cxgb_block_cb_list,
3204                                                  cxgb_setup_tc_block_cb,
3205                                                  pi, dev, true);
3206        default:
3207                return -EOPNOTSUPP;
3208        }
3209}
3210
3211static void cxgb_del_udp_tunnel(struct net_device *netdev,
3212                                struct udp_tunnel_info *ti)
3213{
3214        struct port_info *pi = netdev_priv(netdev);
3215        struct adapter *adapter = pi->adapter;
3216        unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3217        u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3218        int ret = 0, i;
3219
3220        if (chip_ver < CHELSIO_T6)
3221                return;
3222
3223        switch (ti->type) {
3224        case UDP_TUNNEL_TYPE_VXLAN:
3225                if (!adapter->vxlan_port_cnt ||
3226                    adapter->vxlan_port != ti->port)
3227                        return; /* Invalid VxLAN destination port */
3228
3229                adapter->vxlan_port_cnt--;
3230                if (adapter->vxlan_port_cnt)
3231                        return;
3232
3233                adapter->vxlan_port = 0;
3234                t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3235                break;
3236        case UDP_TUNNEL_TYPE_GENEVE:
3237                if (!adapter->geneve_port_cnt ||
3238                    adapter->geneve_port != ti->port)
3239                        return; /* Invalid GENEVE destination port */
3240
3241                adapter->geneve_port_cnt--;
3242                if (adapter->geneve_port_cnt)
3243                        return;
3244
3245                adapter->geneve_port = 0;
3246                t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3247                break;
3248        default:
3249                return;
3250        }
3251
3252        /* Matchall mac entries can be deleted only after all tunnel ports
3253         * are brought down or removed.
3254         */
3255        if (!adapter->rawf_cnt)
3256                return;
3257        for_each_port(adapter, i) {
3258                pi = adap2pinfo(adapter, i);
3259                ret = t4_free_raw_mac_filt(adapter, pi->viid,
3260                                           match_all_mac, match_all_mac,
3261                                           adapter->rawf_start +
3262                                            pi->port_id,
3263                                           1, pi->port_id, false);
3264                if (ret < 0) {
3265                        netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3266                                    i);
3267                        return;
3268                }
3269        }
3270}
3271
3272static void cxgb_add_udp_tunnel(struct net_device *netdev,
3273                                struct udp_tunnel_info *ti)
3274{
3275        struct port_info *pi = netdev_priv(netdev);
3276        struct adapter *adapter = pi->adapter;
3277        unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3278        u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3279        int i, ret;
3280
3281        if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3282                return;
3283
3284        switch (ti->type) {
3285        case UDP_TUNNEL_TYPE_VXLAN:
3286                /* Callback for adding vxlan port can be called with the same
3287                 * port for both IPv4 and IPv6. We should not disable the
3288                 * offloading when the same port for both protocols is added
3289                 * and later one of them is removed.
3290                 */
3291                if (adapter->vxlan_port_cnt &&
3292                    adapter->vxlan_port == ti->port) {
3293                        adapter->vxlan_port_cnt++;
3294                        return;
3295                }
3296
3297                /* We will support only one VxLAN port */
3298                if (adapter->vxlan_port_cnt) {
3299                        netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3300                                    be16_to_cpu(adapter->vxlan_port),
3301                                    be16_to_cpu(ti->port));
3302                        return;
3303                }
3304
3305                adapter->vxlan_port = ti->port;
3306                adapter->vxlan_port_cnt = 1;
3307
3308                t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3309                             VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3310                break;
3311        case UDP_TUNNEL_TYPE_GENEVE:
3312                if (adapter->geneve_port_cnt &&
3313                    adapter->geneve_port == ti->port) {
3314                        adapter->geneve_port_cnt++;
3315                        return;
3316                }
3317
3318                /* We will support only one GENEVE port */
3319                if (adapter->geneve_port_cnt) {
3320                        netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3321                                    be16_to_cpu(adapter->geneve_port),
3322                                    be16_to_cpu(ti->port));
3323                        return;
3324                }
3325
3326                adapter->geneve_port = ti->port;
3327                adapter->geneve_port_cnt = 1;
3328
3329                t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3330                             GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3331                break;
3332        default:
3333                return;
3334        }
3335
3336        /* Create a 'match all' mac filter entry for inner mac,
3337         * if raw mac interface is supported. Once the linux kernel provides
3338         * driver entry points for adding/deleting the inner mac addresses,
3339         * we will remove this 'match all' entry and fallback to adding
3340         * exact match filters.
3341         */
3342        for_each_port(adapter, i) {
3343                pi = adap2pinfo(adapter, i);
3344
3345                ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3346                                            match_all_mac,
3347                                            match_all_mac,
3348                                            adapter->rawf_start +
3349                                            pi->port_id,
3350                                            1, pi->port_id, false);
3351                if (ret < 0) {
3352                        netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3353                                    be16_to_cpu(ti->port));
3354                        cxgb_del_udp_tunnel(netdev, ti);
3355                        return;
3356                }
3357        }
3358}
3359
3360static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3361                                             struct net_device *dev,
3362                                             netdev_features_t features)
3363{
3364        struct port_info *pi = netdev_priv(dev);
3365        struct adapter *adapter = pi->adapter;
3366
3367        if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3368                return features;
3369
3370        /* Check if hw supports offload for this packet */
3371        if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3372                return features;
3373
3374        /* Offload is not supported for this encapsulated packet */
3375        return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3376}
3377
3378static netdev_features_t cxgb_fix_features(struct net_device *dev,
3379                                           netdev_features_t features)
3380{
3381        /* Disable GRO, if RX_CSUM is disabled */
3382        if (!(features & NETIF_F_RXCSUM))
3383                features &= ~NETIF_F_GRO;
3384
3385        return features;
3386}
3387
3388static const struct net_device_ops cxgb4_netdev_ops = {
3389        .ndo_open             = cxgb_open,
3390        .ndo_stop             = cxgb_close,
3391        .ndo_start_xmit       = t4_start_xmit,
3392        .ndo_select_queue     = cxgb_select_queue,
3393        .ndo_get_stats64      = cxgb_get_stats,
3394        .ndo_set_rx_mode      = cxgb_set_rxmode,
3395        .ndo_set_mac_address  = cxgb_set_mac_addr,
3396        .ndo_set_features     = cxgb_set_features,
3397        .ndo_validate_addr    = eth_validate_addr,
3398        .ndo_do_ioctl         = cxgb_ioctl,
3399        .ndo_change_mtu       = cxgb_change_mtu,
3400#ifdef CONFIG_NET_POLL_CONTROLLER
3401        .ndo_poll_controller  = cxgb_netpoll,
3402#endif
3403#ifdef CONFIG_CHELSIO_T4_FCOE
3404        .ndo_fcoe_enable      = cxgb_fcoe_enable,
3405        .ndo_fcoe_disable     = cxgb_fcoe_disable,
3406#endif /* CONFIG_CHELSIO_T4_FCOE */
3407        .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3408        .ndo_setup_tc         = cxgb_setup_tc,
3409        .ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3410        .ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3411        .ndo_features_check   = cxgb_features_check,
3412        .ndo_fix_features     = cxgb_fix_features,
3413};
3414
3415#ifdef CONFIG_PCI_IOV
3416static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3417        .ndo_open               = cxgb4_mgmt_open,
3418        .ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3419        .ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3420        .ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3421        .ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3422        .ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3423        .ndo_set_vf_link_state  = cxgb4_mgmt_set_vf_link_state,
3424};
3425#endif
3426
3427static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3428                                   struct ethtool_drvinfo *info)
3429{
3430        struct adapter *adapter = netdev2adap(dev);
3431
3432        strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3433        strlcpy(info->version, cxgb4_driver_version,
3434                sizeof(info->version));
3435        strlcpy(info->bus_info, pci_name(adapter->pdev),
3436                sizeof(info->bus_info));
3437}
3438
3439static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3440        .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3441};
3442
3443static void notify_fatal_err(struct work_struct *work)
3444{
3445        struct adapter *adap;
3446
3447        adap = container_of(work, struct adapter, fatal_err_notify_task);
3448        notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3449}
3450
3451void t4_fatal_err(struct adapter *adap)
3452{
3453        int port;
3454
3455        if (pci_channel_offline(adap->pdev))
3456                return;
3457
3458        /* Disable the SGE since ULDs are going to free resources that
3459         * could be exposed to the adapter.  RDMA MWs for example...
3460         */
3461        t4_shutdown_adapter(adap);
3462        for_each_port(adap, port) {
3463                struct net_device *dev = adap->port[port];
3464
3465                /* If we get here in very early initialization the network
3466                 * devices may not have been set up yet.
3467                 */
3468                if (!dev)
3469                        continue;
3470
3471                netif_tx_stop_all_queues(dev);
3472                netif_carrier_off(dev);
3473        }
3474        dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3475        queue_work(adap->workq, &adap->fatal_err_notify_task);
3476}
3477
3478static void setup_memwin(struct adapter *adap)
3479{
3480        u32 nic_win_base = t4_get_util_window(adap);
3481
3482        t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3483}
3484
3485static void setup_memwin_rdma(struct adapter *adap)
3486{
3487        if (adap->vres.ocq.size) {
3488                u32 start;
3489                unsigned int sz_kb;
3490
3491                start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3492                start &= PCI_BASE_ADDRESS_MEM_MASK;
3493                start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3494                sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3495                t4_write_reg(adap,
3496                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3497                             start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3498                t4_write_reg(adap,
3499                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3500                             adap->vres.ocq.start);
3501                t4_read_reg(adap,
3502                            PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3503        }
3504}
3505
3506/* HMA Definitions */
3507
3508/* The maximum number of address that can be send in a single FW cmd */
3509#define HMA_MAX_ADDR_IN_CMD     5
3510
3511#define HMA_PAGE_SIZE           PAGE_SIZE
3512
3513#define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3514
3515#define HMA_PAGE_ORDER                                  \
3516        ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3517        ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3518
3519/* The minimum and maximum possible HMA sizes that can be specified in the FW
3520 * configuration(in units of MB).
3521 */
3522#define HMA_MIN_TOTAL_SIZE      1
3523#define HMA_MAX_TOTAL_SIZE                              \
3524        (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3525          HMA_MAX_NO_FW_ADDRESS) >> 20)
3526
3527static void adap_free_hma_mem(struct adapter *adapter)
3528{
3529        struct scatterlist *iter;
3530        struct page *page;
3531        int i;
3532
3533        if (!adapter->hma.sgt)
3534                return;
3535
3536        if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3537                dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3538                             adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3539                adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3540        }
3541
3542        for_each_sg(adapter->hma.sgt->sgl, iter,
3543                    adapter->hma.sgt->orig_nents, i) {
3544                page = sg_page(iter);
3545                if (page)
3546                        __free_pages(page, HMA_PAGE_ORDER);
3547        }
3548
3549        kfree(adapter->hma.phy_addr);
3550        sg_free_table(adapter->hma.sgt);
3551        kfree(adapter->hma.sgt);
3552        adapter->hma.sgt = NULL;
3553}
3554
3555static int adap_config_hma(struct adapter *adapter)
3556{
3557        struct scatterlist *sgl, *iter;
3558        struct sg_table *sgt;
3559        struct page *newpage;
3560        unsigned int i, j, k;
3561        u32 param, hma_size;
3562        unsigned int ncmds;
3563        size_t page_size;
3564        u32 page_order;
3565        int node, ret;
3566
3567        /* HMA is supported only for T6+ cards.
3568         * Avoid initializing HMA in kdump kernels.
3569         */
3570        if (is_kdump_kernel() ||
3571            CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3572                return 0;
3573
3574        /* Get the HMA region size required by fw */
3575        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3576                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3577        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3578                              1, &param, &hma_size);
3579        /* An error means card has its own memory or HMA is not supported by
3580         * the firmware. Return without any errors.
3581         */
3582        if (ret || !hma_size)
3583                return 0;
3584
3585        if (hma_size < HMA_MIN_TOTAL_SIZE ||
3586            hma_size > HMA_MAX_TOTAL_SIZE) {
3587                dev_err(adapter->pdev_dev,
3588                        "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3589                        hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3590                return -EINVAL;
3591        }
3592
3593        page_size = HMA_PAGE_SIZE;
3594        page_order = HMA_PAGE_ORDER;
3595        adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3596        if (unlikely(!adapter->hma.sgt)) {
3597                dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3598                return -ENOMEM;
3599        }
3600        sgt = adapter->hma.sgt;
3601        /* FW returned value will be in MB's
3602         */
3603        sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3604        if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3605                dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3606                kfree(adapter->hma.sgt);
3607                adapter->hma.sgt = NULL;
3608                return -ENOMEM;
3609        }
3610
3611        sgl = adapter->hma.sgt->sgl;
3612        node = dev_to_node(adapter->pdev_dev);
3613        for_each_sg(sgl, iter, sgt->orig_nents, i) {
3614                newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3615                                           __GFP_ZERO, page_order);
3616                if (!newpage) {
3617                        dev_err(adapter->pdev_dev,
3618                                "Not enough memory for HMA page allocation\n");
3619                        ret = -ENOMEM;
3620                        goto free_hma;
3621                }
3622                sg_set_page(iter, newpage, page_size << page_order, 0);
3623        }
3624
3625        sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3626                                DMA_BIDIRECTIONAL);
3627        if (!sgt->nents) {
3628                dev_err(adapter->pdev_dev,
3629                        "Not enough memory for HMA DMA mapping");
3630                ret = -ENOMEM;
3631                goto free_hma;
3632        }
3633        adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3634
3635        adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3636                                        GFP_KERNEL);
3637        if (unlikely(!adapter->hma.phy_addr))
3638                goto free_hma;
3639
3640        for_each_sg(sgl, iter, sgt->nents, i) {
3641                newpage = sg_page(iter);
3642                adapter->hma.phy_addr[i] = sg_dma_address(iter);
3643        }
3644
3645        ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3646        /* Pass on the addresses to firmware */
3647        for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3648                struct fw_hma_cmd hma_cmd;
3649                u8 naddr = HMA_MAX_ADDR_IN_CMD;
3650                u8 soc = 0, eoc = 0;
3651                u8 hma_mode = 1; /* Presently we support only Page table mode */
3652
3653                soc = (i == 0) ? 1 : 0;
3654                eoc = (i == ncmds - 1) ? 1 : 0;
3655
3656                /* For last cmd, set naddr corresponding to remaining
3657                 * addresses
3658                 */
3659                if (i == ncmds - 1) {
3660                        naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3661                        naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3662                }
3663                memset(&hma_cmd, 0, sizeof(hma_cmd));
3664                hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3665                                       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3666                hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3667
3668                hma_cmd.mode_to_pcie_params =
3669                        htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3670                              FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3671
3672                /* HMA cmd size specified in MB's */
3673                hma_cmd.naddr_size =
3674                        htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3675                              FW_HMA_CMD_NADDR_V(naddr));
3676
3677                /* Total Page size specified in units of 4K */
3678                hma_cmd.addr_size_pkd =
3679                        htonl(FW_HMA_CMD_ADDR_SIZE_V
3680                                ((page_size << page_order) >> 12));
3681
3682                /* Fill the 5 addresses */
3683                for (j = 0; j < naddr; j++) {
3684                        hma_cmd.phy_address[j] =
3685                                cpu_to_be64(adapter->hma.phy_addr[j + k]);
3686                }
3687                ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3688                                 sizeof(hma_cmd), &hma_cmd);
3689                if (ret) {
3690                        dev_err(adapter->pdev_dev,
3691                                "HMA FW command failed with err %d\n", ret);
3692                        goto free_hma;
3693                }
3694        }
3695
3696        if (!ret)
3697                dev_info(adapter->pdev_dev,
3698                         "Reserved %uMB host memory for HMA\n", hma_size);
3699        return ret;
3700
3701free_hma:
3702        adap_free_hma_mem(adapter);
3703        return ret;
3704}
3705
3706static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3707{
3708        u32 v;
3709        int ret;
3710
3711        /* Now that we've successfully configured and initialized the adapter
3712         * can ask the Firmware what resources it has provisioned for us.
3713         */
3714        ret = t4_get_pfres(adap);
3715        if (ret) {
3716                dev_err(adap->pdev_dev,
3717                        "Unable to retrieve resource provisioning information\n");
3718                return ret;
3719        }
3720
3721        /* get device capabilities */
3722        memset(c, 0, sizeof(*c));
3723        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3724                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
3725        c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3726        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3727        if (ret < 0)
3728                return ret;
3729
3730        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3731                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3732        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3733        if (ret < 0)
3734                return ret;
3735
3736        ret = t4_config_glbl_rss(adap, adap->pf,
3737                                 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3738                                 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3739                                 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3740        if (ret < 0)
3741                return ret;
3742
3743        ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3744                          MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3745                          FW_CMD_CAP_PF);
3746        if (ret < 0)
3747                return ret;
3748
3749        t4_sge_init(adap);
3750
3751        /* tweak some settings */
3752        t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3753        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3754        t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3755        v = t4_read_reg(adap, TP_PIO_DATA_A);
3756        t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3757
3758        /* first 4 Tx modulation queues point to consecutive Tx channels */
3759        adap->params.tp.tx_modq_map = 0xE4;
3760        t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3761                     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3762
3763        /* associate each Tx modulation queue with consecutive Tx channels */
3764        v = 0x84218421;
3765        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3766                          &v, 1, TP_TX_SCHED_HDR_A);
3767        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3768                          &v, 1, TP_TX_SCHED_FIFO_A);
3769        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3770                          &v, 1, TP_TX_SCHED_PCMD_A);
3771
3772#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3773        if (is_offload(adap)) {
3774                t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3775                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3776                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3777                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3778                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3779                t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3780                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3781                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3782                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3783                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3784        }
3785
3786        /* get basic stuff going */
3787        return t4_early_init(adap, adap->pf);
3788}
3789
3790/*
3791 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3792 */
3793#define MAX_ATIDS 8192U
3794
3795/*
3796 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3797 *
3798 * If the firmware we're dealing with has Configuration File support, then
3799 * we use that to perform all configuration
3800 */
3801
3802/*
3803 * Tweak configuration based on module parameters, etc.  Most of these have
3804 * defaults assigned to them by Firmware Configuration Files (if we're using
3805 * them) but need to be explicitly set if we're using hard-coded
3806 * initialization.  But even in the case of using Firmware Configuration
3807 * Files, we'd like to expose the ability to change these via module
3808 * parameters so these are essentially common tweaks/settings for
3809 * Configuration Files and hard-coded initialization ...
3810 */
3811static int adap_init0_tweaks(struct adapter *adapter)
3812{
3813        /*
3814         * Fix up various Host-Dependent Parameters like Page Size, Cache
3815         * Line Size, etc.  The firmware default is for a 4KB Page Size and
3816         * 64B Cache Line Size ...
3817         */
3818        t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3819
3820        /*
3821         * Process module parameters which affect early initialization.
3822         */
3823        if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3824                dev_err(&adapter->pdev->dev,
3825                        "Ignoring illegal rx_dma_offset=%d, using 2\n",
3826                        rx_dma_offset);
3827                rx_dma_offset = 2;
3828        }
3829        t4_set_reg_field(adapter, SGE_CONTROL_A,
3830                         PKTSHIFT_V(PKTSHIFT_M),
3831                         PKTSHIFT_V(rx_dma_offset));
3832
3833        /*
3834         * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3835         * adds the pseudo header itself.
3836         */
3837        t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3838                               CSUM_HAS_PSEUDO_HDR_F, 0);
3839
3840        return 0;
3841}
3842
3843/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3844 * unto themselves and they contain their own firmware to perform their
3845 * tasks ...
3846 */
3847static int phy_aq1202_version(const u8 *phy_fw_data,
3848                              size_t phy_fw_size)
3849{
3850        int offset;
3851
3852        /* At offset 0x8 you're looking for the primary image's
3853         * starting offset which is 3 Bytes wide
3854         *
3855         * At offset 0xa of the primary image, you look for the offset
3856         * of the DRAM segment which is 3 Bytes wide.
3857         *
3858         * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3859         * wide
3860         */
3861        #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3862        #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3863        #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3864
3865        offset = le24(phy_fw_data + 0x8) << 12;
3866        offset = le24(phy_fw_data + offset + 0xa);
3867        return be16(phy_fw_data + offset + 0x27e);
3868
3869        #undef be16
3870        #undef le16
3871        #undef le24
3872}
3873
3874static struct info_10gbt_phy_fw {
3875        unsigned int phy_fw_id;         /* PCI Device ID */
3876        char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3877        int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3878        int phy_flash;                  /* Has FLASH for PHY Firmware */
3879} phy_info_array[] = {
3880        {
3881                PHY_AQ1202_DEVICEID,
3882                PHY_AQ1202_FIRMWARE,
3883                phy_aq1202_version,
3884                1,
3885        },
3886        {
3887                PHY_BCM84834_DEVICEID,
3888                PHY_BCM84834_FIRMWARE,
3889                NULL,
3890                0,
3891        },
3892        { 0, NULL, NULL },
3893};
3894
3895static struct info_10gbt_phy_fw *find_phy_info(int devid)
3896{
3897        int i;
3898
3899        for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3900                if (phy_info_array[i].phy_fw_id == devid)
3901                        return &phy_info_array[i];
3902        }
3903        return NULL;
3904}
3905
3906/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3907 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3908 * we return a negative error number.  If we transfer new firmware we return 1
3909 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3910 */
3911static int adap_init0_phy(struct adapter *adap)
3912{
3913        const struct firmware *phyf;
3914        int ret;
3915        struct info_10gbt_phy_fw *phy_info;
3916
3917        /* Use the device ID to determine which PHY file to flash.
3918         */
3919        phy_info = find_phy_info(adap->pdev->device);
3920        if (!phy_info) {
3921                dev_warn(adap->pdev_dev,
3922                         "No PHY Firmware file found for this PHY\n");
3923                return -EOPNOTSUPP;
3924        }
3925
3926        /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3927         * use that. The adapter firmware provides us with a memory buffer
3928         * where we can load a PHY firmware file from the host if we want to
3929         * override the PHY firmware File in flash.
3930         */
3931        ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3932                                      adap->pdev_dev);
3933        if (ret < 0) {
3934                /* For adapters without FLASH attached to PHY for their
3935                 * firmware, it's obviously a fatal error if we can't get the
3936                 * firmware to the adapter.  For adapters with PHY firmware
3937                 * FLASH storage, it's worth a warning if we can't find the
3938                 * PHY Firmware but we'll neuter the error ...
3939                 */
3940                dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3941                        "/lib/firmware/%s, error %d\n",
3942                        phy_info->phy_fw_file, -ret);
3943                if (phy_info->phy_flash) {
3944                        int cur_phy_fw_ver = 0;
3945
3946                        t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3947                        dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3948                                 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3949                        ret = 0;
3950                }
3951
3952                return ret;
3953        }
3954
3955        /* Load PHY Firmware onto adapter.
3956         */
3957        ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3958                             phy_info->phy_fw_version,
3959                             (u8 *)phyf->data, phyf->size);
3960        if (ret < 0)
3961                dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3962                        -ret);
3963        else if (ret > 0) {
3964                int new_phy_fw_ver = 0;
3965
3966                if (phy_info->phy_fw_version)
3967                        new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3968                                                                  phyf->size);
3969                dev_info(adap->pdev_dev, "Successfully transferred PHY "
3970                         "Firmware /lib/firmware/%s, version %#x\n",
3971                         phy_info->phy_fw_file, new_phy_fw_ver);
3972        }
3973
3974        release_firmware(phyf);
3975
3976        return ret;
3977}
3978
3979/*
3980 * Attempt to initialize the adapter via a Firmware Configuration File.
3981 */
3982static int adap_init0_config(struct adapter *adapter, int reset)
3983{
3984        char *fw_config_file, fw_config_file_path[256];
3985        u32 finiver, finicsum, cfcsum, param, val;
3986        struct fw_caps_config_cmd caps_cmd;
3987        unsigned long mtype = 0, maddr = 0;
3988        const struct firmware *cf;
3989        char *config_name = NULL;
3990        int config_issued = 0;
3991        int ret;
3992
3993        /*
3994         * Reset device if necessary.
3995         */
3996        if (reset) {
3997                ret = t4_fw_reset(adapter, adapter->mbox,
3998                                  PIORSTMODE_F | PIORST_F);
3999                if (ret < 0)
4000                        goto bye;
4001        }
4002
4003        /* If this is a 10Gb/s-BT adapter make sure the chip-external
4004         * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4005         * to be performed after any global adapter RESET above since some
4006         * PHYs only have local RAM copies of the PHY firmware.
4007         */
4008        if (is_10gbt_device(adapter->pdev->device)) {
4009                ret = adap_init0_phy(adapter);
4010                if (ret < 0)
4011                        goto bye;
4012        }
4013        /*
4014         * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4015         * then use that.  Otherwise, use the configuration file stored
4016         * in the adapter flash ...
4017         */
4018        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4019        case CHELSIO_T4:
4020                fw_config_file = FW4_CFNAME;
4021                break;
4022        case CHELSIO_T5:
4023                fw_config_file = FW5_CFNAME;
4024                break;
4025        case CHELSIO_T6:
4026                fw_config_file = FW6_CFNAME;
4027                break;
4028        default:
4029                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4030                       adapter->pdev->device);
4031                ret = -EINVAL;
4032                goto bye;
4033        }
4034
4035        ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4036        if (ret < 0) {
4037                config_name = "On FLASH";
4038                mtype = FW_MEMTYPE_CF_FLASH;
4039                maddr = t4_flash_cfg_addr(adapter);
4040        } else {
4041                u32 params[7], val[7];
4042
4043                sprintf(fw_config_file_path,
4044                        "/lib/firmware/%s", fw_config_file);
4045                config_name = fw_config_file_path;
4046
4047                if (cf->size >= FLASH_CFG_MAX_SIZE)
4048                        ret = -ENOMEM;
4049                else {
4050                        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4051                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4052                        ret = t4_query_params(adapter, adapter->mbox,
4053                                              adapter->pf, 0, 1, params, val);
4054                        if (ret == 0) {
4055                                /*
4056                                 * For t4_memory_rw() below addresses and
4057                                 * sizes have to be in terms of multiples of 4
4058                                 * bytes.  So, if the Configuration File isn't
4059                                 * a multiple of 4 bytes in length we'll have
4060                                 * to write that out separately since we can't
4061                                 * guarantee that the bytes following the
4062                                 * residual byte in the buffer returned by
4063                                 * request_firmware() are zeroed out ...
4064                                 */
4065                                size_t resid = cf->size & 0x3;
4066                                size_t size = cf->size & ~0x3;
4067                                __be32 *data = (__be32 *)cf->data;
4068
4069                                mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4070                                maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4071
4072                                spin_lock(&adapter->win0_lock);
4073                                ret = t4_memory_rw(adapter, 0, mtype, maddr,
4074                                                   size, data, T4_MEMORY_WRITE);
4075                                if (ret == 0 && resid != 0) {
4076                                        union {
4077                                                __be32 word;
4078                                                char buf[4];
4079                                        } last;
4080                                        int i;
4081
4082                                        last.word = data[size >> 2];
4083                                        for (i = resid; i < 4; i++)
4084                                                last.buf[i] = 0;
4085                                        ret = t4_memory_rw(adapter, 0, mtype,
4086                                                           maddr + size,
4087                                                           4, &last.word,
4088                                                           T4_MEMORY_WRITE);
4089                                }
4090                                spin_unlock(&adapter->win0_lock);
4091                        }
4092                }
4093
4094                release_firmware(cf);
4095                if (ret)
4096                        goto bye;
4097        }
4098
4099        val = 0;
4100
4101        /* Ofld + Hash filter is supported. Older fw will fail this request and
4102         * it is fine.
4103         */
4104        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4105                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4106        ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4107                            1, &param, &val);
4108
4109        /* FW doesn't know about Hash filter + ofld support,
4110         * it's not a problem, don't return an error.
4111         */
4112        if (ret < 0) {
4113                dev_warn(adapter->pdev_dev,
4114                         "Hash filter with ofld is not supported by FW\n");
4115        }
4116
4117        /*
4118         * Issue a Capability Configuration command to the firmware to get it
4119         * to parse the Configuration File.  We don't use t4_fw_config_file()
4120         * because we want the ability to modify various features after we've
4121         * processed the configuration file ...
4122         */
4123        memset(&caps_cmd, 0, sizeof(caps_cmd));
4124        caps_cmd.op_to_write =
4125                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4126                      FW_CMD_REQUEST_F |
4127                      FW_CMD_READ_F);
4128        caps_cmd.cfvalid_to_len16 =
4129                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4130                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4131                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4132                      FW_LEN16(caps_cmd));
4133        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4134                         &caps_cmd);
4135
4136        /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4137         * Configuration File in FLASH), our last gasp effort is to use the
4138         * Firmware Configuration File which is embedded in the firmware.  A
4139         * very few early versions of the firmware didn't have one embedded
4140         * but we can ignore those.
4141         */
4142        if (ret == -ENOENT) {
4143                memset(&caps_cmd, 0, sizeof(caps_cmd));
4144                caps_cmd.op_to_write =
4145                        htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4146                                        FW_CMD_REQUEST_F |
4147                                        FW_CMD_READ_F);
4148                caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4149                ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4150                                sizeof(caps_cmd), &caps_cmd);
4151                config_name = "Firmware Default";
4152        }
4153
4154        config_issued = 1;
4155        if (ret < 0)
4156                goto bye;
4157
4158        finiver = ntohl(caps_cmd.finiver);
4159        finicsum = ntohl(caps_cmd.finicsum);
4160        cfcsum = ntohl(caps_cmd.cfcsum);
4161        if (finicsum != cfcsum)
4162                dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4163                         "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4164                         finicsum, cfcsum);
4165
4166        /*
4167         * And now tell the firmware to use the configuration we just loaded.
4168         */
4169        caps_cmd.op_to_write =
4170                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4171                      FW_CMD_REQUEST_F |
4172                      FW_CMD_WRITE_F);
4173        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4174        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4175                         NULL);
4176        if (ret < 0)
4177                goto bye;
4178
4179        /*
4180         * Tweak configuration based on system architecture, module
4181         * parameters, etc.
4182         */
4183        ret = adap_init0_tweaks(adapter);
4184        if (ret < 0)
4185                goto bye;
4186
4187        /* We will proceed even if HMA init fails. */
4188        ret = adap_config_hma(adapter);
4189        if (ret)
4190                dev_err(adapter->pdev_dev,
4191                        "HMA configuration failed with error %d\n", ret);
4192
4193        if (is_t6(adapter->params.chip)) {
4194                ret = setup_ppod_edram(adapter);
4195                if (!ret)
4196                        dev_info(adapter->pdev_dev, "Successfully enabled "
4197                                 "ppod edram feature\n");
4198        }
4199
4200        /*
4201         * And finally tell the firmware to initialize itself using the
4202         * parameters from the Configuration File.
4203         */
4204        ret = t4_fw_initialize(adapter, adapter->mbox);
4205        if (ret < 0)
4206                goto bye;
4207
4208        /* Emit Firmware Configuration File information and return
4209         * successfully.
4210         */
4211        dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4212                 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4213                 config_name, finiver, cfcsum);
4214        return 0;
4215
4216        /*
4217         * Something bad happened.  Return the error ...  (If the "error"
4218         * is that there's no Configuration File on the adapter we don't
4219         * want to issue a warning since this is fairly common.)
4220         */
4221bye:
4222        if (config_issued && ret != -ENOENT)
4223                dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4224                         config_name, -ret);
4225        return ret;
4226}
4227
4228static struct fw_info fw_info_array[] = {
4229        {
4230                .chip = CHELSIO_T4,
4231                .fs_name = FW4_CFNAME,
4232                .fw_mod_name = FW4_FNAME,
4233                .fw_hdr = {
4234                        .chip = FW_HDR_CHIP_T4,
4235                        .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4236                        .intfver_nic = FW_INTFVER(T4, NIC),
4237                        .intfver_vnic = FW_INTFVER(T4, VNIC),
4238                        .intfver_ri = FW_INTFVER(T4, RI),
4239                        .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4240                        .intfver_fcoe = FW_INTFVER(T4, FCOE),
4241                },
4242        }, {
4243                .chip = CHELSIO_T5,
4244                .fs_name = FW5_CFNAME,
4245                .fw_mod_name = FW5_FNAME,
4246                .fw_hdr = {
4247                        .chip = FW_HDR_CHIP_T5,
4248                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4249                        .intfver_nic = FW_INTFVER(T5, NIC),
4250                        .intfver_vnic = FW_INTFVER(T5, VNIC),
4251                        .intfver_ri = FW_INTFVER(T5, RI),
4252                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4253                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
4254                },
4255        }, {
4256                .chip = CHELSIO_T6,
4257                .fs_name = FW6_CFNAME,
4258                .fw_mod_name = FW6_FNAME,
4259                .fw_hdr = {
4260                        .chip = FW_HDR_CHIP_T6,
4261                        .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4262                        .intfver_nic = FW_INTFVER(T6, NIC),
4263                        .intfver_vnic = FW_INTFVER(T6, VNIC),
4264                        .intfver_ofld = FW_INTFVER(T6, OFLD),
4265                        .intfver_ri = FW_INTFVER(T6, RI),
4266                        .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4267                        .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4268                        .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4269                        .intfver_fcoe = FW_INTFVER(T6, FCOE),
4270                },
4271        }
4272
4273};
4274
4275static struct fw_info *find_fw_info(int chip)
4276{
4277        int i;
4278
4279        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4280                if (fw_info_array[i].chip == chip)
4281                        return &fw_info_array[i];
4282        }
4283        return NULL;
4284}
4285
4286/*
4287 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4288 */
4289static int adap_init0(struct adapter *adap)
4290{
4291        int ret;
4292        u32 v, port_vec;
4293        enum dev_state state;
4294        u32 params[7], val[7];
4295        struct fw_caps_config_cmd caps_cmd;
4296        int reset = 1;
4297
4298        /* Grab Firmware Device Log parameters as early as possible so we have
4299         * access to it for debugging, etc.
4300         */
4301        ret = t4_init_devlog_params(adap);
4302        if (ret < 0)
4303                return ret;
4304
4305        /* Contact FW, advertising Master capability */
4306        ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4307                          is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4308        if (ret < 0) {
4309                dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4310                        ret);
4311                return ret;
4312        }
4313        if (ret == adap->mbox)
4314                adap->flags |= CXGB4_MASTER_PF;
4315
4316        /*
4317         * If we're the Master PF Driver and the device is uninitialized,
4318         * then let's consider upgrading the firmware ...  (We always want
4319         * to check the firmware version number in order to A. get it for
4320         * later reporting and B. to warn if the currently loaded firmware
4321         * is excessively mismatched relative to the driver.)
4322         */
4323
4324        t4_get_version_info(adap);
4325        ret = t4_check_fw_version(adap);
4326        /* If firmware is too old (not supported by driver) force an update. */
4327        if (ret)
4328                state = DEV_STATE_UNINIT;
4329        if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4330                struct fw_info *fw_info;
4331                struct fw_hdr *card_fw;
4332                const struct firmware *fw;
4333                const u8 *fw_data = NULL;
4334                unsigned int fw_size = 0;
4335
4336                /* This is the firmware whose headers the driver was compiled
4337                 * against
4338                 */
4339                fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4340                if (fw_info == NULL) {
4341                        dev_err(adap->pdev_dev,
4342                                "unable to get firmware info for chip %d.\n",
4343                                CHELSIO_CHIP_VERSION(adap->params.chip));
4344                        return -EINVAL;
4345                }
4346
4347                /* allocate memory to read the header of the firmware on the
4348                 * card
4349                 */
4350                card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4351                if (!card_fw) {
4352                        ret = -ENOMEM;
4353                        goto bye;
4354                }
4355
4356                /* Get FW from from /lib/firmware/ */
4357                ret = request_firmware(&fw, fw_info->fw_mod_name,
4358                                       adap->pdev_dev);
4359                if (ret < 0) {
4360                        dev_err(adap->pdev_dev,
4361                                "unable to load firmware image %s, error %d\n",
4362                                fw_info->fw_mod_name, ret);
4363                } else {
4364                        fw_data = fw->data;
4365                        fw_size = fw->size;
4366                }
4367
4368                /* upgrade FW logic */
4369                ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4370                                 state, &reset);
4371
4372                /* Cleaning up */
4373                release_firmware(fw);
4374                kvfree(card_fw);
4375
4376                if (ret < 0)
4377                        goto bye;
4378        }
4379
4380        /* If the firmware is initialized already, emit a simply note to that
4381         * effect. Otherwise, it's time to try initializing the adapter.
4382         */
4383        if (state == DEV_STATE_INIT) {
4384                ret = adap_config_hma(adap);
4385                if (ret)
4386                        dev_err(adap->pdev_dev,
4387                                "HMA configuration failed with error %d\n",
4388                                ret);
4389                dev_info(adap->pdev_dev, "Coming up as %s: "\
4390                         "Adapter already initialized\n",
4391                         adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4392        } else {
4393                dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4394                         "Initializing adapter\n");
4395
4396                /* Find out whether we're dealing with a version of the
4397                 * firmware which has configuration file support.
4398                 */
4399                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4400                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4401                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4402                                      params, val);
4403
4404                /* If the firmware doesn't support Configuration Files,
4405                 * return an error.
4406                 */
4407                if (ret < 0) {
4408                        dev_err(adap->pdev_dev, "firmware doesn't support "
4409                                "Firmware Configuration Files\n");
4410                        goto bye;
4411                }
4412
4413                /* The firmware provides us with a memory buffer where we can
4414                 * load a Configuration File from the host if we want to
4415                 * override the Configuration File in flash.
4416                 */
4417                ret = adap_init0_config(adap, reset);
4418                if (ret == -ENOENT) {
4419                        dev_err(adap->pdev_dev, "no Configuration File "
4420                                "present on adapter.\n");
4421                        goto bye;
4422                }
4423                if (ret < 0) {
4424                        dev_err(adap->pdev_dev, "could not initialize "
4425                                "adapter, error %d\n", -ret);
4426                        goto bye;
4427                }
4428        }
4429
4430        /* Now that we've successfully configured and initialized the adapter
4431         * (or found it already initialized), we can ask the Firmware what
4432         * resources it has provisioned for us.
4433         */
4434        ret = t4_get_pfres(adap);
4435        if (ret) {
4436                dev_err(adap->pdev_dev,
4437                        "Unable to retrieve resource provisioning information\n");
4438                goto bye;
4439        }
4440
4441        /* Grab VPD parameters.  This should be done after we establish a
4442         * connection to the firmware since some of the VPD parameters
4443         * (notably the Core Clock frequency) are retrieved via requests to
4444         * the firmware.  On the other hand, we need these fairly early on
4445         * so we do this right after getting ahold of the firmware.
4446         *
4447         * We need to do this after initializing the adapter because someone
4448         * could have FLASHed a new VPD which won't be read by the firmware
4449         * until we do the RESET ...
4450         */
4451        ret = t4_get_vpd_params(adap, &adap->params.vpd);
4452        if (ret < 0)
4453                goto bye;
4454
4455        /* Find out what ports are available to us.  Note that we need to do
4456         * this before calling adap_init0_no_config() since it needs nports
4457         * and portvec ...
4458         */
4459        v =
4460            FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4461            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4462        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4463        if (ret < 0)
4464                goto bye;
4465
4466        adap->params.nports = hweight32(port_vec);
4467        adap->params.portvec = port_vec;
4468
4469        /* Give the SGE code a chance to pull in anything that it needs ...
4470         * Note that this must be called after we retrieve our VPD parameters
4471         * in order to know how to convert core ticks to seconds, etc.
4472         */
4473        ret = t4_sge_init(adap);
4474        if (ret < 0)
4475                goto bye;
4476
4477        /* Grab the SGE Doorbell Queue Timer values.  If successful, that
4478         * indicates that the Firmware and Hardware support this.
4479         */
4480        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4481                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4482        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4483                              1, params, val);
4484
4485        if (!ret) {
4486                adap->sge.dbqtimer_tick = val[0];
4487                ret = t4_read_sge_dbqtimers(adap,
4488                                            ARRAY_SIZE(adap->sge.dbqtimer_val),
4489                                            adap->sge.dbqtimer_val);
4490        }
4491
4492        if (!ret)
4493                adap->flags |= CXGB4_SGE_DBQ_TIMER;
4494
4495        if (is_bypass_device(adap->pdev->device))
4496                adap->params.bypass = 1;
4497
4498        /*
4499         * Grab some of our basic fundamental operating parameters.
4500         */
4501#define FW_PARAM_DEV(param) \
4502        (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4503        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4504
4505#define FW_PARAM_PFVF(param) \
4506        FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4507        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4508        FW_PARAMS_PARAM_Y_V(0) | \
4509        FW_PARAMS_PARAM_Z_V(0)
4510
4511        params[0] = FW_PARAM_PFVF(EQ_START);
4512        params[1] = FW_PARAM_PFVF(L2T_START);
4513        params[2] = FW_PARAM_PFVF(L2T_END);
4514        params[3] = FW_PARAM_PFVF(FILTER_START);
4515        params[4] = FW_PARAM_PFVF(FILTER_END);
4516        params[5] = FW_PARAM_PFVF(IQFLINT_START);
4517        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4518        if (ret < 0)
4519                goto bye;
4520        adap->sge.egr_start = val[0];
4521        adap->l2t_start = val[1];
4522        adap->l2t_end = val[2];
4523        adap->tids.ftid_base = val[3];
4524        adap->tids.nftids = val[4] - val[3] + 1;
4525        adap->sge.ingr_start = val[5];
4526
4527        if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4528                /* Read the raw mps entries. In T6, the last 2 tcam entries
4529                 * are reserved for raw mac addresses (rawf = 2, one per port).
4530                 */
4531                params[0] = FW_PARAM_PFVF(RAWF_START);
4532                params[1] = FW_PARAM_PFVF(RAWF_END);
4533                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4534                                      params, val);
4535                if (ret == 0) {
4536                        adap->rawf_start = val[0];
4537                        adap->rawf_cnt = val[1] - val[0] + 1;
4538                }
4539        }
4540
4541        /* qids (ingress/egress) returned from firmware can be anywhere
4542         * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4543         * Hence driver needs to allocate memory for this range to
4544         * store the queue info. Get the highest IQFLINT/EQ index returned
4545         * in FW_EQ_*_CMD.alloc command.
4546         */
4547        params[0] = FW_PARAM_PFVF(EQ_END);
4548        params[1] = FW_PARAM_PFVF(IQFLINT_END);
4549        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4550        if (ret < 0)
4551                goto bye;
4552        adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4553        adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4554
4555        adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4556                                    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4557        if (!adap->sge.egr_map) {
4558                ret = -ENOMEM;
4559                goto bye;
4560        }
4561
4562        adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4563                                     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4564        if (!adap->sge.ingr_map) {
4565                ret = -ENOMEM;
4566                goto bye;
4567        }
4568
4569        /* Allocate the memory for the vaious egress queue bitmaps
4570         * ie starving_fl, txq_maperr and blocked_fl.
4571         */
4572        adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4573                                        sizeof(long), GFP_KERNEL);
4574        if (!adap->sge.starving_fl) {
4575                ret = -ENOMEM;
4576                goto bye;
4577        }
4578
4579        adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4580                                       sizeof(long), GFP_KERNEL);
4581        if (!adap->sge.txq_maperr) {
4582                ret = -ENOMEM;
4583                goto bye;
4584        }
4585
4586#ifdef CONFIG_DEBUG_FS
4587        adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4588                                       sizeof(long), GFP_KERNEL);
4589        if (!adap->sge.blocked_fl) {
4590                ret = -ENOMEM;
4591                goto bye;
4592        }
4593#endif
4594
4595        params[0] = FW_PARAM_PFVF(CLIP_START);
4596        params[1] = FW_PARAM_PFVF(CLIP_END);
4597        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4598        if (ret < 0)
4599                goto bye;
4600        adap->clipt_start = val[0];
4601        adap->clipt_end = val[1];
4602
4603        /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4604         * Classes supported by the hardware/firmware so we hard code it here
4605         * for now.
4606         */
4607        adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4608
4609        /* query params related to active filter region */
4610        params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4611        params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4612        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4613        /* If Active filter size is set we enable establishing
4614         * offload connection through firmware work request
4615         */
4616        if ((val[0] != val[1]) && (ret >= 0)) {
4617                adap->flags |= CXGB4_FW_OFLD_CONN;
4618                adap->tids.aftid_base = val[0];
4619                adap->tids.aftid_end = val[1];
4620        }
4621
4622        /* If we're running on newer firmware, let it know that we're
4623         * prepared to deal with encapsulated CPL messages.  Older
4624         * firmware won't understand this and we'll just get
4625         * unencapsulated messages ...
4626         */
4627        params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4628        val[0] = 1;
4629        (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4630
4631        /*
4632         * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4633         * capability.  Earlier versions of the firmware didn't have the
4634         * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4635         * permission to use ULPTX MEMWRITE DSGL.
4636         */
4637        if (is_t4(adap->params.chip)) {
4638                adap->params.ulptx_memwrite_dsgl = false;
4639        } else {
4640                params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4641                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4642                                      1, params, val);
4643                adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4644        }
4645
4646        /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4647        params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4648        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4649                              1, params, val);
4650        adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4651
4652        /* See if FW supports FW_FILTER2 work request */
4653        if (is_t4(adap->params.chip)) {
4654                adap->params.filter2_wr_support = 0;
4655        } else {
4656                params[0] = FW_PARAM_DEV(FILTER2_WR);
4657                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4658                                      1, params, val);
4659                adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4660        }
4661
4662        /* Check if FW supports returning vin and smt index.
4663         * If this is not supported, driver will interpret
4664         * these values from viid.
4665         */
4666        params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4667        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4668                              1, params, val);
4669        adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4670
4671        /*
4672         * Get device capabilities so we can determine what resources we need
4673         * to manage.
4674         */
4675        memset(&caps_cmd, 0, sizeof(caps_cmd));
4676        caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4677                                     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4678        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4679        ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4680                         &caps_cmd);
4681        if (ret < 0)
4682                goto bye;
4683
4684        /* hash filter has some mandatory register settings to be tested and for
4685         * that it needs to test whether offload is enabled or not, hence
4686         * checking and setting it here.
4687         */
4688        if (caps_cmd.ofldcaps)
4689                adap->params.offload = 1;
4690
4691        if (caps_cmd.ofldcaps ||
4692            (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4693                /* query offload-related parameters */
4694                params[0] = FW_PARAM_DEV(NTID);
4695                params[1] = FW_PARAM_PFVF(SERVER_START);
4696                params[2] = FW_PARAM_PFVF(SERVER_END);
4697                params[3] = FW_PARAM_PFVF(TDDP_START);
4698                params[4] = FW_PARAM_PFVF(TDDP_END);
4699                params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4700                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4701                                      params, val);
4702                if (ret < 0)
4703                        goto bye;
4704                adap->tids.ntids = val[0];
4705                adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4706                adap->tids.stid_base = val[1];
4707                adap->tids.nstids = val[2] - val[1] + 1;
4708                /*
4709                 * Setup server filter region. Divide the available filter
4710                 * region into two parts. Regular filters get 1/3rd and server
4711                 * filters get 2/3rd part. This is only enabled if workarond
4712                 * path is enabled.
4713                 * 1. For regular filters.
4714                 * 2. Server filter: This are special filters which are used
4715                 * to redirect SYN packets to offload queue.
4716                 */
4717                if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4718                        adap->tids.sftid_base = adap->tids.ftid_base +
4719                                        DIV_ROUND_UP(adap->tids.nftids, 3);
4720                        adap->tids.nsftids = adap->tids.nftids -
4721                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4722                        adap->tids.nftids = adap->tids.sftid_base -
4723                                                adap->tids.ftid_base;
4724                }
4725                adap->vres.ddp.start = val[3];
4726                adap->vres.ddp.size = val[4] - val[3] + 1;
4727                adap->params.ofldq_wr_cred = val[5];
4728
4729                if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4730                        init_hash_filter(adap);
4731                } else {
4732                        adap->num_ofld_uld += 1;
4733                }
4734        }
4735        if (caps_cmd.rdmacaps) {
4736                params[0] = FW_PARAM_PFVF(STAG_START);
4737                params[1] = FW_PARAM_PFVF(STAG_END);
4738                params[2] = FW_PARAM_PFVF(RQ_START);
4739                params[3] = FW_PARAM_PFVF(RQ_END);
4740                params[4] = FW_PARAM_PFVF(PBL_START);
4741                params[5] = FW_PARAM_PFVF(PBL_END);
4742                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4743                                      params, val);
4744                if (ret < 0)
4745                        goto bye;
4746                adap->vres.stag.start = val[0];
4747                adap->vres.stag.size = val[1] - val[0] + 1;
4748                adap->vres.rq.start = val[2];
4749                adap->vres.rq.size = val[3] - val[2] + 1;
4750                adap->vres.pbl.start = val[4];
4751                adap->vres.pbl.size = val[5] - val[4] + 1;
4752
4753                params[0] = FW_PARAM_PFVF(SRQ_START);
4754                params[1] = FW_PARAM_PFVF(SRQ_END);
4755                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4756                                      params, val);
4757                if (!ret) {
4758                        adap->vres.srq.start = val[0];
4759                        adap->vres.srq.size = val[1] - val[0] + 1;
4760                }
4761                if (adap->vres.srq.size) {
4762                        adap->srq = t4_init_srq(adap->vres.srq.size);
4763                        if (!adap->srq)
4764                                dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4765                }
4766
4767                params[0] = FW_PARAM_PFVF(SQRQ_START);
4768                params[1] = FW_PARAM_PFVF(SQRQ_END);
4769                params[2] = FW_PARAM_PFVF(CQ_START);
4770                params[3] = FW_PARAM_PFVF(CQ_END);
4771                params[4] = FW_PARAM_PFVF(OCQ_START);
4772                params[5] = FW_PARAM_PFVF(OCQ_END);
4773                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4774                                      val);
4775                if (ret < 0)
4776                        goto bye;
4777                adap->vres.qp.start = val[0];
4778                adap->vres.qp.size = val[1] - val[0] + 1;
4779                adap->vres.cq.start = val[2];
4780                adap->vres.cq.size = val[3] - val[2] + 1;
4781                adap->vres.ocq.start = val[4];
4782                adap->vres.ocq.size = val[5] - val[4] + 1;
4783
4784                params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4785                params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4786                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4787                                      val);
4788                if (ret < 0) {
4789                        adap->params.max_ordird_qp = 8;
4790                        adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4791                        ret = 0;
4792                } else {
4793                        adap->params.max_ordird_qp = val[0];
4794                        adap->params.max_ird_adapter = val[1];
4795                }
4796                dev_info(adap->pdev_dev,
4797                         "max_ordird_qp %d max_ird_adapter %d\n",
4798                         adap->params.max_ordird_qp,
4799                         adap->params.max_ird_adapter);
4800
4801                /* Enable write_with_immediate if FW supports it */
4802                params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4803                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4804                                      val);
4805                adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4806
4807                /* Enable write_cmpl if FW supports it */
4808                params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4809                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4810                                      val);
4811                adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4812                adap->num_ofld_uld += 2;
4813        }
4814        if (caps_cmd.iscsicaps) {
4815                params[0] = FW_PARAM_PFVF(ISCSI_START);
4816                params[1] = FW_PARAM_PFVF(ISCSI_END);
4817                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4818                                      params, val);
4819                if (ret < 0)
4820                        goto bye;
4821                adap->vres.iscsi.start = val[0];
4822                adap->vres.iscsi.size = val[1] - val[0] + 1;
4823                if (is_t6(adap->params.chip)) {
4824                        params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
4825                        params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
4826                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4827                                              params, val);
4828                        if (!ret) {
4829                                adap->vres.ppod_edram.start = val[0];
4830                                adap->vres.ppod_edram.size =
4831                                        val[1] - val[0] + 1;
4832
4833                                dev_info(adap->pdev_dev,
4834                                         "ppod edram start 0x%x end 0x%x size 0x%x\n",
4835                                         val[0], val[1],
4836                                         adap->vres.ppod_edram.size);
4837                        }
4838                }
4839                /* LIO target and cxgb4i initiaitor */
4840                adap->num_ofld_uld += 2;
4841        }
4842        if (caps_cmd.cryptocaps) {
4843                if (ntohs(caps_cmd.cryptocaps) &
4844                    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4845                        params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4846                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4847                                              2, params, val);
4848                        if (ret < 0) {
4849                                if (ret != -EINVAL)
4850                                        goto bye;
4851                        } else {
4852                                adap->vres.ncrypto_fc = val[0];
4853                        }
4854                        adap->num_ofld_uld += 1;
4855                }
4856                if (ntohs(caps_cmd.cryptocaps) &
4857                    FW_CAPS_CONFIG_TLS_INLINE) {
4858                        params[0] = FW_PARAM_PFVF(TLS_START);
4859                        params[1] = FW_PARAM_PFVF(TLS_END);
4860                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4861                                              2, params, val);
4862                        if (ret < 0)
4863                                goto bye;
4864                        adap->vres.key.start = val[0];
4865                        adap->vres.key.size = val[1] - val[0] + 1;
4866                        adap->num_uld += 1;
4867                }
4868                adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4869        }
4870#undef FW_PARAM_PFVF
4871#undef FW_PARAM_DEV
4872
4873        /* The MTU/MSS Table is initialized by now, so load their values.  If
4874         * we're initializing the adapter, then we'll make any modifications
4875         * we want to the MTU/MSS Table and also initialize the congestion
4876         * parameters.
4877         */
4878        t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4879        if (state != DEV_STATE_INIT) {
4880                int i;
4881
4882                /* The default MTU Table contains values 1492 and 1500.
4883                 * However, for TCP, it's better to have two values which are
4884                 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4885                 * This allows us to have a TCP Data Payload which is a
4886                 * multiple of 8 regardless of what combination of TCP Options
4887                 * are in use (always a multiple of 4 bytes) which is
4888                 * important for performance reasons.  For instance, if no
4889                 * options are in use, then we have a 20-byte IP header and a
4890                 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4891                 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4892                 * which is not a multiple of 8.  So using an MSS of 1488 in
4893                 * this case results in a TCP Data Payload of 1448 bytes which
4894                 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4895                 * Stamps have been negotiated, then an MTU of 1500 bytes
4896                 * results in a TCP Data Payload of 1448 bytes which, as
4897                 * above, is a multiple of 8 bytes ...
4898                 */
4899                for (i = 0; i < NMTUS; i++)
4900                        if (adap->params.mtus[i] == 1492) {
4901                                adap->params.mtus[i] = 1488;
4902                                break;
4903                        }
4904
4905                t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4906                             adap->params.b_wnd);
4907        }
4908        t4_init_sge_params(adap);
4909        adap->flags |= CXGB4_FW_OK;
4910        t4_init_tp_params(adap, true);
4911        return 0;
4912
4913        /*
4914         * Something bad happened.  If a command timed out or failed with EIO
4915         * FW does not operate within its spec or something catastrophic
4916         * happened to HW/FW, stop issuing commands.
4917         */
4918bye:
4919        adap_free_hma_mem(adap);
4920        kfree(adap->sge.egr_map);
4921        kfree(adap->sge.ingr_map);
4922        kfree(adap->sge.starving_fl);
4923        kfree(adap->sge.txq_maperr);
4924#ifdef CONFIG_DEBUG_FS
4925        kfree(adap->sge.blocked_fl);
4926#endif
4927        if (ret != -ETIMEDOUT && ret != -EIO)
4928                t4_fw_bye(adap, adap->mbox);
4929        return ret;
4930}
4931
4932/* EEH callbacks */
4933
4934static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4935                                         pci_channel_state_t state)
4936{
4937        int i;
4938        struct adapter *adap = pci_get_drvdata(pdev);
4939
4940        if (!adap)
4941                goto out;
4942
4943        rtnl_lock();
4944        adap->flags &= ~CXGB4_FW_OK;
4945        notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4946        spin_lock(&adap->stats_lock);
4947        for_each_port(adap, i) {
4948                struct net_device *dev = adap->port[i];
4949                if (dev) {
4950                        netif_device_detach(dev);
4951                        netif_carrier_off(dev);
4952                }
4953        }
4954        spin_unlock(&adap->stats_lock);
4955        disable_interrupts(adap);
4956        if (adap->flags & CXGB4_FULL_INIT_DONE)
4957                cxgb_down(adap);
4958        rtnl_unlock();
4959        if ((adap->flags & CXGB4_DEV_ENABLED)) {
4960                pci_disable_device(pdev);
4961                adap->flags &= ~CXGB4_DEV_ENABLED;
4962        }
4963out:    return state == pci_channel_io_perm_failure ?
4964                PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4965}
4966
4967static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4968{
4969        int i, ret;
4970        struct fw_caps_config_cmd c;
4971        struct adapter *adap = pci_get_drvdata(pdev);
4972
4973        if (!adap) {
4974                pci_restore_state(pdev);
4975                pci_save_state(pdev);
4976                return PCI_ERS_RESULT_RECOVERED;
4977        }
4978
4979        if (!(adap->flags & CXGB4_DEV_ENABLED)) {
4980                if (pci_enable_device(pdev)) {
4981                        dev_err(&pdev->dev, "Cannot reenable PCI "
4982                                            "device after reset\n");
4983                        return PCI_ERS_RESULT_DISCONNECT;
4984                }
4985                adap->flags |= CXGB4_DEV_ENABLED;
4986        }
4987
4988        pci_set_master(pdev);
4989        pci_restore_state(pdev);
4990        pci_save_state(pdev);
4991
4992        if (t4_wait_dev_ready(adap->regs) < 0)
4993                return PCI_ERS_RESULT_DISCONNECT;
4994        if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4995                return PCI_ERS_RESULT_DISCONNECT;
4996        adap->flags |= CXGB4_FW_OK;
4997        if (adap_init1(adap, &c))
4998                return PCI_ERS_RESULT_DISCONNECT;
4999
5000        for_each_port(adap, i) {
5001                struct port_info *pi = adap2pinfo(adap, i);
5002                u8 vivld = 0, vin = 0;
5003
5004                ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5005                                  NULL, NULL, &vivld, &vin);
5006                if (ret < 0)
5007                        return PCI_ERS_RESULT_DISCONNECT;
5008                pi->viid = ret;
5009                pi->xact_addr_filt = -1;
5010                /* If fw supports returning the VIN as part of FW_VI_CMD,
5011                 * save the returned values.
5012                 */
5013                if (adap->params.viid_smt_extn_support) {
5014                        pi->vivld = vivld;
5015                        pi->vin = vin;
5016                } else {
5017                        /* Retrieve the values from VIID */
5018                        pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5019                        pi->vin = FW_VIID_VIN_G(pi->viid);
5020                }
5021        }
5022
5023        t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5024                     adap->params.b_wnd);
5025        setup_memwin(adap);
5026        if (cxgb_up(adap))
5027                return PCI_ERS_RESULT_DISCONNECT;
5028        return PCI_ERS_RESULT_RECOVERED;
5029}
5030
5031static void eeh_resume(struct pci_dev *pdev)
5032{
5033        int i;
5034        struct adapter *adap = pci_get_drvdata(pdev);
5035
5036        if (!adap)
5037                return;
5038
5039        rtnl_lock();
5040        for_each_port(adap, i) {
5041                struct net_device *dev = adap->port[i];
5042                if (dev) {
5043                        if (netif_running(dev)) {
5044                                link_start(dev);
5045                                cxgb_set_rxmode(dev);
5046                        }
5047                        netif_device_attach(dev);
5048                }
5049        }
5050        rtnl_unlock();
5051}
5052
5053static const struct pci_error_handlers cxgb4_eeh = {
5054        .error_detected = eeh_err_detected,
5055        .slot_reset     = eeh_slot_reset,
5056        .resume         = eeh_resume,
5057};
5058
5059/* Return true if the Link Configuration supports "High Speeds" (those greater
5060 * than 1Gb/s).
5061 */
5062static inline bool is_x_10g_port(const struct link_config *lc)
5063{
5064        unsigned int speeds, high_speeds;
5065
5066        speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5067        high_speeds = speeds &
5068                        ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5069
5070        return high_speeds != 0;
5071}
5072
5073/*
5074 * Perform default configuration of DMA queues depending on the number and type
5075 * of ports we found and the number of available CPUs.  Most settings can be
5076 * modified by the admin prior to actual use.
5077 */
5078static int cfg_queues(struct adapter *adap)
5079{
5080        struct sge *s = &adap->sge;
5081        int i, n10g = 0, qidx = 0;
5082        int niqflint, neq, avail_eth_qsets;
5083        int max_eth_qsets = 32;
5084#ifndef CONFIG_CHELSIO_T4_DCB
5085        int q10g = 0;
5086#endif
5087
5088        /* Reduce memory usage in kdump environment, disable all offload.
5089         */
5090        if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5091                adap->params.offload = 0;
5092                adap->params.crypto = 0;
5093        }
5094
5095        /* Calculate the number of Ethernet Queue Sets available based on
5096         * resources provisioned for us.  We always have an Asynchronous
5097         * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5098         * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5099         * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5100         * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5101         *
5102         * Note that we should also take into account all of the various
5103         * Offload Queues.  But, in any situation where we're operating in
5104         * a Resource Constrained Provisioning environment, doing any Offload
5105         * at all is problematic ...
5106         */
5107        niqflint = adap->params.pfres.niqflint - 1;
5108        if (!(adap->flags & CXGB4_USING_MSIX))
5109                niqflint--;
5110        neq = adap->params.pfres.neq / 2;
5111        avail_eth_qsets = min(niqflint, neq);
5112
5113        if (avail_eth_qsets > max_eth_qsets)
5114                avail_eth_qsets = max_eth_qsets;
5115
5116        if (avail_eth_qsets < adap->params.nports) {
5117                dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5118                        avail_eth_qsets, adap->params.nports);
5119                return -ENOMEM;
5120        }
5121
5122        /* Count the number of 10Gb/s or better ports */
5123        for_each_port(adap, i)
5124                n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5125
5126#ifdef CONFIG_CHELSIO_T4_DCB
5127        /* For Data Center Bridging support we need to be able to support up
5128         * to 8 Traffic Priorities; each of which will be assigned to its
5129         * own TX Queue in order to prevent Head-Of-Line Blocking.
5130         */
5131        if (adap->params.nports * 8 > avail_eth_qsets) {
5132                dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5133                        avail_eth_qsets, adap->params.nports * 8);
5134                return -ENOMEM;
5135        }
5136
5137        for_each_port(adap, i) {
5138                struct port_info *pi = adap2pinfo(adap, i);
5139
5140                pi->first_qset = qidx;
5141                pi->nqsets = is_kdump_kernel() ? 1 : 8;
5142                qidx += pi->nqsets;
5143        }
5144#else /* !CONFIG_CHELSIO_T4_DCB */
5145        /*
5146         * We default to 1 queue per non-10G port and up to # of cores queues
5147         * per 10G port.
5148         */
5149        if (n10g)
5150                q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5151        if (q10g > netif_get_num_default_rss_queues())
5152                q10g = netif_get_num_default_rss_queues();
5153
5154        if (is_kdump_kernel())
5155                q10g = 1;
5156
5157        for_each_port(adap, i) {
5158                struct port_info *pi = adap2pinfo(adap, i);
5159
5160                pi->first_qset = qidx;
5161                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
5162                qidx += pi->nqsets;
5163        }
5164#endif /* !CONFIG_CHELSIO_T4_DCB */
5165
5166        s->ethqsets = qidx;
5167        s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5168
5169        if (is_uld(adap)) {
5170                /*
5171                 * For offload we use 1 queue/channel if all ports are up to 1G,
5172                 * otherwise we divide all available queues amongst the channels
5173                 * capped by the number of available cores.
5174                 */
5175                if (n10g) {
5176                        i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
5177                        s->ofldqsets = roundup(i, adap->params.nports);
5178                } else {
5179                        s->ofldqsets = adap->params.nports;
5180                }
5181        }
5182
5183        for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5184                struct sge_eth_rxq *r = &s->ethrxq[i];
5185
5186                init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5187                r->fl.size = 72;
5188        }
5189
5190        for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5191                s->ethtxq[i].q.size = 1024;
5192
5193        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5194                s->ctrlq[i].q.size = 512;
5195
5196        if (!is_t4(adap->params.chip))
5197                s->ptptxq.q.size = 8;
5198
5199        init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5200        init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5201
5202        return 0;
5203}
5204
5205/*
5206 * Reduce the number of Ethernet queues across all ports to at most n.
5207 * n provides at least one queue per port.
5208 */
5209static void reduce_ethqs(struct adapter *adap, int n)
5210{
5211        int i;
5212        struct port_info *pi;
5213
5214        while (n < adap->sge.ethqsets)
5215                for_each_port(adap, i) {
5216                        pi = adap2pinfo(adap, i);
5217                        if (pi->nqsets > 1) {
5218                                pi->nqsets--;
5219                                adap->sge.ethqsets--;
5220                                if (adap->sge.ethqsets <= n)
5221                                        break;
5222                        }
5223                }
5224
5225        n = 0;
5226        for_each_port(adap, i) {
5227                pi = adap2pinfo(adap, i);
5228                pi->first_qset = n;
5229                n += pi->nqsets;
5230        }
5231}
5232
5233static int get_msix_info(struct adapter *adap)
5234{
5235        struct uld_msix_info *msix_info;
5236        unsigned int max_ingq = 0;
5237
5238        if (is_offload(adap))
5239                max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
5240        if (is_pci_uld(adap))
5241                max_ingq += MAX_OFLD_QSETS * adap->num_uld;
5242
5243        if (!max_ingq)
5244                goto out;
5245
5246        msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
5247        if (!msix_info)
5248                return -ENOMEM;
5249
5250        adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
5251                                                 sizeof(long), GFP_KERNEL);
5252        if (!adap->msix_bmap_ulds.msix_bmap) {
5253                kfree(msix_info);
5254                return -ENOMEM;
5255        }
5256        spin_lock_init(&adap->msix_bmap_ulds.lock);
5257        adap->msix_info_ulds = msix_info;
5258out:
5259        return 0;
5260}
5261
5262static void free_msix_info(struct adapter *adap)
5263{
5264        if (!(adap->num_uld && adap->num_ofld_uld))
5265                return;
5266
5267        kfree(adap->msix_info_ulds);
5268        kfree(adap->msix_bmap_ulds.msix_bmap);
5269}
5270
5271/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5272#define EXTRA_VECS 2
5273
5274static int enable_msix(struct adapter *adap)
5275{
5276        int ofld_need = 0, uld_need = 0;
5277        int i, j, want, need, allocated;
5278        struct sge *s = &adap->sge;
5279        unsigned int nchan = adap->params.nports;
5280        struct msix_entry *entries;
5281        int max_ingq = MAX_INGQ;
5282
5283        if (is_pci_uld(adap))
5284                max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5285        if (is_offload(adap))
5286                max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5287        entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5288                                GFP_KERNEL);
5289        if (!entries)
5290                return -ENOMEM;
5291
5292        /* map for msix */
5293        if (get_msix_info(adap)) {
5294                adap->params.offload = 0;
5295                adap->params.crypto = 0;
5296        }
5297
5298        for (i = 0; i < max_ingq + 1; ++i)
5299                entries[i].entry = i;
5300
5301        want = s->max_ethqsets + EXTRA_VECS;
5302        if (is_offload(adap)) {
5303                want += adap->num_ofld_uld * s->ofldqsets;
5304                ofld_need = adap->num_ofld_uld * nchan;
5305        }
5306        if (is_pci_uld(adap)) {
5307                want += adap->num_uld * s->ofldqsets;
5308                uld_need = adap->num_uld * nchan;
5309        }
5310#ifdef CONFIG_CHELSIO_T4_DCB
5311        /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5312         * each port.
5313         */
5314        need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5315#else
5316        need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5317#endif
5318        allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5319        if (allocated < 0) {
5320                dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5321                         " not using MSI-X\n");
5322                kfree(entries);
5323                return allocated;
5324        }
5325
5326        /* Distribute available vectors to the various queue groups.
5327         * Every group gets its minimum requirement and NIC gets top
5328         * priority for leftovers.
5329         */
5330        i = allocated - EXTRA_VECS - ofld_need - uld_need;
5331        if (i < s->max_ethqsets) {
5332                s->max_ethqsets = i;
5333                if (i < s->ethqsets)
5334                        reduce_ethqs(adap, i);
5335        }
5336        if (is_uld(adap)) {
5337                if (allocated < want)
5338                        s->nqs_per_uld = nchan;
5339                else
5340                        s->nqs_per_uld = s->ofldqsets;
5341        }
5342
5343        for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5344                adap->msix_info[i].vec = entries[i].vector;
5345        if (is_uld(adap)) {
5346                for (j = 0 ; i < allocated; ++i, j++) {
5347                        adap->msix_info_ulds[j].vec = entries[i].vector;
5348                        adap->msix_info_ulds[j].idx = i;
5349                }
5350                adap->msix_bmap_ulds.mapsize = j;
5351        }
5352        dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5353                 "nic %d per uld %d\n",
5354                 allocated, s->max_ethqsets, s->nqs_per_uld);
5355
5356        kfree(entries);
5357        return 0;
5358}
5359
5360#undef EXTRA_VECS
5361
5362static int init_rss(struct adapter *adap)
5363{
5364        unsigned int i;
5365        int err;
5366
5367        err = t4_init_rss_mode(adap, adap->mbox);
5368        if (err)
5369                return err;
5370
5371        for_each_port(adap, i) {
5372                struct port_info *pi = adap2pinfo(adap, i);
5373
5374                pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5375                if (!pi->rss)
5376                        return -ENOMEM;
5377        }
5378        return 0;
5379}
5380
5381/* Dump basic information about the adapter */
5382static void print_adapter_info(struct adapter *adapter)
5383{
5384        /* Hardware/Firmware/etc. Version/Revision IDs */
5385        t4_dump_version_info(adapter);
5386
5387        /* Software/Hardware configuration */
5388        dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5389                 is_offload(adapter) ? "R" : "",
5390                 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5391                  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5392                 is_offload(adapter) ? "Offload" : "non-Offload");
5393}
5394
5395static void print_port_info(const struct net_device *dev)
5396{
5397        char buf[80];
5398        char *bufp = buf;
5399        const struct port_info *pi = netdev_priv(dev);
5400        const struct adapter *adap = pi->adapter;
5401
5402        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5403                bufp += sprintf(bufp, "100M/");
5404        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5405                bufp += sprintf(bufp, "1G/");
5406        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5407                bufp += sprintf(bufp, "10G/");
5408        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5409                bufp += sprintf(bufp, "25G/");
5410        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5411                bufp += sprintf(bufp, "40G/");
5412        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5413                bufp += sprintf(bufp, "50G/");
5414        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5415                bufp += sprintf(bufp, "100G/");
5416        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5417                bufp += sprintf(bufp, "200G/");
5418        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5419                bufp += sprintf(bufp, "400G/");
5420        if (bufp != buf)
5421                --bufp;
5422        sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5423
5424        netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5425                    dev->name, adap->params.vpd.id, adap->name, buf);
5426}
5427
5428/*
5429 * Free the following resources:
5430 * - memory used for tables
5431 * - MSI/MSI-X
5432 * - net devices
5433 * - resources FW is holding for us
5434 */
5435static void free_some_resources(struct adapter *adapter)
5436{
5437        unsigned int i;
5438
5439        kvfree(adapter->smt);
5440        kvfree(adapter->l2t);
5441        kvfree(adapter->srq);
5442        t4_cleanup_sched(adapter);
5443        kvfree(adapter->tids.tid_tab);
5444        cxgb4_cleanup_tc_flower(adapter);
5445        cxgb4_cleanup_tc_u32(adapter);
5446        kfree(adapter->sge.egr_map);
5447        kfree(adapter->sge.ingr_map);
5448        kfree(adapter->sge.starving_fl);
5449        kfree(adapter->sge.txq_maperr);
5450#ifdef CONFIG_DEBUG_FS
5451        kfree(adapter->sge.blocked_fl);
5452#endif
5453        disable_msi(adapter);
5454
5455        for_each_port(adapter, i)
5456                if (adapter->port[i]) {
5457                        struct port_info *pi = adap2pinfo(adapter, i);
5458
5459                        if (pi->viid != 0)
5460                                t4_free_vi(adapter, adapter->mbox, adapter->pf,
5461                                           0, pi->viid);
5462                        kfree(adap2pinfo(adapter, i)->rss);
5463                        free_netdev(adapter->port[i]);
5464                }
5465        if (adapter->flags & CXGB4_FW_OK)
5466                t4_fw_bye(adapter, adapter->pf);
5467}
5468
5469#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5470#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5471                   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5472#define SEGMENT_SIZE 128
5473
5474static int t4_get_chip_type(struct adapter *adap, int ver)
5475{
5476        u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5477
5478        switch (ver) {
5479        case CHELSIO_T4:
5480                return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5481        case CHELSIO_T5:
5482                return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5483        case CHELSIO_T6:
5484                return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5485        default:
5486                break;
5487        }
5488        return -EINVAL;
5489}
5490
5491#ifdef CONFIG_PCI_IOV
5492static void cxgb4_mgmt_setup(struct net_device *dev)
5493{
5494        dev->type = ARPHRD_NONE;
5495        dev->mtu = 0;
5496        dev->hard_header_len = 0;
5497        dev->addr_len = 0;
5498        dev->tx_queue_len = 0;
5499        dev->flags |= IFF_NOARP;
5500        dev->priv_flags |= IFF_NO_QUEUE;
5501
5502        /* Initialize the device structure. */
5503        dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5504        dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5505}
5506
5507static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5508{
5509        struct adapter *adap = pci_get_drvdata(pdev);
5510        int err = 0;
5511        int current_vfs = pci_num_vf(pdev);
5512        u32 pcie_fw;
5513
5514        pcie_fw = readl(adap->regs + PCIE_FW_A);
5515        /* Check if fw is initialized */
5516        if (!(pcie_fw & PCIE_FW_INIT_F)) {
5517                dev_warn(&pdev->dev, "Device not initialized\n");
5518                return -EOPNOTSUPP;
5519        }
5520
5521        /* If any of the VF's is already assigned to Guest OS, then
5522         * SRIOV for the same cannot be modified
5523         */
5524        if (current_vfs && pci_vfs_assigned(pdev)) {
5525                dev_err(&pdev->dev,
5526                        "Cannot modify SR-IOV while VFs are assigned\n");
5527                return current_vfs;
5528        }
5529        /* Note that the upper-level code ensures that we're never called with
5530         * a non-zero "num_vfs" when we already have VFs instantiated.  But
5531         * it never hurts to code defensively.
5532         */
5533        if (num_vfs != 0 && current_vfs != 0)
5534                return -EBUSY;
5535
5536        /* Nothing to do for no change. */
5537        if (num_vfs == current_vfs)
5538                return num_vfs;
5539
5540        /* Disable SRIOV when zero is passed. */
5541        if (!num_vfs) {
5542                pci_disable_sriov(pdev);
5543                /* free VF Management Interface */
5544                unregister_netdev(adap->port[0]);
5545                free_netdev(adap->port[0]);
5546                adap->port[0] = NULL;
5547
5548                /* free VF resources */
5549                adap->num_vfs = 0;
5550                kfree(adap->vfinfo);
5551                adap->vfinfo = NULL;
5552                return 0;
5553        }
5554
5555        if (!current_vfs) {
5556                struct fw_pfvf_cmd port_cmd, port_rpl;
5557                struct net_device *netdev;
5558                unsigned int pmask, port;
5559                struct pci_dev *pbridge;
5560                struct port_info *pi;
5561                char name[IFNAMSIZ];
5562                u32 devcap2;
5563                u16 flags;
5564
5565                /* If we want to instantiate Virtual Functions, then our
5566                 * parent bridge's PCI-E needs to support Alternative Routing
5567                 * ID (ARI) because our VFs will show up at function offset 8
5568                 * and above.
5569                 */
5570                pbridge = pdev->bus->self;
5571                pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
5572                pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
5573
5574                if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5575                    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5576                        /* Our parent bridge does not support ARI so issue a
5577                         * warning and skip instantiating the VFs.  They
5578                         * won't be reachable.
5579                         */
5580                        dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5581                                 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5582                                 PCI_FUNC(pbridge->devfn));
5583                        return -ENOTSUPP;
5584                }
5585                memset(&port_cmd, 0, sizeof(port_cmd));
5586                port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5587                                                 FW_CMD_REQUEST_F |
5588                                                 FW_CMD_READ_F |
5589                                                 FW_PFVF_CMD_PFN_V(adap->pf) |
5590                                                 FW_PFVF_CMD_VFN_V(0));
5591                port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5592                err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5593                                 &port_rpl);
5594                if (err)
5595                        return err;
5596                pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5597                port = ffs(pmask) - 1;
5598                /* Allocate VF Management Interface. */
5599                snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5600                         adap->pf);
5601                netdev = alloc_netdev(sizeof(struct port_info),
5602                                      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5603                if (!netdev)
5604                        return -ENOMEM;
5605
5606                pi = netdev_priv(netdev);
5607                pi->adapter = adap;
5608                pi->lport = port;
5609                pi->tx_chan = port;
5610                SET_NETDEV_DEV(netdev, &pdev->dev);
5611
5612                adap->port[0] = netdev;
5613                pi->port_id = 0;
5614
5615                err = register_netdev(adap->port[0]);
5616                if (err) {
5617                        pr_info("Unable to register VF mgmt netdev %s\n", name);
5618                        free_netdev(adap->port[0]);
5619                        adap->port[0] = NULL;
5620                        return err;
5621                }
5622                /* Allocate and set up VF Information. */
5623                adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5624                                       sizeof(struct vf_info), GFP_KERNEL);
5625                if (!adap->vfinfo) {
5626                        unregister_netdev(adap->port[0]);
5627                        free_netdev(adap->port[0]);
5628                        adap->port[0] = NULL;
5629                        return -ENOMEM;
5630                }
5631                cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5632        }
5633        /* Instantiate the requested number of VFs. */
5634        err = pci_enable_sriov(pdev, num_vfs);
5635        if (err) {
5636                pr_info("Unable to instantiate %d VFs\n", num_vfs);
5637                if (!current_vfs) {
5638                        unregister_netdev(adap->port[0]);
5639                        free_netdev(adap->port[0]);
5640                        adap->port[0] = NULL;
5641                        kfree(adap->vfinfo);
5642                        adap->vfinfo = NULL;
5643                }
5644                return err;
5645        }
5646
5647        adap->num_vfs = num_vfs;
5648        return num_vfs;
5649}
5650#endif /* CONFIG_PCI_IOV */
5651
5652static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5653{
5654        struct net_device *netdev;
5655        struct adapter *adapter;
5656        static int adap_idx = 1;
5657        int s_qpp, qpp, num_seg;
5658        struct port_info *pi;
5659        bool highdma = false;
5660        enum chip_type chip;
5661        void __iomem *regs;
5662        int func, chip_ver;
5663        u16 device_id;
5664        int i, err;
5665        u32 whoami;
5666
5667        printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5668
5669        err = pci_request_regions(pdev, KBUILD_MODNAME);
5670        if (err) {
5671                /* Just info, some other driver may have claimed the device. */
5672                dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5673                return err;
5674        }
5675
5676        err = pci_enable_device(pdev);
5677        if (err) {
5678                dev_err(&pdev->dev, "cannot enable PCI device\n");
5679                goto out_release_regions;
5680        }
5681
5682        regs = pci_ioremap_bar(pdev, 0);
5683        if (!regs) {
5684                dev_err(&pdev->dev, "cannot map device registers\n");
5685                err = -ENOMEM;
5686                goto out_disable_device;
5687        }
5688
5689        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5690        if (!adapter) {
5691                err = -ENOMEM;
5692                goto out_unmap_bar0;
5693        }
5694
5695        adapter->regs = regs;
5696        err = t4_wait_dev_ready(regs);
5697        if (err < 0)
5698                goto out_free_adapter;
5699
5700        /* We control everything through one PF */
5701        whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5702        pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5703        chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5704        if (chip < 0) {
5705                dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5706                err = chip;
5707                goto out_free_adapter;
5708        }
5709        chip_ver = CHELSIO_CHIP_VERSION(chip);
5710        func = chip_ver <= CHELSIO_T5 ?
5711               SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5712
5713        adapter->pdev = pdev;
5714        adapter->pdev_dev = &pdev->dev;
5715        adapter->name = pci_name(pdev);
5716        adapter->mbox = func;
5717        adapter->pf = func;
5718        adapter->params.chip = chip;
5719        adapter->adap_idx = adap_idx;
5720        adapter->msg_enable = DFLT_MSG_ENABLE;
5721        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5722                                    (sizeof(struct mbox_cmd) *
5723                                     T4_OS_LOG_MBOX_CMDS),
5724                                    GFP_KERNEL);
5725        if (!adapter->mbox_log) {
5726                err = -ENOMEM;
5727                goto out_free_adapter;
5728        }
5729        spin_lock_init(&adapter->mbox_lock);
5730        INIT_LIST_HEAD(&adapter->mlist.list);
5731        adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5732        pci_set_drvdata(pdev, adapter);
5733
5734        if (func != ent->driver_data) {
5735                pci_disable_device(pdev);
5736                pci_save_state(pdev);        /* to restore SR-IOV later */
5737                return 0;
5738        }
5739
5740        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5741                highdma = true;
5742                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5743                if (err) {
5744                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5745                                "coherent allocations\n");
5746                        goto out_free_adapter;
5747                }
5748        } else {
5749                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5750                if (err) {
5751                        dev_err(&pdev->dev, "no usable DMA configuration\n");
5752                        goto out_free_adapter;
5753                }
5754        }
5755
5756        pci_enable_pcie_error_reporting(pdev);
5757        pci_set_master(pdev);
5758        pci_save_state(pdev);
5759        adap_idx++;
5760        adapter->workq = create_singlethread_workqueue("cxgb4");
5761        if (!adapter->workq) {
5762                err = -ENOMEM;
5763                goto out_free_adapter;
5764        }
5765
5766        /* PCI device has been enabled */
5767        adapter->flags |= CXGB4_DEV_ENABLED;
5768        memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5769
5770        /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5771         * Ingress Packet Data to Free List Buffers in order to allow for
5772         * chipset performance optimizations between the Root Complex and
5773         * Memory Controllers.  (Messages to the associated Ingress Queue
5774         * notifying new Packet Placement in the Free Lists Buffers will be
5775         * send without the Relaxed Ordering Attribute thus guaranteeing that
5776         * all preceding PCIe Transaction Layer Packets will be processed
5777         * first.)  But some Root Complexes have various issues with Upstream
5778         * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5779         * The PCIe devices which under the Root Complexes will be cleared the
5780         * Relaxed Ordering bit in the configuration space, So we check our
5781         * PCIe configuration space to see if it's flagged with advice against
5782         * using Relaxed Ordering.
5783         */
5784        if (!pcie_relaxed_ordering_enabled(pdev))
5785                adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
5786
5787        spin_lock_init(&adapter->stats_lock);
5788        spin_lock_init(&adapter->tid_release_lock);
5789        spin_lock_init(&adapter->win0_lock);
5790
5791        INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5792        INIT_WORK(&adapter->db_full_task, process_db_full);
5793        INIT_WORK(&adapter->db_drop_task, process_db_drop);
5794        INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5795
5796        err = t4_prep_adapter(adapter);
5797        if (err)
5798                goto out_free_adapter;
5799
5800        if (is_kdump_kernel()) {
5801                /* Collect hardware state and append to /proc/vmcore */
5802                err = cxgb4_cudbg_vmcore_add_dump(adapter);
5803                if (err) {
5804                        dev_warn(adapter->pdev_dev,
5805                                 "Fail collecting vmcore device dump, err: %d. Continuing\n",
5806                                 err);
5807                        err = 0;
5808                }
5809        }
5810
5811        if (!is_t4(adapter->params.chip)) {
5812                s_qpp = (QUEUESPERPAGEPF0_S +
5813                        (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5814                        adapter->pf);
5815                qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5816                      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5817                num_seg = PAGE_SIZE / SEGMENT_SIZE;
5818
5819                /* Each segment size is 128B. Write coalescing is enabled only
5820                 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5821                 * queue is less no of segments that can be accommodated in
5822                 * a page size.
5823                 */
5824                if (qpp > num_seg) {
5825                        dev_err(&pdev->dev,
5826                                "Incorrect number of egress queues per page\n");
5827                        err = -EINVAL;
5828                        goto out_free_adapter;
5829                }
5830                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5831                pci_resource_len(pdev, 2));
5832                if (!adapter->bar2) {
5833                        dev_err(&pdev->dev, "cannot map device bar2 region\n");
5834                        err = -ENOMEM;
5835                        goto out_free_adapter;
5836                }
5837        }
5838
5839        setup_memwin(adapter);
5840        err = adap_init0(adapter);
5841#ifdef CONFIG_DEBUG_FS
5842        bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5843#endif
5844        setup_memwin_rdma(adapter);
5845        if (err)
5846                goto out_unmap_bar;
5847
5848        /* configure SGE_STAT_CFG_A to read WC stats */
5849        if (!is_t4(adapter->params.chip))
5850                t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5851                             (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5852                              T6_STATMODE_V(0)));
5853
5854        /* Initialize hash mac addr list */
5855        INIT_LIST_HEAD(&adapter->mac_hlist);
5856
5857        for_each_port(adapter, i) {
5858                netdev = alloc_etherdev_mq(sizeof(struct port_info),
5859                                           MAX_ETH_QSETS);
5860                if (!netdev) {
5861                        err = -ENOMEM;
5862                        goto out_free_dev;
5863                }
5864
5865                SET_NETDEV_DEV(netdev, &pdev->dev);
5866
5867                adapter->port[i] = netdev;
5868                pi = netdev_priv(netdev);
5869                pi->adapter = adapter;
5870                pi->xact_addr_filt = -1;
5871                pi->port_id = i;
5872                netdev->irq = pdev->irq;
5873
5874                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5875                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5876                        NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
5877                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5878                        NETIF_F_HW_TC;
5879
5880                if (chip_ver > CHELSIO_T5) {
5881                        netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5882                                                   NETIF_F_IPV6_CSUM |
5883                                                   NETIF_F_RXCSUM |
5884                                                   NETIF_F_GSO_UDP_TUNNEL |
5885                                                   NETIF_F_GSO_UDP_TUNNEL_CSUM |
5886                                                   NETIF_F_TSO | NETIF_F_TSO6;
5887
5888                        netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
5889                                               NETIF_F_GSO_UDP_TUNNEL_CSUM |
5890                                               NETIF_F_HW_TLS_RECORD;
5891                }
5892
5893                if (highdma)
5894                        netdev->hw_features |= NETIF_F_HIGHDMA;
5895                netdev->features |= netdev->hw_features;
5896                netdev->vlan_features = netdev->features & VLAN_FEAT;
5897
5898                netdev->priv_flags |= IFF_UNICAST_FLT;
5899
5900                /* MTU range: 81 - 9600 */
5901                netdev->min_mtu = 81;              /* accommodate SACK */
5902                netdev->max_mtu = MAX_MTU;
5903
5904                netdev->netdev_ops = &cxgb4_netdev_ops;
5905#ifdef CONFIG_CHELSIO_T4_DCB
5906                netdev->dcbnl_ops = &cxgb4_dcb_ops;
5907                cxgb4_dcb_state_init(netdev);
5908                cxgb4_dcb_version_init(netdev);
5909#endif
5910                cxgb4_set_ethtool_ops(netdev);
5911        }
5912
5913        cxgb4_init_ethtool_dump(adapter);
5914
5915        pci_set_drvdata(pdev, adapter);
5916
5917        if (adapter->flags & CXGB4_FW_OK) {
5918                err = t4_port_init(adapter, func, func, 0);
5919                if (err)
5920                        goto out_free_dev;
5921        } else if (adapter->params.nports == 1) {
5922                /* If we don't have a connection to the firmware -- possibly
5923                 * because of an error -- grab the raw VPD parameters so we
5924                 * can set the proper MAC Address on the debug network
5925                 * interface that we've created.
5926                 */
5927                u8 hw_addr[ETH_ALEN];
5928                u8 *na = adapter->params.vpd.na;
5929
5930                err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5931                if (!err) {
5932                        for (i = 0; i < ETH_ALEN; i++)
5933                                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5934                                              hex2val(na[2 * i + 1]));
5935                        t4_set_hw_addr(adapter, 0, hw_addr);
5936                }
5937        }
5938
5939        if (!(adapter->flags & CXGB4_FW_OK))
5940                goto fw_attach_fail;
5941
5942        /* Configure queues and allocate tables now, they can be needed as
5943         * soon as the first register_netdev completes.
5944         */
5945        err = cfg_queues(adapter);
5946        if (err)
5947                goto out_free_dev;
5948
5949        adapter->smt = t4_init_smt();
5950        if (!adapter->smt) {
5951                /* We tolerate a lack of SMT, giving up some functionality */
5952                dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5953        }
5954
5955        adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5956        if (!adapter->l2t) {
5957                /* We tolerate a lack of L2T, giving up some functionality */
5958                dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5959                adapter->params.offload = 0;
5960        }
5961
5962#if IS_ENABLED(CONFIG_IPV6)
5963        if (chip_ver <= CHELSIO_T5 &&
5964            (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5965                /* CLIP functionality is not present in hardware,
5966                 * hence disable all offload features
5967                 */
5968                dev_warn(&pdev->dev,
5969                         "CLIP not enabled in hardware, continuing\n");
5970                adapter->params.offload = 0;
5971        } else {
5972                adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5973                                                  adapter->clipt_end);
5974                if (!adapter->clipt) {
5975                        /* We tolerate a lack of clip_table, giving up
5976                         * some functionality
5977                         */
5978                        dev_warn(&pdev->dev,
5979                                 "could not allocate Clip table, continuing\n");
5980                        adapter->params.offload = 0;
5981                }
5982        }
5983#endif
5984
5985        for_each_port(adapter, i) {
5986                pi = adap2pinfo(adapter, i);
5987                pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5988                if (!pi->sched_tbl)
5989                        dev_warn(&pdev->dev,
5990                                 "could not activate scheduling on port %d\n",
5991                                 i);
5992        }
5993
5994        if (tid_init(&adapter->tids) < 0) {
5995                dev_warn(&pdev->dev, "could not allocate TID table, "
5996                         "continuing\n");
5997                adapter->params.offload = 0;
5998        } else {
5999                adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6000                if (!adapter->tc_u32)
6001                        dev_warn(&pdev->dev,
6002                                 "could not offload tc u32, continuing\n");
6003
6004                if (cxgb4_init_tc_flower(adapter))
6005                        dev_warn(&pdev->dev,
6006                                 "could not offload tc flower, continuing\n");
6007        }
6008
6009        if (is_offload(adapter) || is_hashfilter(adapter)) {
6010                if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6011                        u32 hash_base, hash_reg;
6012
6013                        if (chip_ver <= CHELSIO_T5) {
6014                                hash_reg = LE_DB_TID_HASHBASE_A;
6015                                hash_base = t4_read_reg(adapter, hash_reg);
6016                                adapter->tids.hash_base = hash_base / 4;
6017                        } else {
6018                                hash_reg = T6_LE_DB_HASH_TID_BASE_A;
6019                                hash_base = t4_read_reg(adapter, hash_reg);
6020                                adapter->tids.hash_base = hash_base;
6021                        }
6022                }
6023        }
6024
6025        /* See what interrupts we'll be using */
6026        if (msi > 1 && enable_msix(adapter) == 0)
6027                adapter->flags |= CXGB4_USING_MSIX;
6028        else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6029                adapter->flags |= CXGB4_USING_MSI;
6030                if (msi > 1)
6031                        free_msix_info(adapter);
6032        }
6033
6034        /* check for PCI Express bandwidth capabiltites */
6035        pcie_print_link_status(pdev);
6036
6037        cxgb4_init_mps_ref_entries(adapter);
6038
6039        err = init_rss(adapter);
6040        if (err)
6041                goto out_free_dev;
6042
6043        err = setup_fw_sge_queues(adapter);
6044        if (err) {
6045                dev_err(adapter->pdev_dev,
6046                        "FW sge queue allocation failed, err %d", err);
6047                goto out_free_dev;
6048        }
6049
6050fw_attach_fail:
6051        /*
6052         * The card is now ready to go.  If any errors occur during device
6053         * registration we do not fail the whole card but rather proceed only
6054         * with the ports we manage to register successfully.  However we must
6055         * register at least one net device.
6056         */
6057        for_each_port(adapter, i) {
6058                pi = adap2pinfo(adapter, i);
6059                adapter->port[i]->dev_port = pi->lport;
6060                netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6061                netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6062
6063                netif_carrier_off(adapter->port[i]);
6064
6065                err = register_netdev(adapter->port[i]);
6066                if (err)
6067                        break;
6068                adapter->chan_map[pi->tx_chan] = i;
6069                print_port_info(adapter->port[i]);
6070        }
6071        if (i == 0) {
6072                dev_err(&pdev->dev, "could not register any net devices\n");
6073                goto out_free_dev;
6074        }
6075        if (err) {
6076                dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6077                err = 0;
6078        }
6079
6080        if (cxgb4_debugfs_root) {
6081                adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6082                                                           cxgb4_debugfs_root);
6083                setup_debugfs(adapter);
6084        }
6085
6086        /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6087        pdev->needs_freset = 1;
6088
6089        if (is_uld(adapter)) {
6090                mutex_lock(&uld_mutex);
6091                list_add_tail(&adapter->list_node, &adapter_list);
6092                mutex_unlock(&uld_mutex);
6093        }
6094
6095        if (!is_t4(adapter->params.chip))
6096                cxgb4_ptp_init(adapter);
6097
6098        if (IS_REACHABLE(CONFIG_THERMAL) &&
6099            !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6100                cxgb4_thermal_init(adapter);
6101
6102        print_adapter_info(adapter);
6103        return 0;
6104
6105 out_free_dev:
6106        t4_free_sge_resources(adapter);
6107        free_some_resources(adapter);
6108        if (adapter->flags & CXGB4_USING_MSIX)
6109                free_msix_info(adapter);
6110        if (adapter->num_uld || adapter->num_ofld_uld)
6111                t4_uld_mem_free(adapter);
6112 out_unmap_bar:
6113        if (!is_t4(adapter->params.chip))
6114                iounmap(adapter->bar2);
6115 out_free_adapter:
6116        if (adapter->workq)
6117                destroy_workqueue(adapter->workq);
6118
6119        kfree(adapter->mbox_log);
6120        kfree(adapter);
6121 out_unmap_bar0:
6122        iounmap(regs);
6123 out_disable_device:
6124        pci_disable_pcie_error_reporting(pdev);
6125        pci_disable_device(pdev);
6126 out_release_regions:
6127        pci_release_regions(pdev);
6128        return err;
6129}
6130
6131static void remove_one(struct pci_dev *pdev)
6132{
6133        struct adapter *adapter = pci_get_drvdata(pdev);
6134        struct hash_mac_addr *entry, *tmp;
6135
6136        if (!adapter) {
6137                pci_release_regions(pdev);
6138                return;
6139        }
6140
6141        /* If we allocated filters, free up state associated with any
6142         * valid filters ...
6143         */
6144        clear_all_filters(adapter);
6145
6146        adapter->flags |= CXGB4_SHUTTING_DOWN;
6147
6148        if (adapter->pf == 4) {
6149                int i;
6150
6151                /* Tear down per-adapter Work Queue first since it can contain
6152                 * references to our adapter data structure.
6153                 */
6154                destroy_workqueue(adapter->workq);
6155
6156                if (is_uld(adapter)) {
6157                        detach_ulds(adapter);
6158                        t4_uld_clean_up(adapter);
6159                }
6160
6161                adap_free_hma_mem(adapter);
6162
6163                disable_interrupts(adapter);
6164
6165                cxgb4_free_mps_ref_entries(adapter);
6166
6167                for_each_port(adapter, i)
6168                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6169                                unregister_netdev(adapter->port[i]);
6170
6171                debugfs_remove_recursive(adapter->debugfs_root);
6172
6173                if (!is_t4(adapter->params.chip))
6174                        cxgb4_ptp_stop(adapter);
6175                if (IS_REACHABLE(CONFIG_THERMAL))
6176                        cxgb4_thermal_remove(adapter);
6177
6178                if (adapter->flags & CXGB4_FULL_INIT_DONE)
6179                        cxgb_down(adapter);
6180
6181                if (adapter->flags & CXGB4_USING_MSIX)
6182                        free_msix_info(adapter);
6183                if (adapter->num_uld || adapter->num_ofld_uld)
6184                        t4_uld_mem_free(adapter);
6185                free_some_resources(adapter);
6186                list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6187                                         list) {
6188                        list_del(&entry->list);
6189                        kfree(entry);
6190                }
6191
6192#if IS_ENABLED(CONFIG_IPV6)
6193                t4_cleanup_clip_tbl(adapter);
6194#endif
6195                if (!is_t4(adapter->params.chip))
6196                        iounmap(adapter->bar2);
6197        }
6198#ifdef CONFIG_PCI_IOV
6199        else {
6200                cxgb4_iov_configure(adapter->pdev, 0);
6201        }
6202#endif
6203        iounmap(adapter->regs);
6204        pci_disable_pcie_error_reporting(pdev);
6205        if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6206                pci_disable_device(pdev);
6207                adapter->flags &= ~CXGB4_DEV_ENABLED;
6208        }
6209        pci_release_regions(pdev);
6210        kfree(adapter->mbox_log);
6211        synchronize_rcu();
6212        kfree(adapter);
6213}
6214
6215/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6216 * delivery.  This is essentially a stripped down version of the PCI remove()
6217 * function where we do the minimal amount of work necessary to shutdown any
6218 * further activity.
6219 */
6220static void shutdown_one(struct pci_dev *pdev)
6221{
6222        struct adapter *adapter = pci_get_drvdata(pdev);
6223
6224        /* As with remove_one() above (see extended comment), we only want do
6225         * do cleanup on PCI Devices which went all the way through init_one()
6226         * ...
6227         */
6228        if (!adapter) {
6229                pci_release_regions(pdev);
6230                return;
6231        }
6232
6233        adapter->flags |= CXGB4_SHUTTING_DOWN;
6234
6235        if (adapter->pf == 4) {
6236                int i;
6237
6238                for_each_port(adapter, i)
6239                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6240                                cxgb_close(adapter->port[i]);
6241
6242                if (is_uld(adapter)) {
6243                        detach_ulds(adapter);
6244                        t4_uld_clean_up(adapter);
6245                }
6246
6247                disable_interrupts(adapter);
6248                disable_msi(adapter);
6249
6250                t4_sge_stop(adapter);
6251                if (adapter->flags & CXGB4_FW_OK)
6252                        t4_fw_bye(adapter, adapter->mbox);
6253        }
6254}
6255
6256static struct pci_driver cxgb4_driver = {
6257        .name     = KBUILD_MODNAME,
6258        .id_table = cxgb4_pci_tbl,
6259        .probe    = init_one,
6260        .remove   = remove_one,
6261        .shutdown = shutdown_one,
6262#ifdef CONFIG_PCI_IOV
6263        .sriov_configure = cxgb4_iov_configure,
6264#endif
6265        .err_handler = &cxgb4_eeh,
6266};
6267
6268static int __init cxgb4_init_module(void)
6269{
6270        int ret;
6271
6272        /* Debugfs support is optional, just warn if this fails */
6273        cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6274        if (!cxgb4_debugfs_root)
6275                pr_warn("could not create debugfs entry, continuing\n");
6276
6277        ret = pci_register_driver(&cxgb4_driver);
6278        if (ret < 0)
6279                goto err_pci;
6280
6281#if IS_ENABLED(CONFIG_IPV6)
6282        if (!inet6addr_registered) {
6283                ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6284                if (ret)
6285                        pci_unregister_driver(&cxgb4_driver);
6286                else
6287                        inet6addr_registered = true;
6288        }
6289#endif
6290
6291        if (ret == 0)
6292                return ret;
6293
6294err_pci:
6295        debugfs_remove(cxgb4_debugfs_root);
6296
6297        return ret;
6298}
6299
6300static void __exit cxgb4_cleanup_module(void)
6301{
6302#if IS_ENABLED(CONFIG_IPV6)
6303        if (inet6addr_registered) {
6304                unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6305                inet6addr_registered = false;
6306        }
6307#endif
6308        pci_unregister_driver(&cxgb4_driver);
6309        debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6310}
6311
6312module_init(cxgb4_init_module);
6313module_exit(cxgb4_cleanup_module);
6314