linux/drivers/net/ethernet/freescale/fec_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/tso.h>
  42#include <linux/tcp.h>
  43#include <linux/udp.h>
  44#include <linux/icmp.h>
  45#include <linux/spinlock.h>
  46#include <linux/workqueue.h>
  47#include <linux/bitops.h>
  48#include <linux/io.h>
  49#include <linux/irq.h>
  50#include <linux/clk.h>
  51#include <linux/crc32.h>
  52#include <linux/platform_device.h>
  53#include <linux/mdio.h>
  54#include <linux/phy.h>
  55#include <linux/fec.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/of_gpio.h>
  59#include <linux/of_mdio.h>
  60#include <linux/of_net.h>
  61#include <linux/regulator/consumer.h>
  62#include <linux/if_vlan.h>
  63#include <linux/pinctrl/consumer.h>
  64#include <linux/prefetch.h>
  65#include <soc/imx/cpuidle.h>
  66
  67#include <asm/cacheflush.h>
  68
  69#include "fec.h"
  70
  71static void set_multicast_list(struct net_device *ndev);
  72static void fec_enet_itr_coal_init(struct net_device *ndev);
  73
  74#define DRIVER_NAME     "fec"
  75
  76#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  77
  78/* Pause frame feild and FIFO threshold */
  79#define FEC_ENET_FCE    (1 << 5)
  80#define FEC_ENET_RSEM_V 0x84
  81#define FEC_ENET_RSFL_V 16
  82#define FEC_ENET_RAEM_V 0x8
  83#define FEC_ENET_RAFL_V 0x8
  84#define FEC_ENET_OPD_V  0xFFF0
  85#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  86
  87static struct platform_device_id fec_devtype[] = {
  88        {
  89                /* keep it for coldfire */
  90                .name = DRIVER_NAME,
  91                .driver_data = 0,
  92        }, {
  93                .name = "imx25-fec",
  94                .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
  95                               FEC_QUIRK_HAS_FRREG,
  96        }, {
  97                .name = "imx27-fec",
  98                .driver_data = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
  99        }, {
 100                .name = "imx28-fec",
 101                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 102                                FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 103                                FEC_QUIRK_HAS_FRREG,
 104        }, {
 105                .name = "imx6q-fec",
 106                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 107                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 108                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 109                                FEC_QUIRK_HAS_RACC,
 110        }, {
 111                .name = "mvf600-fec",
 112                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 113        }, {
 114                .name = "imx6sx-fec",
 115                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 116                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 117                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 118                                FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 119                                FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 120        }, {
 121                .name = "imx6ul-fec",
 122                .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 123                                FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 124                                FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 125                                FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 126                                FEC_QUIRK_HAS_COALESCE,
 127        }, {
 128                /* sentinel */
 129        }
 130};
 131MODULE_DEVICE_TABLE(platform, fec_devtype);
 132
 133enum imx_fec_type {
 134        IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
 135        IMX27_FEC,      /* runs on i.mx27/35/51 */
 136        IMX28_FEC,
 137        IMX6Q_FEC,
 138        MVF600_FEC,
 139        IMX6SX_FEC,
 140        IMX6UL_FEC,
 141};
 142
 143static const struct of_device_id fec_dt_ids[] = {
 144        { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 145        { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 146        { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 147        { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 148        { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 149        { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 150        { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 151        { /* sentinel */ }
 152};
 153MODULE_DEVICE_TABLE(of, fec_dt_ids);
 154
 155static unsigned char macaddr[ETH_ALEN];
 156module_param_array(macaddr, byte, NULL, 0);
 157MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 158
 159#if defined(CONFIG_M5272)
 160/*
 161 * Some hardware gets it MAC address out of local flash memory.
 162 * if this is non-zero then assume it is the address to get MAC from.
 163 */
 164#if defined(CONFIG_NETtel)
 165#define FEC_FLASHMAC    0xf0006006
 166#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 167#define FEC_FLASHMAC    0xf0006000
 168#elif defined(CONFIG_CANCam)
 169#define FEC_FLASHMAC    0xf0020000
 170#elif defined (CONFIG_M5272C3)
 171#define FEC_FLASHMAC    (0xffe04000 + 4)
 172#elif defined(CONFIG_MOD5272)
 173#define FEC_FLASHMAC    0xffc0406b
 174#else
 175#define FEC_FLASHMAC    0
 176#endif
 177#endif /* CONFIG_M5272 */
 178
 179/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 180 *
 181 * 2048 byte skbufs are allocated. However, alignment requirements
 182 * varies between FEC variants. Worst case is 64, so round down by 64.
 183 */
 184#define PKT_MAXBUF_SIZE         (round_down(2048 - 64, 64))
 185#define PKT_MINBUF_SIZE         64
 186
 187/* FEC receive acceleration */
 188#define FEC_RACC_IPDIS          (1 << 1)
 189#define FEC_RACC_PRODIS         (1 << 2)
 190#define FEC_RACC_SHIFT16        BIT(7)
 191#define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 192
 193/* MIB Control Register */
 194#define FEC_MIB_CTRLSTAT_DISABLE        BIT(31)
 195
 196/*
 197 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 198 * size bits. Other FEC hardware does not, so we need to take that into
 199 * account when setting it.
 200 */
 201#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 202    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 203    defined(CONFIG_ARM64)
 204#define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
 205#else
 206#define OPT_FRAME_SIZE  0
 207#endif
 208
 209/* FEC MII MMFR bits definition */
 210#define FEC_MMFR_ST             (1 << 30)
 211#define FEC_MMFR_OP_READ        (2 << 28)
 212#define FEC_MMFR_OP_WRITE       (1 << 28)
 213#define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
 214#define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
 215#define FEC_MMFR_TA             (2 << 16)
 216#define FEC_MMFR_DATA(v)        (v & 0xffff)
 217/* FEC ECR bits definition */
 218#define FEC_ECR_MAGICEN         (1 << 2)
 219#define FEC_ECR_SLEEP           (1 << 3)
 220
 221#define FEC_MII_TIMEOUT         30000 /* us */
 222
 223/* Transmitter timeout */
 224#define TX_TIMEOUT (2 * HZ)
 225
 226#define FEC_PAUSE_FLAG_AUTONEG  0x1
 227#define FEC_PAUSE_FLAG_ENABLE   0x2
 228#define FEC_WOL_HAS_MAGIC_PACKET        (0x1 << 0)
 229#define FEC_WOL_FLAG_ENABLE             (0x1 << 1)
 230#define FEC_WOL_FLAG_SLEEP_ON           (0x1 << 2)
 231
 232#define COPYBREAK_DEFAULT       256
 233
 234/* Max number of allowed TCP segments for software TSO */
 235#define FEC_MAX_TSO_SEGS        100
 236#define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 237
 238#define IS_TSO_HEADER(txq, addr) \
 239        ((addr >= txq->tso_hdrs_dma) && \
 240        (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 241
 242static int mii_cnt;
 243
 244static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 245                                             struct bufdesc_prop *bd)
 246{
 247        return (bdp >= bd->last) ? bd->base
 248                        : (struct bufdesc *)(((void *)bdp) + bd->dsize);
 249}
 250
 251static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 252                                             struct bufdesc_prop *bd)
 253{
 254        return (bdp <= bd->base) ? bd->last
 255                        : (struct bufdesc *)(((void *)bdp) - bd->dsize);
 256}
 257
 258static int fec_enet_get_bd_index(struct bufdesc *bdp,
 259                                 struct bufdesc_prop *bd)
 260{
 261        return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 262}
 263
 264static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 265{
 266        int entries;
 267
 268        entries = (((const char *)txq->dirty_tx -
 269                        (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 270
 271        return entries >= 0 ? entries : entries + txq->bd.ring_size;
 272}
 273
 274static void swap_buffer(void *bufaddr, int len)
 275{
 276        int i;
 277        unsigned int *buf = bufaddr;
 278
 279        for (i = 0; i < len; i += 4, buf++)
 280                swab32s(buf);
 281}
 282
 283static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 284{
 285        int i;
 286        unsigned int *src = src_buf;
 287        unsigned int *dst = dst_buf;
 288
 289        for (i = 0; i < len; i += 4, src++, dst++)
 290                *dst = swab32p(src);
 291}
 292
 293static void fec_dump(struct net_device *ndev)
 294{
 295        struct fec_enet_private *fep = netdev_priv(ndev);
 296        struct bufdesc *bdp;
 297        struct fec_enet_priv_tx_q *txq;
 298        int index = 0;
 299
 300        netdev_info(ndev, "TX ring dump\n");
 301        pr_info("Nr     SC     addr       len  SKB\n");
 302
 303        txq = fep->tx_queue[0];
 304        bdp = txq->bd.base;
 305
 306        do {
 307                pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 308                        index,
 309                        bdp == txq->bd.cur ? 'S' : ' ',
 310                        bdp == txq->dirty_tx ? 'H' : ' ',
 311                        fec16_to_cpu(bdp->cbd_sc),
 312                        fec32_to_cpu(bdp->cbd_bufaddr),
 313                        fec16_to_cpu(bdp->cbd_datlen),
 314                        txq->tx_skbuff[index]);
 315                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 316                index++;
 317        } while (bdp != txq->bd.base);
 318}
 319
 320static inline bool is_ipv4_pkt(struct sk_buff *skb)
 321{
 322        return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 323}
 324
 325static int
 326fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 327{
 328        /* Only run for packets requiring a checksum. */
 329        if (skb->ip_summed != CHECKSUM_PARTIAL)
 330                return 0;
 331
 332        if (unlikely(skb_cow_head(skb, 0)))
 333                return -1;
 334
 335        if (is_ipv4_pkt(skb))
 336                ip_hdr(skb)->check = 0;
 337        *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 338
 339        return 0;
 340}
 341
 342static struct bufdesc *
 343fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 344                             struct sk_buff *skb,
 345                             struct net_device *ndev)
 346{
 347        struct fec_enet_private *fep = netdev_priv(ndev);
 348        struct bufdesc *bdp = txq->bd.cur;
 349        struct bufdesc_ex *ebdp;
 350        int nr_frags = skb_shinfo(skb)->nr_frags;
 351        int frag, frag_len;
 352        unsigned short status;
 353        unsigned int estatus = 0;
 354        skb_frag_t *this_frag;
 355        unsigned int index;
 356        void *bufaddr;
 357        dma_addr_t addr;
 358        int i;
 359
 360        for (frag = 0; frag < nr_frags; frag++) {
 361                this_frag = &skb_shinfo(skb)->frags[frag];
 362                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 363                ebdp = (struct bufdesc_ex *)bdp;
 364
 365                status = fec16_to_cpu(bdp->cbd_sc);
 366                status &= ~BD_ENET_TX_STATS;
 367                status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 368                frag_len = skb_shinfo(skb)->frags[frag].size;
 369
 370                /* Handle the last BD specially */
 371                if (frag == nr_frags - 1) {
 372                        status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 373                        if (fep->bufdesc_ex) {
 374                                estatus |= BD_ENET_TX_INT;
 375                                if (unlikely(skb_shinfo(skb)->tx_flags &
 376                                        SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 377                                        estatus |= BD_ENET_TX_TS;
 378                        }
 379                }
 380
 381                if (fep->bufdesc_ex) {
 382                        if (fep->quirks & FEC_QUIRK_HAS_AVB)
 383                                estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 384                        if (skb->ip_summed == CHECKSUM_PARTIAL)
 385                                estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 386                        ebdp->cbd_bdu = 0;
 387                        ebdp->cbd_esc = cpu_to_fec32(estatus);
 388                }
 389
 390                bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
 391
 392                index = fec_enet_get_bd_index(bdp, &txq->bd);
 393                if (((unsigned long) bufaddr) & fep->tx_align ||
 394                        fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 395                        memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 396                        bufaddr = txq->tx_bounce[index];
 397
 398                        if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 399                                swap_buffer(bufaddr, frag_len);
 400                }
 401
 402                addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 403                                      DMA_TO_DEVICE);
 404                if (dma_mapping_error(&fep->pdev->dev, addr)) {
 405                        if (net_ratelimit())
 406                                netdev_err(ndev, "Tx DMA memory map failed\n");
 407                        goto dma_mapping_error;
 408                }
 409
 410                bdp->cbd_bufaddr = cpu_to_fec32(addr);
 411                bdp->cbd_datlen = cpu_to_fec16(frag_len);
 412                /* Make sure the updates to rest of the descriptor are
 413                 * performed before transferring ownership.
 414                 */
 415                wmb();
 416                bdp->cbd_sc = cpu_to_fec16(status);
 417        }
 418
 419        return bdp;
 420dma_mapping_error:
 421        bdp = txq->bd.cur;
 422        for (i = 0; i < frag; i++) {
 423                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 424                dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 425                                 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 426        }
 427        return ERR_PTR(-ENOMEM);
 428}
 429
 430static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 431                                   struct sk_buff *skb, struct net_device *ndev)
 432{
 433        struct fec_enet_private *fep = netdev_priv(ndev);
 434        int nr_frags = skb_shinfo(skb)->nr_frags;
 435        struct bufdesc *bdp, *last_bdp;
 436        void *bufaddr;
 437        dma_addr_t addr;
 438        unsigned short status;
 439        unsigned short buflen;
 440        unsigned int estatus = 0;
 441        unsigned int index;
 442        int entries_free;
 443
 444        entries_free = fec_enet_get_free_txdesc_num(txq);
 445        if (entries_free < MAX_SKB_FRAGS + 1) {
 446                dev_kfree_skb_any(skb);
 447                if (net_ratelimit())
 448                        netdev_err(ndev, "NOT enough BD for SG!\n");
 449                return NETDEV_TX_OK;
 450        }
 451
 452        /* Protocol checksum off-load for TCP and UDP. */
 453        if (fec_enet_clear_csum(skb, ndev)) {
 454                dev_kfree_skb_any(skb);
 455                return NETDEV_TX_OK;
 456        }
 457
 458        /* Fill in a Tx ring entry */
 459        bdp = txq->bd.cur;
 460        last_bdp = bdp;
 461        status = fec16_to_cpu(bdp->cbd_sc);
 462        status &= ~BD_ENET_TX_STATS;
 463
 464        /* Set buffer length and buffer pointer */
 465        bufaddr = skb->data;
 466        buflen = skb_headlen(skb);
 467
 468        index = fec_enet_get_bd_index(bdp, &txq->bd);
 469        if (((unsigned long) bufaddr) & fep->tx_align ||
 470                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 471                memcpy(txq->tx_bounce[index], skb->data, buflen);
 472                bufaddr = txq->tx_bounce[index];
 473
 474                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 475                        swap_buffer(bufaddr, buflen);
 476        }
 477
 478        /* Push the data cache so the CPM does not get stale memory data. */
 479        addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 480        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 481                dev_kfree_skb_any(skb);
 482                if (net_ratelimit())
 483                        netdev_err(ndev, "Tx DMA memory map failed\n");
 484                return NETDEV_TX_OK;
 485        }
 486
 487        if (nr_frags) {
 488                last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 489                if (IS_ERR(last_bdp)) {
 490                        dma_unmap_single(&fep->pdev->dev, addr,
 491                                         buflen, DMA_TO_DEVICE);
 492                        dev_kfree_skb_any(skb);
 493                        return NETDEV_TX_OK;
 494                }
 495        } else {
 496                status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 497                if (fep->bufdesc_ex) {
 498                        estatus = BD_ENET_TX_INT;
 499                        if (unlikely(skb_shinfo(skb)->tx_flags &
 500                                SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 501                                estatus |= BD_ENET_TX_TS;
 502                }
 503        }
 504        bdp->cbd_bufaddr = cpu_to_fec32(addr);
 505        bdp->cbd_datlen = cpu_to_fec16(buflen);
 506
 507        if (fep->bufdesc_ex) {
 508
 509                struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 510
 511                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 512                        fep->hwts_tx_en))
 513                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 514
 515                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 516                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 517
 518                if (skb->ip_summed == CHECKSUM_PARTIAL)
 519                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 520
 521                ebdp->cbd_bdu = 0;
 522                ebdp->cbd_esc = cpu_to_fec32(estatus);
 523        }
 524
 525        index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 526        /* Save skb pointer */
 527        txq->tx_skbuff[index] = skb;
 528
 529        /* Make sure the updates to rest of the descriptor are performed before
 530         * transferring ownership.
 531         */
 532        wmb();
 533
 534        /* Send it on its way.  Tell FEC it's ready, interrupt when done,
 535         * it's the last BD of the frame, and to put the CRC on the end.
 536         */
 537        status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 538        bdp->cbd_sc = cpu_to_fec16(status);
 539
 540        /* If this was the last BD in the ring, start at the beginning again. */
 541        bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 542
 543        skb_tx_timestamp(skb);
 544
 545        /* Make sure the update to bdp and tx_skbuff are performed before
 546         * txq->bd.cur.
 547         */
 548        wmb();
 549        txq->bd.cur = bdp;
 550
 551        /* Trigger transmission start */
 552        writel(0, txq->bd.reg_desc_active);
 553
 554        return 0;
 555}
 556
 557static int
 558fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 559                          struct net_device *ndev,
 560                          struct bufdesc *bdp, int index, char *data,
 561                          int size, bool last_tcp, bool is_last)
 562{
 563        struct fec_enet_private *fep = netdev_priv(ndev);
 564        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 565        unsigned short status;
 566        unsigned int estatus = 0;
 567        dma_addr_t addr;
 568
 569        status = fec16_to_cpu(bdp->cbd_sc);
 570        status &= ~BD_ENET_TX_STATS;
 571
 572        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 573
 574        if (((unsigned long) data) & fep->tx_align ||
 575                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 576                memcpy(txq->tx_bounce[index], data, size);
 577                data = txq->tx_bounce[index];
 578
 579                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 580                        swap_buffer(data, size);
 581        }
 582
 583        addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 584        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 585                dev_kfree_skb_any(skb);
 586                if (net_ratelimit())
 587                        netdev_err(ndev, "Tx DMA memory map failed\n");
 588                return NETDEV_TX_BUSY;
 589        }
 590
 591        bdp->cbd_datlen = cpu_to_fec16(size);
 592        bdp->cbd_bufaddr = cpu_to_fec32(addr);
 593
 594        if (fep->bufdesc_ex) {
 595                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 596                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 597                if (skb->ip_summed == CHECKSUM_PARTIAL)
 598                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 599                ebdp->cbd_bdu = 0;
 600                ebdp->cbd_esc = cpu_to_fec32(estatus);
 601        }
 602
 603        /* Handle the last BD specially */
 604        if (last_tcp)
 605                status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 606        if (is_last) {
 607                status |= BD_ENET_TX_INTR;
 608                if (fep->bufdesc_ex)
 609                        ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 610        }
 611
 612        bdp->cbd_sc = cpu_to_fec16(status);
 613
 614        return 0;
 615}
 616
 617static int
 618fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 619                         struct sk_buff *skb, struct net_device *ndev,
 620                         struct bufdesc *bdp, int index)
 621{
 622        struct fec_enet_private *fep = netdev_priv(ndev);
 623        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 624        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 625        void *bufaddr;
 626        unsigned long dmabuf;
 627        unsigned short status;
 628        unsigned int estatus = 0;
 629
 630        status = fec16_to_cpu(bdp->cbd_sc);
 631        status &= ~BD_ENET_TX_STATS;
 632        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 633
 634        bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 635        dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 636        if (((unsigned long)bufaddr) & fep->tx_align ||
 637                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 638                memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 639                bufaddr = txq->tx_bounce[index];
 640
 641                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 642                        swap_buffer(bufaddr, hdr_len);
 643
 644                dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 645                                        hdr_len, DMA_TO_DEVICE);
 646                if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 647                        dev_kfree_skb_any(skb);
 648                        if (net_ratelimit())
 649                                netdev_err(ndev, "Tx DMA memory map failed\n");
 650                        return NETDEV_TX_BUSY;
 651                }
 652        }
 653
 654        bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 655        bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 656
 657        if (fep->bufdesc_ex) {
 658                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 659                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 660                if (skb->ip_summed == CHECKSUM_PARTIAL)
 661                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 662                ebdp->cbd_bdu = 0;
 663                ebdp->cbd_esc = cpu_to_fec32(estatus);
 664        }
 665
 666        bdp->cbd_sc = cpu_to_fec16(status);
 667
 668        return 0;
 669}
 670
 671static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 672                                   struct sk_buff *skb,
 673                                   struct net_device *ndev)
 674{
 675        struct fec_enet_private *fep = netdev_priv(ndev);
 676        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 677        int total_len, data_left;
 678        struct bufdesc *bdp = txq->bd.cur;
 679        struct tso_t tso;
 680        unsigned int index = 0;
 681        int ret;
 682
 683        if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 684                dev_kfree_skb_any(skb);
 685                if (net_ratelimit())
 686                        netdev_err(ndev, "NOT enough BD for TSO!\n");
 687                return NETDEV_TX_OK;
 688        }
 689
 690        /* Protocol checksum off-load for TCP and UDP. */
 691        if (fec_enet_clear_csum(skb, ndev)) {
 692                dev_kfree_skb_any(skb);
 693                return NETDEV_TX_OK;
 694        }
 695
 696        /* Initialize the TSO handler, and prepare the first payload */
 697        tso_start(skb, &tso);
 698
 699        total_len = skb->len - hdr_len;
 700        while (total_len > 0) {
 701                char *hdr;
 702
 703                index = fec_enet_get_bd_index(bdp, &txq->bd);
 704                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 705                total_len -= data_left;
 706
 707                /* prepare packet headers: MAC + IP + TCP */
 708                hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 709                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 710                ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 711                if (ret)
 712                        goto err_release;
 713
 714                while (data_left > 0) {
 715                        int size;
 716
 717                        size = min_t(int, tso.size, data_left);
 718                        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 719                        index = fec_enet_get_bd_index(bdp, &txq->bd);
 720                        ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 721                                                        bdp, index,
 722                                                        tso.data, size,
 723                                                        size == data_left,
 724                                                        total_len == 0);
 725                        if (ret)
 726                                goto err_release;
 727
 728                        data_left -= size;
 729                        tso_build_data(skb, &tso, size);
 730                }
 731
 732                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 733        }
 734
 735        /* Save skb pointer */
 736        txq->tx_skbuff[index] = skb;
 737
 738        skb_tx_timestamp(skb);
 739        txq->bd.cur = bdp;
 740
 741        /* Trigger transmission start */
 742        if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 743            !readl(txq->bd.reg_desc_active) ||
 744            !readl(txq->bd.reg_desc_active) ||
 745            !readl(txq->bd.reg_desc_active) ||
 746            !readl(txq->bd.reg_desc_active))
 747                writel(0, txq->bd.reg_desc_active);
 748
 749        return 0;
 750
 751err_release:
 752        /* TODO: Release all used data descriptors for TSO */
 753        return ret;
 754}
 755
 756static netdev_tx_t
 757fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 758{
 759        struct fec_enet_private *fep = netdev_priv(ndev);
 760        int entries_free;
 761        unsigned short queue;
 762        struct fec_enet_priv_tx_q *txq;
 763        struct netdev_queue *nq;
 764        int ret;
 765
 766        queue = skb_get_queue_mapping(skb);
 767        txq = fep->tx_queue[queue];
 768        nq = netdev_get_tx_queue(ndev, queue);
 769
 770        if (skb_is_gso(skb))
 771                ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 772        else
 773                ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 774        if (ret)
 775                return ret;
 776
 777        entries_free = fec_enet_get_free_txdesc_num(txq);
 778        if (entries_free <= txq->tx_stop_threshold)
 779                netif_tx_stop_queue(nq);
 780
 781        return NETDEV_TX_OK;
 782}
 783
 784/* Init RX & TX buffer descriptors
 785 */
 786static void fec_enet_bd_init(struct net_device *dev)
 787{
 788        struct fec_enet_private *fep = netdev_priv(dev);
 789        struct fec_enet_priv_tx_q *txq;
 790        struct fec_enet_priv_rx_q *rxq;
 791        struct bufdesc *bdp;
 792        unsigned int i;
 793        unsigned int q;
 794
 795        for (q = 0; q < fep->num_rx_queues; q++) {
 796                /* Initialize the receive buffer descriptors. */
 797                rxq = fep->rx_queue[q];
 798                bdp = rxq->bd.base;
 799
 800                for (i = 0; i < rxq->bd.ring_size; i++) {
 801
 802                        /* Initialize the BD for every fragment in the page. */
 803                        if (bdp->cbd_bufaddr)
 804                                bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 805                        else
 806                                bdp->cbd_sc = cpu_to_fec16(0);
 807                        bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 808                }
 809
 810                /* Set the last buffer to wrap */
 811                bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 812                bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 813
 814                rxq->bd.cur = rxq->bd.base;
 815        }
 816
 817        for (q = 0; q < fep->num_tx_queues; q++) {
 818                /* ...and the same for transmit */
 819                txq = fep->tx_queue[q];
 820                bdp = txq->bd.base;
 821                txq->bd.cur = bdp;
 822
 823                for (i = 0; i < txq->bd.ring_size; i++) {
 824                        /* Initialize the BD for every fragment in the page. */
 825                        bdp->cbd_sc = cpu_to_fec16(0);
 826                        if (bdp->cbd_bufaddr &&
 827                            !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 828                                dma_unmap_single(&fep->pdev->dev,
 829                                                 fec32_to_cpu(bdp->cbd_bufaddr),
 830                                                 fec16_to_cpu(bdp->cbd_datlen),
 831                                                 DMA_TO_DEVICE);
 832                        if (txq->tx_skbuff[i]) {
 833                                dev_kfree_skb_any(txq->tx_skbuff[i]);
 834                                txq->tx_skbuff[i] = NULL;
 835                        }
 836                        bdp->cbd_bufaddr = cpu_to_fec32(0);
 837                        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 838                }
 839
 840                /* Set the last buffer to wrap */
 841                bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 842                bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 843                txq->dirty_tx = bdp;
 844        }
 845}
 846
 847static void fec_enet_active_rxring(struct net_device *ndev)
 848{
 849        struct fec_enet_private *fep = netdev_priv(ndev);
 850        int i;
 851
 852        for (i = 0; i < fep->num_rx_queues; i++)
 853                writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 854}
 855
 856static void fec_enet_enable_ring(struct net_device *ndev)
 857{
 858        struct fec_enet_private *fep = netdev_priv(ndev);
 859        struct fec_enet_priv_tx_q *txq;
 860        struct fec_enet_priv_rx_q *rxq;
 861        int i;
 862
 863        for (i = 0; i < fep->num_rx_queues; i++) {
 864                rxq = fep->rx_queue[i];
 865                writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 866                writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 867
 868                /* enable DMA1/2 */
 869                if (i)
 870                        writel(RCMR_MATCHEN | RCMR_CMP(i),
 871                               fep->hwp + FEC_RCMR(i));
 872        }
 873
 874        for (i = 0; i < fep->num_tx_queues; i++) {
 875                txq = fep->tx_queue[i];
 876                writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 877
 878                /* enable DMA1/2 */
 879                if (i)
 880                        writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 881                               fep->hwp + FEC_DMA_CFG(i));
 882        }
 883}
 884
 885static void fec_enet_reset_skb(struct net_device *ndev)
 886{
 887        struct fec_enet_private *fep = netdev_priv(ndev);
 888        struct fec_enet_priv_tx_q *txq;
 889        int i, j;
 890
 891        for (i = 0; i < fep->num_tx_queues; i++) {
 892                txq = fep->tx_queue[i];
 893
 894                for (j = 0; j < txq->bd.ring_size; j++) {
 895                        if (txq->tx_skbuff[j]) {
 896                                dev_kfree_skb_any(txq->tx_skbuff[j]);
 897                                txq->tx_skbuff[j] = NULL;
 898                        }
 899                }
 900        }
 901}
 902
 903/*
 904 * This function is called to start or restart the FEC during a link
 905 * change, transmit timeout, or to reconfigure the FEC.  The network
 906 * packet processing for this device must be stopped before this call.
 907 */
 908static void
 909fec_restart(struct net_device *ndev)
 910{
 911        struct fec_enet_private *fep = netdev_priv(ndev);
 912        u32 val;
 913        u32 temp_mac[2];
 914        u32 rcntl = OPT_FRAME_SIZE | 0x04;
 915        u32 ecntl = 0x2; /* ETHEREN */
 916
 917        /* Whack a reset.  We should wait for this.
 918         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 919         * instead of reset MAC itself.
 920         */
 921        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 922                writel(0, fep->hwp + FEC_ECNTRL);
 923        } else {
 924                writel(1, fep->hwp + FEC_ECNTRL);
 925                udelay(10);
 926        }
 927
 928        /*
 929         * enet-mac reset will reset mac address registers too,
 930         * so need to reconfigure it.
 931         */
 932        memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 933        writel((__force u32)cpu_to_be32(temp_mac[0]),
 934               fep->hwp + FEC_ADDR_LOW);
 935        writel((__force u32)cpu_to_be32(temp_mac[1]),
 936               fep->hwp + FEC_ADDR_HIGH);
 937
 938        /* Clear any outstanding interrupt. */
 939        writel(0xffffffff, fep->hwp + FEC_IEVENT);
 940
 941        fec_enet_bd_init(ndev);
 942
 943        fec_enet_enable_ring(ndev);
 944
 945        /* Reset tx SKB buffers. */
 946        fec_enet_reset_skb(ndev);
 947
 948        /* Enable MII mode */
 949        if (fep->full_duplex == DUPLEX_FULL) {
 950                /* FD enable */
 951                writel(0x04, fep->hwp + FEC_X_CNTRL);
 952        } else {
 953                /* No Rcv on Xmit */
 954                rcntl |= 0x02;
 955                writel(0x0, fep->hwp + FEC_X_CNTRL);
 956        }
 957
 958        /* Set MII speed */
 959        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 960
 961#if !defined(CONFIG_M5272)
 962        if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 963                val = readl(fep->hwp + FEC_RACC);
 964                /* align IP header */
 965                val |= FEC_RACC_SHIFT16;
 966                if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 967                        /* set RX checksum */
 968                        val |= FEC_RACC_OPTIONS;
 969                else
 970                        val &= ~FEC_RACC_OPTIONS;
 971                writel(val, fep->hwp + FEC_RACC);
 972                writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
 973        }
 974#endif
 975
 976        /*
 977         * The phy interface and speed need to get configured
 978         * differently on enet-mac.
 979         */
 980        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 981                /* Enable flow control and length check */
 982                rcntl |= 0x40000000 | 0x00000020;
 983
 984                /* RGMII, RMII or MII */
 985                if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 986                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 987                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 988                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 989                        rcntl |= (1 << 6);
 990                else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 991                        rcntl |= (1 << 8);
 992                else
 993                        rcntl &= ~(1 << 8);
 994
 995                /* 1G, 100M or 10M */
 996                if (ndev->phydev) {
 997                        if (ndev->phydev->speed == SPEED_1000)
 998                                ecntl |= (1 << 5);
 999                        else if (ndev->phydev->speed == SPEED_100)
1000                                rcntl &= ~(1 << 9);
1001                        else
1002                                rcntl |= (1 << 9);
1003                }
1004        } else {
1005#ifdef FEC_MIIGSK_ENR
1006                if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1007                        u32 cfgr;
1008                        /* disable the gasket and wait */
1009                        writel(0, fep->hwp + FEC_MIIGSK_ENR);
1010                        while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1011                                udelay(1);
1012
1013                        /*
1014                         * configure the gasket:
1015                         *   RMII, 50 MHz, no loopback, no echo
1016                         *   MII, 25 MHz, no loopback, no echo
1017                         */
1018                        cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1019                                ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1020                        if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1021                                cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1022                        writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1023
1024                        /* re-enable the gasket */
1025                        writel(2, fep->hwp + FEC_MIIGSK_ENR);
1026                }
1027#endif
1028        }
1029
1030#if !defined(CONFIG_M5272)
1031        /* enable pause frame*/
1032        if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1033            ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1034             ndev->phydev && ndev->phydev->pause)) {
1035                rcntl |= FEC_ENET_FCE;
1036
1037                /* set FIFO threshold parameter to reduce overrun */
1038                writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1039                writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1040                writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1041                writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1042
1043                /* OPD */
1044                writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1045        } else {
1046                rcntl &= ~FEC_ENET_FCE;
1047        }
1048#endif /* !defined(CONFIG_M5272) */
1049
1050        writel(rcntl, fep->hwp + FEC_R_CNTRL);
1051
1052        /* Setup multicast filter. */
1053        set_multicast_list(ndev);
1054#ifndef CONFIG_M5272
1055        writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1056        writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1057#endif
1058
1059        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1060                /* enable ENET endian swap */
1061                ecntl |= (1 << 8);
1062                /* enable ENET store and forward mode */
1063                writel(1 << 8, fep->hwp + FEC_X_WMRK);
1064        }
1065
1066        if (fep->bufdesc_ex)
1067                ecntl |= (1 << 4);
1068
1069#ifndef CONFIG_M5272
1070        /* Enable the MIB statistic event counters */
1071        writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1072#endif
1073
1074        /* And last, enable the transmit and receive processing */
1075        writel(ecntl, fep->hwp + FEC_ECNTRL);
1076        fec_enet_active_rxring(ndev);
1077
1078        if (fep->bufdesc_ex)
1079                fec_ptp_start_cyclecounter(ndev);
1080
1081        /* Enable interrupts we wish to service */
1082        if (fep->link)
1083                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1084        else
1085                writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1086
1087        /* Init the interrupt coalescing */
1088        fec_enet_itr_coal_init(ndev);
1089
1090}
1091
1092static void
1093fec_stop(struct net_device *ndev)
1094{
1095        struct fec_enet_private *fep = netdev_priv(ndev);
1096        struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1097        u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1098        u32 val;
1099
1100        /* We cannot expect a graceful transmit stop without link !!! */
1101        if (fep->link) {
1102                writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1103                udelay(10);
1104                if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1105                        netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1106        }
1107
1108        /* Whack a reset.  We should wait for this.
1109         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1110         * instead of reset MAC itself.
1111         */
1112        if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1113                if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1114                        writel(0, fep->hwp + FEC_ECNTRL);
1115                } else {
1116                        writel(1, fep->hwp + FEC_ECNTRL);
1117                        udelay(10);
1118                }
1119                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1120        } else {
1121                writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1122                val = readl(fep->hwp + FEC_ECNTRL);
1123                val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1124                writel(val, fep->hwp + FEC_ECNTRL);
1125
1126                if (pdata && pdata->sleep_mode_enable)
1127                        pdata->sleep_mode_enable(true);
1128        }
1129        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1130
1131        /* We have to keep ENET enabled to have MII interrupt stay working */
1132        if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1133                !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1134                writel(2, fep->hwp + FEC_ECNTRL);
1135                writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1136        }
1137}
1138
1139
1140static void
1141fec_timeout(struct net_device *ndev)
1142{
1143        struct fec_enet_private *fep = netdev_priv(ndev);
1144
1145        fec_dump(ndev);
1146
1147        ndev->stats.tx_errors++;
1148
1149        schedule_work(&fep->tx_timeout_work);
1150}
1151
1152static void fec_enet_timeout_work(struct work_struct *work)
1153{
1154        struct fec_enet_private *fep =
1155                container_of(work, struct fec_enet_private, tx_timeout_work);
1156        struct net_device *ndev = fep->netdev;
1157
1158        rtnl_lock();
1159        if (netif_device_present(ndev) || netif_running(ndev)) {
1160                napi_disable(&fep->napi);
1161                netif_tx_lock_bh(ndev);
1162                fec_restart(ndev);
1163                netif_tx_wake_all_queues(ndev);
1164                netif_tx_unlock_bh(ndev);
1165                napi_enable(&fep->napi);
1166        }
1167        rtnl_unlock();
1168}
1169
1170static void
1171fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1172        struct skb_shared_hwtstamps *hwtstamps)
1173{
1174        unsigned long flags;
1175        u64 ns;
1176
1177        spin_lock_irqsave(&fep->tmreg_lock, flags);
1178        ns = timecounter_cyc2time(&fep->tc, ts);
1179        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1180
1181        memset(hwtstamps, 0, sizeof(*hwtstamps));
1182        hwtstamps->hwtstamp = ns_to_ktime(ns);
1183}
1184
1185static void
1186fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1187{
1188        struct  fec_enet_private *fep;
1189        struct bufdesc *bdp;
1190        unsigned short status;
1191        struct  sk_buff *skb;
1192        struct fec_enet_priv_tx_q *txq;
1193        struct netdev_queue *nq;
1194        int     index = 0;
1195        int     entries_free;
1196
1197        fep = netdev_priv(ndev);
1198
1199        queue_id = FEC_ENET_GET_QUQUE(queue_id);
1200
1201        txq = fep->tx_queue[queue_id];
1202        /* get next bdp of dirty_tx */
1203        nq = netdev_get_tx_queue(ndev, queue_id);
1204        bdp = txq->dirty_tx;
1205
1206        /* get next bdp of dirty_tx */
1207        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1208
1209        while (bdp != READ_ONCE(txq->bd.cur)) {
1210                /* Order the load of bd.cur and cbd_sc */
1211                rmb();
1212                status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1213                if (status & BD_ENET_TX_READY)
1214                        break;
1215
1216                index = fec_enet_get_bd_index(bdp, &txq->bd);
1217
1218                skb = txq->tx_skbuff[index];
1219                txq->tx_skbuff[index] = NULL;
1220                if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1221                        dma_unmap_single(&fep->pdev->dev,
1222                                         fec32_to_cpu(bdp->cbd_bufaddr),
1223                                         fec16_to_cpu(bdp->cbd_datlen),
1224                                         DMA_TO_DEVICE);
1225                bdp->cbd_bufaddr = cpu_to_fec32(0);
1226                if (!skb)
1227                        goto skb_done;
1228
1229                /* Check for errors. */
1230                if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1231                                   BD_ENET_TX_RL | BD_ENET_TX_UN |
1232                                   BD_ENET_TX_CSL)) {
1233                        ndev->stats.tx_errors++;
1234                        if (status & BD_ENET_TX_HB)  /* No heartbeat */
1235                                ndev->stats.tx_heartbeat_errors++;
1236                        if (status & BD_ENET_TX_LC)  /* Late collision */
1237                                ndev->stats.tx_window_errors++;
1238                        if (status & BD_ENET_TX_RL)  /* Retrans limit */
1239                                ndev->stats.tx_aborted_errors++;
1240                        if (status & BD_ENET_TX_UN)  /* Underrun */
1241                                ndev->stats.tx_fifo_errors++;
1242                        if (status & BD_ENET_TX_CSL) /* Carrier lost */
1243                                ndev->stats.tx_carrier_errors++;
1244                } else {
1245                        ndev->stats.tx_packets++;
1246                        ndev->stats.tx_bytes += skb->len;
1247                }
1248
1249                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1250                        fep->bufdesc_ex) {
1251                        struct skb_shared_hwtstamps shhwtstamps;
1252                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1253
1254                        fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1255                        skb_tstamp_tx(skb, &shhwtstamps);
1256                }
1257
1258                /* Deferred means some collisions occurred during transmit,
1259                 * but we eventually sent the packet OK.
1260                 */
1261                if (status & BD_ENET_TX_DEF)
1262                        ndev->stats.collisions++;
1263
1264                /* Free the sk buffer associated with this last transmit */
1265                dev_kfree_skb_any(skb);
1266skb_done:
1267                /* Make sure the update to bdp and tx_skbuff are performed
1268                 * before dirty_tx
1269                 */
1270                wmb();
1271                txq->dirty_tx = bdp;
1272
1273                /* Update pointer to next buffer descriptor to be transmitted */
1274                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1275
1276                /* Since we have freed up a buffer, the ring is no longer full
1277                 */
1278                if (netif_tx_queue_stopped(nq)) {
1279                        entries_free = fec_enet_get_free_txdesc_num(txq);
1280                        if (entries_free >= txq->tx_wake_threshold)
1281                                netif_tx_wake_queue(nq);
1282                }
1283        }
1284
1285        /* ERR006358: Keep the transmitter going */
1286        if (bdp != txq->bd.cur &&
1287            readl(txq->bd.reg_desc_active) == 0)
1288                writel(0, txq->bd.reg_desc_active);
1289}
1290
1291static void
1292fec_enet_tx(struct net_device *ndev)
1293{
1294        struct fec_enet_private *fep = netdev_priv(ndev);
1295        u16 queue_id;
1296        /* First process class A queue, then Class B and Best Effort queue */
1297        for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1298                clear_bit(queue_id, &fep->work_tx);
1299                fec_enet_tx_queue(ndev, queue_id);
1300        }
1301        return;
1302}
1303
1304static int
1305fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1306{
1307        struct  fec_enet_private *fep = netdev_priv(ndev);
1308        int off;
1309
1310        off = ((unsigned long)skb->data) & fep->rx_align;
1311        if (off)
1312                skb_reserve(skb, fep->rx_align + 1 - off);
1313
1314        bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1315        if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1316                if (net_ratelimit())
1317                        netdev_err(ndev, "Rx DMA memory map failed\n");
1318                return -ENOMEM;
1319        }
1320
1321        return 0;
1322}
1323
1324static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1325                               struct bufdesc *bdp, u32 length, bool swap)
1326{
1327        struct  fec_enet_private *fep = netdev_priv(ndev);
1328        struct sk_buff *new_skb;
1329
1330        if (length > fep->rx_copybreak)
1331                return false;
1332
1333        new_skb = netdev_alloc_skb(ndev, length);
1334        if (!new_skb)
1335                return false;
1336
1337        dma_sync_single_for_cpu(&fep->pdev->dev,
1338                                fec32_to_cpu(bdp->cbd_bufaddr),
1339                                FEC_ENET_RX_FRSIZE - fep->rx_align,
1340                                DMA_FROM_DEVICE);
1341        if (!swap)
1342                memcpy(new_skb->data, (*skb)->data, length);
1343        else
1344                swap_buffer2(new_skb->data, (*skb)->data, length);
1345        *skb = new_skb;
1346
1347        return true;
1348}
1349
1350/* During a receive, the bd_rx.cur points to the current incoming buffer.
1351 * When we update through the ring, if the next incoming buffer has
1352 * not been given to the system, we just set the empty indicator,
1353 * effectively tossing the packet.
1354 */
1355static int
1356fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1357{
1358        struct fec_enet_private *fep = netdev_priv(ndev);
1359        struct fec_enet_priv_rx_q *rxq;
1360        struct bufdesc *bdp;
1361        unsigned short status;
1362        struct  sk_buff *skb_new = NULL;
1363        struct  sk_buff *skb;
1364        ushort  pkt_len;
1365        __u8 *data;
1366        int     pkt_received = 0;
1367        struct  bufdesc_ex *ebdp = NULL;
1368        bool    vlan_packet_rcvd = false;
1369        u16     vlan_tag;
1370        int     index = 0;
1371        bool    is_copybreak;
1372        bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1373
1374#ifdef CONFIG_M532x
1375        flush_cache_all();
1376#endif
1377        queue_id = FEC_ENET_GET_QUQUE(queue_id);
1378        rxq = fep->rx_queue[queue_id];
1379
1380        /* First, grab all of the stats for the incoming packet.
1381         * These get messed up if we get called due to a busy condition.
1382         */
1383        bdp = rxq->bd.cur;
1384
1385        while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1386
1387                if (pkt_received >= budget)
1388                        break;
1389                pkt_received++;
1390
1391                writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1392
1393                /* Check for errors. */
1394                status ^= BD_ENET_RX_LAST;
1395                if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1396                           BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1397                           BD_ENET_RX_CL)) {
1398                        ndev->stats.rx_errors++;
1399                        if (status & BD_ENET_RX_OV) {
1400                                /* FIFO overrun */
1401                                ndev->stats.rx_fifo_errors++;
1402                                goto rx_processing_done;
1403                        }
1404                        if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1405                                                | BD_ENET_RX_LAST)) {
1406                                /* Frame too long or too short. */
1407                                ndev->stats.rx_length_errors++;
1408                                if (status & BD_ENET_RX_LAST)
1409                                        netdev_err(ndev, "rcv is not +last\n");
1410                        }
1411                        if (status & BD_ENET_RX_CR)     /* CRC Error */
1412                                ndev->stats.rx_crc_errors++;
1413                        /* Report late collisions as a frame error. */
1414                        if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1415                                ndev->stats.rx_frame_errors++;
1416                        goto rx_processing_done;
1417                }
1418
1419                /* Process the incoming frame. */
1420                ndev->stats.rx_packets++;
1421                pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1422                ndev->stats.rx_bytes += pkt_len;
1423
1424                index = fec_enet_get_bd_index(bdp, &rxq->bd);
1425                skb = rxq->rx_skbuff[index];
1426
1427                /* The packet length includes FCS, but we don't want to
1428                 * include that when passing upstream as it messes up
1429                 * bridging applications.
1430                 */
1431                is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1432                                                  need_swap);
1433                if (!is_copybreak) {
1434                        skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1435                        if (unlikely(!skb_new)) {
1436                                ndev->stats.rx_dropped++;
1437                                goto rx_processing_done;
1438                        }
1439                        dma_unmap_single(&fep->pdev->dev,
1440                                         fec32_to_cpu(bdp->cbd_bufaddr),
1441                                         FEC_ENET_RX_FRSIZE - fep->rx_align,
1442                                         DMA_FROM_DEVICE);
1443                }
1444
1445                prefetch(skb->data - NET_IP_ALIGN);
1446                skb_put(skb, pkt_len - 4);
1447                data = skb->data;
1448
1449                if (!is_copybreak && need_swap)
1450                        swap_buffer(data, pkt_len);
1451
1452#if !defined(CONFIG_M5272)
1453                if (fep->quirks & FEC_QUIRK_HAS_RACC)
1454                        data = skb_pull_inline(skb, 2);
1455#endif
1456
1457                /* Extract the enhanced buffer descriptor */
1458                ebdp = NULL;
1459                if (fep->bufdesc_ex)
1460                        ebdp = (struct bufdesc_ex *)bdp;
1461
1462                /* If this is a VLAN packet remove the VLAN Tag */
1463                vlan_packet_rcvd = false;
1464                if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1465                    fep->bufdesc_ex &&
1466                    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1467                        /* Push and remove the vlan tag */
1468                        struct vlan_hdr *vlan_header =
1469                                        (struct vlan_hdr *) (data + ETH_HLEN);
1470                        vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1471
1472                        vlan_packet_rcvd = true;
1473
1474                        memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1475                        skb_pull(skb, VLAN_HLEN);
1476                }
1477
1478                skb->protocol = eth_type_trans(skb, ndev);
1479
1480                /* Get receive timestamp from the skb */
1481                if (fep->hwts_rx_en && fep->bufdesc_ex)
1482                        fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1483                                          skb_hwtstamps(skb));
1484
1485                if (fep->bufdesc_ex &&
1486                    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1487                        if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1488                                /* don't check it */
1489                                skb->ip_summed = CHECKSUM_UNNECESSARY;
1490                        } else {
1491                                skb_checksum_none_assert(skb);
1492                        }
1493                }
1494
1495                /* Handle received VLAN packets */
1496                if (vlan_packet_rcvd)
1497                        __vlan_hwaccel_put_tag(skb,
1498                                               htons(ETH_P_8021Q),
1499                                               vlan_tag);
1500
1501                napi_gro_receive(&fep->napi, skb);
1502
1503                if (is_copybreak) {
1504                        dma_sync_single_for_device(&fep->pdev->dev,
1505                                                   fec32_to_cpu(bdp->cbd_bufaddr),
1506                                                   FEC_ENET_RX_FRSIZE - fep->rx_align,
1507                                                   DMA_FROM_DEVICE);
1508                } else {
1509                        rxq->rx_skbuff[index] = skb_new;
1510                        fec_enet_new_rxbdp(ndev, bdp, skb_new);
1511                }
1512
1513rx_processing_done:
1514                /* Clear the status flags for this buffer */
1515                status &= ~BD_ENET_RX_STATS;
1516
1517                /* Mark the buffer empty */
1518                status |= BD_ENET_RX_EMPTY;
1519
1520                if (fep->bufdesc_ex) {
1521                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1522
1523                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1524                        ebdp->cbd_prot = 0;
1525                        ebdp->cbd_bdu = 0;
1526                }
1527                /* Make sure the updates to rest of the descriptor are
1528                 * performed before transferring ownership.
1529                 */
1530                wmb();
1531                bdp->cbd_sc = cpu_to_fec16(status);
1532
1533                /* Update BD pointer to next entry */
1534                bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1535
1536                /* Doing this here will keep the FEC running while we process
1537                 * incoming frames.  On a heavily loaded network, we should be
1538                 * able to keep up at the expense of system resources.
1539                 */
1540                writel(0, rxq->bd.reg_desc_active);
1541        }
1542        rxq->bd.cur = bdp;
1543        return pkt_received;
1544}
1545
1546static int
1547fec_enet_rx(struct net_device *ndev, int budget)
1548{
1549        int     pkt_received = 0;
1550        u16     queue_id;
1551        struct fec_enet_private *fep = netdev_priv(ndev);
1552
1553        for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1554                int ret;
1555
1556                ret = fec_enet_rx_queue(ndev,
1557                                        budget - pkt_received, queue_id);
1558
1559                if (ret < budget - pkt_received)
1560                        clear_bit(queue_id, &fep->work_rx);
1561
1562                pkt_received += ret;
1563        }
1564        return pkt_received;
1565}
1566
1567static bool
1568fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1569{
1570        if (int_events == 0)
1571                return false;
1572
1573        if (int_events & FEC_ENET_RXF_0)
1574                fep->work_rx |= (1 << 2);
1575        if (int_events & FEC_ENET_RXF_1)
1576                fep->work_rx |= (1 << 0);
1577        if (int_events & FEC_ENET_RXF_2)
1578                fep->work_rx |= (1 << 1);
1579
1580        if (int_events & FEC_ENET_TXF_0)
1581                fep->work_tx |= (1 << 2);
1582        if (int_events & FEC_ENET_TXF_1)
1583                fep->work_tx |= (1 << 0);
1584        if (int_events & FEC_ENET_TXF_2)
1585                fep->work_tx |= (1 << 1);
1586
1587        return true;
1588}
1589
1590static irqreturn_t
1591fec_enet_interrupt(int irq, void *dev_id)
1592{
1593        struct net_device *ndev = dev_id;
1594        struct fec_enet_private *fep = netdev_priv(ndev);
1595        uint int_events;
1596        irqreturn_t ret = IRQ_NONE;
1597
1598        int_events = readl(fep->hwp + FEC_IEVENT);
1599        writel(int_events, fep->hwp + FEC_IEVENT);
1600        fec_enet_collect_events(fep, int_events);
1601
1602        if ((fep->work_tx || fep->work_rx) && fep->link) {
1603                ret = IRQ_HANDLED;
1604
1605                if (napi_schedule_prep(&fep->napi)) {
1606                        /* Disable the NAPI interrupts */
1607                        writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1608                        __napi_schedule(&fep->napi);
1609                }
1610        }
1611
1612        if (int_events & FEC_ENET_MII) {
1613                ret = IRQ_HANDLED;
1614                complete(&fep->mdio_done);
1615        }
1616        return ret;
1617}
1618
1619static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1620{
1621        struct net_device *ndev = napi->dev;
1622        struct fec_enet_private *fep = netdev_priv(ndev);
1623        int pkts;
1624
1625        pkts = fec_enet_rx(ndev, budget);
1626
1627        fec_enet_tx(ndev);
1628
1629        if (pkts < budget) {
1630                napi_complete_done(napi, pkts);
1631                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1632        }
1633        return pkts;
1634}
1635
1636/* ------------------------------------------------------------------------- */
1637static void fec_get_mac(struct net_device *ndev)
1638{
1639        struct fec_enet_private *fep = netdev_priv(ndev);
1640        struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1641        unsigned char *iap, tmpaddr[ETH_ALEN];
1642
1643        /*
1644         * try to get mac address in following order:
1645         *
1646         * 1) module parameter via kernel command line in form
1647         *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1648         */
1649        iap = macaddr;
1650
1651        /*
1652         * 2) from device tree data
1653         */
1654        if (!is_valid_ether_addr(iap)) {
1655                struct device_node *np = fep->pdev->dev.of_node;
1656                if (np) {
1657                        const char *mac = of_get_mac_address(np);
1658                        if (!IS_ERR(mac))
1659                                iap = (unsigned char *) mac;
1660                }
1661        }
1662
1663        /*
1664         * 3) from flash or fuse (via platform data)
1665         */
1666        if (!is_valid_ether_addr(iap)) {
1667#ifdef CONFIG_M5272
1668                if (FEC_FLASHMAC)
1669                        iap = (unsigned char *)FEC_FLASHMAC;
1670#else
1671                if (pdata)
1672                        iap = (unsigned char *)&pdata->mac;
1673#endif
1674        }
1675
1676        /*
1677         * 4) FEC mac registers set by bootloader
1678         */
1679        if (!is_valid_ether_addr(iap)) {
1680                *((__be32 *) &tmpaddr[0]) =
1681                        cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1682                *((__be16 *) &tmpaddr[4]) =
1683                        cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1684                iap = &tmpaddr[0];
1685        }
1686
1687        /*
1688         * 5) random mac address
1689         */
1690        if (!is_valid_ether_addr(iap)) {
1691                /* Report it and use a random ethernet address instead */
1692                dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1693                eth_hw_addr_random(ndev);
1694                dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1695                         ndev->dev_addr);
1696                return;
1697        }
1698
1699        memcpy(ndev->dev_addr, iap, ETH_ALEN);
1700
1701        /* Adjust MAC if using macaddr */
1702        if (iap == macaddr)
1703                 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1704}
1705
1706/* ------------------------------------------------------------------------- */
1707
1708/*
1709 * Phy section
1710 */
1711static void fec_enet_adjust_link(struct net_device *ndev)
1712{
1713        struct fec_enet_private *fep = netdev_priv(ndev);
1714        struct phy_device *phy_dev = ndev->phydev;
1715        int status_change = 0;
1716
1717        /*
1718         * If the netdev is down, or is going down, we're not interested
1719         * in link state events, so just mark our idea of the link as down
1720         * and ignore the event.
1721         */
1722        if (!netif_running(ndev) || !netif_device_present(ndev)) {
1723                fep->link = 0;
1724        } else if (phy_dev->link) {
1725                if (!fep->link) {
1726                        fep->link = phy_dev->link;
1727                        status_change = 1;
1728                }
1729
1730                if (fep->full_duplex != phy_dev->duplex) {
1731                        fep->full_duplex = phy_dev->duplex;
1732                        status_change = 1;
1733                }
1734
1735                if (phy_dev->speed != fep->speed) {
1736                        fep->speed = phy_dev->speed;
1737                        status_change = 1;
1738                }
1739
1740                /* if any of the above changed restart the FEC */
1741                if (status_change) {
1742                        napi_disable(&fep->napi);
1743                        netif_tx_lock_bh(ndev);
1744                        fec_restart(ndev);
1745                        netif_tx_wake_all_queues(ndev);
1746                        netif_tx_unlock_bh(ndev);
1747                        napi_enable(&fep->napi);
1748                }
1749        } else {
1750                if (fep->link) {
1751                        napi_disable(&fep->napi);
1752                        netif_tx_lock_bh(ndev);
1753                        fec_stop(ndev);
1754                        netif_tx_unlock_bh(ndev);
1755                        napi_enable(&fep->napi);
1756                        fep->link = phy_dev->link;
1757                        status_change = 1;
1758                }
1759        }
1760
1761        if (status_change)
1762                phy_print_status(phy_dev);
1763}
1764
1765static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1766{
1767        struct fec_enet_private *fep = bus->priv;
1768        struct device *dev = &fep->pdev->dev;
1769        unsigned long time_left;
1770        int ret = 0;
1771
1772        ret = pm_runtime_get_sync(dev);
1773        if (ret < 0)
1774                return ret;
1775
1776        reinit_completion(&fep->mdio_done);
1777
1778        /* start a read op */
1779        writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1780                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1781                FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1782
1783        /* wait for end of transfer */
1784        time_left = wait_for_completion_timeout(&fep->mdio_done,
1785                        usecs_to_jiffies(FEC_MII_TIMEOUT));
1786        if (time_left == 0) {
1787                netdev_err(fep->netdev, "MDIO read timeout\n");
1788                ret = -ETIMEDOUT;
1789                goto out;
1790        }
1791
1792        ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1793
1794out:
1795        pm_runtime_mark_last_busy(dev);
1796        pm_runtime_put_autosuspend(dev);
1797
1798        return ret;
1799}
1800
1801static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1802                           u16 value)
1803{
1804        struct fec_enet_private *fep = bus->priv;
1805        struct device *dev = &fep->pdev->dev;
1806        unsigned long time_left;
1807        int ret;
1808
1809        ret = pm_runtime_get_sync(dev);
1810        if (ret < 0)
1811                return ret;
1812        else
1813                ret = 0;
1814
1815        reinit_completion(&fep->mdio_done);
1816
1817        /* start a write op */
1818        writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1819                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1820                FEC_MMFR_TA | FEC_MMFR_DATA(value),
1821                fep->hwp + FEC_MII_DATA);
1822
1823        /* wait for end of transfer */
1824        time_left = wait_for_completion_timeout(&fep->mdio_done,
1825                        usecs_to_jiffies(FEC_MII_TIMEOUT));
1826        if (time_left == 0) {
1827                netdev_err(fep->netdev, "MDIO write timeout\n");
1828                ret  = -ETIMEDOUT;
1829        }
1830
1831        pm_runtime_mark_last_busy(dev);
1832        pm_runtime_put_autosuspend(dev);
1833
1834        return ret;
1835}
1836
1837static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1838{
1839        struct fec_enet_private *fep = netdev_priv(ndev);
1840        int ret;
1841
1842        if (enable) {
1843                ret = clk_prepare_enable(fep->clk_enet_out);
1844                if (ret)
1845                        return ret;
1846
1847                if (fep->clk_ptp) {
1848                        mutex_lock(&fep->ptp_clk_mutex);
1849                        ret = clk_prepare_enable(fep->clk_ptp);
1850                        if (ret) {
1851                                mutex_unlock(&fep->ptp_clk_mutex);
1852                                goto failed_clk_ptp;
1853                        } else {
1854                                fep->ptp_clk_on = true;
1855                        }
1856                        mutex_unlock(&fep->ptp_clk_mutex);
1857                }
1858
1859                ret = clk_prepare_enable(fep->clk_ref);
1860                if (ret)
1861                        goto failed_clk_ref;
1862
1863                phy_reset_after_clk_enable(ndev->phydev);
1864        } else {
1865                clk_disable_unprepare(fep->clk_enet_out);
1866                if (fep->clk_ptp) {
1867                        mutex_lock(&fep->ptp_clk_mutex);
1868                        clk_disable_unprepare(fep->clk_ptp);
1869                        fep->ptp_clk_on = false;
1870                        mutex_unlock(&fep->ptp_clk_mutex);
1871                }
1872                clk_disable_unprepare(fep->clk_ref);
1873        }
1874
1875        return 0;
1876
1877failed_clk_ref:
1878        if (fep->clk_ref)
1879                clk_disable_unprepare(fep->clk_ref);
1880failed_clk_ptp:
1881        if (fep->clk_enet_out)
1882                clk_disable_unprepare(fep->clk_enet_out);
1883
1884        return ret;
1885}
1886
1887static int fec_enet_mii_probe(struct net_device *ndev)
1888{
1889        struct fec_enet_private *fep = netdev_priv(ndev);
1890        struct phy_device *phy_dev = NULL;
1891        char mdio_bus_id[MII_BUS_ID_SIZE];
1892        char phy_name[MII_BUS_ID_SIZE + 3];
1893        int phy_id;
1894        int dev_id = fep->dev_id;
1895
1896        if (fep->phy_node) {
1897                phy_dev = of_phy_connect(ndev, fep->phy_node,
1898                                         &fec_enet_adjust_link, 0,
1899                                         fep->phy_interface);
1900                if (!phy_dev) {
1901                        netdev_err(ndev, "Unable to connect to phy\n");
1902                        return -ENODEV;
1903                }
1904        } else {
1905                /* check for attached phy */
1906                for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1907                        if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1908                                continue;
1909                        if (dev_id--)
1910                                continue;
1911                        strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1912                        break;
1913                }
1914
1915                if (phy_id >= PHY_MAX_ADDR) {
1916                        netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1917                        strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1918                        phy_id = 0;
1919                }
1920
1921                snprintf(phy_name, sizeof(phy_name),
1922                         PHY_ID_FMT, mdio_bus_id, phy_id);
1923                phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1924                                      fep->phy_interface);
1925        }
1926
1927        if (IS_ERR(phy_dev)) {
1928                netdev_err(ndev, "could not attach to PHY\n");
1929                return PTR_ERR(phy_dev);
1930        }
1931
1932        /* mask with MAC supported features */
1933        if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1934                phy_set_max_speed(phy_dev, 1000);
1935                phy_remove_link_mode(phy_dev,
1936                                     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1937#if !defined(CONFIG_M5272)
1938                phy_support_sym_pause(phy_dev);
1939#endif
1940        }
1941        else
1942                phy_set_max_speed(phy_dev, 100);
1943
1944        fep->link = 0;
1945        fep->full_duplex = 0;
1946
1947        phy_attached_info(phy_dev);
1948
1949        return 0;
1950}
1951
1952static int fec_enet_mii_init(struct platform_device *pdev)
1953{
1954        static struct mii_bus *fec0_mii_bus;
1955        struct net_device *ndev = platform_get_drvdata(pdev);
1956        struct fec_enet_private *fep = netdev_priv(ndev);
1957        struct device_node *node;
1958        int err = -ENXIO;
1959        u32 mii_speed, holdtime;
1960
1961        /*
1962         * The i.MX28 dual fec interfaces are not equal.
1963         * Here are the differences:
1964         *
1965         *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1966         *  - fec0 acts as the 1588 time master while fec1 is slave
1967         *  - external phys can only be configured by fec0
1968         *
1969         * That is to say fec1 can not work independently. It only works
1970         * when fec0 is working. The reason behind this design is that the
1971         * second interface is added primarily for Switch mode.
1972         *
1973         * Because of the last point above, both phys are attached on fec0
1974         * mdio interface in board design, and need to be configured by
1975         * fec0 mii_bus.
1976         */
1977        if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1978                /* fec1 uses fec0 mii_bus */
1979                if (mii_cnt && fec0_mii_bus) {
1980                        fep->mii_bus = fec0_mii_bus;
1981                        mii_cnt++;
1982                        return 0;
1983                }
1984                return -ENOENT;
1985        }
1986
1987        /*
1988         * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1989         *
1990         * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1991         * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1992         * Reference Manual has an error on this, and gets fixed on i.MX6Q
1993         * document.
1994         */
1995        mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1996        if (fep->quirks & FEC_QUIRK_ENET_MAC)
1997                mii_speed--;
1998        if (mii_speed > 63) {
1999                dev_err(&pdev->dev,
2000                        "fec clock (%lu) too fast to get right mii speed\n",
2001                        clk_get_rate(fep->clk_ipg));
2002                err = -EINVAL;
2003                goto err_out;
2004        }
2005
2006        /*
2007         * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2008         * MII_SPEED) register that defines the MDIO output hold time. Earlier
2009         * versions are RAZ there, so just ignore the difference and write the
2010         * register always.
2011         * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2012         * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2013         * output.
2014         * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2015         * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2016         * holdtime cannot result in a value greater than 3.
2017         */
2018        holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2019
2020        fep->phy_speed = mii_speed << 1 | holdtime << 8;
2021
2022        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2023
2024        fep->mii_bus = mdiobus_alloc();
2025        if (fep->mii_bus == NULL) {
2026                err = -ENOMEM;
2027                goto err_out;
2028        }
2029
2030        fep->mii_bus->name = "fec_enet_mii_bus";
2031        fep->mii_bus->read = fec_enet_mdio_read;
2032        fep->mii_bus->write = fec_enet_mdio_write;
2033        snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2034                pdev->name, fep->dev_id + 1);
2035        fep->mii_bus->priv = fep;
2036        fep->mii_bus->parent = &pdev->dev;
2037
2038        node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2039        err = of_mdiobus_register(fep->mii_bus, node);
2040        of_node_put(node);
2041        if (err)
2042                goto err_out_free_mdiobus;
2043
2044        mii_cnt++;
2045
2046        /* save fec0 mii_bus */
2047        if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2048                fec0_mii_bus = fep->mii_bus;
2049
2050        return 0;
2051
2052err_out_free_mdiobus:
2053        mdiobus_free(fep->mii_bus);
2054err_out:
2055        return err;
2056}
2057
2058static void fec_enet_mii_remove(struct fec_enet_private *fep)
2059{
2060        if (--mii_cnt == 0) {
2061                mdiobus_unregister(fep->mii_bus);
2062                mdiobus_free(fep->mii_bus);
2063        }
2064}
2065
2066static void fec_enet_get_drvinfo(struct net_device *ndev,
2067                                 struct ethtool_drvinfo *info)
2068{
2069        struct fec_enet_private *fep = netdev_priv(ndev);
2070
2071        strlcpy(info->driver, fep->pdev->dev.driver->name,
2072                sizeof(info->driver));
2073        strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2074        strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2075}
2076
2077static int fec_enet_get_regs_len(struct net_device *ndev)
2078{
2079        struct fec_enet_private *fep = netdev_priv(ndev);
2080        struct resource *r;
2081        int s = 0;
2082
2083        r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2084        if (r)
2085                s = resource_size(r);
2086
2087        return s;
2088}
2089
2090/* List of registers that can be safety be read to dump them with ethtool */
2091#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2092        defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2093        defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2094static __u32 fec_enet_register_version = 2;
2095static u32 fec_enet_register_offset[] = {
2096        FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2097        FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2098        FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2099        FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2100        FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2101        FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2102        FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2103        FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2104        FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2105        FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2106        FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2107        FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2108        RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2109        RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2110        RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2111        RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2112        RMON_T_P_GTE2048, RMON_T_OCTETS,
2113        IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2114        IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2115        IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2116        RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2117        RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2118        RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2119        RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2120        RMON_R_P_GTE2048, RMON_R_OCTETS,
2121        IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2122        IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2123};
2124#else
2125static __u32 fec_enet_register_version = 1;
2126static u32 fec_enet_register_offset[] = {
2127        FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2128        FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2129        FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2130        FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2131        FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2132        FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2133        FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2134        FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2135        FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2136};
2137#endif
2138
2139static void fec_enet_get_regs(struct net_device *ndev,
2140                              struct ethtool_regs *regs, void *regbuf)
2141{
2142        struct fec_enet_private *fep = netdev_priv(ndev);
2143        u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2144        u32 *buf = (u32 *)regbuf;
2145        u32 i, off;
2146
2147        regs->version = fec_enet_register_version;
2148
2149        memset(buf, 0, regs->len);
2150
2151        for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2152                off = fec_enet_register_offset[i];
2153
2154                if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2155                    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2156                        continue;
2157
2158                off >>= 2;
2159                buf[off] = readl(&theregs[off]);
2160        }
2161}
2162
2163static int fec_enet_get_ts_info(struct net_device *ndev,
2164                                struct ethtool_ts_info *info)
2165{
2166        struct fec_enet_private *fep = netdev_priv(ndev);
2167
2168        if (fep->bufdesc_ex) {
2169
2170                info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2171                                        SOF_TIMESTAMPING_RX_SOFTWARE |
2172                                        SOF_TIMESTAMPING_SOFTWARE |
2173                                        SOF_TIMESTAMPING_TX_HARDWARE |
2174                                        SOF_TIMESTAMPING_RX_HARDWARE |
2175                                        SOF_TIMESTAMPING_RAW_HARDWARE;
2176                if (fep->ptp_clock)
2177                        info->phc_index = ptp_clock_index(fep->ptp_clock);
2178                else
2179                        info->phc_index = -1;
2180
2181                info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2182                                 (1 << HWTSTAMP_TX_ON);
2183
2184                info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2185                                   (1 << HWTSTAMP_FILTER_ALL);
2186                return 0;
2187        } else {
2188                return ethtool_op_get_ts_info(ndev, info);
2189        }
2190}
2191
2192#if !defined(CONFIG_M5272)
2193
2194static void fec_enet_get_pauseparam(struct net_device *ndev,
2195                                    struct ethtool_pauseparam *pause)
2196{
2197        struct fec_enet_private *fep = netdev_priv(ndev);
2198
2199        pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2200        pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2201        pause->rx_pause = pause->tx_pause;
2202}
2203
2204static int fec_enet_set_pauseparam(struct net_device *ndev,
2205                                   struct ethtool_pauseparam *pause)
2206{
2207        struct fec_enet_private *fep = netdev_priv(ndev);
2208
2209        if (!ndev->phydev)
2210                return -ENODEV;
2211
2212        if (pause->tx_pause != pause->rx_pause) {
2213                netdev_info(ndev,
2214                        "hardware only support enable/disable both tx and rx");
2215                return -EINVAL;
2216        }
2217
2218        fep->pause_flag = 0;
2219
2220        /* tx pause must be same as rx pause */
2221        fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2222        fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2223
2224        phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2225                          pause->autoneg);
2226
2227        if (pause->autoneg) {
2228                if (netif_running(ndev))
2229                        fec_stop(ndev);
2230                phy_start_aneg(ndev->phydev);
2231        }
2232        if (netif_running(ndev)) {
2233                napi_disable(&fep->napi);
2234                netif_tx_lock_bh(ndev);
2235                fec_restart(ndev);
2236                netif_tx_wake_all_queues(ndev);
2237                netif_tx_unlock_bh(ndev);
2238                napi_enable(&fep->napi);
2239        }
2240
2241        return 0;
2242}
2243
2244static const struct fec_stat {
2245        char name[ETH_GSTRING_LEN];
2246        u16 offset;
2247} fec_stats[] = {
2248        /* RMON TX */
2249        { "tx_dropped", RMON_T_DROP },
2250        { "tx_packets", RMON_T_PACKETS },
2251        { "tx_broadcast", RMON_T_BC_PKT },
2252        { "tx_multicast", RMON_T_MC_PKT },
2253        { "tx_crc_errors", RMON_T_CRC_ALIGN },
2254        { "tx_undersize", RMON_T_UNDERSIZE },
2255        { "tx_oversize", RMON_T_OVERSIZE },
2256        { "tx_fragment", RMON_T_FRAG },
2257        { "tx_jabber", RMON_T_JAB },
2258        { "tx_collision", RMON_T_COL },
2259        { "tx_64byte", RMON_T_P64 },
2260        { "tx_65to127byte", RMON_T_P65TO127 },
2261        { "tx_128to255byte", RMON_T_P128TO255 },
2262        { "tx_256to511byte", RMON_T_P256TO511 },
2263        { "tx_512to1023byte", RMON_T_P512TO1023 },
2264        { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2265        { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2266        { "tx_octets", RMON_T_OCTETS },
2267
2268        /* IEEE TX */
2269        { "IEEE_tx_drop", IEEE_T_DROP },
2270        { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2271        { "IEEE_tx_1col", IEEE_T_1COL },
2272        { "IEEE_tx_mcol", IEEE_T_MCOL },
2273        { "IEEE_tx_def", IEEE_T_DEF },
2274        { "IEEE_tx_lcol", IEEE_T_LCOL },
2275        { "IEEE_tx_excol", IEEE_T_EXCOL },
2276        { "IEEE_tx_macerr", IEEE_T_MACERR },
2277        { "IEEE_tx_cserr", IEEE_T_CSERR },
2278        { "IEEE_tx_sqe", IEEE_T_SQE },
2279        { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2280        { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2281
2282        /* RMON RX */
2283        { "rx_packets", RMON_R_PACKETS },
2284        { "rx_broadcast", RMON_R_BC_PKT },
2285        { "rx_multicast", RMON_R_MC_PKT },
2286        { "rx_crc_errors", RMON_R_CRC_ALIGN },
2287        { "rx_undersize", RMON_R_UNDERSIZE },
2288        { "rx_oversize", RMON_R_OVERSIZE },
2289        { "rx_fragment", RMON_R_FRAG },
2290        { "rx_jabber", RMON_R_JAB },
2291        { "rx_64byte", RMON_R_P64 },
2292        { "rx_65to127byte", RMON_R_P65TO127 },
2293        { "rx_128to255byte", RMON_R_P128TO255 },
2294        { "rx_256to511byte", RMON_R_P256TO511 },
2295        { "rx_512to1023byte", RMON_R_P512TO1023 },
2296        { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2297        { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2298        { "rx_octets", RMON_R_OCTETS },
2299
2300        /* IEEE RX */
2301        { "IEEE_rx_drop", IEEE_R_DROP },
2302        { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2303        { "IEEE_rx_crc", IEEE_R_CRC },
2304        { "IEEE_rx_align", IEEE_R_ALIGN },
2305        { "IEEE_rx_macerr", IEEE_R_MACERR },
2306        { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2307        { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2308};
2309
2310#define FEC_STATS_SIZE          (ARRAY_SIZE(fec_stats) * sizeof(u64))
2311
2312static void fec_enet_update_ethtool_stats(struct net_device *dev)
2313{
2314        struct fec_enet_private *fep = netdev_priv(dev);
2315        int i;
2316
2317        for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2318                fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2319}
2320
2321static void fec_enet_get_ethtool_stats(struct net_device *dev,
2322                                       struct ethtool_stats *stats, u64 *data)
2323{
2324        struct fec_enet_private *fep = netdev_priv(dev);
2325
2326        if (netif_running(dev))
2327                fec_enet_update_ethtool_stats(dev);
2328
2329        memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2330}
2331
2332static void fec_enet_get_strings(struct net_device *netdev,
2333        u32 stringset, u8 *data)
2334{
2335        int i;
2336        switch (stringset) {
2337        case ETH_SS_STATS:
2338                for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2339                        memcpy(data + i * ETH_GSTRING_LEN,
2340                                fec_stats[i].name, ETH_GSTRING_LEN);
2341                break;
2342        }
2343}
2344
2345static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2346{
2347        switch (sset) {
2348        case ETH_SS_STATS:
2349                return ARRAY_SIZE(fec_stats);
2350        default:
2351                return -EOPNOTSUPP;
2352        }
2353}
2354
2355static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2356{
2357        struct fec_enet_private *fep = netdev_priv(dev);
2358        int i;
2359
2360        /* Disable MIB statistics counters */
2361        writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2362
2363        for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2364                writel(0, fep->hwp + fec_stats[i].offset);
2365
2366        /* Don't disable MIB statistics counters */
2367        writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2368}
2369
2370#else   /* !defined(CONFIG_M5272) */
2371#define FEC_STATS_SIZE  0
2372static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2373{
2374}
2375
2376static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2377{
2378}
2379#endif /* !defined(CONFIG_M5272) */
2380
2381/* ITR clock source is enet system clock (clk_ahb).
2382 * TCTT unit is cycle_ns * 64 cycle
2383 * So, the ICTT value = X us / (cycle_ns * 64)
2384 */
2385static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2386{
2387        struct fec_enet_private *fep = netdev_priv(ndev);
2388
2389        return us * (fep->itr_clk_rate / 64000) / 1000;
2390}
2391
2392/* Set threshold for interrupt coalescing */
2393static void fec_enet_itr_coal_set(struct net_device *ndev)
2394{
2395        struct fec_enet_private *fep = netdev_priv(ndev);
2396        int rx_itr, tx_itr;
2397
2398        /* Must be greater than zero to avoid unpredictable behavior */
2399        if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2400            !fep->tx_time_itr || !fep->tx_pkts_itr)
2401                return;
2402
2403        /* Select enet system clock as Interrupt Coalescing
2404         * timer Clock Source
2405         */
2406        rx_itr = FEC_ITR_CLK_SEL;
2407        tx_itr = FEC_ITR_CLK_SEL;
2408
2409        /* set ICFT and ICTT */
2410        rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2411        rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2412        tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2413        tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2414
2415        rx_itr |= FEC_ITR_EN;
2416        tx_itr |= FEC_ITR_EN;
2417
2418        writel(tx_itr, fep->hwp + FEC_TXIC0);
2419        writel(rx_itr, fep->hwp + FEC_RXIC0);
2420        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2421                writel(tx_itr, fep->hwp + FEC_TXIC1);
2422                writel(rx_itr, fep->hwp + FEC_RXIC1);
2423                writel(tx_itr, fep->hwp + FEC_TXIC2);
2424                writel(rx_itr, fep->hwp + FEC_RXIC2);
2425        }
2426}
2427
2428static int
2429fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2430{
2431        struct fec_enet_private *fep = netdev_priv(ndev);
2432
2433        if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2434                return -EOPNOTSUPP;
2435
2436        ec->rx_coalesce_usecs = fep->rx_time_itr;
2437        ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2438
2439        ec->tx_coalesce_usecs = fep->tx_time_itr;
2440        ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2441
2442        return 0;
2443}
2444
2445static int
2446fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2447{
2448        struct fec_enet_private *fep = netdev_priv(ndev);
2449        struct device *dev = &fep->pdev->dev;
2450        unsigned int cycle;
2451
2452        if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2453                return -EOPNOTSUPP;
2454
2455        if (ec->rx_max_coalesced_frames > 255) {
2456                dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2457                return -EINVAL;
2458        }
2459
2460        if (ec->tx_max_coalesced_frames > 255) {
2461                dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2462                return -EINVAL;
2463        }
2464
2465        cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2466        if (cycle > 0xFFFF) {
2467                dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2468                return -EINVAL;
2469        }
2470
2471        cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2472        if (cycle > 0xFFFF) {
2473                dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2474                return -EINVAL;
2475        }
2476
2477        fep->rx_time_itr = ec->rx_coalesce_usecs;
2478        fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2479
2480        fep->tx_time_itr = ec->tx_coalesce_usecs;
2481        fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2482
2483        fec_enet_itr_coal_set(ndev);
2484
2485        return 0;
2486}
2487
2488static void fec_enet_itr_coal_init(struct net_device *ndev)
2489{
2490        struct ethtool_coalesce ec;
2491
2492        ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2493        ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2494
2495        ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2496        ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2497
2498        fec_enet_set_coalesce(ndev, &ec);
2499}
2500
2501static int fec_enet_get_tunable(struct net_device *netdev,
2502                                const struct ethtool_tunable *tuna,
2503                                void *data)
2504{
2505        struct fec_enet_private *fep = netdev_priv(netdev);
2506        int ret = 0;
2507
2508        switch (tuna->id) {
2509        case ETHTOOL_RX_COPYBREAK:
2510                *(u32 *)data = fep->rx_copybreak;
2511                break;
2512        default:
2513                ret = -EINVAL;
2514                break;
2515        }
2516
2517        return ret;
2518}
2519
2520static int fec_enet_set_tunable(struct net_device *netdev,
2521                                const struct ethtool_tunable *tuna,
2522                                const void *data)
2523{
2524        struct fec_enet_private *fep = netdev_priv(netdev);
2525        int ret = 0;
2526
2527        switch (tuna->id) {
2528        case ETHTOOL_RX_COPYBREAK:
2529                fep->rx_copybreak = *(u32 *)data;
2530                break;
2531        default:
2532                ret = -EINVAL;
2533                break;
2534        }
2535
2536        return ret;
2537}
2538
2539static void
2540fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2541{
2542        struct fec_enet_private *fep = netdev_priv(ndev);
2543
2544        if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2545                wol->supported = WAKE_MAGIC;
2546                wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2547        } else {
2548                wol->supported = wol->wolopts = 0;
2549        }
2550}
2551
2552static int
2553fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2554{
2555        struct fec_enet_private *fep = netdev_priv(ndev);
2556
2557        if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2558                return -EINVAL;
2559
2560        if (wol->wolopts & ~WAKE_MAGIC)
2561                return -EINVAL;
2562
2563        device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2564        if (device_may_wakeup(&ndev->dev)) {
2565                fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2566                if (fep->irq[0] > 0)
2567                        enable_irq_wake(fep->irq[0]);
2568        } else {
2569                fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2570                if (fep->irq[0] > 0)
2571                        disable_irq_wake(fep->irq[0]);
2572        }
2573
2574        return 0;
2575}
2576
2577static const struct ethtool_ops fec_enet_ethtool_ops = {
2578        .get_drvinfo            = fec_enet_get_drvinfo,
2579        .get_regs_len           = fec_enet_get_regs_len,
2580        .get_regs               = fec_enet_get_regs,
2581        .nway_reset             = phy_ethtool_nway_reset,
2582        .get_link               = ethtool_op_get_link,
2583        .get_coalesce           = fec_enet_get_coalesce,
2584        .set_coalesce           = fec_enet_set_coalesce,
2585#ifndef CONFIG_M5272
2586        .get_pauseparam         = fec_enet_get_pauseparam,
2587        .set_pauseparam         = fec_enet_set_pauseparam,
2588        .get_strings            = fec_enet_get_strings,
2589        .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2590        .get_sset_count         = fec_enet_get_sset_count,
2591#endif
2592        .get_ts_info            = fec_enet_get_ts_info,
2593        .get_tunable            = fec_enet_get_tunable,
2594        .set_tunable            = fec_enet_set_tunable,
2595        .get_wol                = fec_enet_get_wol,
2596        .set_wol                = fec_enet_set_wol,
2597        .get_link_ksettings     = phy_ethtool_get_link_ksettings,
2598        .set_link_ksettings     = phy_ethtool_set_link_ksettings,
2599};
2600
2601static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2602{
2603        struct fec_enet_private *fep = netdev_priv(ndev);
2604        struct phy_device *phydev = ndev->phydev;
2605
2606        if (!netif_running(ndev))
2607                return -EINVAL;
2608
2609        if (!phydev)
2610                return -ENODEV;
2611
2612        if (fep->bufdesc_ex) {
2613                if (cmd == SIOCSHWTSTAMP)
2614                        return fec_ptp_set(ndev, rq);
2615                if (cmd == SIOCGHWTSTAMP)
2616                        return fec_ptp_get(ndev, rq);
2617        }
2618
2619        return phy_mii_ioctl(phydev, rq, cmd);
2620}
2621
2622static void fec_enet_free_buffers(struct net_device *ndev)
2623{
2624        struct fec_enet_private *fep = netdev_priv(ndev);
2625        unsigned int i;
2626        struct sk_buff *skb;
2627        struct bufdesc  *bdp;
2628        struct fec_enet_priv_tx_q *txq;
2629        struct fec_enet_priv_rx_q *rxq;
2630        unsigned int q;
2631
2632        for (q = 0; q < fep->num_rx_queues; q++) {
2633                rxq = fep->rx_queue[q];
2634                bdp = rxq->bd.base;
2635                for (i = 0; i < rxq->bd.ring_size; i++) {
2636                        skb = rxq->rx_skbuff[i];
2637                        rxq->rx_skbuff[i] = NULL;
2638                        if (skb) {
2639                                dma_unmap_single(&fep->pdev->dev,
2640                                                 fec32_to_cpu(bdp->cbd_bufaddr),
2641                                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
2642                                                 DMA_FROM_DEVICE);
2643                                dev_kfree_skb(skb);
2644                        }
2645                        bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2646                }
2647        }
2648
2649        for (q = 0; q < fep->num_tx_queues; q++) {
2650                txq = fep->tx_queue[q];
2651                bdp = txq->bd.base;
2652                for (i = 0; i < txq->bd.ring_size; i++) {
2653                        kfree(txq->tx_bounce[i]);
2654                        txq->tx_bounce[i] = NULL;
2655                        skb = txq->tx_skbuff[i];
2656                        txq->tx_skbuff[i] = NULL;
2657                        dev_kfree_skb(skb);
2658                }
2659        }
2660}
2661
2662static void fec_enet_free_queue(struct net_device *ndev)
2663{
2664        struct fec_enet_private *fep = netdev_priv(ndev);
2665        int i;
2666        struct fec_enet_priv_tx_q *txq;
2667
2668        for (i = 0; i < fep->num_tx_queues; i++)
2669                if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2670                        txq = fep->tx_queue[i];
2671                        dma_free_coherent(&fep->pdev->dev,
2672                                          txq->bd.ring_size * TSO_HEADER_SIZE,
2673                                          txq->tso_hdrs,
2674                                          txq->tso_hdrs_dma);
2675                }
2676
2677        for (i = 0; i < fep->num_rx_queues; i++)
2678                kfree(fep->rx_queue[i]);
2679        for (i = 0; i < fep->num_tx_queues; i++)
2680                kfree(fep->tx_queue[i]);
2681}
2682
2683static int fec_enet_alloc_queue(struct net_device *ndev)
2684{
2685        struct fec_enet_private *fep = netdev_priv(ndev);
2686        int i;
2687        int ret = 0;
2688        struct fec_enet_priv_tx_q *txq;
2689
2690        for (i = 0; i < fep->num_tx_queues; i++) {
2691                txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2692                if (!txq) {
2693                        ret = -ENOMEM;
2694                        goto alloc_failed;
2695                }
2696
2697                fep->tx_queue[i] = txq;
2698                txq->bd.ring_size = TX_RING_SIZE;
2699                fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2700
2701                txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2702                txq->tx_wake_threshold =
2703                        (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2704
2705                txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2706                                        txq->bd.ring_size * TSO_HEADER_SIZE,
2707                                        &txq->tso_hdrs_dma,
2708                                        GFP_KERNEL);
2709                if (!txq->tso_hdrs) {
2710                        ret = -ENOMEM;
2711                        goto alloc_failed;
2712                }
2713        }
2714
2715        for (i = 0; i < fep->num_rx_queues; i++) {
2716                fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2717                                           GFP_KERNEL);
2718                if (!fep->rx_queue[i]) {
2719                        ret = -ENOMEM;
2720                        goto alloc_failed;
2721                }
2722
2723                fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2724                fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2725        }
2726        return ret;
2727
2728alloc_failed:
2729        fec_enet_free_queue(ndev);
2730        return ret;
2731}
2732
2733static int
2734fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2735{
2736        struct fec_enet_private *fep = netdev_priv(ndev);
2737        unsigned int i;
2738        struct sk_buff *skb;
2739        struct bufdesc  *bdp;
2740        struct fec_enet_priv_rx_q *rxq;
2741
2742        rxq = fep->rx_queue[queue];
2743        bdp = rxq->bd.base;
2744        for (i = 0; i < rxq->bd.ring_size; i++) {
2745                skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2746                if (!skb)
2747                        goto err_alloc;
2748
2749                if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2750                        dev_kfree_skb(skb);
2751                        goto err_alloc;
2752                }
2753
2754                rxq->rx_skbuff[i] = skb;
2755                bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2756
2757                if (fep->bufdesc_ex) {
2758                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2759                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2760                }
2761
2762                bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2763        }
2764
2765        /* Set the last buffer to wrap. */
2766        bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2767        bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2768        return 0;
2769
2770 err_alloc:
2771        fec_enet_free_buffers(ndev);
2772        return -ENOMEM;
2773}
2774
2775static int
2776fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2777{
2778        struct fec_enet_private *fep = netdev_priv(ndev);
2779        unsigned int i;
2780        struct bufdesc  *bdp;
2781        struct fec_enet_priv_tx_q *txq;
2782
2783        txq = fep->tx_queue[queue];
2784        bdp = txq->bd.base;
2785        for (i = 0; i < txq->bd.ring_size; i++) {
2786                txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2787                if (!txq->tx_bounce[i])
2788                        goto err_alloc;
2789
2790                bdp->cbd_sc = cpu_to_fec16(0);
2791                bdp->cbd_bufaddr = cpu_to_fec32(0);
2792
2793                if (fep->bufdesc_ex) {
2794                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2795                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2796                }
2797
2798                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2799        }
2800
2801        /* Set the last buffer to wrap. */
2802        bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2803        bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2804
2805        return 0;
2806
2807 err_alloc:
2808        fec_enet_free_buffers(ndev);
2809        return -ENOMEM;
2810}
2811
2812static int fec_enet_alloc_buffers(struct net_device *ndev)
2813{
2814        struct fec_enet_private *fep = netdev_priv(ndev);
2815        unsigned int i;
2816
2817        for (i = 0; i < fep->num_rx_queues; i++)
2818                if (fec_enet_alloc_rxq_buffers(ndev, i))
2819                        return -ENOMEM;
2820
2821        for (i = 0; i < fep->num_tx_queues; i++)
2822                if (fec_enet_alloc_txq_buffers(ndev, i))
2823                        return -ENOMEM;
2824        return 0;
2825}
2826
2827static int
2828fec_enet_open(struct net_device *ndev)
2829{
2830        struct fec_enet_private *fep = netdev_priv(ndev);
2831        int ret;
2832        bool reset_again;
2833
2834        ret = pm_runtime_get_sync(&fep->pdev->dev);
2835        if (ret < 0)
2836                return ret;
2837
2838        pinctrl_pm_select_default_state(&fep->pdev->dev);
2839        ret = fec_enet_clk_enable(ndev, true);
2840        if (ret)
2841                goto clk_enable;
2842
2843        /* During the first fec_enet_open call the PHY isn't probed at this
2844         * point. Therefore the phy_reset_after_clk_enable() call within
2845         * fec_enet_clk_enable() fails. As we need this reset in order to be
2846         * sure the PHY is working correctly we check if we need to reset again
2847         * later when the PHY is probed
2848         */
2849        if (ndev->phydev && ndev->phydev->drv)
2850                reset_again = false;
2851        else
2852                reset_again = true;
2853
2854        /* I should reset the ring buffers here, but I don't yet know
2855         * a simple way to do that.
2856         */
2857
2858        ret = fec_enet_alloc_buffers(ndev);
2859        if (ret)
2860                goto err_enet_alloc;
2861
2862        /* Init MAC prior to mii bus probe */
2863        fec_restart(ndev);
2864
2865        /* Probe and connect to PHY when open the interface */
2866        ret = fec_enet_mii_probe(ndev);
2867        if (ret)
2868                goto err_enet_mii_probe;
2869
2870        /* Call phy_reset_after_clk_enable() again if it failed during
2871         * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2872         */
2873        if (reset_again)
2874                phy_reset_after_clk_enable(ndev->phydev);
2875
2876        if (fep->quirks & FEC_QUIRK_ERR006687)
2877                imx6q_cpuidle_fec_irqs_used();
2878
2879        napi_enable(&fep->napi);
2880        phy_start(ndev->phydev);
2881        netif_tx_start_all_queues(ndev);
2882
2883        device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2884                                 FEC_WOL_FLAG_ENABLE);
2885
2886        return 0;
2887
2888err_enet_mii_probe:
2889        fec_enet_free_buffers(ndev);
2890err_enet_alloc:
2891        fec_enet_clk_enable(ndev, false);
2892clk_enable:
2893        pm_runtime_mark_last_busy(&fep->pdev->dev);
2894        pm_runtime_put_autosuspend(&fep->pdev->dev);
2895        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2896        return ret;
2897}
2898
2899static int
2900fec_enet_close(struct net_device *ndev)
2901{
2902        struct fec_enet_private *fep = netdev_priv(ndev);
2903
2904        phy_stop(ndev->phydev);
2905
2906        if (netif_device_present(ndev)) {
2907                napi_disable(&fep->napi);
2908                netif_tx_disable(ndev);
2909                fec_stop(ndev);
2910        }
2911
2912        phy_disconnect(ndev->phydev);
2913
2914        if (fep->quirks & FEC_QUIRK_ERR006687)
2915                imx6q_cpuidle_fec_irqs_unused();
2916
2917        fec_enet_update_ethtool_stats(ndev);
2918
2919        fec_enet_clk_enable(ndev, false);
2920        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2921        pm_runtime_mark_last_busy(&fep->pdev->dev);
2922        pm_runtime_put_autosuspend(&fep->pdev->dev);
2923
2924        fec_enet_free_buffers(ndev);
2925
2926        return 0;
2927}
2928
2929/* Set or clear the multicast filter for this adaptor.
2930 * Skeleton taken from sunlance driver.
2931 * The CPM Ethernet implementation allows Multicast as well as individual
2932 * MAC address filtering.  Some of the drivers check to make sure it is
2933 * a group multicast address, and discard those that are not.  I guess I
2934 * will do the same for now, but just remove the test if you want
2935 * individual filtering as well (do the upper net layers want or support
2936 * this kind of feature?).
2937 */
2938
2939#define FEC_HASH_BITS   6               /* #bits in hash */
2940
2941static void set_multicast_list(struct net_device *ndev)
2942{
2943        struct fec_enet_private *fep = netdev_priv(ndev);
2944        struct netdev_hw_addr *ha;
2945        unsigned int crc, tmp;
2946        unsigned char hash;
2947        unsigned int hash_high = 0, hash_low = 0;
2948
2949        if (ndev->flags & IFF_PROMISC) {
2950                tmp = readl(fep->hwp + FEC_R_CNTRL);
2951                tmp |= 0x8;
2952                writel(tmp, fep->hwp + FEC_R_CNTRL);
2953                return;
2954        }
2955
2956        tmp = readl(fep->hwp + FEC_R_CNTRL);
2957        tmp &= ~0x8;
2958        writel(tmp, fep->hwp + FEC_R_CNTRL);
2959
2960        if (ndev->flags & IFF_ALLMULTI) {
2961                /* Catch all multicast addresses, so set the
2962                 * filter to all 1's
2963                 */
2964                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2965                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2966
2967                return;
2968        }
2969
2970        /* Add the addresses in hash register */
2971        netdev_for_each_mc_addr(ha, ndev) {
2972                /* calculate crc32 value of mac address */
2973                crc = ether_crc_le(ndev->addr_len, ha->addr);
2974
2975                /* only upper 6 bits (FEC_HASH_BITS) are used
2976                 * which point to specific bit in the hash registers
2977                 */
2978                hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2979
2980                if (hash > 31)
2981                        hash_high |= 1 << (hash - 32);
2982                else
2983                        hash_low |= 1 << hash;
2984        }
2985
2986        writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2987        writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2988}
2989
2990/* Set a MAC change in hardware. */
2991static int
2992fec_set_mac_address(struct net_device *ndev, void *p)
2993{
2994        struct fec_enet_private *fep = netdev_priv(ndev);
2995        struct sockaddr *addr = p;
2996
2997        if (addr) {
2998                if (!is_valid_ether_addr(addr->sa_data))
2999                        return -EADDRNOTAVAIL;
3000                memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3001        }
3002
3003        /* Add netif status check here to avoid system hang in below case:
3004         * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3005         * After ethx down, fec all clocks are gated off and then register
3006         * access causes system hang.
3007         */
3008        if (!netif_running(ndev))
3009                return 0;
3010
3011        writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3012                (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3013                fep->hwp + FEC_ADDR_LOW);
3014        writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3015                fep->hwp + FEC_ADDR_HIGH);
3016        return 0;
3017}
3018
3019#ifdef CONFIG_NET_POLL_CONTROLLER
3020/**
3021 * fec_poll_controller - FEC Poll controller function
3022 * @dev: The FEC network adapter
3023 *
3024 * Polled functionality used by netconsole and others in non interrupt mode
3025 *
3026 */
3027static void fec_poll_controller(struct net_device *dev)
3028{
3029        int i;
3030        struct fec_enet_private *fep = netdev_priv(dev);
3031
3032        for (i = 0; i < FEC_IRQ_NUM; i++) {
3033                if (fep->irq[i] > 0) {
3034                        disable_irq(fep->irq[i]);
3035                        fec_enet_interrupt(fep->irq[i], dev);
3036                        enable_irq(fep->irq[i]);
3037                }
3038        }
3039}
3040#endif
3041
3042static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3043        netdev_features_t features)
3044{
3045        struct fec_enet_private *fep = netdev_priv(netdev);
3046        netdev_features_t changed = features ^ netdev->features;
3047
3048        netdev->features = features;
3049
3050        /* Receive checksum has been changed */
3051        if (changed & NETIF_F_RXCSUM) {
3052                if (features & NETIF_F_RXCSUM)
3053                        fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3054                else
3055                        fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3056        }
3057}
3058
3059static int fec_set_features(struct net_device *netdev,
3060        netdev_features_t features)
3061{
3062        struct fec_enet_private *fep = netdev_priv(netdev);
3063        netdev_features_t changed = features ^ netdev->features;
3064
3065        if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3066                napi_disable(&fep->napi);
3067                netif_tx_lock_bh(netdev);
3068                fec_stop(netdev);
3069                fec_enet_set_netdev_features(netdev, features);
3070                fec_restart(netdev);
3071                netif_tx_wake_all_queues(netdev);
3072                netif_tx_unlock_bh(netdev);
3073                napi_enable(&fep->napi);
3074        } else {
3075                fec_enet_set_netdev_features(netdev, features);
3076        }
3077
3078        return 0;
3079}
3080
3081static const struct net_device_ops fec_netdev_ops = {
3082        .ndo_open               = fec_enet_open,
3083        .ndo_stop               = fec_enet_close,
3084        .ndo_start_xmit         = fec_enet_start_xmit,
3085        .ndo_set_rx_mode        = set_multicast_list,
3086        .ndo_validate_addr      = eth_validate_addr,
3087        .ndo_tx_timeout         = fec_timeout,
3088        .ndo_set_mac_address    = fec_set_mac_address,
3089        .ndo_do_ioctl           = fec_enet_ioctl,
3090#ifdef CONFIG_NET_POLL_CONTROLLER
3091        .ndo_poll_controller    = fec_poll_controller,
3092#endif
3093        .ndo_set_features       = fec_set_features,
3094};
3095
3096static const unsigned short offset_des_active_rxq[] = {
3097        FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3098};
3099
3100static const unsigned short offset_des_active_txq[] = {
3101        FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3102};
3103
3104 /*
3105  * XXX:  We need to clean up on failure exits here.
3106  *
3107  */
3108static int fec_enet_init(struct net_device *ndev)
3109{
3110        struct fec_enet_private *fep = netdev_priv(ndev);
3111        struct bufdesc *cbd_base;
3112        dma_addr_t bd_dma;
3113        int bd_size;
3114        unsigned int i;
3115        unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3116                        sizeof(struct bufdesc);
3117        unsigned dsize_log2 = __fls(dsize);
3118        int ret;
3119
3120        WARN_ON(dsize != (1 << dsize_log2));
3121#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3122        fep->rx_align = 0xf;
3123        fep->tx_align = 0xf;
3124#else
3125        fep->rx_align = 0x3;
3126        fep->tx_align = 0x3;
3127#endif
3128
3129        /* Check mask of the streaming and coherent API */
3130        ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3131        if (ret < 0) {
3132                dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3133                return ret;
3134        }
3135
3136        fec_enet_alloc_queue(ndev);
3137
3138        bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3139
3140        /* Allocate memory for buffer descriptors. */
3141        cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3142                                       GFP_KERNEL);
3143        if (!cbd_base) {
3144                return -ENOMEM;
3145        }
3146
3147        /* Get the Ethernet address */
3148        fec_get_mac(ndev);
3149        /* make sure MAC we just acquired is programmed into the hw */
3150        fec_set_mac_address(ndev, NULL);
3151
3152        /* Set receive and transmit descriptor base. */
3153        for (i = 0; i < fep->num_rx_queues; i++) {
3154                struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3155                unsigned size = dsize * rxq->bd.ring_size;
3156
3157                rxq->bd.qid = i;
3158                rxq->bd.base = cbd_base;
3159                rxq->bd.cur = cbd_base;
3160                rxq->bd.dma = bd_dma;
3161                rxq->bd.dsize = dsize;
3162                rxq->bd.dsize_log2 = dsize_log2;
3163                rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3164                bd_dma += size;
3165                cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3166                rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3167        }
3168
3169        for (i = 0; i < fep->num_tx_queues; i++) {
3170                struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3171                unsigned size = dsize * txq->bd.ring_size;
3172
3173                txq->bd.qid = i;
3174                txq->bd.base = cbd_base;
3175                txq->bd.cur = cbd_base;
3176                txq->bd.dma = bd_dma;
3177                txq->bd.dsize = dsize;
3178                txq->bd.dsize_log2 = dsize_log2;
3179                txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3180                bd_dma += size;
3181                cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3182                txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3183        }
3184
3185
3186        /* The FEC Ethernet specific entries in the device structure */
3187        ndev->watchdog_timeo = TX_TIMEOUT;
3188        ndev->netdev_ops = &fec_netdev_ops;
3189        ndev->ethtool_ops = &fec_enet_ethtool_ops;
3190
3191        writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3192        netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3193
3194        if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3195                /* enable hw VLAN support */
3196                ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3197
3198        if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3199                ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3200
3201                /* enable hw accelerator */
3202                ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3203                                | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3204                fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3205        }
3206
3207        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3208                fep->tx_align = 0;
3209                fep->rx_align = 0x3f;
3210        }
3211
3212        ndev->hw_features = ndev->features;
3213
3214        fec_restart(ndev);
3215
3216        if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3217                fec_enet_clear_ethtool_stats(ndev);
3218        else
3219                fec_enet_update_ethtool_stats(ndev);
3220
3221        return 0;
3222}
3223
3224#ifdef CONFIG_OF
3225static int fec_reset_phy(struct platform_device *pdev)
3226{
3227        int err, phy_reset;
3228        bool active_high = false;
3229        int msec = 1, phy_post_delay = 0;
3230        struct device_node *np = pdev->dev.of_node;
3231
3232        if (!np)
3233                return 0;
3234
3235        err = of_property_read_u32(np, "phy-reset-duration", &msec);
3236        /* A sane reset duration should not be longer than 1s */
3237        if (!err && msec > 1000)
3238                msec = 1;
3239
3240        phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3241        if (phy_reset == -EPROBE_DEFER)
3242                return phy_reset;
3243        else if (!gpio_is_valid(phy_reset))
3244                return 0;
3245
3246        err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3247        /* valid reset duration should be less than 1s */
3248        if (!err && phy_post_delay > 1000)
3249                return -EINVAL;
3250
3251        active_high = of_property_read_bool(np, "phy-reset-active-high");
3252
3253        err = devm_gpio_request_one(&pdev->dev, phy_reset,
3254                        active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3255                        "phy-reset");
3256        if (err) {
3257                dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3258                return err;
3259        }
3260
3261        if (msec > 20)
3262                msleep(msec);
3263        else
3264                usleep_range(msec * 1000, msec * 1000 + 1000);
3265
3266        gpio_set_value_cansleep(phy_reset, !active_high);
3267
3268        if (!phy_post_delay)
3269                return 0;
3270
3271        if (phy_post_delay > 20)
3272                msleep(phy_post_delay);
3273        else
3274                usleep_range(phy_post_delay * 1000,
3275                             phy_post_delay * 1000 + 1000);
3276
3277        return 0;
3278}
3279#else /* CONFIG_OF */
3280static int fec_reset_phy(struct platform_device *pdev)
3281{
3282        /*
3283         * In case of platform probe, the reset has been done
3284         * by machine code.
3285         */
3286        return 0;
3287}
3288#endif /* CONFIG_OF */
3289
3290static void
3291fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3292{
3293        struct device_node *np = pdev->dev.of_node;
3294
3295        *num_tx = *num_rx = 1;
3296
3297        if (!np || !of_device_is_available(np))
3298                return;
3299
3300        /* parse the num of tx and rx queues */
3301        of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3302
3303        of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3304
3305        if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3306                dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3307                         *num_tx);
3308                *num_tx = 1;
3309                return;
3310        }
3311
3312        if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3313                dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3314                         *num_rx);
3315                *num_rx = 1;
3316                return;
3317        }
3318
3319}
3320
3321static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3322{
3323        int irq_cnt = platform_irq_count(pdev);
3324
3325        if (irq_cnt > FEC_IRQ_NUM)
3326                irq_cnt = FEC_IRQ_NUM;  /* last for pps */
3327        else if (irq_cnt == 2)
3328                irq_cnt = 1;    /* last for pps */
3329        else if (irq_cnt <= 0)
3330                irq_cnt = 1;    /* At least 1 irq is needed */
3331        return irq_cnt;
3332}
3333
3334static int
3335fec_probe(struct platform_device *pdev)
3336{
3337        struct fec_enet_private *fep;
3338        struct fec_platform_data *pdata;
3339        struct net_device *ndev;
3340        int i, irq, ret = 0;
3341        struct resource *r;
3342        const struct of_device_id *of_id;
3343        static int dev_id;
3344        struct device_node *np = pdev->dev.of_node, *phy_node;
3345        int num_tx_qs;
3346        int num_rx_qs;
3347        char irq_name[8];
3348        int irq_cnt;
3349
3350        fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3351
3352        /* Init network device */
3353        ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3354                                  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3355        if (!ndev)
3356                return -ENOMEM;
3357
3358        SET_NETDEV_DEV(ndev, &pdev->dev);
3359
3360        /* setup board info structure */
3361        fep = netdev_priv(ndev);
3362
3363        of_id = of_match_device(fec_dt_ids, &pdev->dev);
3364        if (of_id)
3365                pdev->id_entry = of_id->data;
3366        fep->quirks = pdev->id_entry->driver_data;
3367
3368        fep->netdev = ndev;
3369        fep->num_rx_queues = num_rx_qs;
3370        fep->num_tx_queues = num_tx_qs;
3371
3372#if !defined(CONFIG_M5272)
3373        /* default enable pause frame auto negotiation */
3374        if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3375                fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3376#endif
3377
3378        /* Select default pin state */
3379        pinctrl_pm_select_default_state(&pdev->dev);
3380
3381        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3382        fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3383        if (IS_ERR(fep->hwp)) {
3384                ret = PTR_ERR(fep->hwp);
3385                goto failed_ioremap;
3386        }
3387
3388        fep->pdev = pdev;
3389        fep->dev_id = dev_id++;
3390
3391        platform_set_drvdata(pdev, ndev);
3392
3393        if ((of_machine_is_compatible("fsl,imx6q") ||
3394             of_machine_is_compatible("fsl,imx6dl")) &&
3395            !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3396                fep->quirks |= FEC_QUIRK_ERR006687;
3397
3398        if (of_get_property(np, "fsl,magic-packet", NULL))
3399                fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3400
3401        phy_node = of_parse_phandle(np, "phy-handle", 0);
3402        if (!phy_node && of_phy_is_fixed_link(np)) {
3403                ret = of_phy_register_fixed_link(np);
3404                if (ret < 0) {
3405                        dev_err(&pdev->dev,
3406                                "broken fixed-link specification\n");
3407                        goto failed_phy;
3408                }
3409                phy_node = of_node_get(np);
3410        }
3411        fep->phy_node = phy_node;
3412
3413        ret = of_get_phy_mode(pdev->dev.of_node);
3414        if (ret < 0) {
3415                pdata = dev_get_platdata(&pdev->dev);
3416                if (pdata)
3417                        fep->phy_interface = pdata->phy;
3418                else
3419                        fep->phy_interface = PHY_INTERFACE_MODE_MII;
3420        } else {
3421                fep->phy_interface = ret;
3422        }
3423
3424        fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3425        if (IS_ERR(fep->clk_ipg)) {
3426                ret = PTR_ERR(fep->clk_ipg);
3427                goto failed_clk;
3428        }
3429
3430        fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3431        if (IS_ERR(fep->clk_ahb)) {
3432                ret = PTR_ERR(fep->clk_ahb);
3433                goto failed_clk;
3434        }
3435
3436        fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3437
3438        /* enet_out is optional, depends on board */
3439        fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3440        if (IS_ERR(fep->clk_enet_out))
3441                fep->clk_enet_out = NULL;
3442
3443        fep->ptp_clk_on = false;
3444        mutex_init(&fep->ptp_clk_mutex);
3445
3446        /* clk_ref is optional, depends on board */
3447        fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3448        if (IS_ERR(fep->clk_ref))
3449                fep->clk_ref = NULL;
3450
3451        fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3452        fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3453        if (IS_ERR(fep->clk_ptp)) {
3454                fep->clk_ptp = NULL;
3455                fep->bufdesc_ex = false;
3456        }
3457
3458        ret = fec_enet_clk_enable(ndev, true);
3459        if (ret)
3460                goto failed_clk;
3461
3462        ret = clk_prepare_enable(fep->clk_ipg);
3463        if (ret)
3464                goto failed_clk_ipg;
3465        ret = clk_prepare_enable(fep->clk_ahb);
3466        if (ret)
3467                goto failed_clk_ahb;
3468
3469        fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3470        if (!IS_ERR(fep->reg_phy)) {
3471                ret = regulator_enable(fep->reg_phy);
3472                if (ret) {
3473                        dev_err(&pdev->dev,
3474                                "Failed to enable phy regulator: %d\n", ret);
3475                        goto failed_regulator;
3476                }
3477        } else {
3478                if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3479                        ret = -EPROBE_DEFER;
3480                        goto failed_regulator;
3481                }
3482                fep->reg_phy = NULL;
3483        }
3484
3485        pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3486        pm_runtime_use_autosuspend(&pdev->dev);
3487        pm_runtime_get_noresume(&pdev->dev);
3488        pm_runtime_set_active(&pdev->dev);
3489        pm_runtime_enable(&pdev->dev);
3490
3491        ret = fec_reset_phy(pdev);
3492        if (ret)
3493                goto failed_reset;
3494
3495        irq_cnt = fec_enet_get_irq_cnt(pdev);
3496        if (fep->bufdesc_ex)
3497                fec_ptp_init(pdev, irq_cnt);
3498
3499        ret = fec_enet_init(ndev);
3500        if (ret)
3501                goto failed_init;
3502
3503        for (i = 0; i < irq_cnt; i++) {
3504                snprintf(irq_name, sizeof(irq_name), "int%d", i);
3505                irq = platform_get_irq_byname(pdev, irq_name);
3506                if (irq < 0)
3507                        irq = platform_get_irq(pdev, i);
3508                if (irq < 0) {
3509                        ret = irq;
3510                        goto failed_irq;
3511                }
3512                ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3513                                       0, pdev->name, ndev);
3514                if (ret)
3515                        goto failed_irq;
3516
3517                fep->irq[i] = irq;
3518        }
3519
3520        init_completion(&fep->mdio_done);
3521        ret = fec_enet_mii_init(pdev);
3522        if (ret)
3523                goto failed_mii_init;
3524
3525        /* Carrier starts down, phylib will bring it up */
3526        netif_carrier_off(ndev);
3527        fec_enet_clk_enable(ndev, false);
3528        pinctrl_pm_select_sleep_state(&pdev->dev);
3529
3530        ret = register_netdev(ndev);
3531        if (ret)
3532                goto failed_register;
3533
3534        device_init_wakeup(&ndev->dev, fep->wol_flag &
3535                           FEC_WOL_HAS_MAGIC_PACKET);
3536
3537        if (fep->bufdesc_ex && fep->ptp_clock)
3538                netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3539
3540        fep->rx_copybreak = COPYBREAK_DEFAULT;
3541        INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3542
3543        pm_runtime_mark_last_busy(&pdev->dev);
3544        pm_runtime_put_autosuspend(&pdev->dev);
3545
3546        return 0;
3547
3548failed_register:
3549        fec_enet_mii_remove(fep);
3550failed_mii_init:
3551failed_irq:
3552failed_init:
3553        fec_ptp_stop(pdev);
3554        if (fep->reg_phy)
3555                regulator_disable(fep->reg_phy);
3556failed_reset:
3557        pm_runtime_put_noidle(&pdev->dev);
3558        pm_runtime_disable(&pdev->dev);
3559failed_regulator:
3560        clk_disable_unprepare(fep->clk_ahb);
3561failed_clk_ahb:
3562        clk_disable_unprepare(fep->clk_ipg);
3563failed_clk_ipg:
3564        fec_enet_clk_enable(ndev, false);
3565failed_clk:
3566        if (of_phy_is_fixed_link(np))
3567                of_phy_deregister_fixed_link(np);
3568        of_node_put(phy_node);
3569failed_phy:
3570        dev_id--;
3571failed_ioremap:
3572        free_netdev(ndev);
3573
3574        return ret;
3575}
3576
3577static int
3578fec_drv_remove(struct platform_device *pdev)
3579{
3580        struct net_device *ndev = platform_get_drvdata(pdev);
3581        struct fec_enet_private *fep = netdev_priv(ndev);
3582        struct device_node *np = pdev->dev.of_node;
3583
3584        cancel_work_sync(&fep->tx_timeout_work);
3585        fec_ptp_stop(pdev);
3586        unregister_netdev(ndev);
3587        fec_enet_mii_remove(fep);
3588        if (fep->reg_phy)
3589                regulator_disable(fep->reg_phy);
3590        pm_runtime_put(&pdev->dev);
3591        pm_runtime_disable(&pdev->dev);
3592        if (of_phy_is_fixed_link(np))
3593                of_phy_deregister_fixed_link(np);
3594        of_node_put(fep->phy_node);
3595        free_netdev(ndev);
3596
3597        return 0;
3598}
3599
3600static int __maybe_unused fec_suspend(struct device *dev)
3601{
3602        struct net_device *ndev = dev_get_drvdata(dev);
3603        struct fec_enet_private *fep = netdev_priv(ndev);
3604
3605        rtnl_lock();
3606        if (netif_running(ndev)) {
3607                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3608                        fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3609                phy_stop(ndev->phydev);
3610                napi_disable(&fep->napi);
3611                netif_tx_lock_bh(ndev);
3612                netif_device_detach(ndev);
3613                netif_tx_unlock_bh(ndev);
3614                fec_stop(ndev);
3615                fec_enet_clk_enable(ndev, false);
3616                if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3617                        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3618        }
3619        rtnl_unlock();
3620
3621        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3622                regulator_disable(fep->reg_phy);
3623
3624        /* SOC supply clock to phy, when clock is disabled, phy link down
3625         * SOC control phy regulator, when regulator is disabled, phy link down
3626         */
3627        if (fep->clk_enet_out || fep->reg_phy)
3628                fep->link = 0;
3629
3630        return 0;
3631}
3632
3633static int __maybe_unused fec_resume(struct device *dev)
3634{
3635        struct net_device *ndev = dev_get_drvdata(dev);
3636        struct fec_enet_private *fep = netdev_priv(ndev);
3637        struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3638        int ret;
3639        int val;
3640
3641        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3642                ret = regulator_enable(fep->reg_phy);
3643                if (ret)
3644                        return ret;
3645        }
3646
3647        rtnl_lock();
3648        if (netif_running(ndev)) {
3649                ret = fec_enet_clk_enable(ndev, true);
3650                if (ret) {
3651                        rtnl_unlock();
3652                        goto failed_clk;
3653                }
3654                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3655                        if (pdata && pdata->sleep_mode_enable)
3656                                pdata->sleep_mode_enable(false);
3657                        val = readl(fep->hwp + FEC_ECNTRL);
3658                        val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3659                        writel(val, fep->hwp + FEC_ECNTRL);
3660                        fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3661                } else {
3662                        pinctrl_pm_select_default_state(&fep->pdev->dev);
3663                }
3664                fec_restart(ndev);
3665                netif_tx_lock_bh(ndev);
3666                netif_device_attach(ndev);
3667                netif_tx_unlock_bh(ndev);
3668                napi_enable(&fep->napi);
3669                phy_start(ndev->phydev);
3670        }
3671        rtnl_unlock();
3672
3673        return 0;
3674
3675failed_clk:
3676        if (fep->reg_phy)
3677                regulator_disable(fep->reg_phy);
3678        return ret;
3679}
3680
3681static int __maybe_unused fec_runtime_suspend(struct device *dev)
3682{
3683        struct net_device *ndev = dev_get_drvdata(dev);
3684        struct fec_enet_private *fep = netdev_priv(ndev);
3685
3686        clk_disable_unprepare(fep->clk_ahb);
3687        clk_disable_unprepare(fep->clk_ipg);
3688
3689        return 0;
3690}
3691
3692static int __maybe_unused fec_runtime_resume(struct device *dev)
3693{
3694        struct net_device *ndev = dev_get_drvdata(dev);
3695        struct fec_enet_private *fep = netdev_priv(ndev);
3696        int ret;
3697
3698        ret = clk_prepare_enable(fep->clk_ahb);
3699        if (ret)
3700                return ret;
3701        ret = clk_prepare_enable(fep->clk_ipg);
3702        if (ret)
3703                goto failed_clk_ipg;
3704
3705        return 0;
3706
3707failed_clk_ipg:
3708        clk_disable_unprepare(fep->clk_ahb);
3709        return ret;
3710}
3711
3712static const struct dev_pm_ops fec_pm_ops = {
3713        SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3714        SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3715};
3716
3717static struct platform_driver fec_driver = {
3718        .driver = {
3719                .name   = DRIVER_NAME,
3720                .pm     = &fec_pm_ops,
3721                .of_match_table = fec_dt_ids,
3722        },
3723        .id_table = fec_devtype,
3724        .probe  = fec_probe,
3725        .remove = fec_drv_remove,
3726};
3727
3728module_platform_driver(fec_driver);
3729
3730MODULE_ALIAS("platform:"DRIVER_NAME);
3731MODULE_LICENSE("GPL");
3732