linux/drivers/net/ethernet/freescale/fec_ptp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
   4 *
   5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/ptrace.h>
  14#include <linux/errno.h>
  15#include <linux/ioport.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/netdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/skbuff.h>
  23#include <linux/spinlock.h>
  24#include <linux/workqueue.h>
  25#include <linux/bitops.h>
  26#include <linux/io.h>
  27#include <linux/irq.h>
  28#include <linux/clk.h>
  29#include <linux/platform_device.h>
  30#include <linux/phy.h>
  31#include <linux/fec.h>
  32#include <linux/of.h>
  33#include <linux/of_device.h>
  34#include <linux/of_gpio.h>
  35#include <linux/of_net.h>
  36
  37#include "fec.h"
  38
  39/* FEC 1588 register bits */
  40#define FEC_T_CTRL_SLAVE                0x00002000
  41#define FEC_T_CTRL_CAPTURE              0x00000800
  42#define FEC_T_CTRL_RESTART              0x00000200
  43#define FEC_T_CTRL_PERIOD_RST           0x00000030
  44#define FEC_T_CTRL_PERIOD_EN            0x00000010
  45#define FEC_T_CTRL_ENABLE               0x00000001
  46
  47#define FEC_T_INC_MASK                  0x0000007f
  48#define FEC_T_INC_OFFSET                0
  49#define FEC_T_INC_CORR_MASK             0x00007f00
  50#define FEC_T_INC_CORR_OFFSET           8
  51
  52#define FEC_T_CTRL_PINPER               0x00000080
  53#define FEC_T_TF0_MASK                  0x00000001
  54#define FEC_T_TF0_OFFSET                0
  55#define FEC_T_TF1_MASK                  0x00000002
  56#define FEC_T_TF1_OFFSET                1
  57#define FEC_T_TF2_MASK                  0x00000004
  58#define FEC_T_TF2_OFFSET                2
  59#define FEC_T_TF3_MASK                  0x00000008
  60#define FEC_T_TF3_OFFSET                3
  61#define FEC_T_TDRE_MASK                 0x00000001
  62#define FEC_T_TDRE_OFFSET               0
  63#define FEC_T_TMODE_MASK                0x0000003C
  64#define FEC_T_TMODE_OFFSET              2
  65#define FEC_T_TIE_MASK                  0x00000040
  66#define FEC_T_TIE_OFFSET                6
  67#define FEC_T_TF_MASK                   0x00000080
  68#define FEC_T_TF_OFFSET                 7
  69
  70#define FEC_ATIME_CTRL          0x400
  71#define FEC_ATIME               0x404
  72#define FEC_ATIME_EVT_OFFSET    0x408
  73#define FEC_ATIME_EVT_PERIOD    0x40c
  74#define FEC_ATIME_CORR          0x410
  75#define FEC_ATIME_INC           0x414
  76#define FEC_TS_TIMESTAMP        0x418
  77
  78#define FEC_TGSR                0x604
  79#define FEC_TCSR(n)             (0x608 + n * 0x08)
  80#define FEC_TCCR(n)             (0x60C + n * 0x08)
  81#define MAX_TIMER_CHANNEL       3
  82#define FEC_TMODE_TOGGLE        0x05
  83#define FEC_HIGH_PULSE          0x0F
  84
  85#define FEC_CC_MULT     (1 << 31)
  86#define FEC_COUNTER_PERIOD      (1 << 31)
  87#define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
  88#define FEC_CHANNLE_0           0
  89#define DEFAULT_PPS_CHANNEL     FEC_CHANNLE_0
  90
  91/**
  92 * fec_ptp_enable_pps
  93 * @fep: the fec_enet_private structure handle
  94 * @enable: enable the channel pps output
  95 *
  96 * This function enble the PPS ouput on the timer channel.
  97 */
  98static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
  99{
 100        unsigned long flags;
 101        u32 val, tempval;
 102        struct timespec64 ts;
 103        u64 ns;
 104        val = 0;
 105
 106        if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
 107                dev_err(&fep->pdev->dev, "No ptp stack is running\n");
 108                return -EINVAL;
 109        }
 110
 111        if (fep->pps_enable == enable)
 112                return 0;
 113
 114        fep->pps_channel = DEFAULT_PPS_CHANNEL;
 115        fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
 116
 117        spin_lock_irqsave(&fep->tmreg_lock, flags);
 118
 119        if (enable) {
 120                /* clear capture or output compare interrupt status if have.
 121                 */
 122                writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
 123
 124                /* It is recommended to double check the TMODE field in the
 125                 * TCSR register to be cleared before the first compare counter
 126                 * is written into TCCR register. Just add a double check.
 127                 */
 128                val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 129                do {
 130                        val &= ~(FEC_T_TMODE_MASK);
 131                        writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
 132                        val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 133                } while (val & FEC_T_TMODE_MASK);
 134
 135                /* Dummy read counter to update the counter */
 136                timecounter_read(&fep->tc);
 137                /* We want to find the first compare event in the next
 138                 * second point. So we need to know what the ptp time
 139                 * is now and how many nanoseconds is ahead to get next second.
 140                 * The remaining nanosecond ahead before the next second would be
 141                 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
 142                 * to current timer would be next second.
 143                 */
 144                tempval = readl(fep->hwp + FEC_ATIME_CTRL);
 145                tempval |= FEC_T_CTRL_CAPTURE;
 146                writel(tempval, fep->hwp + FEC_ATIME_CTRL);
 147
 148                tempval = readl(fep->hwp + FEC_ATIME);
 149                /* Convert the ptp local counter to 1588 timestamp */
 150                ns = timecounter_cyc2time(&fep->tc, tempval);
 151                ts = ns_to_timespec64(ns);
 152
 153                /* The tempval is  less than 3 seconds, and  so val is less than
 154                 * 4 seconds. No overflow for 32bit calculation.
 155                 */
 156                val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
 157
 158                /* Need to consider the situation that the current time is
 159                 * very close to the second point, which means NSEC_PER_SEC
 160                 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
 161                 * is still running when we calculate the first compare event, it is
 162                 * possible that the remaining nanoseonds run out before the compare
 163                 * counter is calculated and written into TCCR register. To avoid
 164                 * this possibility, we will set the compare event to be the next
 165                 * of next second. The current setting is 31-bit timer and wrap
 166                 * around over 2 seconds. So it is okay to set the next of next
 167                 * seond for the timer.
 168                 */
 169                val += NSEC_PER_SEC;
 170
 171                /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
 172                 * ptp counter, which maybe cause 32-bit wrap. Since the
 173                 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
 174                 * We can ensure the wrap will not cause issue. If the offset
 175                 * is bigger than fep->cc.mask would be a error.
 176                 */
 177                val &= fep->cc.mask;
 178                writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
 179
 180                /* Calculate the second the compare event timestamp */
 181                fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
 182
 183                /* * Enable compare event when overflow */
 184                val = readl(fep->hwp + FEC_ATIME_CTRL);
 185                val |= FEC_T_CTRL_PINPER;
 186                writel(val, fep->hwp + FEC_ATIME_CTRL);
 187
 188                /* Compare channel setting. */
 189                val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 190                val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
 191                val &= ~(1 << FEC_T_TDRE_OFFSET);
 192                val &= ~(FEC_T_TMODE_MASK);
 193                val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
 194                writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
 195
 196                /* Write the second compare event timestamp and calculate
 197                 * the third timestamp. Refer the TCCR register detail in the spec.
 198                 */
 199                writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
 200                fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
 201        } else {
 202                writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
 203        }
 204
 205        fep->pps_enable = enable;
 206        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 207
 208        return 0;
 209}
 210
 211/**
 212 * fec_ptp_read - read raw cycle counter (to be used by time counter)
 213 * @cc: the cyclecounter structure
 214 *
 215 * this function reads the cyclecounter registers and is called by the
 216 * cyclecounter structure used to construct a ns counter from the
 217 * arbitrary fixed point registers
 218 */
 219static u64 fec_ptp_read(const struct cyclecounter *cc)
 220{
 221        struct fec_enet_private *fep =
 222                container_of(cc, struct fec_enet_private, cc);
 223        const struct platform_device_id *id_entry =
 224                platform_get_device_id(fep->pdev);
 225        u32 tempval;
 226
 227        tempval = readl(fep->hwp + FEC_ATIME_CTRL);
 228        tempval |= FEC_T_CTRL_CAPTURE;
 229        writel(tempval, fep->hwp + FEC_ATIME_CTRL);
 230
 231        if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
 232                udelay(1);
 233
 234        return readl(fep->hwp + FEC_ATIME);
 235}
 236
 237/**
 238 * fec_ptp_start_cyclecounter - create the cycle counter from hw
 239 * @ndev: network device
 240 *
 241 * this function initializes the timecounter and cyclecounter
 242 * structures for use in generated a ns counter from the arbitrary
 243 * fixed point cycles registers in the hardware.
 244 */
 245void fec_ptp_start_cyclecounter(struct net_device *ndev)
 246{
 247        struct fec_enet_private *fep = netdev_priv(ndev);
 248        unsigned long flags;
 249        int inc;
 250
 251        inc = 1000000000 / fep->cycle_speed;
 252
 253        /* grab the ptp lock */
 254        spin_lock_irqsave(&fep->tmreg_lock, flags);
 255
 256        /* 1ns counter */
 257        writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
 258
 259        /* use 31-bit timer counter */
 260        writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
 261
 262        writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
 263                fep->hwp + FEC_ATIME_CTRL);
 264
 265        memset(&fep->cc, 0, sizeof(fep->cc));
 266        fep->cc.read = fec_ptp_read;
 267        fep->cc.mask = CLOCKSOURCE_MASK(31);
 268        fep->cc.shift = 31;
 269        fep->cc.mult = FEC_CC_MULT;
 270
 271        /* reset the ns time counter */
 272        timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
 273
 274        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 275}
 276
 277/**
 278 * fec_ptp_adjfreq - adjust ptp cycle frequency
 279 * @ptp: the ptp clock structure
 280 * @ppb: parts per billion adjustment from base
 281 *
 282 * Adjust the frequency of the ptp cycle counter by the
 283 * indicated ppb from the base frequency.
 284 *
 285 * Because ENET hardware frequency adjust is complex,
 286 * using software method to do that.
 287 */
 288static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
 289{
 290        unsigned long flags;
 291        int neg_adj = 0;
 292        u32 i, tmp;
 293        u32 corr_inc, corr_period;
 294        u32 corr_ns;
 295        u64 lhs, rhs;
 296
 297        struct fec_enet_private *fep =
 298            container_of(ptp, struct fec_enet_private, ptp_caps);
 299
 300        if (ppb == 0)
 301                return 0;
 302
 303        if (ppb < 0) {
 304                ppb = -ppb;
 305                neg_adj = 1;
 306        }
 307
 308        /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
 309         * Try to find the corr_inc  between 1 to fep->ptp_inc to
 310         * meet adjustment requirement.
 311         */
 312        lhs = NSEC_PER_SEC;
 313        rhs = (u64)ppb * (u64)fep->ptp_inc;
 314        for (i = 1; i <= fep->ptp_inc; i++) {
 315                if (lhs >= rhs) {
 316                        corr_inc = i;
 317                        corr_period = div_u64(lhs, rhs);
 318                        break;
 319                }
 320                lhs += NSEC_PER_SEC;
 321        }
 322        /* Not found? Set it to high value - double speed
 323         * correct in every clock step.
 324         */
 325        if (i > fep->ptp_inc) {
 326                corr_inc = fep->ptp_inc;
 327                corr_period = 1;
 328        }
 329
 330        if (neg_adj)
 331                corr_ns = fep->ptp_inc - corr_inc;
 332        else
 333                corr_ns = fep->ptp_inc + corr_inc;
 334
 335        spin_lock_irqsave(&fep->tmreg_lock, flags);
 336
 337        tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
 338        tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
 339        writel(tmp, fep->hwp + FEC_ATIME_INC);
 340        corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
 341        writel(corr_period, fep->hwp + FEC_ATIME_CORR);
 342        /* dummy read to update the timer. */
 343        timecounter_read(&fep->tc);
 344
 345        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 346
 347        return 0;
 348}
 349
 350/**
 351 * fec_ptp_adjtime
 352 * @ptp: the ptp clock structure
 353 * @delta: offset to adjust the cycle counter by
 354 *
 355 * adjust the timer by resetting the timecounter structure.
 356 */
 357static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 358{
 359        struct fec_enet_private *fep =
 360            container_of(ptp, struct fec_enet_private, ptp_caps);
 361        unsigned long flags;
 362
 363        spin_lock_irqsave(&fep->tmreg_lock, flags);
 364        timecounter_adjtime(&fep->tc, delta);
 365        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 366
 367        return 0;
 368}
 369
 370/**
 371 * fec_ptp_gettime
 372 * @ptp: the ptp clock structure
 373 * @ts: timespec structure to hold the current time value
 374 *
 375 * read the timecounter and return the correct value on ns,
 376 * after converting it into a struct timespec.
 377 */
 378static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
 379{
 380        struct fec_enet_private *adapter =
 381            container_of(ptp, struct fec_enet_private, ptp_caps);
 382        u64 ns;
 383        unsigned long flags;
 384
 385        spin_lock_irqsave(&adapter->tmreg_lock, flags);
 386        ns = timecounter_read(&adapter->tc);
 387        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 388
 389        *ts = ns_to_timespec64(ns);
 390
 391        return 0;
 392}
 393
 394/**
 395 * fec_ptp_settime
 396 * @ptp: the ptp clock structure
 397 * @ts: the timespec containing the new time for the cycle counter
 398 *
 399 * reset the timecounter to use a new base value instead of the kernel
 400 * wall timer value.
 401 */
 402static int fec_ptp_settime(struct ptp_clock_info *ptp,
 403                           const struct timespec64 *ts)
 404{
 405        struct fec_enet_private *fep =
 406            container_of(ptp, struct fec_enet_private, ptp_caps);
 407
 408        u64 ns;
 409        unsigned long flags;
 410        u32 counter;
 411
 412        mutex_lock(&fep->ptp_clk_mutex);
 413        /* Check the ptp clock */
 414        if (!fep->ptp_clk_on) {
 415                mutex_unlock(&fep->ptp_clk_mutex);
 416                return -EINVAL;
 417        }
 418
 419        ns = timespec64_to_ns(ts);
 420        /* Get the timer value based on timestamp.
 421         * Update the counter with the masked value.
 422         */
 423        counter = ns & fep->cc.mask;
 424
 425        spin_lock_irqsave(&fep->tmreg_lock, flags);
 426        writel(counter, fep->hwp + FEC_ATIME);
 427        timecounter_init(&fep->tc, &fep->cc, ns);
 428        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 429        mutex_unlock(&fep->ptp_clk_mutex);
 430        return 0;
 431}
 432
 433/**
 434 * fec_ptp_enable
 435 * @ptp: the ptp clock structure
 436 * @rq: the requested feature to change
 437 * @on: whether to enable or disable the feature
 438 *
 439 */
 440static int fec_ptp_enable(struct ptp_clock_info *ptp,
 441                          struct ptp_clock_request *rq, int on)
 442{
 443        struct fec_enet_private *fep =
 444            container_of(ptp, struct fec_enet_private, ptp_caps);
 445        int ret = 0;
 446
 447        if (rq->type == PTP_CLK_REQ_PPS) {
 448                ret = fec_ptp_enable_pps(fep, on);
 449
 450                return ret;
 451        }
 452        return -EOPNOTSUPP;
 453}
 454
 455int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
 456{
 457        struct fec_enet_private *fep = netdev_priv(ndev);
 458
 459        struct hwtstamp_config config;
 460
 461        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 462                return -EFAULT;
 463
 464        /* reserved for future extensions */
 465        if (config.flags)
 466                return -EINVAL;
 467
 468        switch (config.tx_type) {
 469        case HWTSTAMP_TX_OFF:
 470                fep->hwts_tx_en = 0;
 471                break;
 472        case HWTSTAMP_TX_ON:
 473                fep->hwts_tx_en = 1;
 474                break;
 475        default:
 476                return -ERANGE;
 477        }
 478
 479        switch (config.rx_filter) {
 480        case HWTSTAMP_FILTER_NONE:
 481                if (fep->hwts_rx_en)
 482                        fep->hwts_rx_en = 0;
 483                config.rx_filter = HWTSTAMP_FILTER_NONE;
 484                break;
 485
 486        default:
 487                fep->hwts_rx_en = 1;
 488                config.rx_filter = HWTSTAMP_FILTER_ALL;
 489                break;
 490        }
 491
 492        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 493            -EFAULT : 0;
 494}
 495
 496int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
 497{
 498        struct fec_enet_private *fep = netdev_priv(ndev);
 499        struct hwtstamp_config config;
 500
 501        config.flags = 0;
 502        config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 503        config.rx_filter = (fep->hwts_rx_en ?
 504                            HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 505
 506        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 507                -EFAULT : 0;
 508}
 509
 510/**
 511 * fec_time_keep - call timecounter_read every second to avoid timer overrun
 512 *                 because ENET just support 32bit counter, will timeout in 4s
 513 */
 514static void fec_time_keep(struct work_struct *work)
 515{
 516        struct delayed_work *dwork = to_delayed_work(work);
 517        struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
 518        u64 ns;
 519        unsigned long flags;
 520
 521        mutex_lock(&fep->ptp_clk_mutex);
 522        if (fep->ptp_clk_on) {
 523                spin_lock_irqsave(&fep->tmreg_lock, flags);
 524                ns = timecounter_read(&fep->tc);
 525                spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 526        }
 527        mutex_unlock(&fep->ptp_clk_mutex);
 528
 529        schedule_delayed_work(&fep->time_keep, HZ);
 530}
 531
 532/* This function checks the pps event and reloads the timer compare counter. */
 533static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
 534{
 535        struct net_device *ndev = dev_id;
 536        struct fec_enet_private *fep = netdev_priv(ndev);
 537        u32 val;
 538        u8 channel = fep->pps_channel;
 539        struct ptp_clock_event event;
 540
 541        val = readl(fep->hwp + FEC_TCSR(channel));
 542        if (val & FEC_T_TF_MASK) {
 543                /* Write the next next compare(not the next according the spec)
 544                 * value to the register
 545                 */
 546                writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
 547                do {
 548                        writel(val, fep->hwp + FEC_TCSR(channel));
 549                } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
 550
 551                /* Update the counter; */
 552                fep->next_counter = (fep->next_counter + fep->reload_period) &
 553                                fep->cc.mask;
 554
 555                event.type = PTP_CLOCK_PPS;
 556                ptp_clock_event(fep->ptp_clock, &event);
 557                return IRQ_HANDLED;
 558        }
 559
 560        return IRQ_NONE;
 561}
 562
 563/**
 564 * fec_ptp_init
 565 * @ndev: The FEC network adapter
 566 *
 567 * This function performs the required steps for enabling ptp
 568 * support. If ptp support has already been loaded it simply calls the
 569 * cyclecounter init routine and exits.
 570 */
 571
 572void fec_ptp_init(struct platform_device *pdev, int irq_idx)
 573{
 574        struct net_device *ndev = platform_get_drvdata(pdev);
 575        struct fec_enet_private *fep = netdev_priv(ndev);
 576        int irq;
 577        int ret;
 578
 579        fep->ptp_caps.owner = THIS_MODULE;
 580        snprintf(fep->ptp_caps.name, 16, "fec ptp");
 581
 582        fep->ptp_caps.max_adj = 250000000;
 583        fep->ptp_caps.n_alarm = 0;
 584        fep->ptp_caps.n_ext_ts = 0;
 585        fep->ptp_caps.n_per_out = 0;
 586        fep->ptp_caps.n_pins = 0;
 587        fep->ptp_caps.pps = 1;
 588        fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
 589        fep->ptp_caps.adjtime = fec_ptp_adjtime;
 590        fep->ptp_caps.gettime64 = fec_ptp_gettime;
 591        fep->ptp_caps.settime64 = fec_ptp_settime;
 592        fep->ptp_caps.enable = fec_ptp_enable;
 593
 594        fep->cycle_speed = clk_get_rate(fep->clk_ptp);
 595        fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
 596
 597        spin_lock_init(&fep->tmreg_lock);
 598
 599        fec_ptp_start_cyclecounter(ndev);
 600
 601        INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
 602
 603        irq = platform_get_irq_byname(pdev, "pps");
 604        if (irq < 0)
 605                irq = platform_get_irq(pdev, irq_idx);
 606        /* Failure to get an irq is not fatal,
 607         * only the PTP_CLOCK_PPS clock events should stop
 608         */
 609        if (irq >= 0) {
 610                ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
 611                                       0, pdev->name, ndev);
 612                if (ret < 0)
 613                        dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
 614                                 ret);
 615        }
 616
 617        fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
 618        if (IS_ERR(fep->ptp_clock)) {
 619                fep->ptp_clock = NULL;
 620                dev_err(&pdev->dev, "ptp_clock_register failed\n");
 621        }
 622
 623        schedule_delayed_work(&fep->time_keep, HZ);
 624}
 625
 626void fec_ptp_stop(struct platform_device *pdev)
 627{
 628        struct net_device *ndev = platform_get_drvdata(pdev);
 629        struct fec_enet_private *fep = netdev_priv(ndev);
 630
 631        cancel_delayed_work_sync(&fep->time_keep);
 632        if (fep->ptp_clock)
 633                ptp_clock_unregister(fep->ptp_clock);
 634}
 635