linux/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c
<<
>>
Prefs
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
  38#include <linux/of.h>
  39#include <linux/of_mdio.h>
  40#include <linux/of_platform.h>
  41#include <linux/of_gpio.h>
  42#include <linux/of_net.h>
  43
  44#include <linux/vmalloc.h>
  45#include <asm/pgtable.h>
  46#include <asm/irq.h>
  47#include <linux/uaccess.h>
  48
  49#include "fs_enet.h"
  50
  51/*************************************************/
  52
  53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  54MODULE_DESCRIPTION("Freescale Ethernet Driver");
  55MODULE_LICENSE("GPL");
  56MODULE_VERSION(DRV_MODULE_VERSION);
  57
  58static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  59module_param(fs_enet_debug, int, 0);
  60MODULE_PARM_DESC(fs_enet_debug,
  61                 "Freescale bitmapped debugging message enable value");
  62
  63#define RX_RING_SIZE    32
  64#define TX_RING_SIZE    64
  65
  66#ifdef CONFIG_NET_POLL_CONTROLLER
  67static void fs_enet_netpoll(struct net_device *dev);
  68#endif
  69
  70static void fs_set_multicast_list(struct net_device *dev)
  71{
  72        struct fs_enet_private *fep = netdev_priv(dev);
  73
  74        (*fep->ops->set_multicast_list)(dev);
  75}
  76
  77static void skb_align(struct sk_buff *skb, int align)
  78{
  79        int off = ((unsigned long)skb->data) & (align - 1);
  80
  81        if (off)
  82                skb_reserve(skb, align - off);
  83}
  84
  85/* NAPI function */
  86static int fs_enet_napi(struct napi_struct *napi, int budget)
  87{
  88        struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  89        struct net_device *dev = fep->ndev;
  90        const struct fs_platform_info *fpi = fep->fpi;
  91        cbd_t __iomem *bdp;
  92        struct sk_buff *skb, *skbn;
  93        int received = 0;
  94        u16 pkt_len, sc;
  95        int curidx;
  96        int dirtyidx, do_wake, do_restart;
  97        int tx_left = TX_RING_SIZE;
  98
  99        spin_lock(&fep->tx_lock);
 100        bdp = fep->dirty_tx;
 101
 102        /* clear status bits for napi*/
 103        (*fep->ops->napi_clear_event)(dev);
 104
 105        do_wake = do_restart = 0;
 106        while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 107                dirtyidx = bdp - fep->tx_bd_base;
 108
 109                if (fep->tx_free == fep->tx_ring)
 110                        break;
 111
 112                skb = fep->tx_skbuff[dirtyidx];
 113
 114                /*
 115                 * Check for errors.
 116                 */
 117                if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 118                          BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 119
 120                        if (sc & BD_ENET_TX_HB) /* No heartbeat */
 121                                dev->stats.tx_heartbeat_errors++;
 122                        if (sc & BD_ENET_TX_LC) /* Late collision */
 123                                dev->stats.tx_window_errors++;
 124                        if (sc & BD_ENET_TX_RL) /* Retrans limit */
 125                                dev->stats.tx_aborted_errors++;
 126                        if (sc & BD_ENET_TX_UN) /* Underrun */
 127                                dev->stats.tx_fifo_errors++;
 128                        if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
 129                                dev->stats.tx_carrier_errors++;
 130
 131                        if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 132                                dev->stats.tx_errors++;
 133                                do_restart = 1;
 134                        }
 135                } else
 136                        dev->stats.tx_packets++;
 137
 138                if (sc & BD_ENET_TX_READY) {
 139                        dev_warn(fep->dev,
 140                                 "HEY! Enet xmit interrupt and TX_READY.\n");
 141                }
 142
 143                /*
 144                 * Deferred means some collisions occurred during transmit,
 145                 * but we eventually sent the packet OK.
 146                 */
 147                if (sc & BD_ENET_TX_DEF)
 148                        dev->stats.collisions++;
 149
 150                /* unmap */
 151                if (fep->mapped_as_page[dirtyidx])
 152                        dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 153                                       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 154                else
 155                        dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 156                                         CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 157
 158                /*
 159                 * Free the sk buffer associated with this last transmit.
 160                 */
 161                if (skb) {
 162                        dev_kfree_skb(skb);
 163                        fep->tx_skbuff[dirtyidx] = NULL;
 164                }
 165
 166                /*
 167                 * Update pointer to next buffer descriptor to be transmitted.
 168                 */
 169                if ((sc & BD_ENET_TX_WRAP) == 0)
 170                        bdp++;
 171                else
 172                        bdp = fep->tx_bd_base;
 173
 174                /*
 175                 * Since we have freed up a buffer, the ring is no longer
 176                 * full.
 177                 */
 178                if (++fep->tx_free == MAX_SKB_FRAGS)
 179                        do_wake = 1;
 180                tx_left--;
 181        }
 182
 183        fep->dirty_tx = bdp;
 184
 185        if (do_restart)
 186                (*fep->ops->tx_restart)(dev);
 187
 188        spin_unlock(&fep->tx_lock);
 189
 190        if (do_wake)
 191                netif_wake_queue(dev);
 192
 193        /*
 194         * First, grab all of the stats for the incoming packet.
 195         * These get messed up if we get called due to a busy condition.
 196         */
 197        bdp = fep->cur_rx;
 198
 199        while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 200               received < budget) {
 201                curidx = bdp - fep->rx_bd_base;
 202
 203                /*
 204                 * Since we have allocated space to hold a complete frame,
 205                 * the last indicator should be set.
 206                 */
 207                if ((sc & BD_ENET_RX_LAST) == 0)
 208                        dev_warn(fep->dev, "rcv is not +last\n");
 209
 210                /*
 211                 * Check for errors.
 212                 */
 213                if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 214                          BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 215                        dev->stats.rx_errors++;
 216                        /* Frame too long or too short. */
 217                        if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 218                                dev->stats.rx_length_errors++;
 219                        /* Frame alignment */
 220                        if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 221                                dev->stats.rx_frame_errors++;
 222                        /* CRC Error */
 223                        if (sc & BD_ENET_RX_CR)
 224                                dev->stats.rx_crc_errors++;
 225                        /* FIFO overrun */
 226                        if (sc & BD_ENET_RX_OV)
 227                                dev->stats.rx_crc_errors++;
 228
 229                        skbn = fep->rx_skbuff[curidx];
 230                } else {
 231                        skb = fep->rx_skbuff[curidx];
 232
 233                        /*
 234                         * Process the incoming frame.
 235                         */
 236                        dev->stats.rx_packets++;
 237                        pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
 238                        dev->stats.rx_bytes += pkt_len + 4;
 239
 240                        if (pkt_len <= fpi->rx_copybreak) {
 241                                /* +2 to make IP header L1 cache aligned */
 242                                skbn = netdev_alloc_skb(dev, pkt_len + 2);
 243                                if (skbn != NULL) {
 244                                        skb_reserve(skbn, 2);   /* align IP header */
 245                                        skb_copy_from_linear_data(skb,
 246                                                      skbn->data, pkt_len);
 247                                        swap(skb, skbn);
 248                                        dma_sync_single_for_cpu(fep->dev,
 249                                                CBDR_BUFADDR(bdp),
 250                                                L1_CACHE_ALIGN(pkt_len),
 251                                                DMA_FROM_DEVICE);
 252                                }
 253                        } else {
 254                                skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 255
 256                                if (skbn) {
 257                                        dma_addr_t dma;
 258
 259                                        skb_align(skbn, ENET_RX_ALIGN);
 260
 261                                        dma_unmap_single(fep->dev,
 262                                                CBDR_BUFADDR(bdp),
 263                                                L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 264                                                DMA_FROM_DEVICE);
 265
 266                                        dma = dma_map_single(fep->dev,
 267                                                skbn->data,
 268                                                L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 269                                                DMA_FROM_DEVICE);
 270                                        CBDW_BUFADDR(bdp, dma);
 271                                }
 272                        }
 273
 274                        if (skbn != NULL) {
 275                                skb_put(skb, pkt_len);  /* Make room */
 276                                skb->protocol = eth_type_trans(skb, dev);
 277                                received++;
 278                                netif_receive_skb(skb);
 279                        } else {
 280                                dev->stats.rx_dropped++;
 281                                skbn = skb;
 282                        }
 283                }
 284
 285                fep->rx_skbuff[curidx] = skbn;
 286                CBDW_DATLEN(bdp, 0);
 287                CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 288
 289                /*
 290                 * Update BD pointer to next entry.
 291                 */
 292                if ((sc & BD_ENET_RX_WRAP) == 0)
 293                        bdp++;
 294                else
 295                        bdp = fep->rx_bd_base;
 296
 297                (*fep->ops->rx_bd_done)(dev);
 298        }
 299
 300        fep->cur_rx = bdp;
 301
 302        if (received < budget && tx_left) {
 303                /* done */
 304                napi_complete_done(napi, received);
 305                (*fep->ops->napi_enable)(dev);
 306
 307                return received;
 308        }
 309
 310        return budget;
 311}
 312
 313/*
 314 * The interrupt handler.
 315 * This is called from the MPC core interrupt.
 316 */
 317static irqreturn_t
 318fs_enet_interrupt(int irq, void *dev_id)
 319{
 320        struct net_device *dev = dev_id;
 321        struct fs_enet_private *fep;
 322        const struct fs_platform_info *fpi;
 323        u32 int_events;
 324        u32 int_clr_events;
 325        int nr, napi_ok;
 326        int handled;
 327
 328        fep = netdev_priv(dev);
 329        fpi = fep->fpi;
 330
 331        nr = 0;
 332        while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 333                nr++;
 334
 335                int_clr_events = int_events;
 336                int_clr_events &= ~fep->ev_napi;
 337
 338                (*fep->ops->clear_int_events)(dev, int_clr_events);
 339
 340                if (int_events & fep->ev_err)
 341                        (*fep->ops->ev_error)(dev, int_events);
 342
 343                if (int_events & fep->ev) {
 344                        napi_ok = napi_schedule_prep(&fep->napi);
 345
 346                        (*fep->ops->napi_disable)(dev);
 347                        (*fep->ops->clear_int_events)(dev, fep->ev_napi);
 348
 349                        /* NOTE: it is possible for FCCs in NAPI mode    */
 350                        /* to submit a spurious interrupt while in poll  */
 351                        if (napi_ok)
 352                                __napi_schedule(&fep->napi);
 353                }
 354
 355        }
 356
 357        handled = nr > 0;
 358        return IRQ_RETVAL(handled);
 359}
 360
 361void fs_init_bds(struct net_device *dev)
 362{
 363        struct fs_enet_private *fep = netdev_priv(dev);
 364        cbd_t __iomem *bdp;
 365        struct sk_buff *skb;
 366        int i;
 367
 368        fs_cleanup_bds(dev);
 369
 370        fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 371        fep->tx_free = fep->tx_ring;
 372        fep->cur_rx = fep->rx_bd_base;
 373
 374        /*
 375         * Initialize the receive buffer descriptors.
 376         */
 377        for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 378                skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 379                if (skb == NULL)
 380                        break;
 381
 382                skb_align(skb, ENET_RX_ALIGN);
 383                fep->rx_skbuff[i] = skb;
 384                CBDW_BUFADDR(bdp,
 385                        dma_map_single(fep->dev, skb->data,
 386                                L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 387                                DMA_FROM_DEVICE));
 388                CBDW_DATLEN(bdp, 0);    /* zero */
 389                CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 390                        ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 391        }
 392        /*
 393         * if we failed, fillup remainder
 394         */
 395        for (; i < fep->rx_ring; i++, bdp++) {
 396                fep->rx_skbuff[i] = NULL;
 397                CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 398        }
 399
 400        /*
 401         * ...and the same for transmit.
 402         */
 403        for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 404                fep->tx_skbuff[i] = NULL;
 405                CBDW_BUFADDR(bdp, 0);
 406                CBDW_DATLEN(bdp, 0);
 407                CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 408        }
 409}
 410
 411void fs_cleanup_bds(struct net_device *dev)
 412{
 413        struct fs_enet_private *fep = netdev_priv(dev);
 414        struct sk_buff *skb;
 415        cbd_t __iomem *bdp;
 416        int i;
 417
 418        /*
 419         * Reset SKB transmit buffers.
 420         */
 421        for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 422                if ((skb = fep->tx_skbuff[i]) == NULL)
 423                        continue;
 424
 425                /* unmap */
 426                dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 427                                skb->len, DMA_TO_DEVICE);
 428
 429                fep->tx_skbuff[i] = NULL;
 430                dev_kfree_skb(skb);
 431        }
 432
 433        /*
 434         * Reset SKB receive buffers
 435         */
 436        for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 437                if ((skb = fep->rx_skbuff[i]) == NULL)
 438                        continue;
 439
 440                /* unmap */
 441                dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 442                        L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 443                        DMA_FROM_DEVICE);
 444
 445                fep->rx_skbuff[i] = NULL;
 446
 447                dev_kfree_skb(skb);
 448        }
 449}
 450
 451/**********************************************************************************/
 452
 453#ifdef CONFIG_FS_ENET_MPC5121_FEC
 454/*
 455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 456 */
 457static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 458                                               struct sk_buff *skb)
 459{
 460        struct sk_buff *new_skb;
 461
 462        if (skb_linearize(skb))
 463                return NULL;
 464
 465        /* Alloc new skb */
 466        new_skb = netdev_alloc_skb(dev, skb->len + 4);
 467        if (!new_skb)
 468                return NULL;
 469
 470        /* Make sure new skb is properly aligned */
 471        skb_align(new_skb, 4);
 472
 473        /* Copy data to new skb ... */
 474        skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 475        skb_put(new_skb, skb->len);
 476
 477        /* ... and free an old one */
 478        dev_kfree_skb_any(skb);
 479
 480        return new_skb;
 481}
 482#endif
 483
 484static netdev_tx_t
 485fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 486{
 487        struct fs_enet_private *fep = netdev_priv(dev);
 488        cbd_t __iomem *bdp;
 489        int curidx;
 490        u16 sc;
 491        int nr_frags;
 492        skb_frag_t *frag;
 493        int len;
 494#ifdef CONFIG_FS_ENET_MPC5121_FEC
 495        int is_aligned = 1;
 496        int i;
 497
 498        if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 499                is_aligned = 0;
 500        } else {
 501                nr_frags = skb_shinfo(skb)->nr_frags;
 502                frag = skb_shinfo(skb)->frags;
 503                for (i = 0; i < nr_frags; i++, frag++) {
 504                        if (!IS_ALIGNED(frag->page_offset, 4)) {
 505                                is_aligned = 0;
 506                                break;
 507                        }
 508                }
 509        }
 510
 511        if (!is_aligned) {
 512                skb = tx_skb_align_workaround(dev, skb);
 513                if (!skb) {
 514                        /*
 515                         * We have lost packet due to memory allocation error
 516                         * in tx_skb_align_workaround(). Hopefully original
 517                         * skb is still valid, so try transmit it later.
 518                         */
 519                        return NETDEV_TX_BUSY;
 520                }
 521        }
 522#endif
 523
 524        spin_lock(&fep->tx_lock);
 525
 526        /*
 527         * Fill in a Tx ring entry
 528         */
 529        bdp = fep->cur_tx;
 530
 531        nr_frags = skb_shinfo(skb)->nr_frags;
 532        if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 533                netif_stop_queue(dev);
 534                spin_unlock(&fep->tx_lock);
 535
 536                /*
 537                 * Ooops.  All transmit buffers are full.  Bail out.
 538                 * This should not happen, since the tx queue should be stopped.
 539                 */
 540                dev_warn(fep->dev, "tx queue full!.\n");
 541                return NETDEV_TX_BUSY;
 542        }
 543
 544        curidx = bdp - fep->tx_bd_base;
 545
 546        len = skb->len;
 547        dev->stats.tx_bytes += len;
 548        if (nr_frags)
 549                len -= skb->data_len;
 550        fep->tx_free -= nr_frags + 1;
 551        /*
 552         * Push the data cache so the CPM does not get stale memory data.
 553         */
 554        CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 555                                skb->data, len, DMA_TO_DEVICE));
 556        CBDW_DATLEN(bdp, len);
 557
 558        fep->mapped_as_page[curidx] = 0;
 559        frag = skb_shinfo(skb)->frags;
 560        while (nr_frags) {
 561                CBDC_SC(bdp,
 562                        BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 563                        BD_ENET_TX_TC);
 564                CBDS_SC(bdp, BD_ENET_TX_READY);
 565
 566                if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 567                        bdp++, curidx++;
 568                else
 569                        bdp = fep->tx_bd_base, curidx = 0;
 570
 571                len = skb_frag_size(frag);
 572                CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 573                                                   DMA_TO_DEVICE));
 574                CBDW_DATLEN(bdp, len);
 575
 576                fep->tx_skbuff[curidx] = NULL;
 577                fep->mapped_as_page[curidx] = 1;
 578
 579                frag++;
 580                nr_frags--;
 581        }
 582
 583        /* Trigger transmission start */
 584        sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 585             BD_ENET_TX_LAST | BD_ENET_TX_TC;
 586
 587        /* note that while FEC does not have this bit
 588         * it marks it as available for software use
 589         * yay for hw reuse :) */
 590        if (skb->len <= 60)
 591                sc |= BD_ENET_TX_PAD;
 592        CBDC_SC(bdp, BD_ENET_TX_STATS);
 593        CBDS_SC(bdp, sc);
 594
 595        /* Save skb pointer. */
 596        fep->tx_skbuff[curidx] = skb;
 597
 598        /* If this was the last BD in the ring, start at the beginning again. */
 599        if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 600                bdp++;
 601        else
 602                bdp = fep->tx_bd_base;
 603        fep->cur_tx = bdp;
 604
 605        if (fep->tx_free < MAX_SKB_FRAGS)
 606                netif_stop_queue(dev);
 607
 608        skb_tx_timestamp(skb);
 609
 610        (*fep->ops->tx_kickstart)(dev);
 611
 612        spin_unlock(&fep->tx_lock);
 613
 614        return NETDEV_TX_OK;
 615}
 616
 617static void fs_timeout_work(struct work_struct *work)
 618{
 619        struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 620                                                   timeout_work);
 621        struct net_device *dev = fep->ndev;
 622        unsigned long flags;
 623        int wake = 0;
 624
 625        dev->stats.tx_errors++;
 626
 627        spin_lock_irqsave(&fep->lock, flags);
 628
 629        if (dev->flags & IFF_UP) {
 630                phy_stop(dev->phydev);
 631                (*fep->ops->stop)(dev);
 632                (*fep->ops->restart)(dev);
 633        }
 634
 635        phy_start(dev->phydev);
 636        wake = fep->tx_free >= MAX_SKB_FRAGS &&
 637               !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 638        spin_unlock_irqrestore(&fep->lock, flags);
 639
 640        if (wake)
 641                netif_wake_queue(dev);
 642}
 643
 644static void fs_timeout(struct net_device *dev)
 645{
 646        struct fs_enet_private *fep = netdev_priv(dev);
 647
 648        schedule_work(&fep->timeout_work);
 649}
 650
 651/*-----------------------------------------------------------------------------
 652 *  generic link-change handler - should be sufficient for most cases
 653 *-----------------------------------------------------------------------------*/
 654static void generic_adjust_link(struct  net_device *dev)
 655{
 656        struct fs_enet_private *fep = netdev_priv(dev);
 657        struct phy_device *phydev = dev->phydev;
 658        int new_state = 0;
 659
 660        if (phydev->link) {
 661                /* adjust to duplex mode */
 662                if (phydev->duplex != fep->oldduplex) {
 663                        new_state = 1;
 664                        fep->oldduplex = phydev->duplex;
 665                }
 666
 667                if (phydev->speed != fep->oldspeed) {
 668                        new_state = 1;
 669                        fep->oldspeed = phydev->speed;
 670                }
 671
 672                if (!fep->oldlink) {
 673                        new_state = 1;
 674                        fep->oldlink = 1;
 675                }
 676
 677                if (new_state)
 678                        fep->ops->restart(dev);
 679        } else if (fep->oldlink) {
 680                new_state = 1;
 681                fep->oldlink = 0;
 682                fep->oldspeed = 0;
 683                fep->oldduplex = -1;
 684        }
 685
 686        if (new_state && netif_msg_link(fep))
 687                phy_print_status(phydev);
 688}
 689
 690
 691static void fs_adjust_link(struct net_device *dev)
 692{
 693        struct fs_enet_private *fep = netdev_priv(dev);
 694        unsigned long flags;
 695
 696        spin_lock_irqsave(&fep->lock, flags);
 697
 698        if(fep->ops->adjust_link)
 699                fep->ops->adjust_link(dev);
 700        else
 701                generic_adjust_link(dev);
 702
 703        spin_unlock_irqrestore(&fep->lock, flags);
 704}
 705
 706static int fs_init_phy(struct net_device *dev)
 707{
 708        struct fs_enet_private *fep = netdev_priv(dev);
 709        struct phy_device *phydev;
 710        phy_interface_t iface;
 711
 712        fep->oldlink = 0;
 713        fep->oldspeed = 0;
 714        fep->oldduplex = -1;
 715
 716        iface = fep->fpi->use_rmii ?
 717                PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 718
 719        phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 720                                iface);
 721        if (!phydev) {
 722                dev_err(&dev->dev, "Could not attach to PHY\n");
 723                return -ENODEV;
 724        }
 725
 726        return 0;
 727}
 728
 729static int fs_enet_open(struct net_device *dev)
 730{
 731        struct fs_enet_private *fep = netdev_priv(dev);
 732        int r;
 733        int err;
 734
 735        /* to initialize the fep->cur_rx,... */
 736        /* not doing this, will cause a crash in fs_enet_napi */
 737        fs_init_bds(fep->ndev);
 738
 739        napi_enable(&fep->napi);
 740
 741        /* Install our interrupt handler. */
 742        r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 743                        "fs_enet-mac", dev);
 744        if (r != 0) {
 745                dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 746                napi_disable(&fep->napi);
 747                return -EINVAL;
 748        }
 749
 750        err = fs_init_phy(dev);
 751        if (err) {
 752                free_irq(fep->interrupt, dev);
 753                napi_disable(&fep->napi);
 754                return err;
 755        }
 756        phy_start(dev->phydev);
 757
 758        netif_start_queue(dev);
 759
 760        return 0;
 761}
 762
 763static int fs_enet_close(struct net_device *dev)
 764{
 765        struct fs_enet_private *fep = netdev_priv(dev);
 766        unsigned long flags;
 767
 768        netif_stop_queue(dev);
 769        netif_carrier_off(dev);
 770        napi_disable(&fep->napi);
 771        cancel_work_sync(&fep->timeout_work);
 772        phy_stop(dev->phydev);
 773
 774        spin_lock_irqsave(&fep->lock, flags);
 775        spin_lock(&fep->tx_lock);
 776        (*fep->ops->stop)(dev);
 777        spin_unlock(&fep->tx_lock);
 778        spin_unlock_irqrestore(&fep->lock, flags);
 779
 780        /* release any irqs */
 781        phy_disconnect(dev->phydev);
 782        free_irq(fep->interrupt, dev);
 783
 784        return 0;
 785}
 786
 787/*************************************************************************/
 788
 789static void fs_get_drvinfo(struct net_device *dev,
 790                            struct ethtool_drvinfo *info)
 791{
 792        strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 793        strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
 794}
 795
 796static int fs_get_regs_len(struct net_device *dev)
 797{
 798        struct fs_enet_private *fep = netdev_priv(dev);
 799
 800        return (*fep->ops->get_regs_len)(dev);
 801}
 802
 803static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 804                         void *p)
 805{
 806        struct fs_enet_private *fep = netdev_priv(dev);
 807        unsigned long flags;
 808        int r, len;
 809
 810        len = regs->len;
 811
 812        spin_lock_irqsave(&fep->lock, flags);
 813        r = (*fep->ops->get_regs)(dev, p, &len);
 814        spin_unlock_irqrestore(&fep->lock, flags);
 815
 816        if (r == 0)
 817                regs->version = 0;
 818}
 819
 820static u32 fs_get_msglevel(struct net_device *dev)
 821{
 822        struct fs_enet_private *fep = netdev_priv(dev);
 823        return fep->msg_enable;
 824}
 825
 826static void fs_set_msglevel(struct net_device *dev, u32 value)
 827{
 828        struct fs_enet_private *fep = netdev_priv(dev);
 829        fep->msg_enable = value;
 830}
 831
 832static int fs_get_tunable(struct net_device *dev,
 833                          const struct ethtool_tunable *tuna, void *data)
 834{
 835        struct fs_enet_private *fep = netdev_priv(dev);
 836        struct fs_platform_info *fpi = fep->fpi;
 837        int ret = 0;
 838
 839        switch (tuna->id) {
 840        case ETHTOOL_RX_COPYBREAK:
 841                *(u32 *)data = fpi->rx_copybreak;
 842                break;
 843        default:
 844                ret = -EINVAL;
 845                break;
 846        }
 847
 848        return ret;
 849}
 850
 851static int fs_set_tunable(struct net_device *dev,
 852                          const struct ethtool_tunable *tuna, const void *data)
 853{
 854        struct fs_enet_private *fep = netdev_priv(dev);
 855        struct fs_platform_info *fpi = fep->fpi;
 856        int ret = 0;
 857
 858        switch (tuna->id) {
 859        case ETHTOOL_RX_COPYBREAK:
 860                fpi->rx_copybreak = *(u32 *)data;
 861                break;
 862        default:
 863                ret = -EINVAL;
 864                break;
 865        }
 866
 867        return ret;
 868}
 869
 870static const struct ethtool_ops fs_ethtool_ops = {
 871        .get_drvinfo = fs_get_drvinfo,
 872        .get_regs_len = fs_get_regs_len,
 873        .nway_reset = phy_ethtool_nway_reset,
 874        .get_link = ethtool_op_get_link,
 875        .get_msglevel = fs_get_msglevel,
 876        .set_msglevel = fs_set_msglevel,
 877        .get_regs = fs_get_regs,
 878        .get_ts_info = ethtool_op_get_ts_info,
 879        .get_link_ksettings = phy_ethtool_get_link_ksettings,
 880        .set_link_ksettings = phy_ethtool_set_link_ksettings,
 881        .get_tunable = fs_get_tunable,
 882        .set_tunable = fs_set_tunable,
 883};
 884
 885static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 886{
 887        if (!netif_running(dev))
 888                return -EINVAL;
 889
 890        return phy_mii_ioctl(dev->phydev, rq, cmd);
 891}
 892
 893extern int fs_mii_connect(struct net_device *dev);
 894extern void fs_mii_disconnect(struct net_device *dev);
 895
 896/**************************************************************************************/
 897
 898#ifdef CONFIG_FS_ENET_HAS_FEC
 899#define IS_FEC(match) ((match)->data == &fs_fec_ops)
 900#else
 901#define IS_FEC(match) 0
 902#endif
 903
 904static const struct net_device_ops fs_enet_netdev_ops = {
 905        .ndo_open               = fs_enet_open,
 906        .ndo_stop               = fs_enet_close,
 907        .ndo_start_xmit         = fs_enet_start_xmit,
 908        .ndo_tx_timeout         = fs_timeout,
 909        .ndo_set_rx_mode        = fs_set_multicast_list,
 910        .ndo_do_ioctl           = fs_ioctl,
 911        .ndo_validate_addr      = eth_validate_addr,
 912        .ndo_set_mac_address    = eth_mac_addr,
 913#ifdef CONFIG_NET_POLL_CONTROLLER
 914        .ndo_poll_controller    = fs_enet_netpoll,
 915#endif
 916};
 917
 918static const struct of_device_id fs_enet_match[];
 919static int fs_enet_probe(struct platform_device *ofdev)
 920{
 921        const struct of_device_id *match;
 922        struct net_device *ndev;
 923        struct fs_enet_private *fep;
 924        struct fs_platform_info *fpi;
 925        const u32 *data;
 926        struct clk *clk;
 927        int err;
 928        const u8 *mac_addr;
 929        const char *phy_connection_type;
 930        int privsize, len, ret = -ENODEV;
 931
 932        match = of_match_device(fs_enet_match, &ofdev->dev);
 933        if (!match)
 934                return -EINVAL;
 935
 936        fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 937        if (!fpi)
 938                return -ENOMEM;
 939
 940        if (!IS_FEC(match)) {
 941                data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 942                if (!data || len != 4)
 943                        goto out_free_fpi;
 944
 945                fpi->cp_command = *data;
 946        }
 947
 948        fpi->rx_ring = RX_RING_SIZE;
 949        fpi->tx_ring = TX_RING_SIZE;
 950        fpi->rx_copybreak = 240;
 951        fpi->napi_weight = 17;
 952        fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 953        if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 954                err = of_phy_register_fixed_link(ofdev->dev.of_node);
 955                if (err)
 956                        goto out_free_fpi;
 957
 958                /* In the case of a fixed PHY, the DT node associated
 959                 * to the PHY is the Ethernet MAC DT node.
 960                 */
 961                fpi->phy_node = of_node_get(ofdev->dev.of_node);
 962        }
 963
 964        if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 965                phy_connection_type = of_get_property(ofdev->dev.of_node,
 966                                                "phy-connection-type", NULL);
 967                if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 968                        fpi->use_rmii = 1;
 969        }
 970
 971        /* make clock lookup non-fatal (the driver is shared among platforms),
 972         * but require enable to succeed when a clock was specified/found,
 973         * keep a reference to the clock upon successful acquisition
 974         */
 975        clk = devm_clk_get(&ofdev->dev, "per");
 976        if (!IS_ERR(clk)) {
 977                ret = clk_prepare_enable(clk);
 978                if (ret)
 979                        goto out_deregister_fixed_link;
 980
 981                fpi->clk_per = clk;
 982        }
 983
 984        privsize = sizeof(*fep) +
 985                   sizeof(struct sk_buff **) *
 986                     (fpi->rx_ring + fpi->tx_ring) +
 987                   sizeof(char) * fpi->tx_ring;
 988
 989        ndev = alloc_etherdev(privsize);
 990        if (!ndev) {
 991                ret = -ENOMEM;
 992                goto out_put;
 993        }
 994
 995        SET_NETDEV_DEV(ndev, &ofdev->dev);
 996        platform_set_drvdata(ofdev, ndev);
 997
 998        fep = netdev_priv(ndev);
 999        fep->dev = &ofdev->dev;
1000        fep->ndev = ndev;
1001        fep->fpi = fpi;
1002        fep->ops = match->data;
1003
1004        ret = fep->ops->setup_data(ndev);
1005        if (ret)
1006                goto out_free_dev;
1007
1008        fep->rx_skbuff = (struct sk_buff **)&fep[1];
1009        fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1010        fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1011                                       fpi->tx_ring);
1012
1013        spin_lock_init(&fep->lock);
1014        spin_lock_init(&fep->tx_lock);
1015
1016        mac_addr = of_get_mac_address(ofdev->dev.of_node);
1017        if (!IS_ERR(mac_addr))
1018                ether_addr_copy(ndev->dev_addr, mac_addr);
1019
1020        ret = fep->ops->allocate_bd(ndev);
1021        if (ret)
1022                goto out_cleanup_data;
1023
1024        fep->rx_bd_base = fep->ring_base;
1025        fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1026
1027        fep->tx_ring = fpi->tx_ring;
1028        fep->rx_ring = fpi->rx_ring;
1029
1030        ndev->netdev_ops = &fs_enet_netdev_ops;
1031        ndev->watchdog_timeo = 2 * HZ;
1032        INIT_WORK(&fep->timeout_work, fs_timeout_work);
1033        netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1034
1035        ndev->ethtool_ops = &fs_ethtool_ops;
1036
1037        netif_carrier_off(ndev);
1038
1039        ndev->features |= NETIF_F_SG;
1040
1041        ret = register_netdev(ndev);
1042        if (ret)
1043                goto out_free_bd;
1044
1045        pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1046
1047        return 0;
1048
1049out_free_bd:
1050        fep->ops->free_bd(ndev);
1051out_cleanup_data:
1052        fep->ops->cleanup_data(ndev);
1053out_free_dev:
1054        free_netdev(ndev);
1055out_put:
1056        if (fpi->clk_per)
1057                clk_disable_unprepare(fpi->clk_per);
1058out_deregister_fixed_link:
1059        of_node_put(fpi->phy_node);
1060        if (of_phy_is_fixed_link(ofdev->dev.of_node))
1061                of_phy_deregister_fixed_link(ofdev->dev.of_node);
1062out_free_fpi:
1063        kfree(fpi);
1064        return ret;
1065}
1066
1067static int fs_enet_remove(struct platform_device *ofdev)
1068{
1069        struct net_device *ndev = platform_get_drvdata(ofdev);
1070        struct fs_enet_private *fep = netdev_priv(ndev);
1071
1072        unregister_netdev(ndev);
1073
1074        fep->ops->free_bd(ndev);
1075        fep->ops->cleanup_data(ndev);
1076        dev_set_drvdata(fep->dev, NULL);
1077        of_node_put(fep->fpi->phy_node);
1078        if (fep->fpi->clk_per)
1079                clk_disable_unprepare(fep->fpi->clk_per);
1080        if (of_phy_is_fixed_link(ofdev->dev.of_node))
1081                of_phy_deregister_fixed_link(ofdev->dev.of_node);
1082        free_netdev(ndev);
1083        return 0;
1084}
1085
1086static const struct of_device_id fs_enet_match[] = {
1087#ifdef CONFIG_FS_ENET_HAS_SCC
1088        {
1089                .compatible = "fsl,cpm1-scc-enet",
1090                .data = (void *)&fs_scc_ops,
1091        },
1092        {
1093                .compatible = "fsl,cpm2-scc-enet",
1094                .data = (void *)&fs_scc_ops,
1095        },
1096#endif
1097#ifdef CONFIG_FS_ENET_HAS_FCC
1098        {
1099                .compatible = "fsl,cpm2-fcc-enet",
1100                .data = (void *)&fs_fcc_ops,
1101        },
1102#endif
1103#ifdef CONFIG_FS_ENET_HAS_FEC
1104#ifdef CONFIG_FS_ENET_MPC5121_FEC
1105        {
1106                .compatible = "fsl,mpc5121-fec",
1107                .data = (void *)&fs_fec_ops,
1108        },
1109        {
1110                .compatible = "fsl,mpc5125-fec",
1111                .data = (void *)&fs_fec_ops,
1112        },
1113#else
1114        {
1115                .compatible = "fsl,pq1-fec-enet",
1116                .data = (void *)&fs_fec_ops,
1117        },
1118#endif
1119#endif
1120        {}
1121};
1122MODULE_DEVICE_TABLE(of, fs_enet_match);
1123
1124static struct platform_driver fs_enet_driver = {
1125        .driver = {
1126                .name = "fs_enet",
1127                .of_match_table = fs_enet_match,
1128        },
1129        .probe = fs_enet_probe,
1130        .remove = fs_enet_remove,
1131};
1132
1133#ifdef CONFIG_NET_POLL_CONTROLLER
1134static void fs_enet_netpoll(struct net_device *dev)
1135{
1136       disable_irq(dev->irq);
1137       fs_enet_interrupt(dev->irq, dev);
1138       enable_irq(dev->irq);
1139}
1140#endif
1141
1142module_platform_driver(fs_enet_driver);
1143