linux/drivers/net/ethernet/freescale/fsl_pq_mdio.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
   4 * Provides Bus interface for MIIM regs
   5 *
   6 * Author: Andy Fleming <afleming@freescale.com>
   7 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
   8 *
   9 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
  10 *
  11 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/string.h>
  16#include <linux/errno.h>
  17#include <linux/slab.h>
  18#include <linux/delay.h>
  19#include <linux/module.h>
  20#include <linux/mii.h>
  21#include <linux/of_address.h>
  22#include <linux/of_mdio.h>
  23#include <linux/of_device.h>
  24
  25#include <asm/io.h>
  26#if IS_ENABLED(CONFIG_UCC_GETH)
  27#include <soc/fsl/qe/ucc.h>
  28#endif
  29
  30#include "gianfar.h"
  31
  32#define MIIMIND_BUSY            0x00000001
  33#define MIIMIND_NOTVALID        0x00000004
  34#define MIIMCFG_INIT_VALUE      0x00000007
  35#define MIIMCFG_RESET           0x80000000
  36
  37#define MII_READ_COMMAND        0x00000001
  38
  39struct fsl_pq_mii {
  40        u32 miimcfg;    /* MII management configuration reg */
  41        u32 miimcom;    /* MII management command reg */
  42        u32 miimadd;    /* MII management address reg */
  43        u32 miimcon;    /* MII management control reg */
  44        u32 miimstat;   /* MII management status reg */
  45        u32 miimind;    /* MII management indication reg */
  46};
  47
  48struct fsl_pq_mdio {
  49        u8 res1[16];
  50        u32 ieventm;    /* MDIO Interrupt event register (for etsec2)*/
  51        u32 imaskm;     /* MDIO Interrupt mask register (for etsec2)*/
  52        u8 res2[4];
  53        u32 emapm;      /* MDIO Event mapping register (for etsec2)*/
  54        u8 res3[1280];
  55        struct fsl_pq_mii mii;
  56        u8 res4[28];
  57        u32 utbipar;    /* TBI phy address reg (only on UCC) */
  58        u8 res5[2728];
  59} __packed;
  60
  61/* Number of microseconds to wait for an MII register to respond */
  62#define MII_TIMEOUT     1000
  63
  64struct fsl_pq_mdio_priv {
  65        void __iomem *map;
  66        struct fsl_pq_mii __iomem *regs;
  67};
  68
  69/*
  70 * Per-device-type data.  Each type of device tree node that we support gets
  71 * one of these.
  72 *
  73 * @mii_offset: the offset of the MII registers within the memory map of the
  74 * node.  Some nodes define only the MII registers, and some define the whole
  75 * MAC (which includes the MII registers).
  76 *
  77 * @get_tbipa: determines the address of the TBIPA register
  78 *
  79 * @ucc_configure: a special function for extra QE configuration
  80 */
  81struct fsl_pq_mdio_data {
  82        unsigned int mii_offset;        /* offset of the MII registers */
  83        uint32_t __iomem * (*get_tbipa)(void __iomem *p);
  84        void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
  85};
  86
  87/*
  88 * Write value to the PHY at mii_id at register regnum, on the bus attached
  89 * to the local interface, which may be different from the generic mdio bus
  90 * (tied to a single interface), waiting until the write is done before
  91 * returning. This is helpful in programming interfaces like the TBI which
  92 * control interfaces like onchip SERDES and are always tied to the local
  93 * mdio pins, which may not be the same as system mdio bus, used for
  94 * controlling the external PHYs, for example.
  95 */
  96static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
  97                u16 value)
  98{
  99        struct fsl_pq_mdio_priv *priv = bus->priv;
 100        struct fsl_pq_mii __iomem *regs = priv->regs;
 101        unsigned int timeout;
 102
 103        /* Set the PHY address and the register address we want to write */
 104        iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
 105
 106        /* Write out the value we want */
 107        iowrite32be(value, &regs->miimcon);
 108
 109        /* Wait for the transaction to finish */
 110        timeout = MII_TIMEOUT;
 111        while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
 112                cpu_relax();
 113                timeout--;
 114        }
 115
 116        return timeout ? 0 : -ETIMEDOUT;
 117}
 118
 119/*
 120 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
 121 * Clears miimcom first.
 122 *
 123 * All PHY operation done on the bus attached to the local interface, which
 124 * may be different from the generic mdio bus.  This is helpful in programming
 125 * interfaces like the TBI which, in turn, control interfaces like on-chip
 126 * SERDES and are always tied to the local mdio pins, which may not be the
 127 * same as system mdio bus, used for controlling the external PHYs, for eg.
 128 */
 129static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 130{
 131        struct fsl_pq_mdio_priv *priv = bus->priv;
 132        struct fsl_pq_mii __iomem *regs = priv->regs;
 133        unsigned int timeout;
 134        u16 value;
 135
 136        /* Set the PHY address and the register address we want to read */
 137        iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
 138
 139        /* Clear miimcom, and then initiate a read */
 140        iowrite32be(0, &regs->miimcom);
 141        iowrite32be(MII_READ_COMMAND, &regs->miimcom);
 142
 143        /* Wait for the transaction to finish, normally less than 100us */
 144        timeout = MII_TIMEOUT;
 145        while ((ioread32be(&regs->miimind) &
 146               (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
 147                cpu_relax();
 148                timeout--;
 149        }
 150
 151        if (!timeout)
 152                return -ETIMEDOUT;
 153
 154        /* Grab the value of the register from miimstat */
 155        value = ioread32be(&regs->miimstat);
 156
 157        dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
 158        return value;
 159}
 160
 161/* Reset the MIIM registers, and wait for the bus to free */
 162static int fsl_pq_mdio_reset(struct mii_bus *bus)
 163{
 164        struct fsl_pq_mdio_priv *priv = bus->priv;
 165        struct fsl_pq_mii __iomem *regs = priv->regs;
 166        unsigned int timeout;
 167
 168        mutex_lock(&bus->mdio_lock);
 169
 170        /* Reset the management interface */
 171        iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
 172
 173        /* Setup the MII Mgmt clock speed */
 174        iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
 175
 176        /* Wait until the bus is free */
 177        timeout = MII_TIMEOUT;
 178        while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
 179                cpu_relax();
 180                timeout--;
 181        }
 182
 183        mutex_unlock(&bus->mdio_lock);
 184
 185        if (!timeout) {
 186                dev_err(&bus->dev, "timeout waiting for MII bus\n");
 187                return -EBUSY;
 188        }
 189
 190        return 0;
 191}
 192
 193#if IS_ENABLED(CONFIG_GIANFAR)
 194/*
 195 * Return the TBIPA address, starting from the address
 196 * of the mapped GFAR MDIO registers (struct gfar)
 197 * This is mildly evil, but so is our hardware for doing this.
 198 * Also, we have to cast back to struct gfar because of
 199 * definition weirdness done in gianfar.h.
 200 */
 201static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
 202{
 203        struct gfar __iomem *enet_regs = p;
 204
 205        return &enet_regs->tbipa;
 206}
 207
 208/*
 209 * Return the TBIPA address, starting from the address
 210 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
 211 */
 212static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
 213{
 214        return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
 215}
 216
 217/*
 218 * Return the TBIPAR address for an eTSEC2 node
 219 */
 220static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
 221{
 222        return p;
 223}
 224#endif
 225
 226#if IS_ENABLED(CONFIG_UCC_GETH)
 227/*
 228 * Return the TBIPAR address for a QE MDIO node, starting from the address
 229 * of the mapped MII registers (struct fsl_pq_mii)
 230 */
 231static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
 232{
 233        struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
 234
 235        return &mdio->utbipar;
 236}
 237
 238/*
 239 * Find the UCC node that controls the given MDIO node
 240 *
 241 * For some reason, the QE MDIO nodes are not children of the UCC devices
 242 * that control them.  Therefore, we need to scan all UCC nodes looking for
 243 * the one that encompases the given MDIO node.  We do this by comparing
 244 * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
 245 * passed, and the correct UCC node will cover the entire address range.
 246 *
 247 * This assumes that there is only one QE MDIO node in the entire device tree.
 248 */
 249static void ucc_configure(phys_addr_t start, phys_addr_t end)
 250{
 251        static bool found_mii_master;
 252        struct device_node *np = NULL;
 253
 254        if (found_mii_master)
 255                return;
 256
 257        for_each_compatible_node(np, NULL, "ucc_geth") {
 258                struct resource res;
 259                const uint32_t *iprop;
 260                uint32_t id;
 261                int ret;
 262
 263                ret = of_address_to_resource(np, 0, &res);
 264                if (ret < 0) {
 265                        pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
 266                                 np);
 267                        continue;
 268                }
 269
 270                /* if our mdio regs fall within this UCC regs range */
 271                if ((start < res.start) || (end > res.end))
 272                        continue;
 273
 274                iprop = of_get_property(np, "cell-index", NULL);
 275                if (!iprop) {
 276                        iprop = of_get_property(np, "device-id", NULL);
 277                        if (!iprop) {
 278                                pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
 279                                         np);
 280                                continue;
 281                        }
 282                }
 283
 284                id = be32_to_cpup(iprop);
 285
 286                /*
 287                 * cell-index and device-id for QE nodes are
 288                 * numbered from 1, not 0.
 289                 */
 290                if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
 291                        pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
 292                                 np);
 293                        continue;
 294                }
 295
 296                pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
 297                found_mii_master = true;
 298        }
 299}
 300
 301#endif
 302
 303static const struct of_device_id fsl_pq_mdio_match[] = {
 304#if IS_ENABLED(CONFIG_GIANFAR)
 305        {
 306                .compatible = "fsl,gianfar-tbi",
 307                .data = &(struct fsl_pq_mdio_data) {
 308                        .mii_offset = 0,
 309                        .get_tbipa = get_gfar_tbipa_from_mii,
 310                },
 311        },
 312        {
 313                .compatible = "fsl,gianfar-mdio",
 314                .data = &(struct fsl_pq_mdio_data) {
 315                        .mii_offset = 0,
 316                        .get_tbipa = get_gfar_tbipa_from_mii,
 317                },
 318        },
 319        {
 320                .type = "mdio",
 321                .compatible = "gianfar",
 322                .data = &(struct fsl_pq_mdio_data) {
 323                        .mii_offset = offsetof(struct fsl_pq_mdio, mii),
 324                        .get_tbipa = get_gfar_tbipa_from_mdio,
 325                },
 326        },
 327        {
 328                .compatible = "fsl,etsec2-tbi",
 329                .data = &(struct fsl_pq_mdio_data) {
 330                        .mii_offset = offsetof(struct fsl_pq_mdio, mii),
 331                        .get_tbipa = get_etsec_tbipa,
 332                },
 333        },
 334        {
 335                .compatible = "fsl,etsec2-mdio",
 336                .data = &(struct fsl_pq_mdio_data) {
 337                        .mii_offset = offsetof(struct fsl_pq_mdio, mii),
 338                        .get_tbipa = get_etsec_tbipa,
 339                },
 340        },
 341#endif
 342#if IS_ENABLED(CONFIG_UCC_GETH)
 343        {
 344                .compatible = "fsl,ucc-mdio",
 345                .data = &(struct fsl_pq_mdio_data) {
 346                        .mii_offset = 0,
 347                        .get_tbipa = get_ucc_tbipa,
 348                        .ucc_configure = ucc_configure,
 349                },
 350        },
 351        {
 352                /* Legacy UCC MDIO node */
 353                .type = "mdio",
 354                .compatible = "ucc_geth_phy",
 355                .data = &(struct fsl_pq_mdio_data) {
 356                        .mii_offset = 0,
 357                        .get_tbipa = get_ucc_tbipa,
 358                        .ucc_configure = ucc_configure,
 359                },
 360        },
 361#endif
 362        /* No Kconfig option for Fman support yet */
 363        {
 364                .compatible = "fsl,fman-mdio",
 365                .data = &(struct fsl_pq_mdio_data) {
 366                        .mii_offset = 0,
 367                        /* Fman TBI operations are handled elsewhere */
 368                },
 369        },
 370
 371        {},
 372};
 373MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
 374
 375static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
 376                      uint32_t __iomem * (*get_tbipa)(void __iomem *),
 377                      void __iomem *reg_map, struct resource *reg_res)
 378{
 379        struct device_node *np = pdev->dev.of_node;
 380        uint32_t __iomem *tbipa;
 381        bool tbipa_mapped;
 382
 383        tbipa = of_iomap(np, 1);
 384        if (tbipa) {
 385                tbipa_mapped = true;
 386        } else {
 387                tbipa_mapped = false;
 388                tbipa = (*get_tbipa)(reg_map);
 389
 390                /*
 391                 * Add consistency check to make sure TBI is contained within
 392                 * the mapped range (not because we would get a segfault,
 393                 * rather to catch bugs in computing TBI address). Print error
 394                 * message but continue anyway.
 395                 */
 396                if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
 397                        dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
 398                                ((void *)tbipa - reg_map) + 4);
 399        }
 400
 401        iowrite32be(be32_to_cpu(tbipa_val), tbipa);
 402
 403        if (tbipa_mapped)
 404                iounmap(tbipa);
 405}
 406
 407static int fsl_pq_mdio_probe(struct platform_device *pdev)
 408{
 409        const struct of_device_id *id =
 410                of_match_device(fsl_pq_mdio_match, &pdev->dev);
 411        const struct fsl_pq_mdio_data *data;
 412        struct device_node *np = pdev->dev.of_node;
 413        struct resource res;
 414        struct device_node *tbi;
 415        struct fsl_pq_mdio_priv *priv;
 416        struct mii_bus *new_bus;
 417        int err;
 418
 419        if (!id) {
 420                dev_err(&pdev->dev, "Failed to match device\n");
 421                return -ENODEV;
 422        }
 423
 424        data = id->data;
 425
 426        dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
 427
 428        new_bus = mdiobus_alloc_size(sizeof(*priv));
 429        if (!new_bus)
 430                return -ENOMEM;
 431
 432        priv = new_bus->priv;
 433        new_bus->name = "Freescale PowerQUICC MII Bus",
 434        new_bus->read = &fsl_pq_mdio_read;
 435        new_bus->write = &fsl_pq_mdio_write;
 436        new_bus->reset = &fsl_pq_mdio_reset;
 437
 438        err = of_address_to_resource(np, 0, &res);
 439        if (err < 0) {
 440                dev_err(&pdev->dev, "could not obtain address information\n");
 441                goto error;
 442        }
 443
 444        snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
 445                 (unsigned long long)res.start);
 446
 447        priv->map = of_iomap(np, 0);
 448        if (!priv->map) {
 449                err = -ENOMEM;
 450                goto error;
 451        }
 452
 453        /*
 454         * Some device tree nodes represent only the MII registers, and
 455         * others represent the MAC and MII registers.  The 'mii_offset' field
 456         * contains the offset of the MII registers inside the mapped register
 457         * space.
 458         */
 459        if (data->mii_offset > resource_size(&res)) {
 460                dev_err(&pdev->dev, "invalid register map\n");
 461                err = -EINVAL;
 462                goto error;
 463        }
 464        priv->regs = priv->map + data->mii_offset;
 465
 466        new_bus->parent = &pdev->dev;
 467        platform_set_drvdata(pdev, new_bus);
 468
 469        if (data->get_tbipa) {
 470                for_each_child_of_node(np, tbi) {
 471                        if (of_node_is_type(tbi, "tbi-phy")) {
 472                                dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
 473                                        tbi);
 474                                break;
 475                        }
 476                }
 477
 478                if (tbi) {
 479                        const u32 *prop = of_get_property(tbi, "reg", NULL);
 480                        if (!prop) {
 481                                dev_err(&pdev->dev,
 482                                        "missing 'reg' property in node %pOF\n",
 483                                        tbi);
 484                                err = -EBUSY;
 485                                goto error;
 486                        }
 487                        set_tbipa(*prop, pdev,
 488                                  data->get_tbipa, priv->map, &res);
 489                }
 490        }
 491
 492        if (data->ucc_configure)
 493                data->ucc_configure(res.start, res.end);
 494
 495        err = of_mdiobus_register(new_bus, np);
 496        if (err) {
 497                dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
 498                        new_bus->name);
 499                goto error;
 500        }
 501
 502        return 0;
 503
 504error:
 505        if (priv->map)
 506                iounmap(priv->map);
 507
 508        kfree(new_bus);
 509
 510        return err;
 511}
 512
 513
 514static int fsl_pq_mdio_remove(struct platform_device *pdev)
 515{
 516        struct device *device = &pdev->dev;
 517        struct mii_bus *bus = dev_get_drvdata(device);
 518        struct fsl_pq_mdio_priv *priv = bus->priv;
 519
 520        mdiobus_unregister(bus);
 521
 522        iounmap(priv->map);
 523        mdiobus_free(bus);
 524
 525        return 0;
 526}
 527
 528static struct platform_driver fsl_pq_mdio_driver = {
 529        .driver = {
 530                .name = "fsl-pq_mdio",
 531                .of_match_table = fsl_pq_mdio_match,
 532        },
 533        .probe = fsl_pq_mdio_probe,
 534        .remove = fsl_pq_mdio_remove,
 535};
 536
 537module_platform_driver(fsl_pq_mdio_driver);
 538
 539MODULE_LICENSE("GPL");
 540