linux/drivers/net/ethernet/intel/e100.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
   3
   4/*
   5 *      e100.c: Intel(R) PRO/100 ethernet driver
   6 *
   7 *      (Re)written 2003 by scott.feldman@intel.com.  Based loosely on
   8 *      original e100 driver, but better described as a munging of
   9 *      e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  10 *
  11 *      References:
  12 *              Intel 8255x 10/100 Mbps Ethernet Controller Family,
  13 *              Open Source Software Developers Manual,
  14 *              http://sourceforge.net/projects/e1000
  15 *
  16 *
  17 *                            Theory of Operation
  18 *
  19 *      I.   General
  20 *
  21 *      The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  22 *      controller family, which includes the 82557, 82558, 82559, 82550,
  23 *      82551, and 82562 devices.  82558 and greater controllers
  24 *      integrate the Intel 82555 PHY.  The controllers are used in
  25 *      server and client network interface cards, as well as in
  26 *      LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  27 *      configurations.  8255x supports a 32-bit linear addressing
  28 *      mode and operates at 33Mhz PCI clock rate.
  29 *
  30 *      II.  Driver Operation
  31 *
  32 *      Memory-mapped mode is used exclusively to access the device's
  33 *      shared-memory structure, the Control/Status Registers (CSR). All
  34 *      setup, configuration, and control of the device, including queuing
  35 *      of Tx, Rx, and configuration commands is through the CSR.
  36 *      cmd_lock serializes accesses to the CSR command register.  cb_lock
  37 *      protects the shared Command Block List (CBL).
  38 *
  39 *      8255x is highly MII-compliant and all access to the PHY go
  40 *      through the Management Data Interface (MDI).  Consequently, the
  41 *      driver leverages the mii.c library shared with other MII-compliant
  42 *      devices.
  43 *
  44 *      Big- and Little-Endian byte order as well as 32- and 64-bit
  45 *      archs are supported.  Weak-ordered memory and non-cache-coherent
  46 *      archs are supported.
  47 *
  48 *      III. Transmit
  49 *
  50 *      A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  51 *      together in a fixed-size ring (CBL) thus forming the flexible mode
  52 *      memory structure.  A TCB marked with the suspend-bit indicates
  53 *      the end of the ring.  The last TCB processed suspends the
  54 *      controller, and the controller can be restarted by issue a CU
  55 *      resume command to continue from the suspend point, or a CU start
  56 *      command to start at a given position in the ring.
  57 *
  58 *      Non-Tx commands (config, multicast setup, etc) are linked
  59 *      into the CBL ring along with Tx commands.  The common structure
  60 *      used for both Tx and non-Tx commands is the Command Block (CB).
  61 *
  62 *      cb_to_use is the next CB to use for queuing a command; cb_to_clean
  63 *      is the next CB to check for completion; cb_to_send is the first
  64 *      CB to start on in case of a previous failure to resume.  CB clean
  65 *      up happens in interrupt context in response to a CU interrupt.
  66 *      cbs_avail keeps track of number of free CB resources available.
  67 *
  68 *      Hardware padding of short packets to minimum packet size is
  69 *      enabled.  82557 pads with 7Eh, while the later controllers pad
  70 *      with 00h.
  71 *
  72 *      IV.  Receive
  73 *
  74 *      The Receive Frame Area (RFA) comprises a ring of Receive Frame
  75 *      Descriptors (RFD) + data buffer, thus forming the simplified mode
  76 *      memory structure.  Rx skbs are allocated to contain both the RFD
  77 *      and the data buffer, but the RFD is pulled off before the skb is
  78 *      indicated.  The data buffer is aligned such that encapsulated
  79 *      protocol headers are u32-aligned.  Since the RFD is part of the
  80 *      mapped shared memory, and completion status is contained within
  81 *      the RFD, the RFD must be dma_sync'ed to maintain a consistent
  82 *      view from software and hardware.
  83 *
  84 *      In order to keep updates to the RFD link field from colliding with
  85 *      hardware writes to mark packets complete, we use the feature that
  86 *      hardware will not write to a size 0 descriptor and mark the previous
  87 *      packet as end-of-list (EL).   After updating the link, we remove EL
  88 *      and only then restore the size such that hardware may use the
  89 *      previous-to-end RFD.
  90 *
  91 *      Under typical operation, the  receive unit (RU) is start once,
  92 *      and the controller happily fills RFDs as frames arrive.  If
  93 *      replacement RFDs cannot be allocated, or the RU goes non-active,
  94 *      the RU must be restarted.  Frame arrival generates an interrupt,
  95 *      and Rx indication and re-allocation happen in the same context,
  96 *      therefore no locking is required.  A software-generated interrupt
  97 *      is generated from the watchdog to recover from a failed allocation
  98 *      scenario where all Rx resources have been indicated and none re-
  99 *      placed.
 100 *
 101 *      V.   Miscellaneous
 102 *
 103 *      VLAN offloading of tagging, stripping and filtering is not
 104 *      supported, but driver will accommodate the extra 4-byte VLAN tag
 105 *      for processing by upper layers.  Tx/Rx Checksum offloading is not
 106 *      supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 107 *      not supported (hardware limitation).
 108 *
 109 *      MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 110 *
 111 *      Thanks to JC (jchapman@katalix.com) for helping with
 112 *      testing/troubleshooting the development driver.
 113 *
 114 *      TODO:
 115 *      o several entry points race with dev->close
 116 *      o check for tx-no-resources/stop Q races with tx clean/wake Q
 117 *
 118 *      FIXES:
 119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 120 *      - Stratus87247: protect MDI control register manipulations
 121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 122 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 123 */
 124
 125#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 126
 127#include <linux/hardirq.h>
 128#include <linux/interrupt.h>
 129#include <linux/module.h>
 130#include <linux/moduleparam.h>
 131#include <linux/kernel.h>
 132#include <linux/types.h>
 133#include <linux/sched.h>
 134#include <linux/slab.h>
 135#include <linux/delay.h>
 136#include <linux/init.h>
 137#include <linux/pci.h>
 138#include <linux/dma-mapping.h>
 139#include <linux/dmapool.h>
 140#include <linux/netdevice.h>
 141#include <linux/etherdevice.h>
 142#include <linux/mii.h>
 143#include <linux/if_vlan.h>
 144#include <linux/skbuff.h>
 145#include <linux/ethtool.h>
 146#include <linux/string.h>
 147#include <linux/firmware.h>
 148#include <linux/rtnetlink.h>
 149#include <asm/unaligned.h>
 150
 151
 152#define DRV_NAME                "e100"
 153#define DRV_EXT                 "-NAPI"
 154#define DRV_VERSION             "3.5.24-k2"DRV_EXT
 155#define DRV_DESCRIPTION         "Intel(R) PRO/100 Network Driver"
 156#define DRV_COPYRIGHT           "Copyright(c) 1999-2006 Intel Corporation"
 157
 158#define E100_WATCHDOG_PERIOD    (2 * HZ)
 159#define E100_NAPI_WEIGHT        16
 160
 161#define FIRMWARE_D101M          "e100/d101m_ucode.bin"
 162#define FIRMWARE_D101S          "e100/d101s_ucode.bin"
 163#define FIRMWARE_D102E          "e100/d102e_ucode.bin"
 164
 165MODULE_DESCRIPTION(DRV_DESCRIPTION);
 166MODULE_AUTHOR(DRV_COPYRIGHT);
 167MODULE_LICENSE("GPL v2");
 168MODULE_VERSION(DRV_VERSION);
 169MODULE_FIRMWARE(FIRMWARE_D101M);
 170MODULE_FIRMWARE(FIRMWARE_D101S);
 171MODULE_FIRMWARE(FIRMWARE_D102E);
 172
 173static int debug = 3;
 174static int eeprom_bad_csum_allow = 0;
 175static int use_io = 0;
 176module_param(debug, int, 0);
 177module_param(eeprom_bad_csum_allow, int, 0);
 178module_param(use_io, int, 0);
 179MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 180MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 181MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 182
 183#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 184        PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 185        PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 186static const struct pci_device_id e100_id_table[] = {
 187        INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 188        INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 189        INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 190        INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 191        INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 192        INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 193        INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 194        INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 195        INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 196        INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 197        INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 198        INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 199        INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 200        INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 201        INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 202        INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 203        INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 204        INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 205        INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 206        INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 207        INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 208        INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 209        INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 210        INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 211        INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 212        INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 213        INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 214        INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 215        INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 216        INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 217        INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 218        INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 219        INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 220        INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 221        INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 222        INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 223        INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 224        INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 225        INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 226        INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 227        INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 228        INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 229        { 0, }
 230};
 231MODULE_DEVICE_TABLE(pci, e100_id_table);
 232
 233enum mac {
 234        mac_82557_D100_A  = 0,
 235        mac_82557_D100_B  = 1,
 236        mac_82557_D100_C  = 2,
 237        mac_82558_D101_A4 = 4,
 238        mac_82558_D101_B0 = 5,
 239        mac_82559_D101M   = 8,
 240        mac_82559_D101S   = 9,
 241        mac_82550_D102    = 12,
 242        mac_82550_D102_C  = 13,
 243        mac_82551_E       = 14,
 244        mac_82551_F       = 15,
 245        mac_82551_10      = 16,
 246        mac_unknown       = 0xFF,
 247};
 248
 249enum phy {
 250        phy_100a     = 0x000003E0,
 251        phy_100c     = 0x035002A8,
 252        phy_82555_tx = 0x015002A8,
 253        phy_nsc_tx   = 0x5C002000,
 254        phy_82562_et = 0x033002A8,
 255        phy_82562_em = 0x032002A8,
 256        phy_82562_ek = 0x031002A8,
 257        phy_82562_eh = 0x017002A8,
 258        phy_82552_v  = 0xd061004d,
 259        phy_unknown  = 0xFFFFFFFF,
 260};
 261
 262/* CSR (Control/Status Registers) */
 263struct csr {
 264        struct {
 265                u8 status;
 266                u8 stat_ack;
 267                u8 cmd_lo;
 268                u8 cmd_hi;
 269                u32 gen_ptr;
 270        } scb;
 271        u32 port;
 272        u16 flash_ctrl;
 273        u8 eeprom_ctrl_lo;
 274        u8 eeprom_ctrl_hi;
 275        u32 mdi_ctrl;
 276        u32 rx_dma_count;
 277};
 278
 279enum scb_status {
 280        rus_no_res       = 0x08,
 281        rus_ready        = 0x10,
 282        rus_mask         = 0x3C,
 283};
 284
 285enum ru_state  {
 286        RU_SUSPENDED = 0,
 287        RU_RUNNING       = 1,
 288        RU_UNINITIALIZED = -1,
 289};
 290
 291enum scb_stat_ack {
 292        stat_ack_not_ours    = 0x00,
 293        stat_ack_sw_gen      = 0x04,
 294        stat_ack_rnr         = 0x10,
 295        stat_ack_cu_idle     = 0x20,
 296        stat_ack_frame_rx    = 0x40,
 297        stat_ack_cu_cmd_done = 0x80,
 298        stat_ack_not_present = 0xFF,
 299        stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 300        stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 301};
 302
 303enum scb_cmd_hi {
 304        irq_mask_none = 0x00,
 305        irq_mask_all  = 0x01,
 306        irq_sw_gen    = 0x02,
 307};
 308
 309enum scb_cmd_lo {
 310        cuc_nop        = 0x00,
 311        ruc_start      = 0x01,
 312        ruc_load_base  = 0x06,
 313        cuc_start      = 0x10,
 314        cuc_resume     = 0x20,
 315        cuc_dump_addr  = 0x40,
 316        cuc_dump_stats = 0x50,
 317        cuc_load_base  = 0x60,
 318        cuc_dump_reset = 0x70,
 319};
 320
 321enum cuc_dump {
 322        cuc_dump_complete       = 0x0000A005,
 323        cuc_dump_reset_complete = 0x0000A007,
 324};
 325
 326enum port {
 327        software_reset  = 0x0000,
 328        selftest        = 0x0001,
 329        selective_reset = 0x0002,
 330};
 331
 332enum eeprom_ctrl_lo {
 333        eesk = 0x01,
 334        eecs = 0x02,
 335        eedi = 0x04,
 336        eedo = 0x08,
 337};
 338
 339enum mdi_ctrl {
 340        mdi_write = 0x04000000,
 341        mdi_read  = 0x08000000,
 342        mdi_ready = 0x10000000,
 343};
 344
 345enum eeprom_op {
 346        op_write = 0x05,
 347        op_read  = 0x06,
 348        op_ewds  = 0x10,
 349        op_ewen  = 0x13,
 350};
 351
 352enum eeprom_offsets {
 353        eeprom_cnfg_mdix  = 0x03,
 354        eeprom_phy_iface  = 0x06,
 355        eeprom_id         = 0x0A,
 356        eeprom_config_asf = 0x0D,
 357        eeprom_smbus_addr = 0x90,
 358};
 359
 360enum eeprom_cnfg_mdix {
 361        eeprom_mdix_enabled = 0x0080,
 362};
 363
 364enum eeprom_phy_iface {
 365        NoSuchPhy = 0,
 366        I82553AB,
 367        I82553C,
 368        I82503,
 369        DP83840,
 370        S80C240,
 371        S80C24,
 372        I82555,
 373        DP83840A = 10,
 374};
 375
 376enum eeprom_id {
 377        eeprom_id_wol = 0x0020,
 378};
 379
 380enum eeprom_config_asf {
 381        eeprom_asf = 0x8000,
 382        eeprom_gcl = 0x4000,
 383};
 384
 385enum cb_status {
 386        cb_complete = 0x8000,
 387        cb_ok       = 0x2000,
 388};
 389
 390/**
 391 * cb_command - Command Block flags
 392 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
 393 */
 394enum cb_command {
 395        cb_nop    = 0x0000,
 396        cb_iaaddr = 0x0001,
 397        cb_config = 0x0002,
 398        cb_multi  = 0x0003,
 399        cb_tx     = 0x0004,
 400        cb_ucode  = 0x0005,
 401        cb_dump   = 0x0006,
 402        cb_tx_sf  = 0x0008,
 403        cb_tx_nc  = 0x0010,
 404        cb_cid    = 0x1f00,
 405        cb_i      = 0x2000,
 406        cb_s      = 0x4000,
 407        cb_el     = 0x8000,
 408};
 409
 410struct rfd {
 411        __le16 status;
 412        __le16 command;
 413        __le32 link;
 414        __le32 rbd;
 415        __le16 actual_size;
 416        __le16 size;
 417};
 418
 419struct rx {
 420        struct rx *next, *prev;
 421        struct sk_buff *skb;
 422        dma_addr_t dma_addr;
 423};
 424
 425#if defined(__BIG_ENDIAN_BITFIELD)
 426#define X(a,b)  b,a
 427#else
 428#define X(a,b)  a,b
 429#endif
 430struct config {
 431/*0*/   u8 X(byte_count:6, pad0:2);
 432/*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 433/*2*/   u8 adaptive_ifs;
 434/*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 435           term_write_cache_line:1), pad3:4);
 436/*4*/   u8 X(rx_dma_max_count:7, pad4:1);
 437/*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 438/*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 439           tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 440           rx_save_overruns : 1), rx_save_bad_frames : 1);
 441/*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 442           pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 443           tx_dynamic_tbd:1);
 444/*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 445/*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 446           link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 447/*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 448           loopback:2);
 449/*11*/  u8 X(linear_priority:3, pad11:5);
 450/*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 451/*13*/  u8 ip_addr_lo;
 452/*14*/  u8 ip_addr_hi;
 453/*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 454           wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 455           pad15_2:1), crs_or_cdt:1);
 456/*16*/  u8 fc_delay_lo;
 457/*17*/  u8 fc_delay_hi;
 458/*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 459           rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 460/*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 461           fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 462           full_duplex_force:1), full_duplex_pin:1);
 463/*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 464/*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 465/*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 466        u8 pad_d102[9];
 467};
 468
 469#define E100_MAX_MULTICAST_ADDRS        64
 470struct multi {
 471        __le16 count;
 472        u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 473};
 474
 475/* Important: keep total struct u32-aligned */
 476#define UCODE_SIZE                      134
 477struct cb {
 478        __le16 status;
 479        __le16 command;
 480        __le32 link;
 481        union {
 482                u8 iaaddr[ETH_ALEN];
 483                __le32 ucode[UCODE_SIZE];
 484                struct config config;
 485                struct multi multi;
 486                struct {
 487                        u32 tbd_array;
 488                        u16 tcb_byte_count;
 489                        u8 threshold;
 490                        u8 tbd_count;
 491                        struct {
 492                                __le32 buf_addr;
 493                                __le16 size;
 494                                u16 eol;
 495                        } tbd;
 496                } tcb;
 497                __le32 dump_buffer_addr;
 498        } u;
 499        struct cb *next, *prev;
 500        dma_addr_t dma_addr;
 501        struct sk_buff *skb;
 502};
 503
 504enum loopback {
 505        lb_none = 0, lb_mac = 1, lb_phy = 3,
 506};
 507
 508struct stats {
 509        __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 510                tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 511                tx_multiple_collisions, tx_total_collisions;
 512        __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 513                rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 514                rx_short_frame_errors;
 515        __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 516        __le16 xmt_tco_frames, rcv_tco_frames;
 517        __le32 complete;
 518};
 519
 520struct mem {
 521        struct {
 522                u32 signature;
 523                u32 result;
 524        } selftest;
 525        struct stats stats;
 526        u8 dump_buf[596];
 527};
 528
 529struct param_range {
 530        u32 min;
 531        u32 max;
 532        u32 count;
 533};
 534
 535struct params {
 536        struct param_range rfds;
 537        struct param_range cbs;
 538};
 539
 540struct nic {
 541        /* Begin: frequently used values: keep adjacent for cache effect */
 542        u32 msg_enable                          ____cacheline_aligned;
 543        struct net_device *netdev;
 544        struct pci_dev *pdev;
 545        u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 546
 547        struct rx *rxs                          ____cacheline_aligned;
 548        struct rx *rx_to_use;
 549        struct rx *rx_to_clean;
 550        struct rfd blank_rfd;
 551        enum ru_state ru_running;
 552
 553        spinlock_t cb_lock                      ____cacheline_aligned;
 554        spinlock_t cmd_lock;
 555        struct csr __iomem *csr;
 556        enum scb_cmd_lo cuc_cmd;
 557        unsigned int cbs_avail;
 558        struct napi_struct napi;
 559        struct cb *cbs;
 560        struct cb *cb_to_use;
 561        struct cb *cb_to_send;
 562        struct cb *cb_to_clean;
 563        __le16 tx_command;
 564        /* End: frequently used values: keep adjacent for cache effect */
 565
 566        enum {
 567                ich                = (1 << 0),
 568                promiscuous        = (1 << 1),
 569                multicast_all      = (1 << 2),
 570                wol_magic          = (1 << 3),
 571                ich_10h_workaround = (1 << 4),
 572        } flags                                 ____cacheline_aligned;
 573
 574        enum mac mac;
 575        enum phy phy;
 576        struct params params;
 577        struct timer_list watchdog;
 578        struct mii_if_info mii;
 579        struct work_struct tx_timeout_task;
 580        enum loopback loopback;
 581
 582        struct mem *mem;
 583        dma_addr_t dma_addr;
 584
 585        struct dma_pool *cbs_pool;
 586        dma_addr_t cbs_dma_addr;
 587        u8 adaptive_ifs;
 588        u8 tx_threshold;
 589        u32 tx_frames;
 590        u32 tx_collisions;
 591        u32 tx_deferred;
 592        u32 tx_single_collisions;
 593        u32 tx_multiple_collisions;
 594        u32 tx_fc_pause;
 595        u32 tx_tco_frames;
 596
 597        u32 rx_fc_pause;
 598        u32 rx_fc_unsupported;
 599        u32 rx_tco_frames;
 600        u32 rx_short_frame_errors;
 601        u32 rx_over_length_errors;
 602
 603        u16 eeprom_wc;
 604        __le16 eeprom[256];
 605        spinlock_t mdio_lock;
 606        const struct firmware *fw;
 607};
 608
 609static inline void e100_write_flush(struct nic *nic)
 610{
 611        /* Flush previous PCI writes through intermediate bridges
 612         * by doing a benign read */
 613        (void)ioread8(&nic->csr->scb.status);
 614}
 615
 616static void e100_enable_irq(struct nic *nic)
 617{
 618        unsigned long flags;
 619
 620        spin_lock_irqsave(&nic->cmd_lock, flags);
 621        iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 622        e100_write_flush(nic);
 623        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 624}
 625
 626static void e100_disable_irq(struct nic *nic)
 627{
 628        unsigned long flags;
 629
 630        spin_lock_irqsave(&nic->cmd_lock, flags);
 631        iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 632        e100_write_flush(nic);
 633        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 634}
 635
 636static void e100_hw_reset(struct nic *nic)
 637{
 638        /* Put CU and RU into idle with a selective reset to get
 639         * device off of PCI bus */
 640        iowrite32(selective_reset, &nic->csr->port);
 641        e100_write_flush(nic); udelay(20);
 642
 643        /* Now fully reset device */
 644        iowrite32(software_reset, &nic->csr->port);
 645        e100_write_flush(nic); udelay(20);
 646
 647        /* Mask off our interrupt line - it's unmasked after reset */
 648        e100_disable_irq(nic);
 649}
 650
 651static int e100_self_test(struct nic *nic)
 652{
 653        u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 654
 655        /* Passing the self-test is a pretty good indication
 656         * that the device can DMA to/from host memory */
 657
 658        nic->mem->selftest.signature = 0;
 659        nic->mem->selftest.result = 0xFFFFFFFF;
 660
 661        iowrite32(selftest | dma_addr, &nic->csr->port);
 662        e100_write_flush(nic);
 663        /* Wait 10 msec for self-test to complete */
 664        msleep(10);
 665
 666        /* Interrupts are enabled after self-test */
 667        e100_disable_irq(nic);
 668
 669        /* Check results of self-test */
 670        if (nic->mem->selftest.result != 0) {
 671                netif_err(nic, hw, nic->netdev,
 672                          "Self-test failed: result=0x%08X\n",
 673                          nic->mem->selftest.result);
 674                return -ETIMEDOUT;
 675        }
 676        if (nic->mem->selftest.signature == 0) {
 677                netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 678                return -ETIMEDOUT;
 679        }
 680
 681        return 0;
 682}
 683
 684static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 685{
 686        u32 cmd_addr_data[3];
 687        u8 ctrl;
 688        int i, j;
 689
 690        /* Three cmds: write/erase enable, write data, write/erase disable */
 691        cmd_addr_data[0] = op_ewen << (addr_len - 2);
 692        cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 693                le16_to_cpu(data);
 694        cmd_addr_data[2] = op_ewds << (addr_len - 2);
 695
 696        /* Bit-bang cmds to write word to eeprom */
 697        for (j = 0; j < 3; j++) {
 698
 699                /* Chip select */
 700                iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 701                e100_write_flush(nic); udelay(4);
 702
 703                for (i = 31; i >= 0; i--) {
 704                        ctrl = (cmd_addr_data[j] & (1 << i)) ?
 705                                eecs | eedi : eecs;
 706                        iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 707                        e100_write_flush(nic); udelay(4);
 708
 709                        iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 710                        e100_write_flush(nic); udelay(4);
 711                }
 712                /* Wait 10 msec for cmd to complete */
 713                msleep(10);
 714
 715                /* Chip deselect */
 716                iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 717                e100_write_flush(nic); udelay(4);
 718        }
 719};
 720
 721/* General technique stolen from the eepro100 driver - very clever */
 722static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 723{
 724        u32 cmd_addr_data;
 725        u16 data = 0;
 726        u8 ctrl;
 727        int i;
 728
 729        cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 730
 731        /* Chip select */
 732        iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 733        e100_write_flush(nic); udelay(4);
 734
 735        /* Bit-bang to read word from eeprom */
 736        for (i = 31; i >= 0; i--) {
 737                ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 738                iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 739                e100_write_flush(nic); udelay(4);
 740
 741                iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 742                e100_write_flush(nic); udelay(4);
 743
 744                /* Eeprom drives a dummy zero to EEDO after receiving
 745                 * complete address.  Use this to adjust addr_len. */
 746                ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 747                if (!(ctrl & eedo) && i > 16) {
 748                        *addr_len -= (i - 16);
 749                        i = 17;
 750                }
 751
 752                data = (data << 1) | (ctrl & eedo ? 1 : 0);
 753        }
 754
 755        /* Chip deselect */
 756        iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 757        e100_write_flush(nic); udelay(4);
 758
 759        return cpu_to_le16(data);
 760};
 761
 762/* Load entire EEPROM image into driver cache and validate checksum */
 763static int e100_eeprom_load(struct nic *nic)
 764{
 765        u16 addr, addr_len = 8, checksum = 0;
 766
 767        /* Try reading with an 8-bit addr len to discover actual addr len */
 768        e100_eeprom_read(nic, &addr_len, 0);
 769        nic->eeprom_wc = 1 << addr_len;
 770
 771        for (addr = 0; addr < nic->eeprom_wc; addr++) {
 772                nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 773                if (addr < nic->eeprom_wc - 1)
 774                        checksum += le16_to_cpu(nic->eeprom[addr]);
 775        }
 776
 777        /* The checksum, stored in the last word, is calculated such that
 778         * the sum of words should be 0xBABA */
 779        if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 780                netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 781                if (!eeprom_bad_csum_allow)
 782                        return -EAGAIN;
 783        }
 784
 785        return 0;
 786}
 787
 788/* Save (portion of) driver EEPROM cache to device and update checksum */
 789static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 790{
 791        u16 addr, addr_len = 8, checksum = 0;
 792
 793        /* Try reading with an 8-bit addr len to discover actual addr len */
 794        e100_eeprom_read(nic, &addr_len, 0);
 795        nic->eeprom_wc = 1 << addr_len;
 796
 797        if (start + count >= nic->eeprom_wc)
 798                return -EINVAL;
 799
 800        for (addr = start; addr < start + count; addr++)
 801                e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 802
 803        /* The checksum, stored in the last word, is calculated such that
 804         * the sum of words should be 0xBABA */
 805        for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 806                checksum += le16_to_cpu(nic->eeprom[addr]);
 807        nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 808        e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 809                nic->eeprom[nic->eeprom_wc - 1]);
 810
 811        return 0;
 812}
 813
 814#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 815#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 816static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 817{
 818        unsigned long flags;
 819        unsigned int i;
 820        int err = 0;
 821
 822        spin_lock_irqsave(&nic->cmd_lock, flags);
 823
 824        /* Previous command is accepted when SCB clears */
 825        for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 826                if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 827                        break;
 828                cpu_relax();
 829                if (unlikely(i > E100_WAIT_SCB_FAST))
 830                        udelay(5);
 831        }
 832        if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 833                err = -EAGAIN;
 834                goto err_unlock;
 835        }
 836
 837        if (unlikely(cmd != cuc_resume))
 838                iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 839        iowrite8(cmd, &nic->csr->scb.cmd_lo);
 840
 841err_unlock:
 842        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 843
 844        return err;
 845}
 846
 847static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 848        int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 849{
 850        struct cb *cb;
 851        unsigned long flags;
 852        int err;
 853
 854        spin_lock_irqsave(&nic->cb_lock, flags);
 855
 856        if (unlikely(!nic->cbs_avail)) {
 857                err = -ENOMEM;
 858                goto err_unlock;
 859        }
 860
 861        cb = nic->cb_to_use;
 862        nic->cb_to_use = cb->next;
 863        nic->cbs_avail--;
 864        cb->skb = skb;
 865
 866        err = cb_prepare(nic, cb, skb);
 867        if (err)
 868                goto err_unlock;
 869
 870        if (unlikely(!nic->cbs_avail))
 871                err = -ENOSPC;
 872
 873
 874        /* Order is important otherwise we'll be in a race with h/w:
 875         * set S-bit in current first, then clear S-bit in previous. */
 876        cb->command |= cpu_to_le16(cb_s);
 877        dma_wmb();
 878        cb->prev->command &= cpu_to_le16(~cb_s);
 879
 880        while (nic->cb_to_send != nic->cb_to_use) {
 881                if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 882                        nic->cb_to_send->dma_addr))) {
 883                        /* Ok, here's where things get sticky.  It's
 884                         * possible that we can't schedule the command
 885                         * because the controller is too busy, so
 886                         * let's just queue the command and try again
 887                         * when another command is scheduled. */
 888                        if (err == -ENOSPC) {
 889                                //request a reset
 890                                schedule_work(&nic->tx_timeout_task);
 891                        }
 892                        break;
 893                } else {
 894                        nic->cuc_cmd = cuc_resume;
 895                        nic->cb_to_send = nic->cb_to_send->next;
 896                }
 897        }
 898
 899err_unlock:
 900        spin_unlock_irqrestore(&nic->cb_lock, flags);
 901
 902        return err;
 903}
 904
 905static int mdio_read(struct net_device *netdev, int addr, int reg)
 906{
 907        struct nic *nic = netdev_priv(netdev);
 908        return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 909}
 910
 911static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 912{
 913        struct nic *nic = netdev_priv(netdev);
 914
 915        nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 916}
 917
 918/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 919static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 920{
 921        u32 data_out = 0;
 922        unsigned int i;
 923        unsigned long flags;
 924
 925
 926        /*
 927         * Stratus87247: we shouldn't be writing the MDI control
 928         * register until the Ready bit shows True.  Also, since
 929         * manipulation of the MDI control registers is a multi-step
 930         * procedure it should be done under lock.
 931         */
 932        spin_lock_irqsave(&nic->mdio_lock, flags);
 933        for (i = 100; i; --i) {
 934                if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 935                        break;
 936                udelay(20);
 937        }
 938        if (unlikely(!i)) {
 939                netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 940                spin_unlock_irqrestore(&nic->mdio_lock, flags);
 941                return 0;               /* No way to indicate timeout error */
 942        }
 943        iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 944
 945        for (i = 0; i < 100; i++) {
 946                udelay(20);
 947                if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 948                        break;
 949        }
 950        spin_unlock_irqrestore(&nic->mdio_lock, flags);
 951        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 952                     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 953                     dir == mdi_read ? "READ" : "WRITE",
 954                     addr, reg, data, data_out);
 955        return (u16)data_out;
 956}
 957
 958/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 959static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 960                                 u32 addr,
 961                                 u32 dir,
 962                                 u32 reg,
 963                                 u16 data)
 964{
 965        if ((reg == MII_BMCR) && (dir == mdi_write)) {
 966                if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 967                        u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 968                                                        MII_ADVERTISE);
 969
 970                        /*
 971                         * Workaround Si issue where sometimes the part will not
 972                         * autoneg to 100Mbps even when advertised.
 973                         */
 974                        if (advert & ADVERTISE_100FULL)
 975                                data |= BMCR_SPEED100 | BMCR_FULLDPLX;
 976                        else if (advert & ADVERTISE_100HALF)
 977                                data |= BMCR_SPEED100;
 978                }
 979        }
 980        return mdio_ctrl_hw(nic, addr, dir, reg, data);
 981}
 982
 983/* Fully software-emulated mdio_ctrl() function for cards without
 984 * MII-compliant PHYs.
 985 * For now, this is mainly geared towards 80c24 support; in case of further
 986 * requirements for other types (i82503, ...?) either extend this mechanism
 987 * or split it, whichever is cleaner.
 988 */
 989static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
 990                                      u32 addr,
 991                                      u32 dir,
 992                                      u32 reg,
 993                                      u16 data)
 994{
 995        /* might need to allocate a netdev_priv'ed register array eventually
 996         * to be able to record state changes, but for now
 997         * some fully hardcoded register handling ought to be ok I guess. */
 998
 999        if (dir == mdi_read) {
1000                switch (reg) {
1001                case MII_BMCR:
1002                        /* Auto-negotiation, right? */
1003                        return  BMCR_ANENABLE |
1004                                BMCR_FULLDPLX;
1005                case MII_BMSR:
1006                        return  BMSR_LSTATUS /* for mii_link_ok() */ |
1007                                BMSR_ANEGCAPABLE |
1008                                BMSR_10FULL;
1009                case MII_ADVERTISE:
1010                        /* 80c24 is a "combo card" PHY, right? */
1011                        return  ADVERTISE_10HALF |
1012                                ADVERTISE_10FULL;
1013                default:
1014                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1015                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1016                                     dir == mdi_read ? "READ" : "WRITE",
1017                                     addr, reg, data);
1018                        return 0xFFFF;
1019                }
1020        } else {
1021                switch (reg) {
1022                default:
1023                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1024                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1025                                     dir == mdi_read ? "READ" : "WRITE",
1026                                     addr, reg, data);
1027                        return 0xFFFF;
1028                }
1029        }
1030}
1031static inline int e100_phy_supports_mii(struct nic *nic)
1032{
1033        /* for now, just check it by comparing whether we
1034           are using MII software emulation.
1035        */
1036        return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1037}
1038
1039static void e100_get_defaults(struct nic *nic)
1040{
1041        struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1042        struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1043
1044        /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1045        nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1046        if (nic->mac == mac_unknown)
1047                nic->mac = mac_82557_D100_A;
1048
1049        nic->params.rfds = rfds;
1050        nic->params.cbs = cbs;
1051
1052        /* Quadwords to DMA into FIFO before starting frame transmit */
1053        nic->tx_threshold = 0xE0;
1054
1055        /* no interrupt for every tx completion, delay = 256us if not 557 */
1056        nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1057                ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1058
1059        /* Template for a freshly allocated RFD */
1060        nic->blank_rfd.command = 0;
1061        nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1062        nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1063
1064        /* MII setup */
1065        nic->mii.phy_id_mask = 0x1F;
1066        nic->mii.reg_num_mask = 0x1F;
1067        nic->mii.dev = nic->netdev;
1068        nic->mii.mdio_read = mdio_read;
1069        nic->mii.mdio_write = mdio_write;
1070}
1071
1072static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1073{
1074        struct config *config = &cb->u.config;
1075        u8 *c = (u8 *)config;
1076        struct net_device *netdev = nic->netdev;
1077
1078        cb->command = cpu_to_le16(cb_config);
1079
1080        memset(config, 0, sizeof(struct config));
1081
1082        config->byte_count = 0x16;              /* bytes in this struct */
1083        config->rx_fifo_limit = 0x8;            /* bytes in FIFO before DMA */
1084        config->direct_rx_dma = 0x1;            /* reserved */
1085        config->standard_tcb = 0x1;             /* 1=standard, 0=extended */
1086        config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
1087        config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
1088        config->tx_underrun_retry = 0x3;        /* # of underrun retries */
1089        if (e100_phy_supports_mii(nic))
1090                config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1091        config->pad10 = 0x6;
1092        config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1093        config->preamble_length = 0x2;          /* 0=1, 1=3, 2=7, 3=15 bytes */
1094        config->ifs = 0x6;                      /* x16 = inter frame spacing */
1095        config->ip_addr_hi = 0xF2;              /* ARP IP filter - not used */
1096        config->pad15_1 = 0x1;
1097        config->pad15_2 = 0x1;
1098        config->crs_or_cdt = 0x0;               /* 0=CRS only, 1=CRS or CDT */
1099        config->fc_delay_hi = 0x40;             /* time delay for fc frame */
1100        config->tx_padding = 0x1;               /* 1=pad short frames */
1101        config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
1102        config->pad18 = 0x1;
1103        config->full_duplex_pin = 0x1;          /* 1=examine FDX# pin */
1104        config->pad20_1 = 0x1F;
1105        config->fc_priority_location = 0x1;     /* 1=byte#31, 0=byte#19 */
1106        config->pad21_1 = 0x5;
1107
1108        config->adaptive_ifs = nic->adaptive_ifs;
1109        config->loopback = nic->loopback;
1110
1111        if (nic->mii.force_media && nic->mii.full_duplex)
1112                config->full_duplex_force = 0x1;        /* 1=force, 0=auto */
1113
1114        if (nic->flags & promiscuous || nic->loopback) {
1115                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1116                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1117                config->promiscuous_mode = 0x1;         /* 1=on, 0=off */
1118        }
1119
1120        if (unlikely(netdev->features & NETIF_F_RXFCS))
1121                config->rx_crc_transfer = 0x1;  /* 1=save, 0=discard */
1122
1123        if (nic->flags & multicast_all)
1124                config->multicast_all = 0x1;            /* 1=accept, 0=no */
1125
1126        /* disable WoL when up */
1127        if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1128                config->magic_packet_disable = 0x1;     /* 1=off, 0=on */
1129
1130        if (nic->mac >= mac_82558_D101_A4) {
1131                config->fc_disable = 0x1;       /* 1=Tx fc off, 0=Tx fc on */
1132                config->mwi_enable = 0x1;       /* 1=enable, 0=disable */
1133                config->standard_tcb = 0x0;     /* 1=standard, 0=extended */
1134                config->rx_long_ok = 0x1;       /* 1=VLANs ok, 0=standard */
1135                if (nic->mac >= mac_82559_D101M) {
1136                        config->tno_intr = 0x1;         /* TCO stats enable */
1137                        /* Enable TCO in extended config */
1138                        if (nic->mac >= mac_82551_10) {
1139                                config->byte_count = 0x20; /* extended bytes */
1140                                config->rx_d102_mode = 0x1; /* GMRC for TCO */
1141                        }
1142                } else {
1143                        config->standard_stat_counter = 0x0;
1144                }
1145        }
1146
1147        if (netdev->features & NETIF_F_RXALL) {
1148                config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1149                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1150                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1151        }
1152
1153        netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1154                     c + 0);
1155        netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1156                     c + 8);
1157        netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1158                     c + 16);
1159        return 0;
1160}
1161
1162/*************************************************************************
1163*  CPUSaver parameters
1164*
1165*  All CPUSaver parameters are 16-bit literals that are part of a
1166*  "move immediate value" instruction.  By changing the value of
1167*  the literal in the instruction before the code is loaded, the
1168*  driver can change the algorithm.
1169*
1170*  INTDELAY - This loads the dead-man timer with its initial value.
1171*    When this timer expires the interrupt is asserted, and the
1172*    timer is reset each time a new packet is received.  (see
1173*    BUNDLEMAX below to set the limit on number of chained packets)
1174*    The current default is 0x600 or 1536.  Experiments show that
1175*    the value should probably stay within the 0x200 - 0x1000.
1176*
1177*  BUNDLEMAX -
1178*    This sets the maximum number of frames that will be bundled.  In
1179*    some situations, such as the TCP windowing algorithm, it may be
1180*    better to limit the growth of the bundle size than let it go as
1181*    high as it can, because that could cause too much added latency.
1182*    The default is six, because this is the number of packets in the
1183*    default TCP window size.  A value of 1 would make CPUSaver indicate
1184*    an interrupt for every frame received.  If you do not want to put
1185*    a limit on the bundle size, set this value to xFFFF.
1186*
1187*  BUNDLESMALL -
1188*    This contains a bit-mask describing the minimum size frame that
1189*    will be bundled.  The default masks the lower 7 bits, which means
1190*    that any frame less than 128 bytes in length will not be bundled,
1191*    but will instead immediately generate an interrupt.  This does
1192*    not affect the current bundle in any way.  Any frame that is 128
1193*    bytes or large will be bundled normally.  This feature is meant
1194*    to provide immediate indication of ACK frames in a TCP environment.
1195*    Customers were seeing poor performance when a machine with CPUSaver
1196*    enabled was sending but not receiving.  The delay introduced when
1197*    the ACKs were received was enough to reduce total throughput, because
1198*    the sender would sit idle until the ACK was finally seen.
1199*
1200*    The current default is 0xFF80, which masks out the lower 7 bits.
1201*    This means that any frame which is x7F (127) bytes or smaller
1202*    will cause an immediate interrupt.  Because this value must be a
1203*    bit mask, there are only a few valid values that can be used.  To
1204*    turn this feature off, the driver can write the value xFFFF to the
1205*    lower word of this instruction (in the same way that the other
1206*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1207*    cause an interrupt to be generated for every frame, because all
1208*    standard Ethernet frames are <= 2047 bytes in length.
1209*************************************************************************/
1210
1211/* if you wish to disable the ucode functionality, while maintaining the
1212 * workarounds it provides, set the following defines to:
1213 * BUNDLESMALL 0
1214 * BUNDLEMAX 1
1215 * INTDELAY 1
1216 */
1217#define BUNDLESMALL 1
1218#define BUNDLEMAX (u16)6
1219#define INTDELAY (u16)1536 /* 0x600 */
1220
1221/* Initialize firmware */
1222static const struct firmware *e100_request_firmware(struct nic *nic)
1223{
1224        const char *fw_name;
1225        const struct firmware *fw = nic->fw;
1226        u8 timer, bundle, min_size;
1227        int err = 0;
1228        bool required = false;
1229
1230        /* do not load u-code for ICH devices */
1231        if (nic->flags & ich)
1232                return NULL;
1233
1234        /* Search for ucode match against h/w revision
1235         *
1236         * Based on comments in the source code for the FreeBSD fxp
1237         * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1238         *
1239         *    "fixes for bugs in the B-step hardware (specifically, bugs
1240         *     with Inline Receive)."
1241         *
1242         * So we must fail if it cannot be loaded.
1243         *
1244         * The other microcode files are only required for the optional
1245         * CPUSaver feature.  Nice to have, but no reason to fail.
1246         */
1247        if (nic->mac == mac_82559_D101M) {
1248                fw_name = FIRMWARE_D101M;
1249        } else if (nic->mac == mac_82559_D101S) {
1250                fw_name = FIRMWARE_D101S;
1251        } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1252                fw_name = FIRMWARE_D102E;
1253                required = true;
1254        } else { /* No ucode on other devices */
1255                return NULL;
1256        }
1257
1258        /* If the firmware has not previously been loaded, request a pointer
1259         * to it. If it was previously loaded, we are reinitializing the
1260         * adapter, possibly in a resume from hibernate, in which case
1261         * request_firmware() cannot be used.
1262         */
1263        if (!fw)
1264                err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1265
1266        if (err) {
1267                if (required) {
1268                        netif_err(nic, probe, nic->netdev,
1269                                  "Failed to load firmware \"%s\": %d\n",
1270                                  fw_name, err);
1271                        return ERR_PTR(err);
1272                } else {
1273                        netif_info(nic, probe, nic->netdev,
1274                                   "CPUSaver disabled. Needs \"%s\": %d\n",
1275                                   fw_name, err);
1276                        return NULL;
1277                }
1278        }
1279
1280        /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1281           indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1282        if (fw->size != UCODE_SIZE * 4 + 3) {
1283                netif_err(nic, probe, nic->netdev,
1284                          "Firmware \"%s\" has wrong size %zu\n",
1285                          fw_name, fw->size);
1286                release_firmware(fw);
1287                return ERR_PTR(-EINVAL);
1288        }
1289
1290        /* Read timer, bundle and min_size from end of firmware blob */
1291        timer = fw->data[UCODE_SIZE * 4];
1292        bundle = fw->data[UCODE_SIZE * 4 + 1];
1293        min_size = fw->data[UCODE_SIZE * 4 + 2];
1294
1295        if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1296            min_size >= UCODE_SIZE) {
1297                netif_err(nic, probe, nic->netdev,
1298                          "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1299                          fw_name, timer, bundle, min_size);
1300                release_firmware(fw);
1301                return ERR_PTR(-EINVAL);
1302        }
1303
1304        /* OK, firmware is validated and ready to use. Save a pointer
1305         * to it in the nic */
1306        nic->fw = fw;
1307        return fw;
1308}
1309
1310static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1311                             struct sk_buff *skb)
1312{
1313        const struct firmware *fw = (void *)skb;
1314        u8 timer, bundle, min_size;
1315
1316        /* It's not a real skb; we just abused the fact that e100_exec_cb
1317           will pass it through to here... */
1318        cb->skb = NULL;
1319
1320        /* firmware is stored as little endian already */
1321        memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1322
1323        /* Read timer, bundle and min_size from end of firmware blob */
1324        timer = fw->data[UCODE_SIZE * 4];
1325        bundle = fw->data[UCODE_SIZE * 4 + 1];
1326        min_size = fw->data[UCODE_SIZE * 4 + 2];
1327
1328        /* Insert user-tunable settings in cb->u.ucode */
1329        cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1330        cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1331        cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1332        cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1333        cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1334        cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1335
1336        cb->command = cpu_to_le16(cb_ucode | cb_el);
1337        return 0;
1338}
1339
1340static inline int e100_load_ucode_wait(struct nic *nic)
1341{
1342        const struct firmware *fw;
1343        int err = 0, counter = 50;
1344        struct cb *cb = nic->cb_to_clean;
1345
1346        fw = e100_request_firmware(nic);
1347        /* If it's NULL, then no ucode is required */
1348        if (IS_ERR_OR_NULL(fw))
1349                return PTR_ERR_OR_ZERO(fw);
1350
1351        if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1352                netif_err(nic, probe, nic->netdev,
1353                          "ucode cmd failed with error %d\n", err);
1354
1355        /* must restart cuc */
1356        nic->cuc_cmd = cuc_start;
1357
1358        /* wait for completion */
1359        e100_write_flush(nic);
1360        udelay(10);
1361
1362        /* wait for possibly (ouch) 500ms */
1363        while (!(cb->status & cpu_to_le16(cb_complete))) {
1364                msleep(10);
1365                if (!--counter) break;
1366        }
1367
1368        /* ack any interrupts, something could have been set */
1369        iowrite8(~0, &nic->csr->scb.stat_ack);
1370
1371        /* if the command failed, or is not OK, notify and return */
1372        if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1373                netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1374                err = -EPERM;
1375        }
1376
1377        return err;
1378}
1379
1380static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1381        struct sk_buff *skb)
1382{
1383        cb->command = cpu_to_le16(cb_iaaddr);
1384        memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1385        return 0;
1386}
1387
1388static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1389{
1390        cb->command = cpu_to_le16(cb_dump);
1391        cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1392                offsetof(struct mem, dump_buf));
1393        return 0;
1394}
1395
1396static int e100_phy_check_without_mii(struct nic *nic)
1397{
1398        u8 phy_type;
1399        int without_mii;
1400
1401        phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1402
1403        switch (phy_type) {
1404        case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1405        case I82503: /* Non-MII PHY; UNTESTED! */
1406        case S80C24: /* Non-MII PHY; tested and working */
1407                /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1408                 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1409                 * doesn't have a programming interface of any sort.  The
1410                 * media is sensed automatically based on how the link partner
1411                 * is configured.  This is, in essence, manual configuration.
1412                 */
1413                netif_info(nic, probe, nic->netdev,
1414                           "found MII-less i82503 or 80c24 or other PHY\n");
1415
1416                nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1417                nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1418
1419                /* these might be needed for certain MII-less cards...
1420                 * nic->flags |= ich;
1421                 * nic->flags |= ich_10h_workaround; */
1422
1423                without_mii = 1;
1424                break;
1425        default:
1426                without_mii = 0;
1427                break;
1428        }
1429        return without_mii;
1430}
1431
1432#define NCONFIG_AUTO_SWITCH     0x0080
1433#define MII_NSC_CONG            MII_RESV1
1434#define NSC_CONG_ENABLE         0x0100
1435#define NSC_CONG_TXREADY        0x0400
1436#define ADVERTISE_FC_SUPPORTED  0x0400
1437static int e100_phy_init(struct nic *nic)
1438{
1439        struct net_device *netdev = nic->netdev;
1440        u32 addr;
1441        u16 bmcr, stat, id_lo, id_hi, cong;
1442
1443        /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1444        for (addr = 0; addr < 32; addr++) {
1445                nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1446                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1447                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1448                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1449                if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1450                        break;
1451        }
1452        if (addr == 32) {
1453                /* uhoh, no PHY detected: check whether we seem to be some
1454                 * weird, rare variant which is *known* to not have any MII.
1455                 * But do this AFTER MII checking only, since this does
1456                 * lookup of EEPROM values which may easily be unreliable. */
1457                if (e100_phy_check_without_mii(nic))
1458                        return 0; /* simply return and hope for the best */
1459                else {
1460                        /* for unknown cases log a fatal error */
1461                        netif_err(nic, hw, nic->netdev,
1462                                  "Failed to locate any known PHY, aborting\n");
1463                        return -EAGAIN;
1464                }
1465        } else
1466                netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1467                             "phy_addr = %d\n", nic->mii.phy_id);
1468
1469        /* Get phy ID */
1470        id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1471        id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1472        nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1473        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1474                     "phy ID = 0x%08X\n", nic->phy);
1475
1476        /* Select the phy and isolate the rest */
1477        for (addr = 0; addr < 32; addr++) {
1478                if (addr != nic->mii.phy_id) {
1479                        mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1480                } else if (nic->phy != phy_82552_v) {
1481                        bmcr = mdio_read(netdev, addr, MII_BMCR);
1482                        mdio_write(netdev, addr, MII_BMCR,
1483                                bmcr & ~BMCR_ISOLATE);
1484                }
1485        }
1486        /*
1487         * Workaround for 82552:
1488         * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1489         * other phy_id's) using bmcr value from addr discovery loop above.
1490         */
1491        if (nic->phy == phy_82552_v)
1492                mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1493                        bmcr & ~BMCR_ISOLATE);
1494
1495        /* Handle National tx phys */
1496#define NCS_PHY_MODEL_MASK      0xFFF0FFFF
1497        if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1498                /* Disable congestion control */
1499                cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1500                cong |= NSC_CONG_TXREADY;
1501                cong &= ~NSC_CONG_ENABLE;
1502                mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1503        }
1504
1505        if (nic->phy == phy_82552_v) {
1506                u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1507
1508                /* assign special tweaked mdio_ctrl() function */
1509                nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1510
1511                /* Workaround Si not advertising flow-control during autoneg */
1512                advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1513                mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1514
1515                /* Reset for the above changes to take effect */
1516                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1517                bmcr |= BMCR_RESET;
1518                mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1519        } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1520           (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1521                (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1522                /* enable/disable MDI/MDI-X auto-switching. */
1523                mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1524                                nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1525        }
1526
1527        return 0;
1528}
1529
1530static int e100_hw_init(struct nic *nic)
1531{
1532        int err = 0;
1533
1534        e100_hw_reset(nic);
1535
1536        netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1537        if (!in_interrupt() && (err = e100_self_test(nic)))
1538                return err;
1539
1540        if ((err = e100_phy_init(nic)))
1541                return err;
1542        if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1543                return err;
1544        if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1545                return err;
1546        if ((err = e100_load_ucode_wait(nic)))
1547                return err;
1548        if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1549                return err;
1550        if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1551                return err;
1552        if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1553                nic->dma_addr + offsetof(struct mem, stats))))
1554                return err;
1555        if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1556                return err;
1557
1558        e100_disable_irq(nic);
1559
1560        return 0;
1561}
1562
1563static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1564{
1565        struct net_device *netdev = nic->netdev;
1566        struct netdev_hw_addr *ha;
1567        u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1568
1569        cb->command = cpu_to_le16(cb_multi);
1570        cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1571        i = 0;
1572        netdev_for_each_mc_addr(ha, netdev) {
1573                if (i == count)
1574                        break;
1575                memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1576                        ETH_ALEN);
1577        }
1578        return 0;
1579}
1580
1581static void e100_set_multicast_list(struct net_device *netdev)
1582{
1583        struct nic *nic = netdev_priv(netdev);
1584
1585        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1586                     "mc_count=%d, flags=0x%04X\n",
1587                     netdev_mc_count(netdev), netdev->flags);
1588
1589        if (netdev->flags & IFF_PROMISC)
1590                nic->flags |= promiscuous;
1591        else
1592                nic->flags &= ~promiscuous;
1593
1594        if (netdev->flags & IFF_ALLMULTI ||
1595                netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1596                nic->flags |= multicast_all;
1597        else
1598                nic->flags &= ~multicast_all;
1599
1600        e100_exec_cb(nic, NULL, e100_configure);
1601        e100_exec_cb(nic, NULL, e100_multi);
1602}
1603
1604static void e100_update_stats(struct nic *nic)
1605{
1606        struct net_device *dev = nic->netdev;
1607        struct net_device_stats *ns = &dev->stats;
1608        struct stats *s = &nic->mem->stats;
1609        __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1610                (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1611                &s->complete;
1612
1613        /* Device's stats reporting may take several microseconds to
1614         * complete, so we're always waiting for results of the
1615         * previous command. */
1616
1617        if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1618                *complete = 0;
1619                nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1620                nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1621                ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1622                ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1623                ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1624                ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1625                ns->collisions += nic->tx_collisions;
1626                ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1627                        le32_to_cpu(s->tx_lost_crs);
1628                nic->rx_short_frame_errors +=
1629                        le32_to_cpu(s->rx_short_frame_errors);
1630                ns->rx_length_errors = nic->rx_short_frame_errors +
1631                        nic->rx_over_length_errors;
1632                ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1633                ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1634                ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1635                ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1636                ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1637                ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1638                        le32_to_cpu(s->rx_alignment_errors) +
1639                        le32_to_cpu(s->rx_short_frame_errors) +
1640                        le32_to_cpu(s->rx_cdt_errors);
1641                nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1642                nic->tx_single_collisions +=
1643                        le32_to_cpu(s->tx_single_collisions);
1644                nic->tx_multiple_collisions +=
1645                        le32_to_cpu(s->tx_multiple_collisions);
1646                if (nic->mac >= mac_82558_D101_A4) {
1647                        nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1648                        nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1649                        nic->rx_fc_unsupported +=
1650                                le32_to_cpu(s->fc_rcv_unsupported);
1651                        if (nic->mac >= mac_82559_D101M) {
1652                                nic->tx_tco_frames +=
1653                                        le16_to_cpu(s->xmt_tco_frames);
1654                                nic->rx_tco_frames +=
1655                                        le16_to_cpu(s->rcv_tco_frames);
1656                        }
1657                }
1658        }
1659
1660
1661        if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1662                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1663                             "exec cuc_dump_reset failed\n");
1664}
1665
1666static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1667{
1668        /* Adjust inter-frame-spacing (IFS) between two transmits if
1669         * we're getting collisions on a half-duplex connection. */
1670
1671        if (duplex == DUPLEX_HALF) {
1672                u32 prev = nic->adaptive_ifs;
1673                u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1674
1675                if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1676                   (nic->tx_frames > min_frames)) {
1677                        if (nic->adaptive_ifs < 60)
1678                                nic->adaptive_ifs += 5;
1679                } else if (nic->tx_frames < min_frames) {
1680                        if (nic->adaptive_ifs >= 5)
1681                                nic->adaptive_ifs -= 5;
1682                }
1683                if (nic->adaptive_ifs != prev)
1684                        e100_exec_cb(nic, NULL, e100_configure);
1685        }
1686}
1687
1688static void e100_watchdog(struct timer_list *t)
1689{
1690        struct nic *nic = from_timer(nic, t, watchdog);
1691        struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1692        u32 speed;
1693
1694        netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1695                     "right now = %ld\n", jiffies);
1696
1697        /* mii library handles link maintenance tasks */
1698
1699        mii_ethtool_gset(&nic->mii, &cmd);
1700        speed = ethtool_cmd_speed(&cmd);
1701
1702        if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1703                netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1704                            speed == SPEED_100 ? 100 : 10,
1705                            cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1706        } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1707                netdev_info(nic->netdev, "NIC Link is Down\n");
1708        }
1709
1710        mii_check_link(&nic->mii);
1711
1712        /* Software generated interrupt to recover from (rare) Rx
1713         * allocation failure.
1714         * Unfortunately have to use a spinlock to not re-enable interrupts
1715         * accidentally, due to hardware that shares a register between the
1716         * interrupt mask bit and the SW Interrupt generation bit */
1717        spin_lock_irq(&nic->cmd_lock);
1718        iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1719        e100_write_flush(nic);
1720        spin_unlock_irq(&nic->cmd_lock);
1721
1722        e100_update_stats(nic);
1723        e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1724
1725        if (nic->mac <= mac_82557_D100_C)
1726                /* Issue a multicast command to workaround a 557 lock up */
1727                e100_set_multicast_list(nic->netdev);
1728
1729        if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1730                /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1731                nic->flags |= ich_10h_workaround;
1732        else
1733                nic->flags &= ~ich_10h_workaround;
1734
1735        mod_timer(&nic->watchdog,
1736                  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1737}
1738
1739static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1740        struct sk_buff *skb)
1741{
1742        dma_addr_t dma_addr;
1743        cb->command = nic->tx_command;
1744
1745        dma_addr = pci_map_single(nic->pdev,
1746                                  skb->data, skb->len, PCI_DMA_TODEVICE);
1747        /* If we can't map the skb, have the upper layer try later */
1748        if (pci_dma_mapping_error(nic->pdev, dma_addr)) {
1749                dev_kfree_skb_any(skb);
1750                skb = NULL;
1751                return -ENOMEM;
1752        }
1753
1754        /*
1755         * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1756         * testing, ie sending frames with bad CRC.
1757         */
1758        if (unlikely(skb->no_fcs))
1759                cb->command |= cpu_to_le16(cb_tx_nc);
1760        else
1761                cb->command &= ~cpu_to_le16(cb_tx_nc);
1762
1763        /* interrupt every 16 packets regardless of delay */
1764        if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1765                cb->command |= cpu_to_le16(cb_i);
1766        cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1767        cb->u.tcb.tcb_byte_count = 0;
1768        cb->u.tcb.threshold = nic->tx_threshold;
1769        cb->u.tcb.tbd_count = 1;
1770        cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1771        cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1772        skb_tx_timestamp(skb);
1773        return 0;
1774}
1775
1776static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1777                                   struct net_device *netdev)
1778{
1779        struct nic *nic = netdev_priv(netdev);
1780        int err;
1781
1782        if (nic->flags & ich_10h_workaround) {
1783                /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1784                   Issue a NOP command followed by a 1us delay before
1785                   issuing the Tx command. */
1786                if (e100_exec_cmd(nic, cuc_nop, 0))
1787                        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1788                                     "exec cuc_nop failed\n");
1789                udelay(1);
1790        }
1791
1792        err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1793
1794        switch (err) {
1795        case -ENOSPC:
1796                /* We queued the skb, but now we're out of space. */
1797                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1798                             "No space for CB\n");
1799                netif_stop_queue(netdev);
1800                break;
1801        case -ENOMEM:
1802                /* This is a hard error - log it. */
1803                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1804                             "Out of Tx resources, returning skb\n");
1805                netif_stop_queue(netdev);
1806                return NETDEV_TX_BUSY;
1807        }
1808
1809        return NETDEV_TX_OK;
1810}
1811
1812static int e100_tx_clean(struct nic *nic)
1813{
1814        struct net_device *dev = nic->netdev;
1815        struct cb *cb;
1816        int tx_cleaned = 0;
1817
1818        spin_lock(&nic->cb_lock);
1819
1820        /* Clean CBs marked complete */
1821        for (cb = nic->cb_to_clean;
1822            cb->status & cpu_to_le16(cb_complete);
1823            cb = nic->cb_to_clean = cb->next) {
1824                dma_rmb(); /* read skb after status */
1825                netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1826                             "cb[%d]->status = 0x%04X\n",
1827                             (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1828                             cb->status);
1829
1830                if (likely(cb->skb != NULL)) {
1831                        dev->stats.tx_packets++;
1832                        dev->stats.tx_bytes += cb->skb->len;
1833
1834                        pci_unmap_single(nic->pdev,
1835                                le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1836                                le16_to_cpu(cb->u.tcb.tbd.size),
1837                                PCI_DMA_TODEVICE);
1838                        dev_kfree_skb_any(cb->skb);
1839                        cb->skb = NULL;
1840                        tx_cleaned = 1;
1841                }
1842                cb->status = 0;
1843                nic->cbs_avail++;
1844        }
1845
1846        spin_unlock(&nic->cb_lock);
1847
1848        /* Recover from running out of Tx resources in xmit_frame */
1849        if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1850                netif_wake_queue(nic->netdev);
1851
1852        return tx_cleaned;
1853}
1854
1855static void e100_clean_cbs(struct nic *nic)
1856{
1857        if (nic->cbs) {
1858                while (nic->cbs_avail != nic->params.cbs.count) {
1859                        struct cb *cb = nic->cb_to_clean;
1860                        if (cb->skb) {
1861                                pci_unmap_single(nic->pdev,
1862                                        le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1863                                        le16_to_cpu(cb->u.tcb.tbd.size),
1864                                        PCI_DMA_TODEVICE);
1865                                dev_kfree_skb(cb->skb);
1866                        }
1867                        nic->cb_to_clean = nic->cb_to_clean->next;
1868                        nic->cbs_avail++;
1869                }
1870                dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1871                nic->cbs = NULL;
1872                nic->cbs_avail = 0;
1873        }
1874        nic->cuc_cmd = cuc_start;
1875        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1876                nic->cbs;
1877}
1878
1879static int e100_alloc_cbs(struct nic *nic)
1880{
1881        struct cb *cb;
1882        unsigned int i, count = nic->params.cbs.count;
1883
1884        nic->cuc_cmd = cuc_start;
1885        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1886        nic->cbs_avail = 0;
1887
1888        nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1889                                   &nic->cbs_dma_addr);
1890        if (!nic->cbs)
1891                return -ENOMEM;
1892
1893        for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1894                cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1895                cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1896
1897                cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1898                cb->link = cpu_to_le32(nic->cbs_dma_addr +
1899                        ((i+1) % count) * sizeof(struct cb));
1900        }
1901
1902        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1903        nic->cbs_avail = count;
1904
1905        return 0;
1906}
1907
1908static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1909{
1910        if (!nic->rxs) return;
1911        if (RU_SUSPENDED != nic->ru_running) return;
1912
1913        /* handle init time starts */
1914        if (!rx) rx = nic->rxs;
1915
1916        /* (Re)start RU if suspended or idle and RFA is non-NULL */
1917        if (rx->skb) {
1918                e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1919                nic->ru_running = RU_RUNNING;
1920        }
1921}
1922
1923#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1924static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1925{
1926        if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1927                return -ENOMEM;
1928
1929        /* Init, and map the RFD. */
1930        skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1931        rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1932                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1933
1934        if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1935                dev_kfree_skb_any(rx->skb);
1936                rx->skb = NULL;
1937                rx->dma_addr = 0;
1938                return -ENOMEM;
1939        }
1940
1941        /* Link the RFD to end of RFA by linking previous RFD to
1942         * this one.  We are safe to touch the previous RFD because
1943         * it is protected by the before last buffer's el bit being set */
1944        if (rx->prev->skb) {
1945                struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1946                put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1947                pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1948                        sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1949        }
1950
1951        return 0;
1952}
1953
1954static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1955        unsigned int *work_done, unsigned int work_to_do)
1956{
1957        struct net_device *dev = nic->netdev;
1958        struct sk_buff *skb = rx->skb;
1959        struct rfd *rfd = (struct rfd *)skb->data;
1960        u16 rfd_status, actual_size;
1961        u16 fcs_pad = 0;
1962
1963        if (unlikely(work_done && *work_done >= work_to_do))
1964                return -EAGAIN;
1965
1966        /* Need to sync before taking a peek at cb_complete bit */
1967        pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1968                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1969        rfd_status = le16_to_cpu(rfd->status);
1970
1971        netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1972                     "status=0x%04X\n", rfd_status);
1973        dma_rmb(); /* read size after status bit */
1974
1975        /* If data isn't ready, nothing to indicate */
1976        if (unlikely(!(rfd_status & cb_complete))) {
1977                /* If the next buffer has the el bit, but we think the receiver
1978                 * is still running, check to see if it really stopped while
1979                 * we had interrupts off.
1980                 * This allows for a fast restart without re-enabling
1981                 * interrupts */
1982                if ((le16_to_cpu(rfd->command) & cb_el) &&
1983                    (RU_RUNNING == nic->ru_running))
1984
1985                        if (ioread8(&nic->csr->scb.status) & rus_no_res)
1986                                nic->ru_running = RU_SUSPENDED;
1987                pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1988                                               sizeof(struct rfd),
1989                                               PCI_DMA_FROMDEVICE);
1990                return -ENODATA;
1991        }
1992
1993        /* Get actual data size */
1994        if (unlikely(dev->features & NETIF_F_RXFCS))
1995                fcs_pad = 4;
1996        actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1997        if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1998                actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1999
2000        /* Get data */
2001        pci_unmap_single(nic->pdev, rx->dma_addr,
2002                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2003
2004        /* If this buffer has the el bit, but we think the receiver
2005         * is still running, check to see if it really stopped while
2006         * we had interrupts off.
2007         * This allows for a fast restart without re-enabling interrupts.
2008         * This can happen when the RU sees the size change but also sees
2009         * the el bit set. */
2010        if ((le16_to_cpu(rfd->command) & cb_el) &&
2011            (RU_RUNNING == nic->ru_running)) {
2012
2013            if (ioread8(&nic->csr->scb.status) & rus_no_res)
2014                nic->ru_running = RU_SUSPENDED;
2015        }
2016
2017        /* Pull off the RFD and put the actual data (minus eth hdr) */
2018        skb_reserve(skb, sizeof(struct rfd));
2019        skb_put(skb, actual_size);
2020        skb->protocol = eth_type_trans(skb, nic->netdev);
2021
2022        /* If we are receiving all frames, then don't bother
2023         * checking for errors.
2024         */
2025        if (unlikely(dev->features & NETIF_F_RXALL)) {
2026                if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2027                        /* Received oversized frame, but keep it. */
2028                        nic->rx_over_length_errors++;
2029                goto process_skb;
2030        }
2031
2032        if (unlikely(!(rfd_status & cb_ok))) {
2033                /* Don't indicate if hardware indicates errors */
2034                dev_kfree_skb_any(skb);
2035        } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2036                /* Don't indicate oversized frames */
2037                nic->rx_over_length_errors++;
2038                dev_kfree_skb_any(skb);
2039        } else {
2040process_skb:
2041                dev->stats.rx_packets++;
2042                dev->stats.rx_bytes += (actual_size - fcs_pad);
2043                netif_receive_skb(skb);
2044                if (work_done)
2045                        (*work_done)++;
2046        }
2047
2048        rx->skb = NULL;
2049
2050        return 0;
2051}
2052
2053static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2054        unsigned int work_to_do)
2055{
2056        struct rx *rx;
2057        int restart_required = 0, err = 0;
2058        struct rx *old_before_last_rx, *new_before_last_rx;
2059        struct rfd *old_before_last_rfd, *new_before_last_rfd;
2060
2061        /* Indicate newly arrived packets */
2062        for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2063                err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2064                /* Hit quota or no more to clean */
2065                if (-EAGAIN == err || -ENODATA == err)
2066                        break;
2067        }
2068
2069
2070        /* On EAGAIN, hit quota so have more work to do, restart once
2071         * cleanup is complete.
2072         * Else, are we already rnr? then pay attention!!! this ensures that
2073         * the state machine progression never allows a start with a
2074         * partially cleaned list, avoiding a race between hardware
2075         * and rx_to_clean when in NAPI mode */
2076        if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2077                restart_required = 1;
2078
2079        old_before_last_rx = nic->rx_to_use->prev->prev;
2080        old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2081
2082        /* Alloc new skbs to refill list */
2083        for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2084                if (unlikely(e100_rx_alloc_skb(nic, rx)))
2085                        break; /* Better luck next time (see watchdog) */
2086        }
2087
2088        new_before_last_rx = nic->rx_to_use->prev->prev;
2089        if (new_before_last_rx != old_before_last_rx) {
2090                /* Set the el-bit on the buffer that is before the last buffer.
2091                 * This lets us update the next pointer on the last buffer
2092                 * without worrying about hardware touching it.
2093                 * We set the size to 0 to prevent hardware from touching this
2094                 * buffer.
2095                 * When the hardware hits the before last buffer with el-bit
2096                 * and size of 0, it will RNR interrupt, the RUS will go into
2097                 * the No Resources state.  It will not complete nor write to
2098                 * this buffer. */
2099                new_before_last_rfd =
2100                        (struct rfd *)new_before_last_rx->skb->data;
2101                new_before_last_rfd->size = 0;
2102                new_before_last_rfd->command |= cpu_to_le16(cb_el);
2103                pci_dma_sync_single_for_device(nic->pdev,
2104                        new_before_last_rx->dma_addr, sizeof(struct rfd),
2105                        PCI_DMA_BIDIRECTIONAL);
2106
2107                /* Now that we have a new stopping point, we can clear the old
2108                 * stopping point.  We must sync twice to get the proper
2109                 * ordering on the hardware side of things. */
2110                old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2111                pci_dma_sync_single_for_device(nic->pdev,
2112                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2113                        PCI_DMA_BIDIRECTIONAL);
2114                old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2115                                                        + ETH_FCS_LEN);
2116                pci_dma_sync_single_for_device(nic->pdev,
2117                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2118                        PCI_DMA_BIDIRECTIONAL);
2119        }
2120
2121        if (restart_required) {
2122                // ack the rnr?
2123                iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2124                e100_start_receiver(nic, nic->rx_to_clean);
2125                if (work_done)
2126                        (*work_done)++;
2127        }
2128}
2129
2130static void e100_rx_clean_list(struct nic *nic)
2131{
2132        struct rx *rx;
2133        unsigned int i, count = nic->params.rfds.count;
2134
2135        nic->ru_running = RU_UNINITIALIZED;
2136
2137        if (nic->rxs) {
2138                for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2139                        if (rx->skb) {
2140                                pci_unmap_single(nic->pdev, rx->dma_addr,
2141                                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2142                                dev_kfree_skb(rx->skb);
2143                        }
2144                }
2145                kfree(nic->rxs);
2146                nic->rxs = NULL;
2147        }
2148
2149        nic->rx_to_use = nic->rx_to_clean = NULL;
2150}
2151
2152static int e100_rx_alloc_list(struct nic *nic)
2153{
2154        struct rx *rx;
2155        unsigned int i, count = nic->params.rfds.count;
2156        struct rfd *before_last;
2157
2158        nic->rx_to_use = nic->rx_to_clean = NULL;
2159        nic->ru_running = RU_UNINITIALIZED;
2160
2161        if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2162                return -ENOMEM;
2163
2164        for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165                rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2166                rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2167                if (e100_rx_alloc_skb(nic, rx)) {
2168                        e100_rx_clean_list(nic);
2169                        return -ENOMEM;
2170                }
2171        }
2172        /* Set the el-bit on the buffer that is before the last buffer.
2173         * This lets us update the next pointer on the last buffer without
2174         * worrying about hardware touching it.
2175         * We set the size to 0 to prevent hardware from touching this buffer.
2176         * When the hardware hits the before last buffer with el-bit and size
2177         * of 0, it will RNR interrupt, the RU will go into the No Resources
2178         * state.  It will not complete nor write to this buffer. */
2179        rx = nic->rxs->prev->prev;
2180        before_last = (struct rfd *)rx->skb->data;
2181        before_last->command |= cpu_to_le16(cb_el);
2182        before_last->size = 0;
2183        pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2184                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2185
2186        nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2187        nic->ru_running = RU_SUSPENDED;
2188
2189        return 0;
2190}
2191
2192static irqreturn_t e100_intr(int irq, void *dev_id)
2193{
2194        struct net_device *netdev = dev_id;
2195        struct nic *nic = netdev_priv(netdev);
2196        u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2197
2198        netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2199                     "stat_ack = 0x%02X\n", stat_ack);
2200
2201        if (stat_ack == stat_ack_not_ours ||    /* Not our interrupt */
2202           stat_ack == stat_ack_not_present)    /* Hardware is ejected */
2203                return IRQ_NONE;
2204
2205        /* Ack interrupt(s) */
2206        iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2207
2208        /* We hit Receive No Resource (RNR); restart RU after cleaning */
2209        if (stat_ack & stat_ack_rnr)
2210                nic->ru_running = RU_SUSPENDED;
2211
2212        if (likely(napi_schedule_prep(&nic->napi))) {
2213                e100_disable_irq(nic);
2214                __napi_schedule(&nic->napi);
2215        }
2216
2217        return IRQ_HANDLED;
2218}
2219
2220static int e100_poll(struct napi_struct *napi, int budget)
2221{
2222        struct nic *nic = container_of(napi, struct nic, napi);
2223        unsigned int work_done = 0;
2224
2225        e100_rx_clean(nic, &work_done, budget);
2226        e100_tx_clean(nic);
2227
2228        /* If budget fully consumed, continue polling */
2229        if (work_done == budget)
2230                return budget;
2231
2232        /* only re-enable interrupt if stack agrees polling is really done */
2233        if (likely(napi_complete_done(napi, work_done)))
2234                e100_enable_irq(nic);
2235
2236        return work_done;
2237}
2238
2239#ifdef CONFIG_NET_POLL_CONTROLLER
2240static void e100_netpoll(struct net_device *netdev)
2241{
2242        struct nic *nic = netdev_priv(netdev);
2243
2244        e100_disable_irq(nic);
2245        e100_intr(nic->pdev->irq, netdev);
2246        e100_tx_clean(nic);
2247        e100_enable_irq(nic);
2248}
2249#endif
2250
2251static int e100_set_mac_address(struct net_device *netdev, void *p)
2252{
2253        struct nic *nic = netdev_priv(netdev);
2254        struct sockaddr *addr = p;
2255
2256        if (!is_valid_ether_addr(addr->sa_data))
2257                return -EADDRNOTAVAIL;
2258
2259        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2260        e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2261
2262        return 0;
2263}
2264
2265static int e100_asf(struct nic *nic)
2266{
2267        /* ASF can be enabled from eeprom */
2268        return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2269           (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2270           !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2271           ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2272}
2273
2274static int e100_up(struct nic *nic)
2275{
2276        int err;
2277
2278        if ((err = e100_rx_alloc_list(nic)))
2279                return err;
2280        if ((err = e100_alloc_cbs(nic)))
2281                goto err_rx_clean_list;
2282        if ((err = e100_hw_init(nic)))
2283                goto err_clean_cbs;
2284        e100_set_multicast_list(nic->netdev);
2285        e100_start_receiver(nic, NULL);
2286        mod_timer(&nic->watchdog, jiffies);
2287        if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2288                nic->netdev->name, nic->netdev)))
2289                goto err_no_irq;
2290        netif_wake_queue(nic->netdev);
2291        napi_enable(&nic->napi);
2292        /* enable ints _after_ enabling poll, preventing a race between
2293         * disable ints+schedule */
2294        e100_enable_irq(nic);
2295        return 0;
2296
2297err_no_irq:
2298        del_timer_sync(&nic->watchdog);
2299err_clean_cbs:
2300        e100_clean_cbs(nic);
2301err_rx_clean_list:
2302        e100_rx_clean_list(nic);
2303        return err;
2304}
2305
2306static void e100_down(struct nic *nic)
2307{
2308        /* wait here for poll to complete */
2309        napi_disable(&nic->napi);
2310        netif_stop_queue(nic->netdev);
2311        e100_hw_reset(nic);
2312        free_irq(nic->pdev->irq, nic->netdev);
2313        del_timer_sync(&nic->watchdog);
2314        netif_carrier_off(nic->netdev);
2315        e100_clean_cbs(nic);
2316        e100_rx_clean_list(nic);
2317}
2318
2319static void e100_tx_timeout(struct net_device *netdev)
2320{
2321        struct nic *nic = netdev_priv(netdev);
2322
2323        /* Reset outside of interrupt context, to avoid request_irq
2324         * in interrupt context */
2325        schedule_work(&nic->tx_timeout_task);
2326}
2327
2328static void e100_tx_timeout_task(struct work_struct *work)
2329{
2330        struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2331        struct net_device *netdev = nic->netdev;
2332
2333        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2334                     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2335
2336        rtnl_lock();
2337        if (netif_running(netdev)) {
2338                e100_down(netdev_priv(netdev));
2339                e100_up(netdev_priv(netdev));
2340        }
2341        rtnl_unlock();
2342}
2343
2344static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2345{
2346        int err;
2347        struct sk_buff *skb;
2348
2349        /* Use driver resources to perform internal MAC or PHY
2350         * loopback test.  A single packet is prepared and transmitted
2351         * in loopback mode, and the test passes if the received
2352         * packet compares byte-for-byte to the transmitted packet. */
2353
2354        if ((err = e100_rx_alloc_list(nic)))
2355                return err;
2356        if ((err = e100_alloc_cbs(nic)))
2357                goto err_clean_rx;
2358
2359        /* ICH PHY loopback is broken so do MAC loopback instead */
2360        if (nic->flags & ich && loopback_mode == lb_phy)
2361                loopback_mode = lb_mac;
2362
2363        nic->loopback = loopback_mode;
2364        if ((err = e100_hw_init(nic)))
2365                goto err_loopback_none;
2366
2367        if (loopback_mode == lb_phy)
2368                mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2369                        BMCR_LOOPBACK);
2370
2371        e100_start_receiver(nic, NULL);
2372
2373        if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2374                err = -ENOMEM;
2375                goto err_loopback_none;
2376        }
2377        skb_put(skb, ETH_DATA_LEN);
2378        memset(skb->data, 0xFF, ETH_DATA_LEN);
2379        e100_xmit_frame(skb, nic->netdev);
2380
2381        msleep(10);
2382
2383        pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2384                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2385
2386        if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2387           skb->data, ETH_DATA_LEN))
2388                err = -EAGAIN;
2389
2390err_loopback_none:
2391        mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2392        nic->loopback = lb_none;
2393        e100_clean_cbs(nic);
2394        e100_hw_reset(nic);
2395err_clean_rx:
2396        e100_rx_clean_list(nic);
2397        return err;
2398}
2399
2400#define MII_LED_CONTROL 0x1B
2401#define E100_82552_LED_OVERRIDE 0x19
2402#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2403#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2404
2405static int e100_get_link_ksettings(struct net_device *netdev,
2406                                   struct ethtool_link_ksettings *cmd)
2407{
2408        struct nic *nic = netdev_priv(netdev);
2409
2410        mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2411
2412        return 0;
2413}
2414
2415static int e100_set_link_ksettings(struct net_device *netdev,
2416                                   const struct ethtool_link_ksettings *cmd)
2417{
2418        struct nic *nic = netdev_priv(netdev);
2419        int err;
2420
2421        mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2422        err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2423        e100_exec_cb(nic, NULL, e100_configure);
2424
2425        return err;
2426}
2427
2428static void e100_get_drvinfo(struct net_device *netdev,
2429        struct ethtool_drvinfo *info)
2430{
2431        struct nic *nic = netdev_priv(netdev);
2432        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2433        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2434        strlcpy(info->bus_info, pci_name(nic->pdev),
2435                sizeof(info->bus_info));
2436}
2437
2438#define E100_PHY_REGS 0x1C
2439static int e100_get_regs_len(struct net_device *netdev)
2440{
2441        struct nic *nic = netdev_priv(netdev);
2442        return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2443}
2444
2445static void e100_get_regs(struct net_device *netdev,
2446        struct ethtool_regs *regs, void *p)
2447{
2448        struct nic *nic = netdev_priv(netdev);
2449        u32 *buff = p;
2450        int i;
2451
2452        regs->version = (1 << 24) | nic->pdev->revision;
2453        buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2454                ioread8(&nic->csr->scb.cmd_lo) << 16 |
2455                ioread16(&nic->csr->scb.status);
2456        for (i = E100_PHY_REGS; i >= 0; i--)
2457                buff[1 + E100_PHY_REGS - i] =
2458                        mdio_read(netdev, nic->mii.phy_id, i);
2459        memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2460        e100_exec_cb(nic, NULL, e100_dump);
2461        msleep(10);
2462        memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2463                sizeof(nic->mem->dump_buf));
2464}
2465
2466static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2467{
2468        struct nic *nic = netdev_priv(netdev);
2469        wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2470        wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2471}
2472
2473static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2474{
2475        struct nic *nic = netdev_priv(netdev);
2476
2477        if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2478            !device_can_wakeup(&nic->pdev->dev))
2479                return -EOPNOTSUPP;
2480
2481        if (wol->wolopts)
2482                nic->flags |= wol_magic;
2483        else
2484                nic->flags &= ~wol_magic;
2485
2486        device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2487
2488        e100_exec_cb(nic, NULL, e100_configure);
2489
2490        return 0;
2491}
2492
2493static u32 e100_get_msglevel(struct net_device *netdev)
2494{
2495        struct nic *nic = netdev_priv(netdev);
2496        return nic->msg_enable;
2497}
2498
2499static void e100_set_msglevel(struct net_device *netdev, u32 value)
2500{
2501        struct nic *nic = netdev_priv(netdev);
2502        nic->msg_enable = value;
2503}
2504
2505static int e100_nway_reset(struct net_device *netdev)
2506{
2507        struct nic *nic = netdev_priv(netdev);
2508        return mii_nway_restart(&nic->mii);
2509}
2510
2511static u32 e100_get_link(struct net_device *netdev)
2512{
2513        struct nic *nic = netdev_priv(netdev);
2514        return mii_link_ok(&nic->mii);
2515}
2516
2517static int e100_get_eeprom_len(struct net_device *netdev)
2518{
2519        struct nic *nic = netdev_priv(netdev);
2520        return nic->eeprom_wc << 1;
2521}
2522
2523#define E100_EEPROM_MAGIC       0x1234
2524static int e100_get_eeprom(struct net_device *netdev,
2525        struct ethtool_eeprom *eeprom, u8 *bytes)
2526{
2527        struct nic *nic = netdev_priv(netdev);
2528
2529        eeprom->magic = E100_EEPROM_MAGIC;
2530        memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2531
2532        return 0;
2533}
2534
2535static int e100_set_eeprom(struct net_device *netdev,
2536        struct ethtool_eeprom *eeprom, u8 *bytes)
2537{
2538        struct nic *nic = netdev_priv(netdev);
2539
2540        if (eeprom->magic != E100_EEPROM_MAGIC)
2541                return -EINVAL;
2542
2543        memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2544
2545        return e100_eeprom_save(nic, eeprom->offset >> 1,
2546                (eeprom->len >> 1) + 1);
2547}
2548
2549static void e100_get_ringparam(struct net_device *netdev,
2550        struct ethtool_ringparam *ring)
2551{
2552        struct nic *nic = netdev_priv(netdev);
2553        struct param_range *rfds = &nic->params.rfds;
2554        struct param_range *cbs = &nic->params.cbs;
2555
2556        ring->rx_max_pending = rfds->max;
2557        ring->tx_max_pending = cbs->max;
2558        ring->rx_pending = rfds->count;
2559        ring->tx_pending = cbs->count;
2560}
2561
2562static int e100_set_ringparam(struct net_device *netdev,
2563        struct ethtool_ringparam *ring)
2564{
2565        struct nic *nic = netdev_priv(netdev);
2566        struct param_range *rfds = &nic->params.rfds;
2567        struct param_range *cbs = &nic->params.cbs;
2568
2569        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2570                return -EINVAL;
2571
2572        if (netif_running(netdev))
2573                e100_down(nic);
2574        rfds->count = max(ring->rx_pending, rfds->min);
2575        rfds->count = min(rfds->count, rfds->max);
2576        cbs->count = max(ring->tx_pending, cbs->min);
2577        cbs->count = min(cbs->count, cbs->max);
2578        netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2579                   rfds->count, cbs->count);
2580        if (netif_running(netdev))
2581                e100_up(nic);
2582
2583        return 0;
2584}
2585
2586static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2587        "Link test     (on/offline)",
2588        "Eeprom test   (on/offline)",
2589        "Self test        (offline)",
2590        "Mac loopback     (offline)",
2591        "Phy loopback     (offline)",
2592};
2593#define E100_TEST_LEN   ARRAY_SIZE(e100_gstrings_test)
2594
2595static void e100_diag_test(struct net_device *netdev,
2596        struct ethtool_test *test, u64 *data)
2597{
2598        struct ethtool_cmd cmd;
2599        struct nic *nic = netdev_priv(netdev);
2600        int i, err;
2601
2602        memset(data, 0, E100_TEST_LEN * sizeof(u64));
2603        data[0] = !mii_link_ok(&nic->mii);
2604        data[1] = e100_eeprom_load(nic);
2605        if (test->flags & ETH_TEST_FL_OFFLINE) {
2606
2607                /* save speed, duplex & autoneg settings */
2608                err = mii_ethtool_gset(&nic->mii, &cmd);
2609
2610                if (netif_running(netdev))
2611                        e100_down(nic);
2612                data[2] = e100_self_test(nic);
2613                data[3] = e100_loopback_test(nic, lb_mac);
2614                data[4] = e100_loopback_test(nic, lb_phy);
2615
2616                /* restore speed, duplex & autoneg settings */
2617                err = mii_ethtool_sset(&nic->mii, &cmd);
2618
2619                if (netif_running(netdev))
2620                        e100_up(nic);
2621        }
2622        for (i = 0; i < E100_TEST_LEN; i++)
2623                test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2624
2625        msleep_interruptible(4 * 1000);
2626}
2627
2628static int e100_set_phys_id(struct net_device *netdev,
2629                            enum ethtool_phys_id_state state)
2630{
2631        struct nic *nic = netdev_priv(netdev);
2632        enum led_state {
2633                led_on     = 0x01,
2634                led_off    = 0x04,
2635                led_on_559 = 0x05,
2636                led_on_557 = 0x07,
2637        };
2638        u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2639                MII_LED_CONTROL;
2640        u16 leds = 0;
2641
2642        switch (state) {
2643        case ETHTOOL_ID_ACTIVE:
2644                return 2;
2645
2646        case ETHTOOL_ID_ON:
2647                leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2648                       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2649                break;
2650
2651        case ETHTOOL_ID_OFF:
2652                leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2653                break;
2654
2655        case ETHTOOL_ID_INACTIVE:
2656                break;
2657        }
2658
2659        mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2660        return 0;
2661}
2662
2663static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2664        "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2665        "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2666        "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2667        "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2668        "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2669        "tx_heartbeat_errors", "tx_window_errors",
2670        /* device-specific stats */
2671        "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2672        "tx_flow_control_pause", "rx_flow_control_pause",
2673        "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2674        "rx_short_frame_errors", "rx_over_length_errors",
2675};
2676#define E100_NET_STATS_LEN      21
2677#define E100_STATS_LEN  ARRAY_SIZE(e100_gstrings_stats)
2678
2679static int e100_get_sset_count(struct net_device *netdev, int sset)
2680{
2681        switch (sset) {
2682        case ETH_SS_TEST:
2683                return E100_TEST_LEN;
2684        case ETH_SS_STATS:
2685                return E100_STATS_LEN;
2686        default:
2687                return -EOPNOTSUPP;
2688        }
2689}
2690
2691static void e100_get_ethtool_stats(struct net_device *netdev,
2692        struct ethtool_stats *stats, u64 *data)
2693{
2694        struct nic *nic = netdev_priv(netdev);
2695        int i;
2696
2697        for (i = 0; i < E100_NET_STATS_LEN; i++)
2698                data[i] = ((unsigned long *)&netdev->stats)[i];
2699
2700        data[i++] = nic->tx_deferred;
2701        data[i++] = nic->tx_single_collisions;
2702        data[i++] = nic->tx_multiple_collisions;
2703        data[i++] = nic->tx_fc_pause;
2704        data[i++] = nic->rx_fc_pause;
2705        data[i++] = nic->rx_fc_unsupported;
2706        data[i++] = nic->tx_tco_frames;
2707        data[i++] = nic->rx_tco_frames;
2708        data[i++] = nic->rx_short_frame_errors;
2709        data[i++] = nic->rx_over_length_errors;
2710}
2711
2712static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2713{
2714        switch (stringset) {
2715        case ETH_SS_TEST:
2716                memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2717                break;
2718        case ETH_SS_STATS:
2719                memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2720                break;
2721        }
2722}
2723
2724static const struct ethtool_ops e100_ethtool_ops = {
2725        .get_drvinfo            = e100_get_drvinfo,
2726        .get_regs_len           = e100_get_regs_len,
2727        .get_regs               = e100_get_regs,
2728        .get_wol                = e100_get_wol,
2729        .set_wol                = e100_set_wol,
2730        .get_msglevel           = e100_get_msglevel,
2731        .set_msglevel           = e100_set_msglevel,
2732        .nway_reset             = e100_nway_reset,
2733        .get_link               = e100_get_link,
2734        .get_eeprom_len         = e100_get_eeprom_len,
2735        .get_eeprom             = e100_get_eeprom,
2736        .set_eeprom             = e100_set_eeprom,
2737        .get_ringparam          = e100_get_ringparam,
2738        .set_ringparam          = e100_set_ringparam,
2739        .self_test              = e100_diag_test,
2740        .get_strings            = e100_get_strings,
2741        .set_phys_id            = e100_set_phys_id,
2742        .get_ethtool_stats      = e100_get_ethtool_stats,
2743        .get_sset_count         = e100_get_sset_count,
2744        .get_ts_info            = ethtool_op_get_ts_info,
2745        .get_link_ksettings     = e100_get_link_ksettings,
2746        .set_link_ksettings     = e100_set_link_ksettings,
2747};
2748
2749static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2750{
2751        struct nic *nic = netdev_priv(netdev);
2752
2753        return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2754}
2755
2756static int e100_alloc(struct nic *nic)
2757{
2758        nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2759                &nic->dma_addr);
2760        return nic->mem ? 0 : -ENOMEM;
2761}
2762
2763static void e100_free(struct nic *nic)
2764{
2765        if (nic->mem) {
2766                pci_free_consistent(nic->pdev, sizeof(struct mem),
2767                        nic->mem, nic->dma_addr);
2768                nic->mem = NULL;
2769        }
2770}
2771
2772static int e100_open(struct net_device *netdev)
2773{
2774        struct nic *nic = netdev_priv(netdev);
2775        int err = 0;
2776
2777        netif_carrier_off(netdev);
2778        if ((err = e100_up(nic)))
2779                netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2780        return err;
2781}
2782
2783static int e100_close(struct net_device *netdev)
2784{
2785        e100_down(netdev_priv(netdev));
2786        return 0;
2787}
2788
2789static int e100_set_features(struct net_device *netdev,
2790                             netdev_features_t features)
2791{
2792        struct nic *nic = netdev_priv(netdev);
2793        netdev_features_t changed = features ^ netdev->features;
2794
2795        if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2796                return 0;
2797
2798        netdev->features = features;
2799        e100_exec_cb(nic, NULL, e100_configure);
2800        return 1;
2801}
2802
2803static const struct net_device_ops e100_netdev_ops = {
2804        .ndo_open               = e100_open,
2805        .ndo_stop               = e100_close,
2806        .ndo_start_xmit         = e100_xmit_frame,
2807        .ndo_validate_addr      = eth_validate_addr,
2808        .ndo_set_rx_mode        = e100_set_multicast_list,
2809        .ndo_set_mac_address    = e100_set_mac_address,
2810        .ndo_do_ioctl           = e100_do_ioctl,
2811        .ndo_tx_timeout         = e100_tx_timeout,
2812#ifdef CONFIG_NET_POLL_CONTROLLER
2813        .ndo_poll_controller    = e100_netpoll,
2814#endif
2815        .ndo_set_features       = e100_set_features,
2816};
2817
2818static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2819{
2820        struct net_device *netdev;
2821        struct nic *nic;
2822        int err;
2823
2824        if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2825                return -ENOMEM;
2826
2827        netdev->hw_features |= NETIF_F_RXFCS;
2828        netdev->priv_flags |= IFF_SUPP_NOFCS;
2829        netdev->hw_features |= NETIF_F_RXALL;
2830
2831        netdev->netdev_ops = &e100_netdev_ops;
2832        netdev->ethtool_ops = &e100_ethtool_ops;
2833        netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2834        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2835
2836        nic = netdev_priv(netdev);
2837        netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2838        nic->netdev = netdev;
2839        nic->pdev = pdev;
2840        nic->msg_enable = (1 << debug) - 1;
2841        nic->mdio_ctrl = mdio_ctrl_hw;
2842        pci_set_drvdata(pdev, netdev);
2843
2844        if ((err = pci_enable_device(pdev))) {
2845                netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2846                goto err_out_free_dev;
2847        }
2848
2849        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2850                netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2851                err = -ENODEV;
2852                goto err_out_disable_pdev;
2853        }
2854
2855        if ((err = pci_request_regions(pdev, DRV_NAME))) {
2856                netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2857                goto err_out_disable_pdev;
2858        }
2859
2860        if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2861                netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2862                goto err_out_free_res;
2863        }
2864
2865        SET_NETDEV_DEV(netdev, &pdev->dev);
2866
2867        if (use_io)
2868                netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2869
2870        nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2871        if (!nic->csr) {
2872                netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2873                err = -ENOMEM;
2874                goto err_out_free_res;
2875        }
2876
2877        if (ent->driver_data)
2878                nic->flags |= ich;
2879        else
2880                nic->flags &= ~ich;
2881
2882        e100_get_defaults(nic);
2883
2884        /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2885        if (nic->mac < mac_82558_D101_A4)
2886                netdev->features |= NETIF_F_VLAN_CHALLENGED;
2887
2888        /* locks must be initialized before calling hw_reset */
2889        spin_lock_init(&nic->cb_lock);
2890        spin_lock_init(&nic->cmd_lock);
2891        spin_lock_init(&nic->mdio_lock);
2892
2893        /* Reset the device before pci_set_master() in case device is in some
2894         * funky state and has an interrupt pending - hint: we don't have the
2895         * interrupt handler registered yet. */
2896        e100_hw_reset(nic);
2897
2898        pci_set_master(pdev);
2899
2900        timer_setup(&nic->watchdog, e100_watchdog, 0);
2901
2902        INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2903
2904        if ((err = e100_alloc(nic))) {
2905                netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2906                goto err_out_iounmap;
2907        }
2908
2909        if ((err = e100_eeprom_load(nic)))
2910                goto err_out_free;
2911
2912        e100_phy_init(nic);
2913
2914        memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2915        if (!is_valid_ether_addr(netdev->dev_addr)) {
2916                if (!eeprom_bad_csum_allow) {
2917                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2918                        err = -EAGAIN;
2919                        goto err_out_free;
2920                } else {
2921                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2922                }
2923        }
2924
2925        /* Wol magic packet can be enabled from eeprom */
2926        if ((nic->mac >= mac_82558_D101_A4) &&
2927           (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2928                nic->flags |= wol_magic;
2929                device_set_wakeup_enable(&pdev->dev, true);
2930        }
2931
2932        /* ack any pending wake events, disable PME */
2933        pci_pme_active(pdev, false);
2934
2935        strcpy(netdev->name, "eth%d");
2936        if ((err = register_netdev(netdev))) {
2937                netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2938                goto err_out_free;
2939        }
2940        nic->cbs_pool = dma_pool_create(netdev->name,
2941                           &nic->pdev->dev,
2942                           nic->params.cbs.max * sizeof(struct cb),
2943                           sizeof(u32),
2944                           0);
2945        if (!nic->cbs_pool) {
2946                netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2947                err = -ENOMEM;
2948                goto err_out_pool;
2949        }
2950        netif_info(nic, probe, nic->netdev,
2951                   "addr 0x%llx, irq %d, MAC addr %pM\n",
2952                   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2953                   pdev->irq, netdev->dev_addr);
2954
2955        return 0;
2956
2957err_out_pool:
2958        unregister_netdev(netdev);
2959err_out_free:
2960        e100_free(nic);
2961err_out_iounmap:
2962        pci_iounmap(pdev, nic->csr);
2963err_out_free_res:
2964        pci_release_regions(pdev);
2965err_out_disable_pdev:
2966        pci_disable_device(pdev);
2967err_out_free_dev:
2968        free_netdev(netdev);
2969        return err;
2970}
2971
2972static void e100_remove(struct pci_dev *pdev)
2973{
2974        struct net_device *netdev = pci_get_drvdata(pdev);
2975
2976        if (netdev) {
2977                struct nic *nic = netdev_priv(netdev);
2978                unregister_netdev(netdev);
2979                e100_free(nic);
2980                pci_iounmap(pdev, nic->csr);
2981                dma_pool_destroy(nic->cbs_pool);
2982                free_netdev(netdev);
2983                pci_release_regions(pdev);
2984                pci_disable_device(pdev);
2985        }
2986}
2987
2988#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2989#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2990#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
2991static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2992{
2993        struct net_device *netdev = pci_get_drvdata(pdev);
2994        struct nic *nic = netdev_priv(netdev);
2995
2996        if (netif_running(netdev))
2997                e100_down(nic);
2998        netif_device_detach(netdev);
2999
3000        pci_save_state(pdev);
3001
3002        if ((nic->flags & wol_magic) | e100_asf(nic)) {
3003                /* enable reverse auto-negotiation */
3004                if (nic->phy == phy_82552_v) {
3005                        u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3006                                                   E100_82552_SMARTSPEED);
3007
3008                        mdio_write(netdev, nic->mii.phy_id,
3009                                   E100_82552_SMARTSPEED, smartspeed |
3010                                   E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3011                }
3012                *enable_wake = true;
3013        } else {
3014                *enable_wake = false;
3015        }
3016
3017        pci_clear_master(pdev);
3018}
3019
3020static int __e100_power_off(struct pci_dev *pdev, bool wake)
3021{
3022        if (wake)
3023                return pci_prepare_to_sleep(pdev);
3024
3025        pci_wake_from_d3(pdev, false);
3026        pci_set_power_state(pdev, PCI_D3hot);
3027
3028        return 0;
3029}
3030
3031#ifdef CONFIG_PM
3032static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3033{
3034        bool wake;
3035        __e100_shutdown(pdev, &wake);
3036        return __e100_power_off(pdev, wake);
3037}
3038
3039static int e100_resume(struct pci_dev *pdev)
3040{
3041        struct net_device *netdev = pci_get_drvdata(pdev);
3042        struct nic *nic = netdev_priv(netdev);
3043
3044        pci_set_power_state(pdev, PCI_D0);
3045        pci_restore_state(pdev);
3046        /* ack any pending wake events, disable PME */
3047        pci_enable_wake(pdev, PCI_D0, 0);
3048
3049        /* disable reverse auto-negotiation */
3050        if (nic->phy == phy_82552_v) {
3051                u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3052                                           E100_82552_SMARTSPEED);
3053
3054                mdio_write(netdev, nic->mii.phy_id,
3055                           E100_82552_SMARTSPEED,
3056                           smartspeed & ~(E100_82552_REV_ANEG));
3057        }
3058
3059        netif_device_attach(netdev);
3060        if (netif_running(netdev))
3061                e100_up(nic);
3062
3063        return 0;
3064}
3065#endif /* CONFIG_PM */
3066
3067static void e100_shutdown(struct pci_dev *pdev)
3068{
3069        bool wake;
3070        __e100_shutdown(pdev, &wake);
3071        if (system_state == SYSTEM_POWER_OFF)
3072                __e100_power_off(pdev, wake);
3073}
3074
3075/* ------------------ PCI Error Recovery infrastructure  -------------- */
3076/**
3077 * e100_io_error_detected - called when PCI error is detected.
3078 * @pdev: Pointer to PCI device
3079 * @state: The current pci connection state
3080 */
3081static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3082{
3083        struct net_device *netdev = pci_get_drvdata(pdev);
3084        struct nic *nic = netdev_priv(netdev);
3085
3086        netif_device_detach(netdev);
3087
3088        if (state == pci_channel_io_perm_failure)
3089                return PCI_ERS_RESULT_DISCONNECT;
3090
3091        if (netif_running(netdev))
3092                e100_down(nic);
3093        pci_disable_device(pdev);
3094
3095        /* Request a slot reset. */
3096        return PCI_ERS_RESULT_NEED_RESET;
3097}
3098
3099/**
3100 * e100_io_slot_reset - called after the pci bus has been reset.
3101 * @pdev: Pointer to PCI device
3102 *
3103 * Restart the card from scratch.
3104 */
3105static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3106{
3107        struct net_device *netdev = pci_get_drvdata(pdev);
3108        struct nic *nic = netdev_priv(netdev);
3109
3110        if (pci_enable_device(pdev)) {
3111                pr_err("Cannot re-enable PCI device after reset\n");
3112                return PCI_ERS_RESULT_DISCONNECT;
3113        }
3114        pci_set_master(pdev);
3115
3116        /* Only one device per card can do a reset */
3117        if (0 != PCI_FUNC(pdev->devfn))
3118                return PCI_ERS_RESULT_RECOVERED;
3119        e100_hw_reset(nic);
3120        e100_phy_init(nic);
3121
3122        return PCI_ERS_RESULT_RECOVERED;
3123}
3124
3125/**
3126 * e100_io_resume - resume normal operations
3127 * @pdev: Pointer to PCI device
3128 *
3129 * Resume normal operations after an error recovery
3130 * sequence has been completed.
3131 */
3132static void e100_io_resume(struct pci_dev *pdev)
3133{
3134        struct net_device *netdev = pci_get_drvdata(pdev);
3135        struct nic *nic = netdev_priv(netdev);
3136
3137        /* ack any pending wake events, disable PME */
3138        pci_enable_wake(pdev, PCI_D0, 0);
3139
3140        netif_device_attach(netdev);
3141        if (netif_running(netdev)) {
3142                e100_open(netdev);
3143                mod_timer(&nic->watchdog, jiffies);
3144        }
3145}
3146
3147static const struct pci_error_handlers e100_err_handler = {
3148        .error_detected = e100_io_error_detected,
3149        .slot_reset = e100_io_slot_reset,
3150        .resume = e100_io_resume,
3151};
3152
3153static struct pci_driver e100_driver = {
3154        .name =         DRV_NAME,
3155        .id_table =     e100_id_table,
3156        .probe =        e100_probe,
3157        .remove =       e100_remove,
3158#ifdef CONFIG_PM
3159        /* Power Management hooks */
3160        .suspend =      e100_suspend,
3161        .resume =       e100_resume,
3162#endif
3163        .shutdown =     e100_shutdown,
3164        .err_handler = &e100_err_handler,
3165};
3166
3167static int __init e100_init_module(void)
3168{
3169        if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3170                pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3171                pr_info("%s\n", DRV_COPYRIGHT);
3172        }
3173        return pci_register_driver(&e100_driver);
3174}
3175
3176static void __exit e100_cleanup_module(void)
3177{
3178        pci_unregister_driver(&e100_driver);
3179}
3180
3181module_init(e100_init_module);
3182module_exit(e100_cleanup_module);
3183