linux/drivers/net/ethernet/intel/e1000e/82571.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82571EB Gigabit Ethernet Controller
   5 * 82571EB Gigabit Ethernet Controller (Copper)
   6 * 82571EB Gigabit Ethernet Controller (Fiber)
   7 * 82571EB Dual Port Gigabit Mezzanine Adapter
   8 * 82571EB Quad Port Gigabit Mezzanine Adapter
   9 * 82571PT Gigabit PT Quad Port Server ExpressModule
  10 * 82572EI Gigabit Ethernet Controller (Copper)
  11 * 82572EI Gigabit Ethernet Controller (Fiber)
  12 * 82572EI Gigabit Ethernet Controller
  13 * 82573V Gigabit Ethernet Controller (Copper)
  14 * 82573E Gigabit Ethernet Controller (Copper)
  15 * 82573L Gigabit Ethernet Controller
  16 * 82574L Gigabit Network Connection
  17 * 82583V Gigabit Network Connection
  18 */
  19
  20#include "e1000.h"
  21
  22static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
  23static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
  24static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
  25static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
  26static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
  27                                      u16 words, u16 *data);
  28static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
  29static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
  30static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
  31static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
  32static s32 e1000_led_on_82574(struct e1000_hw *hw);
  33static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
  34static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
  35static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
  36static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
  37static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
  38static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
  39static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
  40
  41/**
  42 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
  43 *  @hw: pointer to the HW structure
  44 **/
  45static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
  46{
  47        struct e1000_phy_info *phy = &hw->phy;
  48        s32 ret_val;
  49
  50        if (hw->phy.media_type != e1000_media_type_copper) {
  51                phy->type = e1000_phy_none;
  52                return 0;
  53        }
  54
  55        phy->addr = 1;
  56        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  57        phy->reset_delay_us = 100;
  58
  59        phy->ops.power_up = e1000_power_up_phy_copper;
  60        phy->ops.power_down = e1000_power_down_phy_copper_82571;
  61
  62        switch (hw->mac.type) {
  63        case e1000_82571:
  64        case e1000_82572:
  65                phy->type = e1000_phy_igp_2;
  66                break;
  67        case e1000_82573:
  68                phy->type = e1000_phy_m88;
  69                break;
  70        case e1000_82574:
  71        case e1000_82583:
  72                phy->type = e1000_phy_bm;
  73                phy->ops.acquire = e1000_get_hw_semaphore_82574;
  74                phy->ops.release = e1000_put_hw_semaphore_82574;
  75                phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
  76                phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
  77                break;
  78        default:
  79                return -E1000_ERR_PHY;
  80        }
  81
  82        /* This can only be done after all function pointers are setup. */
  83        ret_val = e1000_get_phy_id_82571(hw);
  84        if (ret_val) {
  85                e_dbg("Error getting PHY ID\n");
  86                return ret_val;
  87        }
  88
  89        /* Verify phy id */
  90        switch (hw->mac.type) {
  91        case e1000_82571:
  92        case e1000_82572:
  93                if (phy->id != IGP01E1000_I_PHY_ID)
  94                        ret_val = -E1000_ERR_PHY;
  95                break;
  96        case e1000_82573:
  97                if (phy->id != M88E1111_I_PHY_ID)
  98                        ret_val = -E1000_ERR_PHY;
  99                break;
 100        case e1000_82574:
 101        case e1000_82583:
 102                if (phy->id != BME1000_E_PHY_ID_R2)
 103                        ret_val = -E1000_ERR_PHY;
 104                break;
 105        default:
 106                ret_val = -E1000_ERR_PHY;
 107                break;
 108        }
 109
 110        if (ret_val)
 111                e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
 112
 113        return ret_val;
 114}
 115
 116/**
 117 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 118 *  @hw: pointer to the HW structure
 119 **/
 120static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
 121{
 122        struct e1000_nvm_info *nvm = &hw->nvm;
 123        u32 eecd = er32(EECD);
 124        u16 size;
 125
 126        nvm->opcode_bits = 8;
 127        nvm->delay_usec = 1;
 128        switch (nvm->override) {
 129        case e1000_nvm_override_spi_large:
 130                nvm->page_size = 32;
 131                nvm->address_bits = 16;
 132                break;
 133        case e1000_nvm_override_spi_small:
 134                nvm->page_size = 8;
 135                nvm->address_bits = 8;
 136                break;
 137        default:
 138                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 139                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 140                break;
 141        }
 142
 143        switch (hw->mac.type) {
 144        case e1000_82573:
 145        case e1000_82574:
 146        case e1000_82583:
 147                if (((eecd >> 15) & 0x3) == 0x3) {
 148                        nvm->type = e1000_nvm_flash_hw;
 149                        nvm->word_size = 2048;
 150                        /* Autonomous Flash update bit must be cleared due
 151                         * to Flash update issue.
 152                         */
 153                        eecd &= ~E1000_EECD_AUPDEN;
 154                        ew32(EECD, eecd);
 155                        break;
 156                }
 157                /* Fall Through */
 158        default:
 159                nvm->type = e1000_nvm_eeprom_spi;
 160                size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 161                             E1000_EECD_SIZE_EX_SHIFT);
 162                /* Added to a constant, "size" becomes the left-shift value
 163                 * for setting word_size.
 164                 */
 165                size += NVM_WORD_SIZE_BASE_SHIFT;
 166
 167                /* EEPROM access above 16k is unsupported */
 168                if (size > 14)
 169                        size = 14;
 170                nvm->word_size = BIT(size);
 171                break;
 172        }
 173
 174        /* Function Pointers */
 175        switch (hw->mac.type) {
 176        case e1000_82574:
 177        case e1000_82583:
 178                nvm->ops.acquire = e1000_get_hw_semaphore_82574;
 179                nvm->ops.release = e1000_put_hw_semaphore_82574;
 180                break;
 181        default:
 182                break;
 183        }
 184
 185        return 0;
 186}
 187
 188/**
 189 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 190 *  @hw: pointer to the HW structure
 191 **/
 192static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
 193{
 194        struct e1000_mac_info *mac = &hw->mac;
 195        u32 swsm = 0;
 196        u32 swsm2 = 0;
 197        bool force_clear_smbi = false;
 198
 199        /* Set media type and media-dependent function pointers */
 200        switch (hw->adapter->pdev->device) {
 201        case E1000_DEV_ID_82571EB_FIBER:
 202        case E1000_DEV_ID_82572EI_FIBER:
 203        case E1000_DEV_ID_82571EB_QUAD_FIBER:
 204                hw->phy.media_type = e1000_media_type_fiber;
 205                mac->ops.setup_physical_interface =
 206                    e1000_setup_fiber_serdes_link_82571;
 207                mac->ops.check_for_link = e1000e_check_for_fiber_link;
 208                mac->ops.get_link_up_info =
 209                    e1000e_get_speed_and_duplex_fiber_serdes;
 210                break;
 211        case E1000_DEV_ID_82571EB_SERDES:
 212        case E1000_DEV_ID_82571EB_SERDES_DUAL:
 213        case E1000_DEV_ID_82571EB_SERDES_QUAD:
 214        case E1000_DEV_ID_82572EI_SERDES:
 215                hw->phy.media_type = e1000_media_type_internal_serdes;
 216                mac->ops.setup_physical_interface =
 217                    e1000_setup_fiber_serdes_link_82571;
 218                mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
 219                mac->ops.get_link_up_info =
 220                    e1000e_get_speed_and_duplex_fiber_serdes;
 221                break;
 222        default:
 223                hw->phy.media_type = e1000_media_type_copper;
 224                mac->ops.setup_physical_interface =
 225                    e1000_setup_copper_link_82571;
 226                mac->ops.check_for_link = e1000e_check_for_copper_link;
 227                mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
 228                break;
 229        }
 230
 231        /* Set mta register count */
 232        mac->mta_reg_count = 128;
 233        /* Set rar entry count */
 234        mac->rar_entry_count = E1000_RAR_ENTRIES;
 235        /* Adaptive IFS supported */
 236        mac->adaptive_ifs = true;
 237
 238        /* MAC-specific function pointers */
 239        switch (hw->mac.type) {
 240        case e1000_82573:
 241                mac->ops.set_lan_id = e1000_set_lan_id_single_port;
 242                mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
 243                mac->ops.led_on = e1000e_led_on_generic;
 244                mac->ops.blink_led = e1000e_blink_led_generic;
 245
 246                /* FWSM register */
 247                mac->has_fwsm = true;
 248                /* ARC supported; valid only if manageability features are
 249                 * enabled.
 250                 */
 251                mac->arc_subsystem_valid = !!(er32(FWSM) &
 252                                              E1000_FWSM_MODE_MASK);
 253                break;
 254        case e1000_82574:
 255        case e1000_82583:
 256                mac->ops.set_lan_id = e1000_set_lan_id_single_port;
 257                mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
 258                mac->ops.led_on = e1000_led_on_82574;
 259                break;
 260        default:
 261                mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
 262                mac->ops.led_on = e1000e_led_on_generic;
 263                mac->ops.blink_led = e1000e_blink_led_generic;
 264
 265                /* FWSM register */
 266                mac->has_fwsm = true;
 267                break;
 268        }
 269
 270        /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
 271         * first NVM or PHY access. This should be done for single-port
 272         * devices, and for one port only on dual-port devices so that
 273         * for those devices we can still use the SMBI lock to synchronize
 274         * inter-port accesses to the PHY & NVM.
 275         */
 276        switch (hw->mac.type) {
 277        case e1000_82571:
 278        case e1000_82572:
 279                swsm2 = er32(SWSM2);
 280
 281                if (!(swsm2 & E1000_SWSM2_LOCK)) {
 282                        /* Only do this for the first interface on this card */
 283                        ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
 284                        force_clear_smbi = true;
 285                } else {
 286                        force_clear_smbi = false;
 287                }
 288                break;
 289        default:
 290                force_clear_smbi = true;
 291                break;
 292        }
 293
 294        if (force_clear_smbi) {
 295                /* Make sure SWSM.SMBI is clear */
 296                swsm = er32(SWSM);
 297                if (swsm & E1000_SWSM_SMBI) {
 298                        /* This bit should not be set on a first interface, and
 299                         * indicates that the bootagent or EFI code has
 300                         * improperly left this bit enabled
 301                         */
 302                        e_dbg("Please update your 82571 Bootagent\n");
 303                }
 304                ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
 305        }
 306
 307        /* Initialize device specific counter of SMBI acquisition timeouts. */
 308        hw->dev_spec.e82571.smb_counter = 0;
 309
 310        return 0;
 311}
 312
 313static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
 314{
 315        struct e1000_hw *hw = &adapter->hw;
 316        static int global_quad_port_a;  /* global port a indication */
 317        struct pci_dev *pdev = adapter->pdev;
 318        int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
 319        s32 rc;
 320
 321        rc = e1000_init_mac_params_82571(hw);
 322        if (rc)
 323                return rc;
 324
 325        rc = e1000_init_nvm_params_82571(hw);
 326        if (rc)
 327                return rc;
 328
 329        rc = e1000_init_phy_params_82571(hw);
 330        if (rc)
 331                return rc;
 332
 333        /* tag quad port adapters first, it's used below */
 334        switch (pdev->device) {
 335        case E1000_DEV_ID_82571EB_QUAD_COPPER:
 336        case E1000_DEV_ID_82571EB_QUAD_FIBER:
 337        case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
 338        case E1000_DEV_ID_82571PT_QUAD_COPPER:
 339                adapter->flags |= FLAG_IS_QUAD_PORT;
 340                /* mark the first port */
 341                if (global_quad_port_a == 0)
 342                        adapter->flags |= FLAG_IS_QUAD_PORT_A;
 343                /* Reset for multiple quad port adapters */
 344                global_quad_port_a++;
 345                if (global_quad_port_a == 4)
 346                        global_quad_port_a = 0;
 347                break;
 348        default:
 349                break;
 350        }
 351
 352        switch (adapter->hw.mac.type) {
 353        case e1000_82571:
 354                /* these dual ports don't have WoL on port B at all */
 355                if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
 356                     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
 357                     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
 358                    (is_port_b))
 359                        adapter->flags &= ~FLAG_HAS_WOL;
 360                /* quad ports only support WoL on port A */
 361                if (adapter->flags & FLAG_IS_QUAD_PORT &&
 362                    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
 363                        adapter->flags &= ~FLAG_HAS_WOL;
 364                /* Does not support WoL on any port */
 365                if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
 366                        adapter->flags &= ~FLAG_HAS_WOL;
 367                break;
 368        case e1000_82573:
 369                if (pdev->device == E1000_DEV_ID_82573L) {
 370                        adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
 371                        adapter->max_hw_frame_size = DEFAULT_JUMBO;
 372                }
 373                break;
 374        default:
 375                break;
 376        }
 377
 378        return 0;
 379}
 380
 381/**
 382 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 383 *  @hw: pointer to the HW structure
 384 *
 385 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 386 *  revision in the hardware structure.
 387 **/
 388static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
 389{
 390        struct e1000_phy_info *phy = &hw->phy;
 391        s32 ret_val;
 392        u16 phy_id = 0;
 393
 394        switch (hw->mac.type) {
 395        case e1000_82571:
 396        case e1000_82572:
 397                /* The 82571 firmware may still be configuring the PHY.
 398                 * In this case, we cannot access the PHY until the
 399                 * configuration is done.  So we explicitly set the
 400                 * PHY ID.
 401                 */
 402                phy->id = IGP01E1000_I_PHY_ID;
 403                break;
 404        case e1000_82573:
 405                return e1000e_get_phy_id(hw);
 406        case e1000_82574:
 407        case e1000_82583:
 408                ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
 409                if (ret_val)
 410                        return ret_val;
 411
 412                phy->id = (u32)(phy_id << 16);
 413                usleep_range(20, 40);
 414                ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
 415                if (ret_val)
 416                        return ret_val;
 417
 418                phy->id |= (u32)(phy_id);
 419                phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 420                break;
 421        default:
 422                return -E1000_ERR_PHY;
 423        }
 424
 425        return 0;
 426}
 427
 428/**
 429 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 430 *  @hw: pointer to the HW structure
 431 *
 432 *  Acquire the HW semaphore to access the PHY or NVM
 433 **/
 434static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
 435{
 436        u32 swsm;
 437        s32 sw_timeout = hw->nvm.word_size + 1;
 438        s32 fw_timeout = hw->nvm.word_size + 1;
 439        s32 i = 0;
 440
 441        /* If we have timedout 3 times on trying to acquire
 442         * the inter-port SMBI semaphore, there is old code
 443         * operating on the other port, and it is not
 444         * releasing SMBI. Modify the number of times that
 445         * we try for the semaphore to interwork with this
 446         * older code.
 447         */
 448        if (hw->dev_spec.e82571.smb_counter > 2)
 449                sw_timeout = 1;
 450
 451        /* Get the SW semaphore */
 452        while (i < sw_timeout) {
 453                swsm = er32(SWSM);
 454                if (!(swsm & E1000_SWSM_SMBI))
 455                        break;
 456
 457                usleep_range(50, 100);
 458                i++;
 459        }
 460
 461        if (i == sw_timeout) {
 462                e_dbg("Driver can't access device - SMBI bit is set.\n");
 463                hw->dev_spec.e82571.smb_counter++;
 464        }
 465        /* Get the FW semaphore. */
 466        for (i = 0; i < fw_timeout; i++) {
 467                swsm = er32(SWSM);
 468                ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
 469
 470                /* Semaphore acquired if bit latched */
 471                if (er32(SWSM) & E1000_SWSM_SWESMBI)
 472                        break;
 473
 474                usleep_range(50, 100);
 475        }
 476
 477        if (i == fw_timeout) {
 478                /* Release semaphores */
 479                e1000_put_hw_semaphore_82571(hw);
 480                e_dbg("Driver can't access the NVM\n");
 481                return -E1000_ERR_NVM;
 482        }
 483
 484        return 0;
 485}
 486
 487/**
 488 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 489 *  @hw: pointer to the HW structure
 490 *
 491 *  Release hardware semaphore used to access the PHY or NVM
 492 **/
 493static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
 494{
 495        u32 swsm;
 496
 497        swsm = er32(SWSM);
 498        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
 499        ew32(SWSM, swsm);
 500}
 501
 502/**
 503 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
 504 *  @hw: pointer to the HW structure
 505 *
 506 *  Acquire the HW semaphore during reset.
 507 *
 508 **/
 509static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
 510{
 511        u32 extcnf_ctrl;
 512        s32 i = 0;
 513
 514        extcnf_ctrl = er32(EXTCNF_CTRL);
 515        do {
 516                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
 517                ew32(EXTCNF_CTRL, extcnf_ctrl);
 518                extcnf_ctrl = er32(EXTCNF_CTRL);
 519
 520                if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
 521                        break;
 522
 523                usleep_range(2000, 4000);
 524                i++;
 525        } while (i < MDIO_OWNERSHIP_TIMEOUT);
 526
 527        if (i == MDIO_OWNERSHIP_TIMEOUT) {
 528                /* Release semaphores */
 529                e1000_put_hw_semaphore_82573(hw);
 530                e_dbg("Driver can't access the PHY\n");
 531                return -E1000_ERR_PHY;
 532        }
 533
 534        return 0;
 535}
 536
 537/**
 538 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
 539 *  @hw: pointer to the HW structure
 540 *
 541 *  Release hardware semaphore used during reset.
 542 *
 543 **/
 544static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
 545{
 546        u32 extcnf_ctrl;
 547
 548        extcnf_ctrl = er32(EXTCNF_CTRL);
 549        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
 550        ew32(EXTCNF_CTRL, extcnf_ctrl);
 551}
 552
 553static DEFINE_MUTEX(swflag_mutex);
 554
 555/**
 556 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
 557 *  @hw: pointer to the HW structure
 558 *
 559 *  Acquire the HW semaphore to access the PHY or NVM.
 560 *
 561 **/
 562static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
 563{
 564        s32 ret_val;
 565
 566        mutex_lock(&swflag_mutex);
 567        ret_val = e1000_get_hw_semaphore_82573(hw);
 568        if (ret_val)
 569                mutex_unlock(&swflag_mutex);
 570        return ret_val;
 571}
 572
 573/**
 574 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
 575 *  @hw: pointer to the HW structure
 576 *
 577 *  Release hardware semaphore used to access the PHY or NVM
 578 *
 579 **/
 580static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
 581{
 582        e1000_put_hw_semaphore_82573(hw);
 583        mutex_unlock(&swflag_mutex);
 584}
 585
 586/**
 587 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
 588 *  @hw: pointer to the HW structure
 589 *  @active: true to enable LPLU, false to disable
 590 *
 591 *  Sets the LPLU D0 state according to the active flag.
 592 *  LPLU will not be activated unless the
 593 *  device autonegotiation advertisement meets standards of
 594 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 595 *  This is a function pointer entry point only called by
 596 *  PHY setup routines.
 597 **/
 598static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
 599{
 600        u32 data = er32(POEMB);
 601
 602        if (active)
 603                data |= E1000_PHY_CTRL_D0A_LPLU;
 604        else
 605                data &= ~E1000_PHY_CTRL_D0A_LPLU;
 606
 607        ew32(POEMB, data);
 608        return 0;
 609}
 610
 611/**
 612 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
 613 *  @hw: pointer to the HW structure
 614 *  @active: boolean used to enable/disable lplu
 615 *
 616 *  The low power link up (lplu) state is set to the power management level D3
 617 *  when active is true, else clear lplu for D3. LPLU
 618 *  is used during Dx states where the power conservation is most important.
 619 *  During driver activity, SmartSpeed should be enabled so performance is
 620 *  maintained.
 621 **/
 622static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
 623{
 624        u32 data = er32(POEMB);
 625
 626        if (!active) {
 627                data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
 628        } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
 629                   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
 630                   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
 631                data |= E1000_PHY_CTRL_NOND0A_LPLU;
 632        }
 633
 634        ew32(POEMB, data);
 635        return 0;
 636}
 637
 638/**
 639 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 640 *  @hw: pointer to the HW structure
 641 *
 642 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 643 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 644 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 645 *  hardware semaphore.
 646 **/
 647static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
 648{
 649        s32 ret_val;
 650
 651        ret_val = e1000_get_hw_semaphore_82571(hw);
 652        if (ret_val)
 653                return ret_val;
 654
 655        switch (hw->mac.type) {
 656        case e1000_82573:
 657                break;
 658        default:
 659                ret_val = e1000e_acquire_nvm(hw);
 660                break;
 661        }
 662
 663        if (ret_val)
 664                e1000_put_hw_semaphore_82571(hw);
 665
 666        return ret_val;
 667}
 668
 669/**
 670 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 671 *  @hw: pointer to the HW structure
 672 *
 673 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 674 **/
 675static void e1000_release_nvm_82571(struct e1000_hw *hw)
 676{
 677        e1000e_release_nvm(hw);
 678        e1000_put_hw_semaphore_82571(hw);
 679}
 680
 681/**
 682 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 683 *  @hw: pointer to the HW structure
 684 *  @offset: offset within the EEPROM to be written to
 685 *  @words: number of words to write
 686 *  @data: 16 bit word(s) to be written to the EEPROM
 687 *
 688 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 689 *
 690 *  If e1000e_update_nvm_checksum is not called after this function, the
 691 *  EEPROM will most likely contain an invalid checksum.
 692 **/
 693static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
 694                                 u16 *data)
 695{
 696        s32 ret_val;
 697
 698        switch (hw->mac.type) {
 699        case e1000_82573:
 700        case e1000_82574:
 701        case e1000_82583:
 702                ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
 703                break;
 704        case e1000_82571:
 705        case e1000_82572:
 706                ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
 707                break;
 708        default:
 709                ret_val = -E1000_ERR_NVM;
 710                break;
 711        }
 712
 713        return ret_val;
 714}
 715
 716/**
 717 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 718 *  @hw: pointer to the HW structure
 719 *
 720 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 721 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 722 *  value to the EEPROM.
 723 **/
 724static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
 725{
 726        u32 eecd;
 727        s32 ret_val;
 728        u16 i;
 729
 730        ret_val = e1000e_update_nvm_checksum_generic(hw);
 731        if (ret_val)
 732                return ret_val;
 733
 734        /* If our nvm is an EEPROM, then we're done
 735         * otherwise, commit the checksum to the flash NVM.
 736         */
 737        if (hw->nvm.type != e1000_nvm_flash_hw)
 738                return 0;
 739
 740        /* Check for pending operations. */
 741        for (i = 0; i < E1000_FLASH_UPDATES; i++) {
 742                usleep_range(1000, 2000);
 743                if (!(er32(EECD) & E1000_EECD_FLUPD))
 744                        break;
 745        }
 746
 747        if (i == E1000_FLASH_UPDATES)
 748                return -E1000_ERR_NVM;
 749
 750        /* Reset the firmware if using STM opcode. */
 751        if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
 752                /* The enabling of and the actual reset must be done
 753                 * in two write cycles.
 754                 */
 755                ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
 756                e1e_flush();
 757                ew32(HICR, E1000_HICR_FW_RESET);
 758        }
 759
 760        /* Commit the write to flash */
 761        eecd = er32(EECD) | E1000_EECD_FLUPD;
 762        ew32(EECD, eecd);
 763
 764        for (i = 0; i < E1000_FLASH_UPDATES; i++) {
 765                usleep_range(1000, 2000);
 766                if (!(er32(EECD) & E1000_EECD_FLUPD))
 767                        break;
 768        }
 769
 770        if (i == E1000_FLASH_UPDATES)
 771                return -E1000_ERR_NVM;
 772
 773        return 0;
 774}
 775
 776/**
 777 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 778 *  @hw: pointer to the HW structure
 779 *
 780 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 781 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 782 **/
 783static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
 784{
 785        if (hw->nvm.type == e1000_nvm_flash_hw)
 786                e1000_fix_nvm_checksum_82571(hw);
 787
 788        return e1000e_validate_nvm_checksum_generic(hw);
 789}
 790
 791/**
 792 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 793 *  @hw: pointer to the HW structure
 794 *  @offset: offset within the EEPROM to be written to
 795 *  @words: number of words to write
 796 *  @data: 16 bit word(s) to be written to the EEPROM
 797 *
 798 *  After checking for invalid values, poll the EEPROM to ensure the previous
 799 *  command has completed before trying to write the next word.  After write
 800 *  poll for completion.
 801 *
 802 *  If e1000e_update_nvm_checksum is not called after this function, the
 803 *  EEPROM will most likely contain an invalid checksum.
 804 **/
 805static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
 806                                      u16 words, u16 *data)
 807{
 808        struct e1000_nvm_info *nvm = &hw->nvm;
 809        u32 i, eewr = 0;
 810        s32 ret_val = 0;
 811
 812        /* A check for invalid values:  offset too large, too many words,
 813         * and not enough words.
 814         */
 815        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 816            (words == 0)) {
 817                e_dbg("nvm parameter(s) out of bounds\n");
 818                return -E1000_ERR_NVM;
 819        }
 820
 821        for (i = 0; i < words; i++) {
 822                eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
 823                        ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
 824                        E1000_NVM_RW_REG_START);
 825
 826                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
 827                if (ret_val)
 828                        break;
 829
 830                ew32(EEWR, eewr);
 831
 832                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
 833                if (ret_val)
 834                        break;
 835        }
 836
 837        return ret_val;
 838}
 839
 840/**
 841 *  e1000_get_cfg_done_82571 - Poll for configuration done
 842 *  @hw: pointer to the HW structure
 843 *
 844 *  Reads the management control register for the config done bit to be set.
 845 **/
 846static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
 847{
 848        s32 timeout = PHY_CFG_TIMEOUT;
 849
 850        while (timeout) {
 851                if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
 852                        break;
 853                usleep_range(1000, 2000);
 854                timeout--;
 855        }
 856        if (!timeout) {
 857                e_dbg("MNG configuration cycle has not completed.\n");
 858                return -E1000_ERR_RESET;
 859        }
 860
 861        return 0;
 862}
 863
 864/**
 865 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 866 *  @hw: pointer to the HW structure
 867 *  @active: true to enable LPLU, false to disable
 868 *
 869 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 870 *  this function also disables smart speed and vice versa.  LPLU will not be
 871 *  activated unless the device autonegotiation advertisement meets standards
 872 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 873 *  pointer entry point only called by PHY setup routines.
 874 **/
 875static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
 876{
 877        struct e1000_phy_info *phy = &hw->phy;
 878        s32 ret_val;
 879        u16 data;
 880
 881        ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 882        if (ret_val)
 883                return ret_val;
 884
 885        if (active) {
 886                data |= IGP02E1000_PM_D0_LPLU;
 887                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
 888                if (ret_val)
 889                        return ret_val;
 890
 891                /* When LPLU is enabled, we should disable SmartSpeed */
 892                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
 893                if (ret_val)
 894                        return ret_val;
 895                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 896                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
 897                if (ret_val)
 898                        return ret_val;
 899        } else {
 900                data &= ~IGP02E1000_PM_D0_LPLU;
 901                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
 902                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 903                 * during Dx states where the power conservation is most
 904                 * important.  During driver activity we should enable
 905                 * SmartSpeed, so performance is maintained.
 906                 */
 907                if (phy->smart_speed == e1000_smart_speed_on) {
 908                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 909                                           &data);
 910                        if (ret_val)
 911                                return ret_val;
 912
 913                        data |= IGP01E1000_PSCFR_SMART_SPEED;
 914                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 915                                           data);
 916                        if (ret_val)
 917                                return ret_val;
 918                } else if (phy->smart_speed == e1000_smart_speed_off) {
 919                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 920                                           &data);
 921                        if (ret_val)
 922                                return ret_val;
 923
 924                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 925                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 926                                           data);
 927                        if (ret_val)
 928                                return ret_val;
 929                }
 930        }
 931
 932        return 0;
 933}
 934
 935/**
 936 *  e1000_reset_hw_82571 - Reset hardware
 937 *  @hw: pointer to the HW structure
 938 *
 939 *  This resets the hardware into a known state.
 940 **/
 941static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
 942{
 943        u32 ctrl, ctrl_ext, eecd, tctl;
 944        s32 ret_val;
 945
 946        /* Prevent the PCI-E bus from sticking if there is no TLP connection
 947         * on the last TLP read/write transaction when MAC is reset.
 948         */
 949        ret_val = e1000e_disable_pcie_master(hw);
 950        if (ret_val)
 951                e_dbg("PCI-E Master disable polling has failed.\n");
 952
 953        e_dbg("Masking off all interrupts\n");
 954        ew32(IMC, 0xffffffff);
 955
 956        ew32(RCTL, 0);
 957        tctl = er32(TCTL);
 958        tctl &= ~E1000_TCTL_EN;
 959        ew32(TCTL, tctl);
 960        e1e_flush();
 961
 962        usleep_range(10000, 11000);
 963
 964        /* Must acquire the MDIO ownership before MAC reset.
 965         * Ownership defaults to firmware after a reset.
 966         */
 967        switch (hw->mac.type) {
 968        case e1000_82573:
 969                ret_val = e1000_get_hw_semaphore_82573(hw);
 970                break;
 971        case e1000_82574:
 972        case e1000_82583:
 973                ret_val = e1000_get_hw_semaphore_82574(hw);
 974                break;
 975        default:
 976                break;
 977        }
 978
 979        ctrl = er32(CTRL);
 980
 981        e_dbg("Issuing a global reset to MAC\n");
 982        ew32(CTRL, ctrl | E1000_CTRL_RST);
 983
 984        /* Must release MDIO ownership and mutex after MAC reset. */
 985        switch (hw->mac.type) {
 986        case e1000_82573:
 987                /* Release mutex only if the hw semaphore is acquired */
 988                if (!ret_val)
 989                        e1000_put_hw_semaphore_82573(hw);
 990                break;
 991        case e1000_82574:
 992        case e1000_82583:
 993                /* Release mutex only if the hw semaphore is acquired */
 994                if (!ret_val)
 995                        e1000_put_hw_semaphore_82574(hw);
 996                break;
 997        default:
 998                break;
 999        }
1000
1001        if (hw->nvm.type == e1000_nvm_flash_hw) {
1002                usleep_range(10, 20);
1003                ctrl_ext = er32(CTRL_EXT);
1004                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1005                ew32(CTRL_EXT, ctrl_ext);
1006                e1e_flush();
1007        }
1008
1009        ret_val = e1000e_get_auto_rd_done(hw);
1010        if (ret_val)
1011                /* We don't want to continue accessing MAC registers. */
1012                return ret_val;
1013
1014        /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1015         * Need to wait for Phy configuration completion before accessing
1016         * NVM and Phy.
1017         */
1018
1019        switch (hw->mac.type) {
1020        case e1000_82571:
1021        case e1000_82572:
1022                /* REQ and GNT bits need to be cleared when using AUTO_RD
1023                 * to access the EEPROM.
1024                 */
1025                eecd = er32(EECD);
1026                eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1027                ew32(EECD, eecd);
1028                break;
1029        case e1000_82573:
1030        case e1000_82574:
1031        case e1000_82583:
1032                msleep(25);
1033                break;
1034        default:
1035                break;
1036        }
1037
1038        /* Clear any pending interrupt events. */
1039        ew32(IMC, 0xffffffff);
1040        er32(ICR);
1041
1042        if (hw->mac.type == e1000_82571) {
1043                /* Install any alternate MAC address into RAR0 */
1044                ret_val = e1000_check_alt_mac_addr_generic(hw);
1045                if (ret_val)
1046                        return ret_val;
1047
1048                e1000e_set_laa_state_82571(hw, true);
1049        }
1050
1051        /* Reinitialize the 82571 serdes link state machine */
1052        if (hw->phy.media_type == e1000_media_type_internal_serdes)
1053                hw->mac.serdes_link_state = e1000_serdes_link_down;
1054
1055        return 0;
1056}
1057
1058/**
1059 *  e1000_init_hw_82571 - Initialize hardware
1060 *  @hw: pointer to the HW structure
1061 *
1062 *  This inits the hardware readying it for operation.
1063 **/
1064static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1065{
1066        struct e1000_mac_info *mac = &hw->mac;
1067        u32 reg_data;
1068        s32 ret_val;
1069        u16 i, rar_count = mac->rar_entry_count;
1070
1071        e1000_initialize_hw_bits_82571(hw);
1072
1073        /* Initialize identification LED */
1074        ret_val = mac->ops.id_led_init(hw);
1075        /* An error is not fatal and we should not stop init due to this */
1076        if (ret_val)
1077                e_dbg("Error initializing identification LED\n");
1078
1079        /* Disabling VLAN filtering */
1080        e_dbg("Initializing the IEEE VLAN\n");
1081        mac->ops.clear_vfta(hw);
1082
1083        /* Setup the receive address.
1084         * If, however, a locally administered address was assigned to the
1085         * 82571, we must reserve a RAR for it to work around an issue where
1086         * resetting one port will reload the MAC on the other port.
1087         */
1088        if (e1000e_get_laa_state_82571(hw))
1089                rar_count--;
1090        e1000e_init_rx_addrs(hw, rar_count);
1091
1092        /* Zero out the Multicast HASH table */
1093        e_dbg("Zeroing the MTA\n");
1094        for (i = 0; i < mac->mta_reg_count; i++)
1095                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1096
1097        /* Setup link and flow control */
1098        ret_val = mac->ops.setup_link(hw);
1099
1100        /* Set the transmit descriptor write-back policy */
1101        reg_data = er32(TXDCTL(0));
1102        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1103                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1104        ew32(TXDCTL(0), reg_data);
1105
1106        /* ...for both queues. */
1107        switch (mac->type) {
1108        case e1000_82573:
1109                e1000e_enable_tx_pkt_filtering(hw);
1110                /* fall through */
1111        case e1000_82574:
1112        case e1000_82583:
1113                reg_data = er32(GCR);
1114                reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1115                ew32(GCR, reg_data);
1116                break;
1117        default:
1118                reg_data = er32(TXDCTL(1));
1119                reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1120                            E1000_TXDCTL_FULL_TX_DESC_WB |
1121                            E1000_TXDCTL_COUNT_DESC);
1122                ew32(TXDCTL(1), reg_data);
1123                break;
1124        }
1125
1126        /* Clear all of the statistics registers (clear on read).  It is
1127         * important that we do this after we have tried to establish link
1128         * because the symbol error count will increment wildly if there
1129         * is no link.
1130         */
1131        e1000_clear_hw_cntrs_82571(hw);
1132
1133        return ret_val;
1134}
1135
1136/**
1137 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1138 *  @hw: pointer to the HW structure
1139 *
1140 *  Initializes required hardware-dependent bits needed for normal operation.
1141 **/
1142static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1143{
1144        u32 reg;
1145
1146        /* Transmit Descriptor Control 0 */
1147        reg = er32(TXDCTL(0));
1148        reg |= BIT(22);
1149        ew32(TXDCTL(0), reg);
1150
1151        /* Transmit Descriptor Control 1 */
1152        reg = er32(TXDCTL(1));
1153        reg |= BIT(22);
1154        ew32(TXDCTL(1), reg);
1155
1156        /* Transmit Arbitration Control 0 */
1157        reg = er32(TARC(0));
1158        reg &= ~(0xF << 27);    /* 30:27 */
1159        switch (hw->mac.type) {
1160        case e1000_82571:
1161        case e1000_82572:
1162                reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1163                break;
1164        case e1000_82574:
1165        case e1000_82583:
1166                reg |= BIT(26);
1167                break;
1168        default:
1169                break;
1170        }
1171        ew32(TARC(0), reg);
1172
1173        /* Transmit Arbitration Control 1 */
1174        reg = er32(TARC(1));
1175        switch (hw->mac.type) {
1176        case e1000_82571:
1177        case e1000_82572:
1178                reg &= ~(BIT(29) | BIT(30));
1179                reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1180                if (er32(TCTL) & E1000_TCTL_MULR)
1181                        reg &= ~BIT(28);
1182                else
1183                        reg |= BIT(28);
1184                ew32(TARC(1), reg);
1185                break;
1186        default:
1187                break;
1188        }
1189
1190        /* Device Control */
1191        switch (hw->mac.type) {
1192        case e1000_82573:
1193        case e1000_82574:
1194        case e1000_82583:
1195                reg = er32(CTRL);
1196                reg &= ~BIT(29);
1197                ew32(CTRL, reg);
1198                break;
1199        default:
1200                break;
1201        }
1202
1203        /* Extended Device Control */
1204        switch (hw->mac.type) {
1205        case e1000_82573:
1206        case e1000_82574:
1207        case e1000_82583:
1208                reg = er32(CTRL_EXT);
1209                reg &= ~BIT(23);
1210                reg |= BIT(22);
1211                ew32(CTRL_EXT, reg);
1212                break;
1213        default:
1214                break;
1215        }
1216
1217        if (hw->mac.type == e1000_82571) {
1218                reg = er32(PBA_ECC);
1219                reg |= E1000_PBA_ECC_CORR_EN;
1220                ew32(PBA_ECC, reg);
1221        }
1222
1223        /* Workaround for hardware errata.
1224         * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1225         */
1226        if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1227                reg = er32(CTRL_EXT);
1228                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1229                ew32(CTRL_EXT, reg);
1230        }
1231
1232        /* Disable IPv6 extension header parsing because some malformed
1233         * IPv6 headers can hang the Rx.
1234         */
1235        if (hw->mac.type <= e1000_82573) {
1236                reg = er32(RFCTL);
1237                reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1238                ew32(RFCTL, reg);
1239        }
1240
1241        /* PCI-Ex Control Registers */
1242        switch (hw->mac.type) {
1243        case e1000_82574:
1244        case e1000_82583:
1245                reg = er32(GCR);
1246                reg |= BIT(22);
1247                ew32(GCR, reg);
1248
1249                /* Workaround for hardware errata.
1250                 * apply workaround for hardware errata documented in errata
1251                 * docs Fixes issue where some error prone or unreliable PCIe
1252                 * completions are occurring, particularly with ASPM enabled.
1253                 * Without fix, issue can cause Tx timeouts.
1254                 */
1255                reg = er32(GCR2);
1256                reg |= 1;
1257                ew32(GCR2, reg);
1258                break;
1259        default:
1260                break;
1261        }
1262}
1263
1264/**
1265 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1266 *  @hw: pointer to the HW structure
1267 *
1268 *  Clears the register array which contains the VLAN filter table by
1269 *  setting all the values to 0.
1270 **/
1271static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1272{
1273        u32 offset;
1274        u32 vfta_value = 0;
1275        u32 vfta_offset = 0;
1276        u32 vfta_bit_in_reg = 0;
1277
1278        switch (hw->mac.type) {
1279        case e1000_82573:
1280        case e1000_82574:
1281        case e1000_82583:
1282                if (hw->mng_cookie.vlan_id != 0) {
1283                        /* The VFTA is a 4096b bit-field, each identifying
1284                         * a single VLAN ID.  The following operations
1285                         * determine which 32b entry (i.e. offset) into the
1286                         * array we want to set the VLAN ID (i.e. bit) of
1287                         * the manageability unit.
1288                         */
1289                        vfta_offset = (hw->mng_cookie.vlan_id >>
1290                                       E1000_VFTA_ENTRY_SHIFT) &
1291                            E1000_VFTA_ENTRY_MASK;
1292                        vfta_bit_in_reg =
1293                            BIT(hw->mng_cookie.vlan_id &
1294                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1295                }
1296                break;
1297        default:
1298                break;
1299        }
1300        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1301                /* If the offset we want to clear is the same offset of the
1302                 * manageability VLAN ID, then clear all bits except that of
1303                 * the manageability unit.
1304                 */
1305                vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1306                E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1307                e1e_flush();
1308        }
1309}
1310
1311/**
1312 *  e1000_check_mng_mode_82574 - Check manageability is enabled
1313 *  @hw: pointer to the HW structure
1314 *
1315 *  Reads the NVM Initialization Control Word 2 and returns true
1316 *  (>0) if any manageability is enabled, else false (0).
1317 **/
1318static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1319{
1320        u16 data;
1321
1322        e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1323        return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1324}
1325
1326/**
1327 *  e1000_led_on_82574 - Turn LED on
1328 *  @hw: pointer to the HW structure
1329 *
1330 *  Turn LED on.
1331 **/
1332static s32 e1000_led_on_82574(struct e1000_hw *hw)
1333{
1334        u32 ctrl;
1335        u32 i;
1336
1337        ctrl = hw->mac.ledctl_mode2;
1338        if (!(E1000_STATUS_LU & er32(STATUS))) {
1339                /* If no link, then turn LED on by setting the invert bit
1340                 * for each LED that's "on" (0x0E) in ledctl_mode2.
1341                 */
1342                for (i = 0; i < 4; i++)
1343                        if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1344                            E1000_LEDCTL_MODE_LED_ON)
1345                                ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1346        }
1347        ew32(LEDCTL, ctrl);
1348
1349        return 0;
1350}
1351
1352/**
1353 *  e1000_check_phy_82574 - check 82574 phy hung state
1354 *  @hw: pointer to the HW structure
1355 *
1356 *  Returns whether phy is hung or not
1357 **/
1358bool e1000_check_phy_82574(struct e1000_hw *hw)
1359{
1360        u16 status_1kbt = 0;
1361        u16 receive_errors = 0;
1362        s32 ret_val;
1363
1364        /* Read PHY Receive Error counter first, if its is max - all F's then
1365         * read the Base1000T status register If both are max then PHY is hung.
1366         */
1367        ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1368        if (ret_val)
1369                return false;
1370        if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1371                ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1372                if (ret_val)
1373                        return false;
1374                if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1375                    E1000_IDLE_ERROR_COUNT_MASK)
1376                        return true;
1377        }
1378
1379        return false;
1380}
1381
1382/**
1383 *  e1000_setup_link_82571 - Setup flow control and link settings
1384 *  @hw: pointer to the HW structure
1385 *
1386 *  Determines which flow control settings to use, then configures flow
1387 *  control.  Calls the appropriate media-specific link configuration
1388 *  function.  Assuming the adapter has a valid link partner, a valid link
1389 *  should be established.  Assumes the hardware has previously been reset
1390 *  and the transmitter and receiver are not enabled.
1391 **/
1392static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1393{
1394        /* 82573 does not have a word in the NVM to determine
1395         * the default flow control setting, so we explicitly
1396         * set it to full.
1397         */
1398        switch (hw->mac.type) {
1399        case e1000_82573:
1400        case e1000_82574:
1401        case e1000_82583:
1402                if (hw->fc.requested_mode == e1000_fc_default)
1403                        hw->fc.requested_mode = e1000_fc_full;
1404                break;
1405        default:
1406                break;
1407        }
1408
1409        return e1000e_setup_link_generic(hw);
1410}
1411
1412/**
1413 *  e1000_setup_copper_link_82571 - Configure copper link settings
1414 *  @hw: pointer to the HW structure
1415 *
1416 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1417 *  for link, once link is established calls to configure collision distance
1418 *  and flow control are called.
1419 **/
1420static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1421{
1422        u32 ctrl;
1423        s32 ret_val;
1424
1425        ctrl = er32(CTRL);
1426        ctrl |= E1000_CTRL_SLU;
1427        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1428        ew32(CTRL, ctrl);
1429
1430        switch (hw->phy.type) {
1431        case e1000_phy_m88:
1432        case e1000_phy_bm:
1433                ret_val = e1000e_copper_link_setup_m88(hw);
1434                break;
1435        case e1000_phy_igp_2:
1436                ret_val = e1000e_copper_link_setup_igp(hw);
1437                break;
1438        default:
1439                return -E1000_ERR_PHY;
1440        }
1441
1442        if (ret_val)
1443                return ret_val;
1444
1445        return e1000e_setup_copper_link(hw);
1446}
1447
1448/**
1449 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1450 *  @hw: pointer to the HW structure
1451 *
1452 *  Configures collision distance and flow control for fiber and serdes links.
1453 *  Upon successful setup, poll for link.
1454 **/
1455static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1456{
1457        switch (hw->mac.type) {
1458        case e1000_82571:
1459        case e1000_82572:
1460                /* If SerDes loopback mode is entered, there is no form
1461                 * of reset to take the adapter out of that mode.  So we
1462                 * have to explicitly take the adapter out of loopback
1463                 * mode.  This prevents drivers from twiddling their thumbs
1464                 * if another tool failed to take it out of loopback mode.
1465                 */
1466                ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1467                break;
1468        default:
1469                break;
1470        }
1471
1472        return e1000e_setup_fiber_serdes_link(hw);
1473}
1474
1475/**
1476 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1477 *  @hw: pointer to the HW structure
1478 *
1479 *  Reports the link state as up or down.
1480 *
1481 *  If autonegotiation is supported by the link partner, the link state is
1482 *  determined by the result of autonegotiation. This is the most likely case.
1483 *  If autonegotiation is not supported by the link partner, and the link
1484 *  has a valid signal, force the link up.
1485 *
1486 *  The link state is represented internally here by 4 states:
1487 *
1488 *  1) down
1489 *  2) autoneg_progress
1490 *  3) autoneg_complete (the link successfully autonegotiated)
1491 *  4) forced_up (the link has been forced up, it did not autonegotiate)
1492 *
1493 **/
1494static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1495{
1496        struct e1000_mac_info *mac = &hw->mac;
1497        u32 rxcw;
1498        u32 ctrl;
1499        u32 status;
1500        u32 txcw;
1501        u32 i;
1502        s32 ret_val = 0;
1503
1504        ctrl = er32(CTRL);
1505        status = er32(STATUS);
1506        er32(RXCW);
1507        /* SYNCH bit and IV bit are sticky */
1508        usleep_range(10, 20);
1509        rxcw = er32(RXCW);
1510
1511        if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1512                /* Receiver is synchronized with no invalid bits.  */
1513                switch (mac->serdes_link_state) {
1514                case e1000_serdes_link_autoneg_complete:
1515                        if (!(status & E1000_STATUS_LU)) {
1516                                /* We have lost link, retry autoneg before
1517                                 * reporting link failure
1518                                 */
1519                                mac->serdes_link_state =
1520                                    e1000_serdes_link_autoneg_progress;
1521                                mac->serdes_has_link = false;
1522                                e_dbg("AN_UP     -> AN_PROG\n");
1523                        } else {
1524                                mac->serdes_has_link = true;
1525                        }
1526                        break;
1527
1528                case e1000_serdes_link_forced_up:
1529                        /* If we are receiving /C/ ordered sets, re-enable
1530                         * auto-negotiation in the TXCW register and disable
1531                         * forced link in the Device Control register in an
1532                         * attempt to auto-negotiate with our link partner.
1533                         */
1534                        if (rxcw & E1000_RXCW_C) {
1535                                /* Enable autoneg, and unforce link up */
1536                                ew32(TXCW, mac->txcw);
1537                                ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1538                                mac->serdes_link_state =
1539                                    e1000_serdes_link_autoneg_progress;
1540                                mac->serdes_has_link = false;
1541                                e_dbg("FORCED_UP -> AN_PROG\n");
1542                        } else {
1543                                mac->serdes_has_link = true;
1544                        }
1545                        break;
1546
1547                case e1000_serdes_link_autoneg_progress:
1548                        if (rxcw & E1000_RXCW_C) {
1549                                /* We received /C/ ordered sets, meaning the
1550                                 * link partner has autonegotiated, and we can
1551                                 * trust the Link Up (LU) status bit.
1552                                 */
1553                                if (status & E1000_STATUS_LU) {
1554                                        mac->serdes_link_state =
1555                                            e1000_serdes_link_autoneg_complete;
1556                                        e_dbg("AN_PROG   -> AN_UP\n");
1557                                        mac->serdes_has_link = true;
1558                                } else {
1559                                        /* Autoneg completed, but failed. */
1560                                        mac->serdes_link_state =
1561                                            e1000_serdes_link_down;
1562                                        e_dbg("AN_PROG   -> DOWN\n");
1563                                }
1564                        } else {
1565                                /* The link partner did not autoneg.
1566                                 * Force link up and full duplex, and change
1567                                 * state to forced.
1568                                 */
1569                                ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1570                                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1571                                ew32(CTRL, ctrl);
1572
1573                                /* Configure Flow Control after link up. */
1574                                ret_val = e1000e_config_fc_after_link_up(hw);
1575                                if (ret_val) {
1576                                        e_dbg("Error config flow control\n");
1577                                        break;
1578                                }
1579                                mac->serdes_link_state =
1580                                    e1000_serdes_link_forced_up;
1581                                mac->serdes_has_link = true;
1582                                e_dbg("AN_PROG   -> FORCED_UP\n");
1583                        }
1584                        break;
1585
1586                case e1000_serdes_link_down:
1587                default:
1588                        /* The link was down but the receiver has now gained
1589                         * valid sync, so lets see if we can bring the link
1590                         * up.
1591                         */
1592                        ew32(TXCW, mac->txcw);
1593                        ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1594                        mac->serdes_link_state =
1595                            e1000_serdes_link_autoneg_progress;
1596                        mac->serdes_has_link = false;
1597                        e_dbg("DOWN      -> AN_PROG\n");
1598                        break;
1599                }
1600        } else {
1601                if (!(rxcw & E1000_RXCW_SYNCH)) {
1602                        mac->serdes_has_link = false;
1603                        mac->serdes_link_state = e1000_serdes_link_down;
1604                        e_dbg("ANYSTATE  -> DOWN\n");
1605                } else {
1606                        /* Check several times, if SYNCH bit and CONFIG
1607                         * bit both are consistently 1 then simply ignore
1608                         * the IV bit and restart Autoneg
1609                         */
1610                        for (i = 0; i < AN_RETRY_COUNT; i++) {
1611                                usleep_range(10, 20);
1612                                rxcw = er32(RXCW);
1613                                if ((rxcw & E1000_RXCW_SYNCH) &&
1614                                    (rxcw & E1000_RXCW_C))
1615                                        continue;
1616
1617                                if (rxcw & E1000_RXCW_IV) {
1618                                        mac->serdes_has_link = false;
1619                                        mac->serdes_link_state =
1620                                            e1000_serdes_link_down;
1621                                        e_dbg("ANYSTATE  -> DOWN\n");
1622                                        break;
1623                                }
1624                        }
1625
1626                        if (i == AN_RETRY_COUNT) {
1627                                txcw = er32(TXCW);
1628                                txcw |= E1000_TXCW_ANE;
1629                                ew32(TXCW, txcw);
1630                                mac->serdes_link_state =
1631                                    e1000_serdes_link_autoneg_progress;
1632                                mac->serdes_has_link = false;
1633                                e_dbg("ANYSTATE  -> AN_PROG\n");
1634                        }
1635                }
1636        }
1637
1638        return ret_val;
1639}
1640
1641/**
1642 *  e1000_valid_led_default_82571 - Verify a valid default LED config
1643 *  @hw: pointer to the HW structure
1644 *  @data: pointer to the NVM (EEPROM)
1645 *
1646 *  Read the EEPROM for the current default LED configuration.  If the
1647 *  LED configuration is not valid, set to a valid LED configuration.
1648 **/
1649static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1650{
1651        s32 ret_val;
1652
1653        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1654        if (ret_val) {
1655                e_dbg("NVM Read Error\n");
1656                return ret_val;
1657        }
1658
1659        switch (hw->mac.type) {
1660        case e1000_82573:
1661        case e1000_82574:
1662        case e1000_82583:
1663                if (*data == ID_LED_RESERVED_F746)
1664                        *data = ID_LED_DEFAULT_82573;
1665                break;
1666        default:
1667                if (*data == ID_LED_RESERVED_0000 ||
1668                    *data == ID_LED_RESERVED_FFFF)
1669                        *data = ID_LED_DEFAULT;
1670                break;
1671        }
1672
1673        return 0;
1674}
1675
1676/**
1677 *  e1000e_get_laa_state_82571 - Get locally administered address state
1678 *  @hw: pointer to the HW structure
1679 *
1680 *  Retrieve and return the current locally administered address state.
1681 **/
1682bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1683{
1684        if (hw->mac.type != e1000_82571)
1685                return false;
1686
1687        return hw->dev_spec.e82571.laa_is_present;
1688}
1689
1690/**
1691 *  e1000e_set_laa_state_82571 - Set locally administered address state
1692 *  @hw: pointer to the HW structure
1693 *  @state: enable/disable locally administered address
1694 *
1695 *  Enable/Disable the current locally administered address state.
1696 **/
1697void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1698{
1699        if (hw->mac.type != e1000_82571)
1700                return;
1701
1702        hw->dev_spec.e82571.laa_is_present = state;
1703
1704        /* If workaround is activated... */
1705        if (state)
1706                /* Hold a copy of the LAA in RAR[14] This is done so that
1707                 * between the time RAR[0] gets clobbered and the time it
1708                 * gets fixed, the actual LAA is in one of the RARs and no
1709                 * incoming packets directed to this port are dropped.
1710                 * Eventually the LAA will be in RAR[0] and RAR[14].
1711                 */
1712                hw->mac.ops.rar_set(hw, hw->mac.addr,
1713                                    hw->mac.rar_entry_count - 1);
1714}
1715
1716/**
1717 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1718 *  @hw: pointer to the HW structure
1719 *
1720 *  Verifies that the EEPROM has completed the update.  After updating the
1721 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1722 *  the checksum fix is not implemented, we need to set the bit and update
1723 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1724 *  we need to return bad checksum.
1725 **/
1726static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1727{
1728        struct e1000_nvm_info *nvm = &hw->nvm;
1729        s32 ret_val;
1730        u16 data;
1731
1732        if (nvm->type != e1000_nvm_flash_hw)
1733                return 0;
1734
1735        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1736         * 10h-12h.  Checksum may need to be fixed.
1737         */
1738        ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1739        if (ret_val)
1740                return ret_val;
1741
1742        if (!(data & 0x10)) {
1743                /* Read 0x23 and check bit 15.  This bit is a 1
1744                 * when the checksum has already been fixed.  If
1745                 * the checksum is still wrong and this bit is a
1746                 * 1, we need to return bad checksum.  Otherwise,
1747                 * we need to set this bit to a 1 and update the
1748                 * checksum.
1749                 */
1750                ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1751                if (ret_val)
1752                        return ret_val;
1753
1754                if (!(data & 0x8000)) {
1755                        data |= 0x8000;
1756                        ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1757                        if (ret_val)
1758                                return ret_val;
1759                        ret_val = e1000e_update_nvm_checksum(hw);
1760                        if (ret_val)
1761                                return ret_val;
1762                }
1763        }
1764
1765        return 0;
1766}
1767
1768/**
1769 *  e1000_read_mac_addr_82571 - Read device MAC address
1770 *  @hw: pointer to the HW structure
1771 **/
1772static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1773{
1774        if (hw->mac.type == e1000_82571) {
1775                s32 ret_val;
1776
1777                /* If there's an alternate MAC address place it in RAR0
1778                 * so that it will override the Si installed default perm
1779                 * address.
1780                 */
1781                ret_val = e1000_check_alt_mac_addr_generic(hw);
1782                if (ret_val)
1783                        return ret_val;
1784        }
1785
1786        return e1000_read_mac_addr_generic(hw);
1787}
1788
1789/**
1790 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1791 * @hw: pointer to the HW structure
1792 *
1793 * In the case of a PHY power down to save power, or to turn off link during a
1794 * driver unload, or wake on lan is not enabled, remove the link.
1795 **/
1796static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1797{
1798        struct e1000_phy_info *phy = &hw->phy;
1799        struct e1000_mac_info *mac = &hw->mac;
1800
1801        if (!phy->ops.check_reset_block)
1802                return;
1803
1804        /* If the management interface is not enabled, then power down */
1805        if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1806                e1000_power_down_phy_copper(hw);
1807}
1808
1809/**
1810 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1811 *  @hw: pointer to the HW structure
1812 *
1813 *  Clears the hardware counters by reading the counter registers.
1814 **/
1815static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1816{
1817        e1000e_clear_hw_cntrs_base(hw);
1818
1819        er32(PRC64);
1820        er32(PRC127);
1821        er32(PRC255);
1822        er32(PRC511);
1823        er32(PRC1023);
1824        er32(PRC1522);
1825        er32(PTC64);
1826        er32(PTC127);
1827        er32(PTC255);
1828        er32(PTC511);
1829        er32(PTC1023);
1830        er32(PTC1522);
1831
1832        er32(ALGNERRC);
1833        er32(RXERRC);
1834        er32(TNCRS);
1835        er32(CEXTERR);
1836        er32(TSCTC);
1837        er32(TSCTFC);
1838
1839        er32(MGTPRC);
1840        er32(MGTPDC);
1841        er32(MGTPTC);
1842
1843        er32(IAC);
1844        er32(ICRXOC);
1845
1846        er32(ICRXPTC);
1847        er32(ICRXATC);
1848        er32(ICTXPTC);
1849        er32(ICTXATC);
1850        er32(ICTXQEC);
1851        er32(ICTXQMTC);
1852        er32(ICRXDMTC);
1853}
1854
1855static const struct e1000_mac_operations e82571_mac_ops = {
1856        /* .check_mng_mode: mac type dependent */
1857        /* .check_for_link: media type dependent */
1858        .id_led_init            = e1000e_id_led_init_generic,
1859        .cleanup_led            = e1000e_cleanup_led_generic,
1860        .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1861        .get_bus_info           = e1000e_get_bus_info_pcie,
1862        .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1863        /* .get_link_up_info: media type dependent */
1864        /* .led_on: mac type dependent */
1865        .led_off                = e1000e_led_off_generic,
1866        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1867        .write_vfta             = e1000_write_vfta_generic,
1868        .clear_vfta             = e1000_clear_vfta_82571,
1869        .reset_hw               = e1000_reset_hw_82571,
1870        .init_hw                = e1000_init_hw_82571,
1871        .setup_link             = e1000_setup_link_82571,
1872        /* .setup_physical_interface: media type dependent */
1873        .setup_led              = e1000e_setup_led_generic,
1874        .config_collision_dist  = e1000e_config_collision_dist_generic,
1875        .read_mac_addr          = e1000_read_mac_addr_82571,
1876        .rar_set                = e1000e_rar_set_generic,
1877        .rar_get_count          = e1000e_rar_get_count_generic,
1878};
1879
1880static const struct e1000_phy_operations e82_phy_ops_igp = {
1881        .acquire                = e1000_get_hw_semaphore_82571,
1882        .check_polarity         = e1000_check_polarity_igp,
1883        .check_reset_block      = e1000e_check_reset_block_generic,
1884        .commit                 = NULL,
1885        .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1886        .get_cfg_done           = e1000_get_cfg_done_82571,
1887        .get_cable_length       = e1000e_get_cable_length_igp_2,
1888        .get_info               = e1000e_get_phy_info_igp,
1889        .read_reg               = e1000e_read_phy_reg_igp,
1890        .release                = e1000_put_hw_semaphore_82571,
1891        .reset                  = e1000e_phy_hw_reset_generic,
1892        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1893        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1894        .write_reg              = e1000e_write_phy_reg_igp,
1895        .cfg_on_link_up         = NULL,
1896};
1897
1898static const struct e1000_phy_operations e82_phy_ops_m88 = {
1899        .acquire                = e1000_get_hw_semaphore_82571,
1900        .check_polarity         = e1000_check_polarity_m88,
1901        .check_reset_block      = e1000e_check_reset_block_generic,
1902        .commit                 = e1000e_phy_sw_reset,
1903        .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1904        .get_cfg_done           = e1000e_get_cfg_done_generic,
1905        .get_cable_length       = e1000e_get_cable_length_m88,
1906        .get_info               = e1000e_get_phy_info_m88,
1907        .read_reg               = e1000e_read_phy_reg_m88,
1908        .release                = e1000_put_hw_semaphore_82571,
1909        .reset                  = e1000e_phy_hw_reset_generic,
1910        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1911        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1912        .write_reg              = e1000e_write_phy_reg_m88,
1913        .cfg_on_link_up         = NULL,
1914};
1915
1916static const struct e1000_phy_operations e82_phy_ops_bm = {
1917        .acquire                = e1000_get_hw_semaphore_82571,
1918        .check_polarity         = e1000_check_polarity_m88,
1919        .check_reset_block      = e1000e_check_reset_block_generic,
1920        .commit                 = e1000e_phy_sw_reset,
1921        .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1922        .get_cfg_done           = e1000e_get_cfg_done_generic,
1923        .get_cable_length       = e1000e_get_cable_length_m88,
1924        .get_info               = e1000e_get_phy_info_m88,
1925        .read_reg               = e1000e_read_phy_reg_bm2,
1926        .release                = e1000_put_hw_semaphore_82571,
1927        .reset                  = e1000e_phy_hw_reset_generic,
1928        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1929        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1930        .write_reg              = e1000e_write_phy_reg_bm2,
1931        .cfg_on_link_up         = NULL,
1932};
1933
1934static const struct e1000_nvm_operations e82571_nvm_ops = {
1935        .acquire                = e1000_acquire_nvm_82571,
1936        .read                   = e1000e_read_nvm_eerd,
1937        .release                = e1000_release_nvm_82571,
1938        .reload                 = e1000e_reload_nvm_generic,
1939        .update                 = e1000_update_nvm_checksum_82571,
1940        .valid_led_default      = e1000_valid_led_default_82571,
1941        .validate               = e1000_validate_nvm_checksum_82571,
1942        .write                  = e1000_write_nvm_82571,
1943};
1944
1945const struct e1000_info e1000_82571_info = {
1946        .mac                    = e1000_82571,
1947        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1948                                  | FLAG_HAS_JUMBO_FRAMES
1949                                  | FLAG_HAS_WOL
1950                                  | FLAG_APME_IN_CTRL3
1951                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1952                                  | FLAG_HAS_SMART_POWER_DOWN
1953                                  | FLAG_RESET_OVERWRITES_LAA /* errata */
1954                                  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1955                                  | FLAG_APME_CHECK_PORT_B,
1956        .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1957                                  | FLAG2_DMA_BURST,
1958        .pba                    = 38,
1959        .max_hw_frame_size      = DEFAULT_JUMBO,
1960        .get_variants           = e1000_get_variants_82571,
1961        .mac_ops                = &e82571_mac_ops,
1962        .phy_ops                = &e82_phy_ops_igp,
1963        .nvm_ops                = &e82571_nvm_ops,
1964};
1965
1966const struct e1000_info e1000_82572_info = {
1967        .mac                    = e1000_82572,
1968        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1969                                  | FLAG_HAS_JUMBO_FRAMES
1970                                  | FLAG_HAS_WOL
1971                                  | FLAG_APME_IN_CTRL3
1972                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1973                                  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1974        .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1975                                  | FLAG2_DMA_BURST,
1976        .pba                    = 38,
1977        .max_hw_frame_size      = DEFAULT_JUMBO,
1978        .get_variants           = e1000_get_variants_82571,
1979        .mac_ops                = &e82571_mac_ops,
1980        .phy_ops                = &e82_phy_ops_igp,
1981        .nvm_ops                = &e82571_nvm_ops,
1982};
1983
1984const struct e1000_info e1000_82573_info = {
1985        .mac                    = e1000_82573,
1986        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1987                                  | FLAG_HAS_WOL
1988                                  | FLAG_APME_IN_CTRL3
1989                                  | FLAG_HAS_SMART_POWER_DOWN
1990                                  | FLAG_HAS_AMT
1991                                  | FLAG_HAS_SWSM_ON_LOAD,
1992        .flags2                 = FLAG2_DISABLE_ASPM_L1
1993                                  | FLAG2_DISABLE_ASPM_L0S,
1994        .pba                    = 20,
1995        .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1996        .get_variants           = e1000_get_variants_82571,
1997        .mac_ops                = &e82571_mac_ops,
1998        .phy_ops                = &e82_phy_ops_m88,
1999        .nvm_ops                = &e82571_nvm_ops,
2000};
2001
2002const struct e1000_info e1000_82574_info = {
2003        .mac                    = e1000_82574,
2004        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2005                                  | FLAG_HAS_MSIX
2006                                  | FLAG_HAS_JUMBO_FRAMES
2007                                  | FLAG_HAS_WOL
2008                                  | FLAG_HAS_HW_TIMESTAMP
2009                                  | FLAG_APME_IN_CTRL3
2010                                  | FLAG_HAS_SMART_POWER_DOWN
2011                                  | FLAG_HAS_AMT
2012                                  | FLAG_HAS_CTRLEXT_ON_LOAD,
2013        .flags2                  = FLAG2_CHECK_PHY_HANG
2014                                  | FLAG2_DISABLE_ASPM_L0S
2015                                  | FLAG2_DISABLE_ASPM_L1
2016                                  | FLAG2_NO_DISABLE_RX
2017                                  | FLAG2_DMA_BURST
2018                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2019        .pba                    = 32,
2020        .max_hw_frame_size      = DEFAULT_JUMBO,
2021        .get_variants           = e1000_get_variants_82571,
2022        .mac_ops                = &e82571_mac_ops,
2023        .phy_ops                = &e82_phy_ops_bm,
2024        .nvm_ops                = &e82571_nvm_ops,
2025};
2026
2027const struct e1000_info e1000_82583_info = {
2028        .mac                    = e1000_82583,
2029        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2030                                  | FLAG_HAS_WOL
2031                                  | FLAG_HAS_HW_TIMESTAMP
2032                                  | FLAG_APME_IN_CTRL3
2033                                  | FLAG_HAS_SMART_POWER_DOWN
2034                                  | FLAG_HAS_AMT
2035                                  | FLAG_HAS_JUMBO_FRAMES
2036                                  | FLAG_HAS_CTRLEXT_ON_LOAD,
2037        .flags2                 = FLAG2_DISABLE_ASPM_L0S
2038                                  | FLAG2_DISABLE_ASPM_L1
2039                                  | FLAG2_NO_DISABLE_RX
2040                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2041        .pba                    = 32,
2042        .max_hw_frame_size      = DEFAULT_JUMBO,
2043        .get_variants           = e1000_get_variants_82571,
2044        .mac_ops                = &e82571_mac_ops,
2045        .phy_ops                = &e82_phy_ops_bm,
2046        .nvm_ops                = &e82571_nvm_ops,
2047};
2048