linux/drivers/net/ethernet/intel/e1000e/phy.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include "e1000.h"
   5
   6static s32 e1000_wait_autoneg(struct e1000_hw *hw);
   7static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   8                                          u16 *data, bool read, bool page_set);
   9static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  10static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  11                                          u16 *data, bool read);
  12
  13/* Cable length tables */
  14static const u16 e1000_m88_cable_length_table[] = {
  15        0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  16};
  17
  18#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  19                ARRAY_SIZE(e1000_m88_cable_length_table)
  20
  21static const u16 e1000_igp_2_cable_length_table[] = {
  22        0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  23        6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  24        26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  25        44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  26        66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  27        87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  28        100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  29        124
  30};
  31
  32#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  33                ARRAY_SIZE(e1000_igp_2_cable_length_table)
  34
  35/**
  36 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  37 *  @hw: pointer to the HW structure
  38 *
  39 *  Read the PHY management control register and check whether a PHY reset
  40 *  is blocked.  If a reset is not blocked return 0, otherwise
  41 *  return E1000_BLK_PHY_RESET (12).
  42 **/
  43s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  44{
  45        u32 manc;
  46
  47        manc = er32(MANC);
  48
  49        return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  50}
  51
  52/**
  53 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  54 *  @hw: pointer to the HW structure
  55 *
  56 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  57 *  revision in the hardware structure.
  58 **/
  59s32 e1000e_get_phy_id(struct e1000_hw *hw)
  60{
  61        struct e1000_phy_info *phy = &hw->phy;
  62        s32 ret_val = 0;
  63        u16 phy_id;
  64        u16 retry_count = 0;
  65
  66        if (!phy->ops.read_reg)
  67                return 0;
  68
  69        while (retry_count < 2) {
  70                ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  71                if (ret_val)
  72                        return ret_val;
  73
  74                phy->id = (u32)(phy_id << 16);
  75                usleep_range(20, 40);
  76                ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  77                if (ret_val)
  78                        return ret_val;
  79
  80                phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  81                phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  82
  83                if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  84                        return 0;
  85
  86                retry_count++;
  87        }
  88
  89        return 0;
  90}
  91
  92/**
  93 *  e1000e_phy_reset_dsp - Reset PHY DSP
  94 *  @hw: pointer to the HW structure
  95 *
  96 *  Reset the digital signal processor.
  97 **/
  98s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
  99{
 100        s32 ret_val;
 101
 102        ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 103        if (ret_val)
 104                return ret_val;
 105
 106        return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 107}
 108
 109/**
 110 *  e1000e_read_phy_reg_mdic - Read MDI control register
 111 *  @hw: pointer to the HW structure
 112 *  @offset: register offset to be read
 113 *  @data: pointer to the read data
 114 *
 115 *  Reads the MDI control register in the PHY at offset and stores the
 116 *  information read to data.
 117 **/
 118s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 119{
 120        struct e1000_phy_info *phy = &hw->phy;
 121        u32 i, mdic = 0;
 122
 123        if (offset > MAX_PHY_REG_ADDRESS) {
 124                e_dbg("PHY Address %d is out of range\n", offset);
 125                return -E1000_ERR_PARAM;
 126        }
 127
 128        /* Set up Op-code, Phy Address, and register offset in the MDI
 129         * Control register.  The MAC will take care of interfacing with the
 130         * PHY to retrieve the desired data.
 131         */
 132        mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 133                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 134                (E1000_MDIC_OP_READ));
 135
 136        ew32(MDIC, mdic);
 137
 138        /* Poll the ready bit to see if the MDI read completed
 139         * Increasing the time out as testing showed failures with
 140         * the lower time out
 141         */
 142        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 143                udelay(50);
 144                mdic = er32(MDIC);
 145                if (mdic & E1000_MDIC_READY)
 146                        break;
 147        }
 148        if (!(mdic & E1000_MDIC_READY)) {
 149                e_dbg("MDI Read did not complete\n");
 150                return -E1000_ERR_PHY;
 151        }
 152        if (mdic & E1000_MDIC_ERROR) {
 153                e_dbg("MDI Error\n");
 154                return -E1000_ERR_PHY;
 155        }
 156        if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 157                e_dbg("MDI Read offset error - requested %d, returned %d\n",
 158                      offset,
 159                      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 160                return -E1000_ERR_PHY;
 161        }
 162        *data = (u16)mdic;
 163
 164        /* Allow some time after each MDIC transaction to avoid
 165         * reading duplicate data in the next MDIC transaction.
 166         */
 167        if (hw->mac.type == e1000_pch2lan)
 168                udelay(100);
 169
 170        return 0;
 171}
 172
 173/**
 174 *  e1000e_write_phy_reg_mdic - Write MDI control register
 175 *  @hw: pointer to the HW structure
 176 *  @offset: register offset to write to
 177 *  @data: data to write to register at offset
 178 *
 179 *  Writes data to MDI control register in the PHY at offset.
 180 **/
 181s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 182{
 183        struct e1000_phy_info *phy = &hw->phy;
 184        u32 i, mdic = 0;
 185
 186        if (offset > MAX_PHY_REG_ADDRESS) {
 187                e_dbg("PHY Address %d is out of range\n", offset);
 188                return -E1000_ERR_PARAM;
 189        }
 190
 191        /* Set up Op-code, Phy Address, and register offset in the MDI
 192         * Control register.  The MAC will take care of interfacing with the
 193         * PHY to retrieve the desired data.
 194         */
 195        mdic = (((u32)data) |
 196                (offset << E1000_MDIC_REG_SHIFT) |
 197                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 198                (E1000_MDIC_OP_WRITE));
 199
 200        ew32(MDIC, mdic);
 201
 202        /* Poll the ready bit to see if the MDI read completed
 203         * Increasing the time out as testing showed failures with
 204         * the lower time out
 205         */
 206        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 207                udelay(50);
 208                mdic = er32(MDIC);
 209                if (mdic & E1000_MDIC_READY)
 210                        break;
 211        }
 212        if (!(mdic & E1000_MDIC_READY)) {
 213                e_dbg("MDI Write did not complete\n");
 214                return -E1000_ERR_PHY;
 215        }
 216        if (mdic & E1000_MDIC_ERROR) {
 217                e_dbg("MDI Error\n");
 218                return -E1000_ERR_PHY;
 219        }
 220        if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 221                e_dbg("MDI Write offset error - requested %d, returned %d\n",
 222                      offset,
 223                      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 224                return -E1000_ERR_PHY;
 225        }
 226
 227        /* Allow some time after each MDIC transaction to avoid
 228         * reading duplicate data in the next MDIC transaction.
 229         */
 230        if (hw->mac.type == e1000_pch2lan)
 231                udelay(100);
 232
 233        return 0;
 234}
 235
 236/**
 237 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 238 *  @hw: pointer to the HW structure
 239 *  @offset: register offset to be read
 240 *  @data: pointer to the read data
 241 *
 242 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 243 *  and storing the retrieved information in data.  Release any acquired
 244 *  semaphores before exiting.
 245 **/
 246s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 247{
 248        s32 ret_val;
 249
 250        ret_val = hw->phy.ops.acquire(hw);
 251        if (ret_val)
 252                return ret_val;
 253
 254        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 255                                           data);
 256
 257        hw->phy.ops.release(hw);
 258
 259        return ret_val;
 260}
 261
 262/**
 263 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 264 *  @hw: pointer to the HW structure
 265 *  @offset: register offset to write to
 266 *  @data: data to write at register offset
 267 *
 268 *  Acquires semaphore, if necessary, then writes the data to PHY register
 269 *  at the offset.  Release any acquired semaphores before exiting.
 270 **/
 271s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 272{
 273        s32 ret_val;
 274
 275        ret_val = hw->phy.ops.acquire(hw);
 276        if (ret_val)
 277                return ret_val;
 278
 279        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 280                                            data);
 281
 282        hw->phy.ops.release(hw);
 283
 284        return ret_val;
 285}
 286
 287/**
 288 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 289 *  @hw: pointer to the HW structure
 290 *  @page: page to set (shifted left when necessary)
 291 *
 292 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 293 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 294 *  must set it appropriately (if necessary) after this function returns.
 295 **/
 296s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 297{
 298        e_dbg("Setting page 0x%x\n", page);
 299
 300        hw->phy.addr = 1;
 301
 302        return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 303}
 304
 305/**
 306 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 307 *  @hw: pointer to the HW structure
 308 *  @offset: register offset to be read
 309 *  @data: pointer to the read data
 310 *  @locked: semaphore has already been acquired or not
 311 *
 312 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 313 *  and stores the retrieved information in data.  Release any acquired
 314 *  semaphores before exiting.
 315 **/
 316static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 317                                     bool locked)
 318{
 319        s32 ret_val = 0;
 320
 321        if (!locked) {
 322                if (!hw->phy.ops.acquire)
 323                        return 0;
 324
 325                ret_val = hw->phy.ops.acquire(hw);
 326                if (ret_val)
 327                        return ret_val;
 328        }
 329
 330        if (offset > MAX_PHY_MULTI_PAGE_REG)
 331                ret_val = e1000e_write_phy_reg_mdic(hw,
 332                                                    IGP01E1000_PHY_PAGE_SELECT,
 333                                                    (u16)offset);
 334        if (!ret_val)
 335                ret_val = e1000e_read_phy_reg_mdic(hw,
 336                                                   MAX_PHY_REG_ADDRESS & offset,
 337                                                   data);
 338        if (!locked)
 339                hw->phy.ops.release(hw);
 340
 341        return ret_val;
 342}
 343
 344/**
 345 *  e1000e_read_phy_reg_igp - Read igp PHY register
 346 *  @hw: pointer to the HW structure
 347 *  @offset: register offset to be read
 348 *  @data: pointer to the read data
 349 *
 350 *  Acquires semaphore then reads the PHY register at offset and stores the
 351 *  retrieved information in data.
 352 *  Release the acquired semaphore before exiting.
 353 **/
 354s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 355{
 356        return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 357}
 358
 359/**
 360 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 361 *  @hw: pointer to the HW structure
 362 *  @offset: register offset to be read
 363 *  @data: pointer to the read data
 364 *
 365 *  Reads the PHY register at offset and stores the retrieved information
 366 *  in data.  Assumes semaphore already acquired.
 367 **/
 368s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 369{
 370        return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 371}
 372
 373/**
 374 *  e1000e_write_phy_reg_igp - Write igp PHY register
 375 *  @hw: pointer to the HW structure
 376 *  @offset: register offset to write to
 377 *  @data: data to write at register offset
 378 *  @locked: semaphore has already been acquired or not
 379 *
 380 *  Acquires semaphore, if necessary, then writes the data to PHY register
 381 *  at the offset.  Release any acquired semaphores before exiting.
 382 **/
 383static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 384                                      bool locked)
 385{
 386        s32 ret_val = 0;
 387
 388        if (!locked) {
 389                if (!hw->phy.ops.acquire)
 390                        return 0;
 391
 392                ret_val = hw->phy.ops.acquire(hw);
 393                if (ret_val)
 394                        return ret_val;
 395        }
 396
 397        if (offset > MAX_PHY_MULTI_PAGE_REG)
 398                ret_val = e1000e_write_phy_reg_mdic(hw,
 399                                                    IGP01E1000_PHY_PAGE_SELECT,
 400                                                    (u16)offset);
 401        if (!ret_val)
 402                ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 403                                                    offset, data);
 404        if (!locked)
 405                hw->phy.ops.release(hw);
 406
 407        return ret_val;
 408}
 409
 410/**
 411 *  e1000e_write_phy_reg_igp - Write igp PHY register
 412 *  @hw: pointer to the HW structure
 413 *  @offset: register offset to write to
 414 *  @data: data to write at register offset
 415 *
 416 *  Acquires semaphore then writes the data to PHY register
 417 *  at the offset.  Release any acquired semaphores before exiting.
 418 **/
 419s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 420{
 421        return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 422}
 423
 424/**
 425 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 426 *  @hw: pointer to the HW structure
 427 *  @offset: register offset to write to
 428 *  @data: data to write at register offset
 429 *
 430 *  Writes the data to PHY register at the offset.
 431 *  Assumes semaphore already acquired.
 432 **/
 433s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 434{
 435        return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 436}
 437
 438/**
 439 *  __e1000_read_kmrn_reg - Read kumeran register
 440 *  @hw: pointer to the HW structure
 441 *  @offset: register offset to be read
 442 *  @data: pointer to the read data
 443 *  @locked: semaphore has already been acquired or not
 444 *
 445 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 446 *  using the kumeran interface.  The information retrieved is stored in data.
 447 *  Release any acquired semaphores before exiting.
 448 **/
 449static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 450                                 bool locked)
 451{
 452        u32 kmrnctrlsta;
 453
 454        if (!locked) {
 455                s32 ret_val = 0;
 456
 457                if (!hw->phy.ops.acquire)
 458                        return 0;
 459
 460                ret_val = hw->phy.ops.acquire(hw);
 461                if (ret_val)
 462                        return ret_val;
 463        }
 464
 465        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 466                       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 467        ew32(KMRNCTRLSTA, kmrnctrlsta);
 468        e1e_flush();
 469
 470        udelay(2);
 471
 472        kmrnctrlsta = er32(KMRNCTRLSTA);
 473        *data = (u16)kmrnctrlsta;
 474
 475        if (!locked)
 476                hw->phy.ops.release(hw);
 477
 478        return 0;
 479}
 480
 481/**
 482 *  e1000e_read_kmrn_reg -  Read kumeran register
 483 *  @hw: pointer to the HW structure
 484 *  @offset: register offset to be read
 485 *  @data: pointer to the read data
 486 *
 487 *  Acquires semaphore then reads the PHY register at offset using the
 488 *  kumeran interface.  The information retrieved is stored in data.
 489 *  Release the acquired semaphore before exiting.
 490 **/
 491s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 492{
 493        return __e1000_read_kmrn_reg(hw, offset, data, false);
 494}
 495
 496/**
 497 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 498 *  @hw: pointer to the HW structure
 499 *  @offset: register offset to be read
 500 *  @data: pointer to the read data
 501 *
 502 *  Reads the PHY register at offset using the kumeran interface.  The
 503 *  information retrieved is stored in data.
 504 *  Assumes semaphore already acquired.
 505 **/
 506s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 507{
 508        return __e1000_read_kmrn_reg(hw, offset, data, true);
 509}
 510
 511/**
 512 *  __e1000_write_kmrn_reg - Write kumeran register
 513 *  @hw: pointer to the HW structure
 514 *  @offset: register offset to write to
 515 *  @data: data to write at register offset
 516 *  @locked: semaphore has already been acquired or not
 517 *
 518 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 519 *  at the offset using the kumeran interface.  Release any acquired semaphores
 520 *  before exiting.
 521 **/
 522static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 523                                  bool locked)
 524{
 525        u32 kmrnctrlsta;
 526
 527        if (!locked) {
 528                s32 ret_val = 0;
 529
 530                if (!hw->phy.ops.acquire)
 531                        return 0;
 532
 533                ret_val = hw->phy.ops.acquire(hw);
 534                if (ret_val)
 535                        return ret_val;
 536        }
 537
 538        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 539                       E1000_KMRNCTRLSTA_OFFSET) | data;
 540        ew32(KMRNCTRLSTA, kmrnctrlsta);
 541        e1e_flush();
 542
 543        udelay(2);
 544
 545        if (!locked)
 546                hw->phy.ops.release(hw);
 547
 548        return 0;
 549}
 550
 551/**
 552 *  e1000e_write_kmrn_reg -  Write kumeran register
 553 *  @hw: pointer to the HW structure
 554 *  @offset: register offset to write to
 555 *  @data: data to write at register offset
 556 *
 557 *  Acquires semaphore then writes the data to the PHY register at the offset
 558 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 559 **/
 560s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 561{
 562        return __e1000_write_kmrn_reg(hw, offset, data, false);
 563}
 564
 565/**
 566 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 567 *  @hw: pointer to the HW structure
 568 *  @offset: register offset to write to
 569 *  @data: data to write at register offset
 570 *
 571 *  Write the data to PHY register at the offset using the kumeran interface.
 572 *  Assumes semaphore already acquired.
 573 **/
 574s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 575{
 576        return __e1000_write_kmrn_reg(hw, offset, data, true);
 577}
 578
 579/**
 580 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 581 *  @hw: pointer to the HW structure
 582 *
 583 *  Sets up Master/slave mode
 584 **/
 585static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 586{
 587        s32 ret_val;
 588        u16 phy_data;
 589
 590        /* Resolve Master/Slave mode */
 591        ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 592        if (ret_val)
 593                return ret_val;
 594
 595        /* load defaults for future use */
 596        hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 597            ((phy_data & CTL1000_AS_MASTER) ?
 598             e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 599
 600        switch (hw->phy.ms_type) {
 601        case e1000_ms_force_master:
 602                phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 603                break;
 604        case e1000_ms_force_slave:
 605                phy_data |= CTL1000_ENABLE_MASTER;
 606                phy_data &= ~(CTL1000_AS_MASTER);
 607                break;
 608        case e1000_ms_auto:
 609                phy_data &= ~CTL1000_ENABLE_MASTER;
 610                /* fall-through */
 611        default:
 612                break;
 613        }
 614
 615        return e1e_wphy(hw, MII_CTRL1000, phy_data);
 616}
 617
 618/**
 619 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 620 *  @hw: pointer to the HW structure
 621 *
 622 *  Sets up Carrier-sense on Transmit and downshift values.
 623 **/
 624s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 625{
 626        s32 ret_val;
 627        u16 phy_data;
 628
 629        /* Enable CRS on Tx. This must be set for half-duplex operation. */
 630        ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 631        if (ret_val)
 632                return ret_val;
 633
 634        phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 635
 636        /* Enable downshift */
 637        phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 638
 639        ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 640        if (ret_val)
 641                return ret_val;
 642
 643        /* Set MDI/MDIX mode */
 644        ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 645        if (ret_val)
 646                return ret_val;
 647        phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 648        /* Options:
 649         *   0 - Auto (default)
 650         *   1 - MDI mode
 651         *   2 - MDI-X mode
 652         */
 653        switch (hw->phy.mdix) {
 654        case 1:
 655                break;
 656        case 2:
 657                phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 658                break;
 659        case 0:
 660        default:
 661                phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 662                break;
 663        }
 664        ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 665        if (ret_val)
 666                return ret_val;
 667
 668        return e1000_set_master_slave_mode(hw);
 669}
 670
 671/**
 672 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 673 *  @hw: pointer to the HW structure
 674 *
 675 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 676 *  and downshift values are set also.
 677 **/
 678s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 679{
 680        struct e1000_phy_info *phy = &hw->phy;
 681        s32 ret_val;
 682        u16 phy_data;
 683
 684        /* Enable CRS on Tx. This must be set for half-duplex operation. */
 685        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 686        if (ret_val)
 687                return ret_val;
 688
 689        /* For BM PHY this bit is downshift enable */
 690        if (phy->type != e1000_phy_bm)
 691                phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 692
 693        /* Options:
 694         *   MDI/MDI-X = 0 (default)
 695         *   0 - Auto for all speeds
 696         *   1 - MDI mode
 697         *   2 - MDI-X mode
 698         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 699         */
 700        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 701
 702        switch (phy->mdix) {
 703        case 1:
 704                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 705                break;
 706        case 2:
 707                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 708                break;
 709        case 3:
 710                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 711                break;
 712        case 0:
 713        default:
 714                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 715                break;
 716        }
 717
 718        /* Options:
 719         *   disable_polarity_correction = 0 (default)
 720         *       Automatic Correction for Reversed Cable Polarity
 721         *   0 - Disabled
 722         *   1 - Enabled
 723         */
 724        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 725        if (phy->disable_polarity_correction)
 726                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 727
 728        /* Enable downshift on BM (disabled by default) */
 729        if (phy->type == e1000_phy_bm) {
 730                /* For 82574/82583, first disable then enable downshift */
 731                if (phy->id == BME1000_E_PHY_ID_R2) {
 732                        phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 733                        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 734                                           phy_data);
 735                        if (ret_val)
 736                                return ret_val;
 737                        /* Commit the changes. */
 738                        ret_val = phy->ops.commit(hw);
 739                        if (ret_val) {
 740                                e_dbg("Error committing the PHY changes\n");
 741                                return ret_val;
 742                        }
 743                }
 744
 745                phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 746        }
 747
 748        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 749        if (ret_val)
 750                return ret_val;
 751
 752        if ((phy->type == e1000_phy_m88) &&
 753            (phy->revision < E1000_REVISION_4) &&
 754            (phy->id != BME1000_E_PHY_ID_R2)) {
 755                /* Force TX_CLK in the Extended PHY Specific Control Register
 756                 * to 25MHz clock.
 757                 */
 758                ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 759                if (ret_val)
 760                        return ret_val;
 761
 762                phy_data |= M88E1000_EPSCR_TX_CLK_25;
 763
 764                if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 765                        /* 82573L PHY - set the downshift counter to 5x. */
 766                        phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 767                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 768                } else {
 769                        /* Configure Master and Slave downshift values */
 770                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 771                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 772                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 773                                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 774                }
 775                ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 776                if (ret_val)
 777                        return ret_val;
 778        }
 779
 780        if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 781                /* Set PHY page 0, register 29 to 0x0003 */
 782                ret_val = e1e_wphy(hw, 29, 0x0003);
 783                if (ret_val)
 784                        return ret_val;
 785
 786                /* Set PHY page 0, register 30 to 0x0000 */
 787                ret_val = e1e_wphy(hw, 30, 0x0000);
 788                if (ret_val)
 789                        return ret_val;
 790        }
 791
 792        /* Commit the changes. */
 793        if (phy->ops.commit) {
 794                ret_val = phy->ops.commit(hw);
 795                if (ret_val) {
 796                        e_dbg("Error committing the PHY changes\n");
 797                        return ret_val;
 798                }
 799        }
 800
 801        if (phy->type == e1000_phy_82578) {
 802                ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 803                if (ret_val)
 804                        return ret_val;
 805
 806                /* 82578 PHY - set the downshift count to 1x. */
 807                phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 808                phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 809                ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 810                if (ret_val)
 811                        return ret_val;
 812        }
 813
 814        return 0;
 815}
 816
 817/**
 818 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 819 *  @hw: pointer to the HW structure
 820 *
 821 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 822 *  igp PHY's.
 823 **/
 824s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 825{
 826        struct e1000_phy_info *phy = &hw->phy;
 827        s32 ret_val;
 828        u16 data;
 829
 830        ret_val = e1000_phy_hw_reset(hw);
 831        if (ret_val) {
 832                e_dbg("Error resetting the PHY.\n");
 833                return ret_val;
 834        }
 835
 836        /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 837         * timeout issues when LFS is enabled.
 838         */
 839        msleep(100);
 840
 841        /* disable lplu d0 during driver init */
 842        if (hw->phy.ops.set_d0_lplu_state) {
 843                ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 844                if (ret_val) {
 845                        e_dbg("Error Disabling LPLU D0\n");
 846                        return ret_val;
 847                }
 848        }
 849        /* Configure mdi-mdix settings */
 850        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 851        if (ret_val)
 852                return ret_val;
 853
 854        data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 855
 856        switch (phy->mdix) {
 857        case 1:
 858                data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 859                break;
 860        case 2:
 861                data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 862                break;
 863        case 0:
 864        default:
 865                data |= IGP01E1000_PSCR_AUTO_MDIX;
 866                break;
 867        }
 868        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 869        if (ret_val)
 870                return ret_val;
 871
 872        /* set auto-master slave resolution settings */
 873        if (hw->mac.autoneg) {
 874                /* when autonegotiation advertisement is only 1000Mbps then we
 875                 * should disable SmartSpeed and enable Auto MasterSlave
 876                 * resolution as hardware default.
 877                 */
 878                if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 879                        /* Disable SmartSpeed */
 880                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 881                                           &data);
 882                        if (ret_val)
 883                                return ret_val;
 884
 885                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 886                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 887                                           data);
 888                        if (ret_val)
 889                                return ret_val;
 890
 891                        /* Set auto Master/Slave resolution process */
 892                        ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 893                        if (ret_val)
 894                                return ret_val;
 895
 896                        data &= ~CTL1000_ENABLE_MASTER;
 897                        ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 898                        if (ret_val)
 899                                return ret_val;
 900                }
 901
 902                ret_val = e1000_set_master_slave_mode(hw);
 903        }
 904
 905        return ret_val;
 906}
 907
 908/**
 909 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 910 *  @hw: pointer to the HW structure
 911 *
 912 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 913 *  register and if the PHY is already setup for auto-negotiation, then
 914 *  return successful.  Otherwise, setup advertisement and flow control to
 915 *  the appropriate values for the wanted auto-negotiation.
 916 **/
 917static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 918{
 919        struct e1000_phy_info *phy = &hw->phy;
 920        s32 ret_val;
 921        u16 mii_autoneg_adv_reg;
 922        u16 mii_1000t_ctrl_reg = 0;
 923
 924        phy->autoneg_advertised &= phy->autoneg_mask;
 925
 926        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
 927        ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 928        if (ret_val)
 929                return ret_val;
 930
 931        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 932                /* Read the MII 1000Base-T Control Register (Address 9). */
 933                ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 934                if (ret_val)
 935                        return ret_val;
 936        }
 937
 938        /* Need to parse both autoneg_advertised and fc and set up
 939         * the appropriate PHY registers.  First we will parse for
 940         * autoneg_advertised software override.  Since we can advertise
 941         * a plethora of combinations, we need to check each bit
 942         * individually.
 943         */
 944
 945        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
 946         * Advertisement Register (Address 4) and the 1000 mb speed bits in
 947         * the  1000Base-T Control Register (Address 9).
 948         */
 949        mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 950                                 ADVERTISE_100HALF |
 951                                 ADVERTISE_10FULL | ADVERTISE_10HALF);
 952        mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 953
 954        e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 955
 956        /* Do we want to advertise 10 Mb Half Duplex? */
 957        if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 958                e_dbg("Advertise 10mb Half duplex\n");
 959                mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 960        }
 961
 962        /* Do we want to advertise 10 Mb Full Duplex? */
 963        if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 964                e_dbg("Advertise 10mb Full duplex\n");
 965                mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 966        }
 967
 968        /* Do we want to advertise 100 Mb Half Duplex? */
 969        if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 970                e_dbg("Advertise 100mb Half duplex\n");
 971                mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 972        }
 973
 974        /* Do we want to advertise 100 Mb Full Duplex? */
 975        if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 976                e_dbg("Advertise 100mb Full duplex\n");
 977                mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 978        }
 979
 980        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 981        if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 982                e_dbg("Advertise 1000mb Half duplex request denied!\n");
 983
 984        /* Do we want to advertise 1000 Mb Full Duplex? */
 985        if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 986                e_dbg("Advertise 1000mb Full duplex\n");
 987                mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 988        }
 989
 990        /* Check for a software override of the flow control settings, and
 991         * setup the PHY advertisement registers accordingly.  If
 992         * auto-negotiation is enabled, then software will have to set the
 993         * "PAUSE" bits to the correct value in the Auto-Negotiation
 994         * Advertisement Register (MII_ADVERTISE) and re-start auto-
 995         * negotiation.
 996         *
 997         * The possible values of the "fc" parameter are:
 998         *      0:  Flow control is completely disabled
 999         *      1:  Rx flow control is enabled (we can receive pause frames
1000         *          but not send pause frames).
1001         *      2:  Tx flow control is enabled (we can send pause frames
1002         *          but we do not support receiving pause frames).
1003         *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1004         *  other:  No software override.  The flow control configuration
1005         *          in the EEPROM is used.
1006         */
1007        switch (hw->fc.current_mode) {
1008        case e1000_fc_none:
1009                /* Flow control (Rx & Tx) is completely disabled by a
1010                 * software over-ride.
1011                 */
1012                mii_autoneg_adv_reg &=
1013                    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1014                break;
1015        case e1000_fc_rx_pause:
1016                /* Rx Flow control is enabled, and Tx Flow control is
1017                 * disabled, by a software over-ride.
1018                 *
1019                 * Since there really isn't a way to advertise that we are
1020                 * capable of Rx Pause ONLY, we will advertise that we
1021                 * support both symmetric and asymmetric Rx PAUSE.  Later
1022                 * (in e1000e_config_fc_after_link_up) we will disable the
1023                 * hw's ability to send PAUSE frames.
1024                 */
1025                mii_autoneg_adv_reg |=
1026                    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1027                break;
1028        case e1000_fc_tx_pause:
1029                /* Tx Flow control is enabled, and Rx Flow control is
1030                 * disabled, by a software over-ride.
1031                 */
1032                mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1033                mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1034                break;
1035        case e1000_fc_full:
1036                /* Flow control (both Rx and Tx) is enabled by a software
1037                 * over-ride.
1038                 */
1039                mii_autoneg_adv_reg |=
1040                    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1041                break;
1042        default:
1043                e_dbg("Flow control param set incorrectly\n");
1044                return -E1000_ERR_CONFIG;
1045        }
1046
1047        ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1048        if (ret_val)
1049                return ret_val;
1050
1051        e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1052
1053        if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1054                ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1055
1056        return ret_val;
1057}
1058
1059/**
1060 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1061 *  @hw: pointer to the HW structure
1062 *
1063 *  Performs initial bounds checking on autoneg advertisement parameter, then
1064 *  configure to advertise the full capability.  Setup the PHY to autoneg
1065 *  and restart the negotiation process between the link partner.  If
1066 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1067 **/
1068static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1069{
1070        struct e1000_phy_info *phy = &hw->phy;
1071        s32 ret_val;
1072        u16 phy_ctrl;
1073
1074        /* Perform some bounds checking on the autoneg advertisement
1075         * parameter.
1076         */
1077        phy->autoneg_advertised &= phy->autoneg_mask;
1078
1079        /* If autoneg_advertised is zero, we assume it was not defaulted
1080         * by the calling code so we set to advertise full capability.
1081         */
1082        if (!phy->autoneg_advertised)
1083                phy->autoneg_advertised = phy->autoneg_mask;
1084
1085        e_dbg("Reconfiguring auto-neg advertisement params\n");
1086        ret_val = e1000_phy_setup_autoneg(hw);
1087        if (ret_val) {
1088                e_dbg("Error Setting up Auto-Negotiation\n");
1089                return ret_val;
1090        }
1091        e_dbg("Restarting Auto-Neg\n");
1092
1093        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1094         * the Auto Neg Restart bit in the PHY control register.
1095         */
1096        ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1097        if (ret_val)
1098                return ret_val;
1099
1100        phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1101        ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1102        if (ret_val)
1103                return ret_val;
1104
1105        /* Does the user want to wait for Auto-Neg to complete here, or
1106         * check at a later time (for example, callback routine).
1107         */
1108        if (phy->autoneg_wait_to_complete) {
1109                ret_val = e1000_wait_autoneg(hw);
1110                if (ret_val) {
1111                        e_dbg("Error while waiting for autoneg to complete\n");
1112                        return ret_val;
1113                }
1114        }
1115
1116        hw->mac.get_link_status = true;
1117
1118        return ret_val;
1119}
1120
1121/**
1122 *  e1000e_setup_copper_link - Configure copper link settings
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Calls the appropriate function to configure the link for auto-neg or forced
1126 *  speed and duplex.  Then we check for link, once link is established calls
1127 *  to configure collision distance and flow control are called.  If link is
1128 *  not established, we return -E1000_ERR_PHY (-2).
1129 **/
1130s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1131{
1132        s32 ret_val;
1133        bool link;
1134
1135        if (hw->mac.autoneg) {
1136                /* Setup autoneg and flow control advertisement and perform
1137                 * autonegotiation.
1138                 */
1139                ret_val = e1000_copper_link_autoneg(hw);
1140                if (ret_val)
1141                        return ret_val;
1142        } else {
1143                /* PHY will be set to 10H, 10F, 100H or 100F
1144                 * depending on user settings.
1145                 */
1146                e_dbg("Forcing Speed and Duplex\n");
1147                ret_val = hw->phy.ops.force_speed_duplex(hw);
1148                if (ret_val) {
1149                        e_dbg("Error Forcing Speed and Duplex\n");
1150                        return ret_val;
1151                }
1152        }
1153
1154        /* Check link status. Wait up to 100 microseconds for link to become
1155         * valid.
1156         */
1157        ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1158                                              &link);
1159        if (ret_val)
1160                return ret_val;
1161
1162        if (link) {
1163                e_dbg("Valid link established!!!\n");
1164                hw->mac.ops.config_collision_dist(hw);
1165                ret_val = e1000e_config_fc_after_link_up(hw);
1166        } else {
1167                e_dbg("Unable to establish link!!!\n");
1168        }
1169
1170        return ret_val;
1171}
1172
1173/**
1174 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1175 *  @hw: pointer to the HW structure
1176 *
1177 *  Calls the PHY setup function to force speed and duplex.  Clears the
1178 *  auto-crossover to force MDI manually.  Waits for link and returns
1179 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1180 **/
1181s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1182{
1183        struct e1000_phy_info *phy = &hw->phy;
1184        s32 ret_val;
1185        u16 phy_data;
1186        bool link;
1187
1188        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1189        if (ret_val)
1190                return ret_val;
1191
1192        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1193
1194        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1195        if (ret_val)
1196                return ret_val;
1197
1198        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1199         * forced whenever speed and duplex are forced.
1200         */
1201        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1202        if (ret_val)
1203                return ret_val;
1204
1205        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1206        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1207
1208        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1209        if (ret_val)
1210                return ret_val;
1211
1212        e_dbg("IGP PSCR: %X\n", phy_data);
1213
1214        udelay(1);
1215
1216        if (phy->autoneg_wait_to_complete) {
1217                e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1218
1219                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1220                                                      100000, &link);
1221                if (ret_val)
1222                        return ret_val;
1223
1224                if (!link)
1225                        e_dbg("Link taking longer than expected.\n");
1226
1227                /* Try once more */
1228                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1229                                                      100000, &link);
1230        }
1231
1232        return ret_val;
1233}
1234
1235/**
1236 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1237 *  @hw: pointer to the HW structure
1238 *
1239 *  Calls the PHY setup function to force speed and duplex.  Clears the
1240 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1241 *  changes.  If time expires while waiting for link up, we reset the DSP.
1242 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1243 *  successful completion, else return corresponding error code.
1244 **/
1245s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1246{
1247        struct e1000_phy_info *phy = &hw->phy;
1248        s32 ret_val;
1249        u16 phy_data;
1250        bool link;
1251
1252        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1253         * forced whenever speed and duplex are forced.
1254         */
1255        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1256        if (ret_val)
1257                return ret_val;
1258
1259        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1260        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1261        if (ret_val)
1262                return ret_val;
1263
1264        e_dbg("M88E1000 PSCR: %X\n", phy_data);
1265
1266        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1267        if (ret_val)
1268                return ret_val;
1269
1270        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1271
1272        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1273        if (ret_val)
1274                return ret_val;
1275
1276        /* Reset the phy to commit changes. */
1277        if (hw->phy.ops.commit) {
1278                ret_val = hw->phy.ops.commit(hw);
1279                if (ret_val)
1280                        return ret_val;
1281        }
1282
1283        if (phy->autoneg_wait_to_complete) {
1284                e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1285
1286                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1287                                                      100000, &link);
1288                if (ret_val)
1289                        return ret_val;
1290
1291                if (!link) {
1292                        if (hw->phy.type != e1000_phy_m88) {
1293                                e_dbg("Link taking longer than expected.\n");
1294                        } else {
1295                                /* We didn't get link.
1296                                 * Reset the DSP and cross our fingers.
1297                                 */
1298                                ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1299                                                   0x001d);
1300                                if (ret_val)
1301                                        return ret_val;
1302                                ret_val = e1000e_phy_reset_dsp(hw);
1303                                if (ret_val)
1304                                        return ret_val;
1305                        }
1306                }
1307
1308                /* Try once more */
1309                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1310                                                      100000, &link);
1311                if (ret_val)
1312                        return ret_val;
1313        }
1314
1315        if (hw->phy.type != e1000_phy_m88)
1316                return 0;
1317
1318        ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1319        if (ret_val)
1320                return ret_val;
1321
1322        /* Resetting the phy means we need to re-force TX_CLK in the
1323         * Extended PHY Specific Control Register to 25MHz clock from
1324         * the reset value of 2.5MHz.
1325         */
1326        phy_data |= M88E1000_EPSCR_TX_CLK_25;
1327        ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1328        if (ret_val)
1329                return ret_val;
1330
1331        /* In addition, we must re-enable CRS on Tx for both half and full
1332         * duplex.
1333         */
1334        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1335        if (ret_val)
1336                return ret_val;
1337
1338        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1339        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1340
1341        return ret_val;
1342}
1343
1344/**
1345 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1346 *  @hw: pointer to the HW structure
1347 *
1348 *  Forces the speed and duplex settings of the PHY.
1349 *  This is a function pointer entry point only called by
1350 *  PHY setup routines.
1351 **/
1352s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1353{
1354        struct e1000_phy_info *phy = &hw->phy;
1355        s32 ret_val;
1356        u16 data;
1357        bool link;
1358
1359        ret_val = e1e_rphy(hw, MII_BMCR, &data);
1360        if (ret_val)
1361                return ret_val;
1362
1363        e1000e_phy_force_speed_duplex_setup(hw, &data);
1364
1365        ret_val = e1e_wphy(hw, MII_BMCR, data);
1366        if (ret_val)
1367                return ret_val;
1368
1369        /* Disable MDI-X support for 10/100 */
1370        ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1371        if (ret_val)
1372                return ret_val;
1373
1374        data &= ~IFE_PMC_AUTO_MDIX;
1375        data &= ~IFE_PMC_FORCE_MDIX;
1376
1377        ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1378        if (ret_val)
1379                return ret_val;
1380
1381        e_dbg("IFE PMC: %X\n", data);
1382
1383        udelay(1);
1384
1385        if (phy->autoneg_wait_to_complete) {
1386                e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1387
1388                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1389                                                      100000, &link);
1390                if (ret_val)
1391                        return ret_val;
1392
1393                if (!link)
1394                        e_dbg("Link taking longer than expected.\n");
1395
1396                /* Try once more */
1397                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1398                                                      100000, &link);
1399                if (ret_val)
1400                        return ret_val;
1401        }
1402
1403        return 0;
1404}
1405
1406/**
1407 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1408 *  @hw: pointer to the HW structure
1409 *  @phy_ctrl: pointer to current value of MII_BMCR
1410 *
1411 *  Forces speed and duplex on the PHY by doing the following: disable flow
1412 *  control, force speed/duplex on the MAC, disable auto speed detection,
1413 *  disable auto-negotiation, configure duplex, configure speed, configure
1414 *  the collision distance, write configuration to CTRL register.  The
1415 *  caller must write to the MII_BMCR register for these settings to
1416 *  take affect.
1417 **/
1418void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1419{
1420        struct e1000_mac_info *mac = &hw->mac;
1421        u32 ctrl;
1422
1423        /* Turn off flow control when forcing speed/duplex */
1424        hw->fc.current_mode = e1000_fc_none;
1425
1426        /* Force speed/duplex on the mac */
1427        ctrl = er32(CTRL);
1428        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429        ctrl &= ~E1000_CTRL_SPD_SEL;
1430
1431        /* Disable Auto Speed Detection */
1432        ctrl &= ~E1000_CTRL_ASDE;
1433
1434        /* Disable autoneg on the phy */
1435        *phy_ctrl &= ~BMCR_ANENABLE;
1436
1437        /* Forcing Full or Half Duplex? */
1438        if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1439                ctrl &= ~E1000_CTRL_FD;
1440                *phy_ctrl &= ~BMCR_FULLDPLX;
1441                e_dbg("Half Duplex\n");
1442        } else {
1443                ctrl |= E1000_CTRL_FD;
1444                *phy_ctrl |= BMCR_FULLDPLX;
1445                e_dbg("Full Duplex\n");
1446        }
1447
1448        /* Forcing 10mb or 100mb? */
1449        if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1450                ctrl |= E1000_CTRL_SPD_100;
1451                *phy_ctrl |= BMCR_SPEED100;
1452                *phy_ctrl &= ~BMCR_SPEED1000;
1453                e_dbg("Forcing 100mb\n");
1454        } else {
1455                ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1456                *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1457                e_dbg("Forcing 10mb\n");
1458        }
1459
1460        hw->mac.ops.config_collision_dist(hw);
1461
1462        ew32(CTRL, ctrl);
1463}
1464
1465/**
1466 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1467 *  @hw: pointer to the HW structure
1468 *  @active: boolean used to enable/disable lplu
1469 *
1470 *  Success returns 0, Failure returns 1
1471 *
1472 *  The low power link up (lplu) state is set to the power management level D3
1473 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1474 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1475 *  is used during Dx states where the power conservation is most important.
1476 *  During driver activity, SmartSpeed should be enabled so performance is
1477 *  maintained.
1478 **/
1479s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1480{
1481        struct e1000_phy_info *phy = &hw->phy;
1482        s32 ret_val;
1483        u16 data;
1484
1485        ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1486        if (ret_val)
1487                return ret_val;
1488
1489        if (!active) {
1490                data &= ~IGP02E1000_PM_D3_LPLU;
1491                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1492                if (ret_val)
1493                        return ret_val;
1494                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1495                 * during Dx states where the power conservation is most
1496                 * important.  During driver activity we should enable
1497                 * SmartSpeed, so performance is maintained.
1498                 */
1499                if (phy->smart_speed == e1000_smart_speed_on) {
1500                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1501                                           &data);
1502                        if (ret_val)
1503                                return ret_val;
1504
1505                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1506                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1507                                           data);
1508                        if (ret_val)
1509                                return ret_val;
1510                } else if (phy->smart_speed == e1000_smart_speed_off) {
1511                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1512                                           &data);
1513                        if (ret_val)
1514                                return ret_val;
1515
1516                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1517                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1518                                           data);
1519                        if (ret_val)
1520                                return ret_val;
1521                }
1522        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1523                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1524                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1525                data |= IGP02E1000_PM_D3_LPLU;
1526                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1527                if (ret_val)
1528                        return ret_val;
1529
1530                /* When LPLU is enabled, we should disable SmartSpeed */
1531                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1532                if (ret_val)
1533                        return ret_val;
1534
1535                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1537        }
1538
1539        return ret_val;
1540}
1541
1542/**
1543 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1544 *  @hw: pointer to the HW structure
1545 *
1546 *  Success returns 0, Failure returns 1
1547 *
1548 *  A downshift is detected by querying the PHY link health.
1549 **/
1550s32 e1000e_check_downshift(struct e1000_hw *hw)
1551{
1552        struct e1000_phy_info *phy = &hw->phy;
1553        s32 ret_val;
1554        u16 phy_data, offset, mask;
1555
1556        switch (phy->type) {
1557        case e1000_phy_m88:
1558        case e1000_phy_gg82563:
1559        case e1000_phy_bm:
1560        case e1000_phy_82578:
1561                offset = M88E1000_PHY_SPEC_STATUS;
1562                mask = M88E1000_PSSR_DOWNSHIFT;
1563                break;
1564        case e1000_phy_igp_2:
1565        case e1000_phy_igp_3:
1566                offset = IGP01E1000_PHY_LINK_HEALTH;
1567                mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1568                break;
1569        default:
1570                /* speed downshift not supported */
1571                phy->speed_downgraded = false;
1572                return 0;
1573        }
1574
1575        ret_val = e1e_rphy(hw, offset, &phy_data);
1576
1577        if (!ret_val)
1578                phy->speed_downgraded = !!(phy_data & mask);
1579
1580        return ret_val;
1581}
1582
1583/**
1584 *  e1000_check_polarity_m88 - Checks the polarity.
1585 *  @hw: pointer to the HW structure
1586 *
1587 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1588 *
1589 *  Polarity is determined based on the PHY specific status register.
1590 **/
1591s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1592{
1593        struct e1000_phy_info *phy = &hw->phy;
1594        s32 ret_val;
1595        u16 data;
1596
1597        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1598
1599        if (!ret_val)
1600                phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1601                                       ? e1000_rev_polarity_reversed
1602                                       : e1000_rev_polarity_normal);
1603
1604        return ret_val;
1605}
1606
1607/**
1608 *  e1000_check_polarity_igp - Checks the polarity.
1609 *  @hw: pointer to the HW structure
1610 *
1611 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1612 *
1613 *  Polarity is determined based on the PHY port status register, and the
1614 *  current speed (since there is no polarity at 100Mbps).
1615 **/
1616s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1617{
1618        struct e1000_phy_info *phy = &hw->phy;
1619        s32 ret_val;
1620        u16 data, offset, mask;
1621
1622        /* Polarity is determined based on the speed of
1623         * our connection.
1624         */
1625        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1626        if (ret_val)
1627                return ret_val;
1628
1629        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1630            IGP01E1000_PSSR_SPEED_1000MBPS) {
1631                offset = IGP01E1000_PHY_PCS_INIT_REG;
1632                mask = IGP01E1000_PHY_POLARITY_MASK;
1633        } else {
1634                /* This really only applies to 10Mbps since
1635                 * there is no polarity for 100Mbps (always 0).
1636                 */
1637                offset = IGP01E1000_PHY_PORT_STATUS;
1638                mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1639        }
1640
1641        ret_val = e1e_rphy(hw, offset, &data);
1642
1643        if (!ret_val)
1644                phy->cable_polarity = ((data & mask)
1645                                       ? e1000_rev_polarity_reversed
1646                                       : e1000_rev_polarity_normal);
1647
1648        return ret_val;
1649}
1650
1651/**
1652 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1653 *  @hw: pointer to the HW structure
1654 *
1655 *  Polarity is determined on the polarity reversal feature being enabled.
1656 **/
1657s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1658{
1659        struct e1000_phy_info *phy = &hw->phy;
1660        s32 ret_val;
1661        u16 phy_data, offset, mask;
1662
1663        /* Polarity is determined based on the reversal feature being enabled.
1664         */
1665        if (phy->polarity_correction) {
1666                offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1667                mask = IFE_PESC_POLARITY_REVERSED;
1668        } else {
1669                offset = IFE_PHY_SPECIAL_CONTROL;
1670                mask = IFE_PSC_FORCE_POLARITY;
1671        }
1672
1673        ret_val = e1e_rphy(hw, offset, &phy_data);
1674
1675        if (!ret_val)
1676                phy->cable_polarity = ((phy_data & mask)
1677                                       ? e1000_rev_polarity_reversed
1678                                       : e1000_rev_polarity_normal);
1679
1680        return ret_val;
1681}
1682
1683/**
1684 *  e1000_wait_autoneg - Wait for auto-neg completion
1685 *  @hw: pointer to the HW structure
1686 *
1687 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1688 *  limit to expire, which ever happens first.
1689 **/
1690static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1691{
1692        s32 ret_val = 0;
1693        u16 i, phy_status;
1694
1695        /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1696        for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1697                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1698                if (ret_val)
1699                        break;
1700                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1701                if (ret_val)
1702                        break;
1703                if (phy_status & BMSR_ANEGCOMPLETE)
1704                        break;
1705                msleep(100);
1706        }
1707
1708        /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1709         * has completed.
1710         */
1711        return ret_val;
1712}
1713
1714/**
1715 *  e1000e_phy_has_link_generic - Polls PHY for link
1716 *  @hw: pointer to the HW structure
1717 *  @iterations: number of times to poll for link
1718 *  @usec_interval: delay between polling attempts
1719 *  @success: pointer to whether polling was successful or not
1720 *
1721 *  Polls the PHY status register for link, 'iterations' number of times.
1722 **/
1723s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1724                                u32 usec_interval, bool *success)
1725{
1726        s32 ret_val = 0;
1727        u16 i, phy_status;
1728
1729        *success = false;
1730        for (i = 0; i < iterations; i++) {
1731                /* Some PHYs require the MII_BMSR register to be read
1732                 * twice due to the link bit being sticky.  No harm doing
1733                 * it across the board.
1734                 */
1735                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1736                if (ret_val) {
1737                        /* If the first read fails, another entity may have
1738                         * ownership of the resources, wait and try again to
1739                         * see if they have relinquished the resources yet.
1740                         */
1741                        if (usec_interval >= 1000)
1742                                msleep(usec_interval / 1000);
1743                        else
1744                                udelay(usec_interval);
1745                }
1746                ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747                if (ret_val)
1748                        break;
1749                if (phy_status & BMSR_LSTATUS) {
1750                        *success = true;
1751                        break;
1752                }
1753                if (usec_interval >= 1000)
1754                        msleep(usec_interval / 1000);
1755                else
1756                        udelay(usec_interval);
1757        }
1758
1759        return ret_val;
1760}
1761
1762/**
1763 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Reads the PHY specific status register to retrieve the cable length
1767 *  information.  The cable length is determined by averaging the minimum and
1768 *  maximum values to get the "average" cable length.  The m88 PHY has four
1769 *  possible cable length values, which are:
1770 *      Register Value          Cable Length
1771 *      0                       < 50 meters
1772 *      1                       50 - 80 meters
1773 *      2                       80 - 110 meters
1774 *      3                       110 - 140 meters
1775 *      4                       > 140 meters
1776 **/
1777s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1778{
1779        struct e1000_phy_info *phy = &hw->phy;
1780        s32 ret_val;
1781        u16 phy_data, index;
1782
1783        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1784        if (ret_val)
1785                return ret_val;
1786
1787        index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1788                 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1789
1790        if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1791                return -E1000_ERR_PHY;
1792
1793        phy->min_cable_length = e1000_m88_cable_length_table[index];
1794        phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1795
1796        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1797
1798        return 0;
1799}
1800
1801/**
1802 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1803 *  @hw: pointer to the HW structure
1804 *
1805 *  The automatic gain control (agc) normalizes the amplitude of the
1806 *  received signal, adjusting for the attenuation produced by the
1807 *  cable.  By reading the AGC registers, which represent the
1808 *  combination of coarse and fine gain value, the value can be put
1809 *  into a lookup table to obtain the approximate cable length
1810 *  for each channel.
1811 **/
1812s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1813{
1814        struct e1000_phy_info *phy = &hw->phy;
1815        s32 ret_val;
1816        u16 phy_data, i, agc_value = 0;
1817        u16 cur_agc_index, max_agc_index = 0;
1818        u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1819        static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1820                IGP02E1000_PHY_AGC_A,
1821                IGP02E1000_PHY_AGC_B,
1822                IGP02E1000_PHY_AGC_C,
1823                IGP02E1000_PHY_AGC_D
1824        };
1825
1826        /* Read the AGC registers for all channels */
1827        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1828                ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1829                if (ret_val)
1830                        return ret_val;
1831
1832                /* Getting bits 15:9, which represent the combination of
1833                 * coarse and fine gain values.  The result is a number
1834                 * that can be put into the lookup table to obtain the
1835                 * approximate cable length.
1836                 */
1837                cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1838                                 IGP02E1000_AGC_LENGTH_MASK);
1839
1840                /* Array index bound check. */
1841                if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1842                    (cur_agc_index == 0))
1843                        return -E1000_ERR_PHY;
1844
1845                /* Remove min & max AGC values from calculation. */
1846                if (e1000_igp_2_cable_length_table[min_agc_index] >
1847                    e1000_igp_2_cable_length_table[cur_agc_index])
1848                        min_agc_index = cur_agc_index;
1849                if (e1000_igp_2_cable_length_table[max_agc_index] <
1850                    e1000_igp_2_cable_length_table[cur_agc_index])
1851                        max_agc_index = cur_agc_index;
1852
1853                agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1854        }
1855
1856        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1857                      e1000_igp_2_cable_length_table[max_agc_index]);
1858        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1859
1860        /* Calculate cable length with the error range of +/- 10 meters. */
1861        phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1862                                 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1863        phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1864
1865        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1866
1867        return 0;
1868}
1869
1870/**
1871 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1872 *  @hw: pointer to the HW structure
1873 *
1874 *  Valid for only copper links.  Read the PHY status register (sticky read)
1875 *  to verify that link is up.  Read the PHY special control register to
1876 *  determine the polarity and 10base-T extended distance.  Read the PHY
1877 *  special status register to determine MDI/MDIx and current speed.  If
1878 *  speed is 1000, then determine cable length, local and remote receiver.
1879 **/
1880s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1881{
1882        struct e1000_phy_info *phy = &hw->phy;
1883        s32 ret_val;
1884        u16 phy_data;
1885        bool link;
1886
1887        if (phy->media_type != e1000_media_type_copper) {
1888                e_dbg("Phy info is only valid for copper media\n");
1889                return -E1000_ERR_CONFIG;
1890        }
1891
1892        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1893        if (ret_val)
1894                return ret_val;
1895
1896        if (!link) {
1897                e_dbg("Phy info is only valid if link is up\n");
1898                return -E1000_ERR_CONFIG;
1899        }
1900
1901        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1902        if (ret_val)
1903                return ret_val;
1904
1905        phy->polarity_correction = !!(phy_data &
1906                                      M88E1000_PSCR_POLARITY_REVERSAL);
1907
1908        ret_val = e1000_check_polarity_m88(hw);
1909        if (ret_val)
1910                return ret_val;
1911
1912        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1913        if (ret_val)
1914                return ret_val;
1915
1916        phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1917
1918        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1919                ret_val = hw->phy.ops.get_cable_length(hw);
1920                if (ret_val)
1921                        return ret_val;
1922
1923                ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1924                if (ret_val)
1925                        return ret_val;
1926
1927                phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1928                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1929
1930                phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1931                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1932        } else {
1933                /* Set values to "undefined" */
1934                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1935                phy->local_rx = e1000_1000t_rx_status_undefined;
1936                phy->remote_rx = e1000_1000t_rx_status_undefined;
1937        }
1938
1939        return ret_val;
1940}
1941
1942/**
1943 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1944 *  @hw: pointer to the HW structure
1945 *
1946 *  Read PHY status to determine if link is up.  If link is up, then
1947 *  set/determine 10base-T extended distance and polarity correction.  Read
1948 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1949 *  determine on the cable length, local and remote receiver.
1950 **/
1951s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1952{
1953        struct e1000_phy_info *phy = &hw->phy;
1954        s32 ret_val;
1955        u16 data;
1956        bool link;
1957
1958        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1959        if (ret_val)
1960                return ret_val;
1961
1962        if (!link) {
1963                e_dbg("Phy info is only valid if link is up\n");
1964                return -E1000_ERR_CONFIG;
1965        }
1966
1967        phy->polarity_correction = true;
1968
1969        ret_val = e1000_check_polarity_igp(hw);
1970        if (ret_val)
1971                return ret_val;
1972
1973        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1974        if (ret_val)
1975                return ret_val;
1976
1977        phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1978
1979        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1980            IGP01E1000_PSSR_SPEED_1000MBPS) {
1981                ret_val = phy->ops.get_cable_length(hw);
1982                if (ret_val)
1983                        return ret_val;
1984
1985                ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1986                if (ret_val)
1987                        return ret_val;
1988
1989                phy->local_rx = (data & LPA_1000LOCALRXOK)
1990                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1991
1992                phy->remote_rx = (data & LPA_1000REMRXOK)
1993                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1994        } else {
1995                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1996                phy->local_rx = e1000_1000t_rx_status_undefined;
1997                phy->remote_rx = e1000_1000t_rx_status_undefined;
1998        }
1999
2000        return ret_val;
2001}
2002
2003/**
2004 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2005 *  @hw: pointer to the HW structure
2006 *
2007 *  Populates "phy" structure with various feature states.
2008 **/
2009s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2010{
2011        struct e1000_phy_info *phy = &hw->phy;
2012        s32 ret_val;
2013        u16 data;
2014        bool link;
2015
2016        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2017        if (ret_val)
2018                return ret_val;
2019
2020        if (!link) {
2021                e_dbg("Phy info is only valid if link is up\n");
2022                return -E1000_ERR_CONFIG;
2023        }
2024
2025        ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2026        if (ret_val)
2027                return ret_val;
2028        phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2029
2030        if (phy->polarity_correction) {
2031                ret_val = e1000_check_polarity_ife(hw);
2032                if (ret_val)
2033                        return ret_val;
2034        } else {
2035                /* Polarity is forced */
2036                phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2037                                       ? e1000_rev_polarity_reversed
2038                                       : e1000_rev_polarity_normal);
2039        }
2040
2041        ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2042        if (ret_val)
2043                return ret_val;
2044
2045        phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2046
2047        /* The following parameters are undefined for 10/100 operation. */
2048        phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2049        phy->local_rx = e1000_1000t_rx_status_undefined;
2050        phy->remote_rx = e1000_1000t_rx_status_undefined;
2051
2052        return 0;
2053}
2054
2055/**
2056 *  e1000e_phy_sw_reset - PHY software reset
2057 *  @hw: pointer to the HW structure
2058 *
2059 *  Does a software reset of the PHY by reading the PHY control register and
2060 *  setting/write the control register reset bit to the PHY.
2061 **/
2062s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2063{
2064        s32 ret_val;
2065        u16 phy_ctrl;
2066
2067        ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2068        if (ret_val)
2069                return ret_val;
2070
2071        phy_ctrl |= BMCR_RESET;
2072        ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2073        if (ret_val)
2074                return ret_val;
2075
2076        udelay(1);
2077
2078        return ret_val;
2079}
2080
2081/**
2082 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2083 *  @hw: pointer to the HW structure
2084 *
2085 *  Verify the reset block is not blocking us from resetting.  Acquire
2086 *  semaphore (if necessary) and read/set/write the device control reset
2087 *  bit in the PHY.  Wait the appropriate delay time for the device to
2088 *  reset and release the semaphore (if necessary).
2089 **/
2090s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2091{
2092        struct e1000_phy_info *phy = &hw->phy;
2093        s32 ret_val;
2094        u32 ctrl;
2095
2096        if (phy->ops.check_reset_block) {
2097                ret_val = phy->ops.check_reset_block(hw);
2098                if (ret_val)
2099                        return 0;
2100        }
2101
2102        ret_val = phy->ops.acquire(hw);
2103        if (ret_val)
2104                return ret_val;
2105
2106        ctrl = er32(CTRL);
2107        ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2108        e1e_flush();
2109
2110        udelay(phy->reset_delay_us);
2111
2112        ew32(CTRL, ctrl);
2113        e1e_flush();
2114
2115        usleep_range(150, 300);
2116
2117        phy->ops.release(hw);
2118
2119        return phy->ops.get_cfg_done(hw);
2120}
2121
2122/**
2123 *  e1000e_get_cfg_done_generic - Generic configuration done
2124 *  @hw: pointer to the HW structure
2125 *
2126 *  Generic function to wait 10 milli-seconds for configuration to complete
2127 *  and return success.
2128 **/
2129s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2130{
2131        mdelay(10);
2132
2133        return 0;
2134}
2135
2136/**
2137 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2138 *  @hw: pointer to the HW structure
2139 *
2140 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2141 **/
2142s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2143{
2144        e_dbg("Running IGP 3 PHY init script\n");
2145
2146        /* PHY init IGP 3 */
2147        /* Enable rise/fall, 10-mode work in class-A */
2148        e1e_wphy(hw, 0x2F5B, 0x9018);
2149        /* Remove all caps from Replica path filter */
2150        e1e_wphy(hw, 0x2F52, 0x0000);
2151        /* Bias trimming for ADC, AFE and Driver (Default) */
2152        e1e_wphy(hw, 0x2FB1, 0x8B24);
2153        /* Increase Hybrid poly bias */
2154        e1e_wphy(hw, 0x2FB2, 0xF8F0);
2155        /* Add 4% to Tx amplitude in Gig mode */
2156        e1e_wphy(hw, 0x2010, 0x10B0);
2157        /* Disable trimming (TTT) */
2158        e1e_wphy(hw, 0x2011, 0x0000);
2159        /* Poly DC correction to 94.6% + 2% for all channels */
2160        e1e_wphy(hw, 0x20DD, 0x249A);
2161        /* ABS DC correction to 95.9% */
2162        e1e_wphy(hw, 0x20DE, 0x00D3);
2163        /* BG temp curve trim */
2164        e1e_wphy(hw, 0x28B4, 0x04CE);
2165        /* Increasing ADC OPAMP stage 1 currents to max */
2166        e1e_wphy(hw, 0x2F70, 0x29E4);
2167        /* Force 1000 ( required for enabling PHY regs configuration) */
2168        e1e_wphy(hw, 0x0000, 0x0140);
2169        /* Set upd_freq to 6 */
2170        e1e_wphy(hw, 0x1F30, 0x1606);
2171        /* Disable NPDFE */
2172        e1e_wphy(hw, 0x1F31, 0xB814);
2173        /* Disable adaptive fixed FFE (Default) */
2174        e1e_wphy(hw, 0x1F35, 0x002A);
2175        /* Enable FFE hysteresis */
2176        e1e_wphy(hw, 0x1F3E, 0x0067);
2177        /* Fixed FFE for short cable lengths */
2178        e1e_wphy(hw, 0x1F54, 0x0065);
2179        /* Fixed FFE for medium cable lengths */
2180        e1e_wphy(hw, 0x1F55, 0x002A);
2181        /* Fixed FFE for long cable lengths */
2182        e1e_wphy(hw, 0x1F56, 0x002A);
2183        /* Enable Adaptive Clip Threshold */
2184        e1e_wphy(hw, 0x1F72, 0x3FB0);
2185        /* AHT reset limit to 1 */
2186        e1e_wphy(hw, 0x1F76, 0xC0FF);
2187        /* Set AHT master delay to 127 msec */
2188        e1e_wphy(hw, 0x1F77, 0x1DEC);
2189        /* Set scan bits for AHT */
2190        e1e_wphy(hw, 0x1F78, 0xF9EF);
2191        /* Set AHT Preset bits */
2192        e1e_wphy(hw, 0x1F79, 0x0210);
2193        /* Change integ_factor of channel A to 3 */
2194        e1e_wphy(hw, 0x1895, 0x0003);
2195        /* Change prop_factor of channels BCD to 8 */
2196        e1e_wphy(hw, 0x1796, 0x0008);
2197        /* Change cg_icount + enable integbp for channels BCD */
2198        e1e_wphy(hw, 0x1798, 0xD008);
2199        /* Change cg_icount + enable integbp + change prop_factor_master
2200         * to 8 for channel A
2201         */
2202        e1e_wphy(hw, 0x1898, 0xD918);
2203        /* Disable AHT in Slave mode on channel A */
2204        e1e_wphy(hw, 0x187A, 0x0800);
2205        /* Enable LPLU and disable AN to 1000 in non-D0a states,
2206         * Enable SPD+B2B
2207         */
2208        e1e_wphy(hw, 0x0019, 0x008D);
2209        /* Enable restart AN on an1000_dis change */
2210        e1e_wphy(hw, 0x001B, 0x2080);
2211        /* Enable wh_fifo read clock in 10/100 modes */
2212        e1e_wphy(hw, 0x0014, 0x0045);
2213        /* Restart AN, Speed selection is 1000 */
2214        e1e_wphy(hw, 0x0000, 0x1340);
2215
2216        return 0;
2217}
2218
2219/**
2220 *  e1000e_get_phy_type_from_id - Get PHY type from id
2221 *  @phy_id: phy_id read from the phy
2222 *
2223 *  Returns the phy type from the id.
2224 **/
2225enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2226{
2227        enum e1000_phy_type phy_type = e1000_phy_unknown;
2228
2229        switch (phy_id) {
2230        case M88E1000_I_PHY_ID:
2231        case M88E1000_E_PHY_ID:
2232        case M88E1111_I_PHY_ID:
2233        case M88E1011_I_PHY_ID:
2234                phy_type = e1000_phy_m88;
2235                break;
2236        case IGP01E1000_I_PHY_ID:       /* IGP 1 & 2 share this */
2237                phy_type = e1000_phy_igp_2;
2238                break;
2239        case GG82563_E_PHY_ID:
2240                phy_type = e1000_phy_gg82563;
2241                break;
2242        case IGP03E1000_E_PHY_ID:
2243                phy_type = e1000_phy_igp_3;
2244                break;
2245        case IFE_E_PHY_ID:
2246        case IFE_PLUS_E_PHY_ID:
2247        case IFE_C_E_PHY_ID:
2248                phy_type = e1000_phy_ife;
2249                break;
2250        case BME1000_E_PHY_ID:
2251        case BME1000_E_PHY_ID_R2:
2252                phy_type = e1000_phy_bm;
2253                break;
2254        case I82578_E_PHY_ID:
2255                phy_type = e1000_phy_82578;
2256                break;
2257        case I82577_E_PHY_ID:
2258                phy_type = e1000_phy_82577;
2259                break;
2260        case I82579_E_PHY_ID:
2261                phy_type = e1000_phy_82579;
2262                break;
2263        case I217_E_PHY_ID:
2264                phy_type = e1000_phy_i217;
2265                break;
2266        default:
2267                phy_type = e1000_phy_unknown;
2268                break;
2269        }
2270        return phy_type;
2271}
2272
2273/**
2274 *  e1000e_determine_phy_address - Determines PHY address.
2275 *  @hw: pointer to the HW structure
2276 *
2277 *  This uses a trial and error method to loop through possible PHY
2278 *  addresses. It tests each by reading the PHY ID registers and
2279 *  checking for a match.
2280 **/
2281s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2282{
2283        u32 phy_addr = 0;
2284        u32 i;
2285        enum e1000_phy_type phy_type = e1000_phy_unknown;
2286
2287        hw->phy.id = phy_type;
2288
2289        for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2290                hw->phy.addr = phy_addr;
2291                i = 0;
2292
2293                do {
2294                        e1000e_get_phy_id(hw);
2295                        phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2296
2297                        /* If phy_type is valid, break - we found our
2298                         * PHY address
2299                         */
2300                        if (phy_type != e1000_phy_unknown)
2301                                return 0;
2302
2303                        usleep_range(1000, 2000);
2304                        i++;
2305                } while (i < 10);
2306        }
2307
2308        return -E1000_ERR_PHY_TYPE;
2309}
2310
2311/**
2312 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2313 *  @page: page to access
2314 *
2315 *  Returns the phy address for the page requested.
2316 **/
2317static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2318{
2319        u32 phy_addr = 2;
2320
2321        if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2322                phy_addr = 1;
2323
2324        return phy_addr;
2325}
2326
2327/**
2328 *  e1000e_write_phy_reg_bm - Write BM PHY register
2329 *  @hw: pointer to the HW structure
2330 *  @offset: register offset to write to
2331 *  @data: data to write at register offset
2332 *
2333 *  Acquires semaphore, if necessary, then writes the data to PHY register
2334 *  at the offset.  Release any acquired semaphores before exiting.
2335 **/
2336s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2337{
2338        s32 ret_val;
2339        u32 page = offset >> IGP_PAGE_SHIFT;
2340
2341        ret_val = hw->phy.ops.acquire(hw);
2342        if (ret_val)
2343                return ret_val;
2344
2345        /* Page 800 works differently than the rest so it has its own func */
2346        if (page == BM_WUC_PAGE) {
2347                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2348                                                         false, false);
2349                goto release;
2350        }
2351
2352        hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2353
2354        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2355                u32 page_shift, page_select;
2356
2357                /* Page select is register 31 for phy address 1 and 22 for
2358                 * phy address 2 and 3. Page select is shifted only for
2359                 * phy address 1.
2360                 */
2361                if (hw->phy.addr == 1) {
2362                        page_shift = IGP_PAGE_SHIFT;
2363                        page_select = IGP01E1000_PHY_PAGE_SELECT;
2364                } else {
2365                        page_shift = 0;
2366                        page_select = BM_PHY_PAGE_SELECT;
2367                }
2368
2369                /* Page is shifted left, PHY expects (page x 32) */
2370                ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2371                                                    (page << page_shift));
2372                if (ret_val)
2373                        goto release;
2374        }
2375
2376        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2377                                            data);
2378
2379release:
2380        hw->phy.ops.release(hw);
2381        return ret_val;
2382}
2383
2384/**
2385 *  e1000e_read_phy_reg_bm - Read BM PHY register
2386 *  @hw: pointer to the HW structure
2387 *  @offset: register offset to be read
2388 *  @data: pointer to the read data
2389 *
2390 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2391 *  and storing the retrieved information in data.  Release any acquired
2392 *  semaphores before exiting.
2393 **/
2394s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2395{
2396        s32 ret_val;
2397        u32 page = offset >> IGP_PAGE_SHIFT;
2398
2399        ret_val = hw->phy.ops.acquire(hw);
2400        if (ret_val)
2401                return ret_val;
2402
2403        /* Page 800 works differently than the rest so it has its own func */
2404        if (page == BM_WUC_PAGE) {
2405                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2406                                                         true, false);
2407                goto release;
2408        }
2409
2410        hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2411
2412        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2413                u32 page_shift, page_select;
2414
2415                /* Page select is register 31 for phy address 1 and 22 for
2416                 * phy address 2 and 3. Page select is shifted only for
2417                 * phy address 1.
2418                 */
2419                if (hw->phy.addr == 1) {
2420                        page_shift = IGP_PAGE_SHIFT;
2421                        page_select = IGP01E1000_PHY_PAGE_SELECT;
2422                } else {
2423                        page_shift = 0;
2424                        page_select = BM_PHY_PAGE_SELECT;
2425                }
2426
2427                /* Page is shifted left, PHY expects (page x 32) */
2428                ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2429                                                    (page << page_shift));
2430                if (ret_val)
2431                        goto release;
2432        }
2433
2434        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2435                                           data);
2436release:
2437        hw->phy.ops.release(hw);
2438        return ret_val;
2439}
2440
2441/**
2442 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2443 *  @hw: pointer to the HW structure
2444 *  @offset: register offset to be read
2445 *  @data: pointer to the read data
2446 *
2447 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2448 *  and storing the retrieved information in data.  Release any acquired
2449 *  semaphores before exiting.
2450 **/
2451s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2452{
2453        s32 ret_val;
2454        u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2455
2456        ret_val = hw->phy.ops.acquire(hw);
2457        if (ret_val)
2458                return ret_val;
2459
2460        /* Page 800 works differently than the rest so it has its own func */
2461        if (page == BM_WUC_PAGE) {
2462                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2463                                                         true, false);
2464                goto release;
2465        }
2466
2467        hw->phy.addr = 1;
2468
2469        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2470                /* Page is shifted left, PHY expects (page x 32) */
2471                ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2472                                                    page);
2473
2474                if (ret_val)
2475                        goto release;
2476        }
2477
2478        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2479                                           data);
2480release:
2481        hw->phy.ops.release(hw);
2482        return ret_val;
2483}
2484
2485/**
2486 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2487 *  @hw: pointer to the HW structure
2488 *  @offset: register offset to write to
2489 *  @data: data to write at register offset
2490 *
2491 *  Acquires semaphore, if necessary, then writes the data to PHY register
2492 *  at the offset.  Release any acquired semaphores before exiting.
2493 **/
2494s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2495{
2496        s32 ret_val;
2497        u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2498
2499        ret_val = hw->phy.ops.acquire(hw);
2500        if (ret_val)
2501                return ret_val;
2502
2503        /* Page 800 works differently than the rest so it has its own func */
2504        if (page == BM_WUC_PAGE) {
2505                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2506                                                         false, false);
2507                goto release;
2508        }
2509
2510        hw->phy.addr = 1;
2511
2512        if (offset > MAX_PHY_MULTI_PAGE_REG) {
2513                /* Page is shifted left, PHY expects (page x 32) */
2514                ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2515                                                    page);
2516
2517                if (ret_val)
2518                        goto release;
2519        }
2520
2521        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2522                                            data);
2523
2524release:
2525        hw->phy.ops.release(hw);
2526        return ret_val;
2527}
2528
2529/**
2530 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2531 *  @hw: pointer to the HW structure
2532 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2533 *
2534 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2535 *  address to store contents of the BM_WUC_ENABLE_REG register.
2536 **/
2537s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2538{
2539        s32 ret_val;
2540        u16 temp;
2541
2542        /* All page select, port ctrl and wakeup registers use phy address 1 */
2543        hw->phy.addr = 1;
2544
2545        /* Select Port Control Registers page */
2546        ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2547        if (ret_val) {
2548                e_dbg("Could not set Port Control page\n");
2549                return ret_val;
2550        }
2551
2552        ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2553        if (ret_val) {
2554                e_dbg("Could not read PHY register %d.%d\n",
2555                      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2556                return ret_val;
2557        }
2558
2559        /* Enable both PHY wakeup mode and Wakeup register page writes.
2560         * Prevent a power state change by disabling ME and Host PHY wakeup.
2561         */
2562        temp = *phy_reg;
2563        temp |= BM_WUC_ENABLE_BIT;
2564        temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2565
2566        ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2567        if (ret_val) {
2568                e_dbg("Could not write PHY register %d.%d\n",
2569                      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2570                return ret_val;
2571        }
2572
2573        /* Select Host Wakeup Registers page - caller now able to write
2574         * registers on the Wakeup registers page
2575         */
2576        return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2577}
2578
2579/**
2580 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2581 *  @hw: pointer to the HW structure
2582 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2583 *
2584 *  Restore BM_WUC_ENABLE_REG to its original value.
2585 *
2586 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2587 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2588 *  caller.
2589 **/
2590s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2591{
2592        s32 ret_val;
2593
2594        /* Select Port Control Registers page */
2595        ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2596        if (ret_val) {
2597                e_dbg("Could not set Port Control page\n");
2598                return ret_val;
2599        }
2600
2601        /* Restore 769.17 to its original value */
2602        ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2603        if (ret_val)
2604                e_dbg("Could not restore PHY register %d.%d\n",
2605                      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2606
2607        return ret_val;
2608}
2609
2610/**
2611 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2612 *  @hw: pointer to the HW structure
2613 *  @offset: register offset to be read or written
2614 *  @data: pointer to the data to read or write
2615 *  @read: determines if operation is read or write
2616 *  @page_set: BM_WUC_PAGE already set and access enabled
2617 *
2618 *  Read the PHY register at offset and store the retrieved information in
2619 *  data, or write data to PHY register at offset.  Note the procedure to
2620 *  access the PHY wakeup registers is different than reading the other PHY
2621 *  registers. It works as such:
2622 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2623 *  2) Set page to 800 for host (801 if we were manageability)
2624 *  3) Write the address using the address opcode (0x11)
2625 *  4) Read or write the data using the data opcode (0x12)
2626 *  5) Restore 769.17.2 to its original value
2627 *
2628 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2629 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2630 *
2631 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2632 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2633 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2634 **/
2635static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2636                                          u16 *data, bool read, bool page_set)
2637{
2638        s32 ret_val;
2639        u16 reg = BM_PHY_REG_NUM(offset);
2640        u16 page = BM_PHY_REG_PAGE(offset);
2641        u16 phy_reg = 0;
2642
2643        /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2644        if ((hw->mac.type == e1000_pchlan) &&
2645            (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2646                e_dbg("Attempting to access page %d while gig enabled.\n",
2647                      page);
2648
2649        if (!page_set) {
2650                /* Enable access to PHY wakeup registers */
2651                ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2652                if (ret_val) {
2653                        e_dbg("Could not enable PHY wakeup reg access\n");
2654                        return ret_val;
2655                }
2656        }
2657
2658        e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2659
2660        /* Write the Wakeup register page offset value using opcode 0x11 */
2661        ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2662        if (ret_val) {
2663                e_dbg("Could not write address opcode to page %d\n", page);
2664                return ret_val;
2665        }
2666
2667        if (read) {
2668                /* Read the Wakeup register page value using opcode 0x12 */
2669                ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2670                                                   data);
2671        } else {
2672                /* Write the Wakeup register page value using opcode 0x12 */
2673                ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2674                                                    *data);
2675        }
2676
2677        if (ret_val) {
2678                e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2679                return ret_val;
2680        }
2681
2682        if (!page_set)
2683                ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2684
2685        return ret_val;
2686}
2687
2688/**
2689 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2690 * @hw: pointer to the HW structure
2691 *
2692 * In the case of a PHY power down to save power, or to turn off link during a
2693 * driver unload, or wake on lan is not enabled, restore the link to previous
2694 * settings.
2695 **/
2696void e1000_power_up_phy_copper(struct e1000_hw *hw)
2697{
2698        u16 mii_reg = 0;
2699
2700        /* The PHY will retain its settings across a power down/up cycle */
2701        e1e_rphy(hw, MII_BMCR, &mii_reg);
2702        mii_reg &= ~BMCR_PDOWN;
2703        e1e_wphy(hw, MII_BMCR, mii_reg);
2704}
2705
2706/**
2707 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2708 * @hw: pointer to the HW structure
2709 *
2710 * In the case of a PHY power down to save power, or to turn off link during a
2711 * driver unload, or wake on lan is not enabled, restore the link to previous
2712 * settings.
2713 **/
2714void e1000_power_down_phy_copper(struct e1000_hw *hw)
2715{
2716        u16 mii_reg = 0;
2717
2718        /* The PHY will retain its settings across a power down/up cycle */
2719        e1e_rphy(hw, MII_BMCR, &mii_reg);
2720        mii_reg |= BMCR_PDOWN;
2721        e1e_wphy(hw, MII_BMCR, mii_reg);
2722        usleep_range(1000, 2000);
2723}
2724
2725/**
2726 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2727 *  @hw: pointer to the HW structure
2728 *  @offset: register offset to be read
2729 *  @data: pointer to the read data
2730 *  @locked: semaphore has already been acquired or not
2731 *
2732 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2733 *  and stores the retrieved information in data.  Release any acquired
2734 *  semaphore before exiting.
2735 **/
2736static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2737                                   bool locked, bool page_set)
2738{
2739        s32 ret_val;
2740        u16 page = BM_PHY_REG_PAGE(offset);
2741        u16 reg = BM_PHY_REG_NUM(offset);
2742        u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2743
2744        if (!locked) {
2745                ret_val = hw->phy.ops.acquire(hw);
2746                if (ret_val)
2747                        return ret_val;
2748        }
2749
2750        /* Page 800 works differently than the rest so it has its own func */
2751        if (page == BM_WUC_PAGE) {
2752                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2753                                                         true, page_set);
2754                goto out;
2755        }
2756
2757        if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2758                ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2759                                                         data, true);
2760                goto out;
2761        }
2762
2763        if (!page_set) {
2764                if (page == HV_INTC_FC_PAGE_START)
2765                        page = 0;
2766
2767                if (reg > MAX_PHY_MULTI_PAGE_REG) {
2768                        /* Page is shifted left, PHY expects (page x 32) */
2769                        ret_val = e1000_set_page_igp(hw,
2770                                                     (page << IGP_PAGE_SHIFT));
2771
2772                        hw->phy.addr = phy_addr;
2773
2774                        if (ret_val)
2775                                goto out;
2776                }
2777        }
2778
2779        e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2780              page << IGP_PAGE_SHIFT, reg);
2781
2782        ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2783out:
2784        if (!locked)
2785                hw->phy.ops.release(hw);
2786
2787        return ret_val;
2788}
2789
2790/**
2791 *  e1000_read_phy_reg_hv -  Read HV PHY register
2792 *  @hw: pointer to the HW structure
2793 *  @offset: register offset to be read
2794 *  @data: pointer to the read data
2795 *
2796 *  Acquires semaphore then reads the PHY register at offset and stores
2797 *  the retrieved information in data.  Release the acquired semaphore
2798 *  before exiting.
2799 **/
2800s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2801{
2802        return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2803}
2804
2805/**
2806 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2807 *  @hw: pointer to the HW structure
2808 *  @offset: register offset to be read
2809 *  @data: pointer to the read data
2810 *
2811 *  Reads the PHY register at offset and stores the retrieved information
2812 *  in data.  Assumes semaphore already acquired.
2813 **/
2814s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2815{
2816        return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2817}
2818
2819/**
2820 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2821 *  @hw: pointer to the HW structure
2822 *  @offset: register offset to write to
2823 *  @data: data to write at register offset
2824 *
2825 *  Reads the PHY register at offset and stores the retrieved information
2826 *  in data.  Assumes semaphore already acquired and page already set.
2827 **/
2828s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2829{
2830        return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2831}
2832
2833/**
2834 *  __e1000_write_phy_reg_hv - Write HV PHY register
2835 *  @hw: pointer to the HW structure
2836 *  @offset: register offset to write to
2837 *  @data: data to write at register offset
2838 *  @locked: semaphore has already been acquired or not
2839 *
2840 *  Acquires semaphore, if necessary, then writes the data to PHY register
2841 *  at the offset.  Release any acquired semaphores before exiting.
2842 **/
2843static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2844                                    bool locked, bool page_set)
2845{
2846        s32 ret_val;
2847        u16 page = BM_PHY_REG_PAGE(offset);
2848        u16 reg = BM_PHY_REG_NUM(offset);
2849        u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2850
2851        if (!locked) {
2852                ret_val = hw->phy.ops.acquire(hw);
2853                if (ret_val)
2854                        return ret_val;
2855        }
2856
2857        /* Page 800 works differently than the rest so it has its own func */
2858        if (page == BM_WUC_PAGE) {
2859                ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2860                                                         false, page_set);
2861                goto out;
2862        }
2863
2864        if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2865                ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2866                                                         &data, false);
2867                goto out;
2868        }
2869
2870        if (!page_set) {
2871                if (page == HV_INTC_FC_PAGE_START)
2872                        page = 0;
2873
2874                /* Workaround MDIO accesses being disabled after entering IEEE
2875                 * Power Down (when bit 11 of the PHY Control register is set)
2876                 */
2877                if ((hw->phy.type == e1000_phy_82578) &&
2878                    (hw->phy.revision >= 1) &&
2879                    (hw->phy.addr == 2) &&
2880                    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2881                        u16 data2 = 0x7EFF;
2882
2883                        ret_val = e1000_access_phy_debug_regs_hv(hw,
2884                                                                 BIT(6) | 0x3,
2885                                                                 &data2, false);
2886                        if (ret_val)
2887                                goto out;
2888                }
2889
2890                if (reg > MAX_PHY_MULTI_PAGE_REG) {
2891                        /* Page is shifted left, PHY expects (page x 32) */
2892                        ret_val = e1000_set_page_igp(hw,
2893                                                     (page << IGP_PAGE_SHIFT));
2894
2895                        hw->phy.addr = phy_addr;
2896
2897                        if (ret_val)
2898                                goto out;
2899                }
2900        }
2901
2902        e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2903              page << IGP_PAGE_SHIFT, reg);
2904
2905        ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2906                                            data);
2907
2908out:
2909        if (!locked)
2910                hw->phy.ops.release(hw);
2911
2912        return ret_val;
2913}
2914
2915/**
2916 *  e1000_write_phy_reg_hv - Write HV PHY register
2917 *  @hw: pointer to the HW structure
2918 *  @offset: register offset to write to
2919 *  @data: data to write at register offset
2920 *
2921 *  Acquires semaphore then writes the data to PHY register at the offset.
2922 *  Release the acquired semaphores before exiting.
2923 **/
2924s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2925{
2926        return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2927}
2928
2929/**
2930 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2931 *  @hw: pointer to the HW structure
2932 *  @offset: register offset to write to
2933 *  @data: data to write at register offset
2934 *
2935 *  Writes the data to PHY register at the offset.  Assumes semaphore
2936 *  already acquired.
2937 **/
2938s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2939{
2940        return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2941}
2942
2943/**
2944 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2945 *  @hw: pointer to the HW structure
2946 *  @offset: register offset to write to
2947 *  @data: data to write at register offset
2948 *
2949 *  Writes the data to PHY register at the offset.  Assumes semaphore
2950 *  already acquired and page already set.
2951 **/
2952s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2953{
2954        return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2955}
2956
2957/**
2958 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2959 *  @page: page to be accessed
2960 **/
2961static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2962{
2963        u32 phy_addr = 2;
2964
2965        if (page >= HV_INTC_FC_PAGE_START)
2966                phy_addr = 1;
2967
2968        return phy_addr;
2969}
2970
2971/**
2972 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2973 *  @hw: pointer to the HW structure
2974 *  @offset: register offset to be read or written
2975 *  @data: pointer to the data to be read or written
2976 *  @read: determines if operation is read or write
2977 *
2978 *  Reads the PHY register at offset and stores the retreived information
2979 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2980 *  to access these regs uses the address port and data port to read/write.
2981 *  These accesses done with PHY address 2 and without using pages.
2982 **/
2983static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2984                                          u16 *data, bool read)
2985{
2986        s32 ret_val;
2987        u32 addr_reg;
2988        u32 data_reg;
2989
2990        /* This takes care of the difference with desktop vs mobile phy */
2991        addr_reg = ((hw->phy.type == e1000_phy_82578) ?
2992                    I82578_ADDR_REG : I82577_ADDR_REG);
2993        data_reg = addr_reg + 1;
2994
2995        /* All operations in this function are phy address 2 */
2996        hw->phy.addr = 2;
2997
2998        /* masking with 0x3F to remove the page from offset */
2999        ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3000        if (ret_val) {
3001                e_dbg("Could not write the Address Offset port register\n");
3002                return ret_val;
3003        }
3004
3005        /* Read or write the data value next */
3006        if (read)
3007                ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3008        else
3009                ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3010
3011        if (ret_val)
3012                e_dbg("Could not access the Data port register\n");
3013
3014        return ret_val;
3015}
3016
3017/**
3018 *  e1000_link_stall_workaround_hv - Si workaround
3019 *  @hw: pointer to the HW structure
3020 *
3021 *  This function works around a Si bug where the link partner can get
3022 *  a link up indication before the PHY does.  If small packets are sent
3023 *  by the link partner they can be placed in the packet buffer without
3024 *  being properly accounted for by the PHY and will stall preventing
3025 *  further packets from being received.  The workaround is to clear the
3026 *  packet buffer after the PHY detects link up.
3027 **/
3028s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3029{
3030        s32 ret_val = 0;
3031        u16 data;
3032
3033        if (hw->phy.type != e1000_phy_82578)
3034                return 0;
3035
3036        /* Do not apply workaround if in PHY loopback bit 14 set */
3037        e1e_rphy(hw, MII_BMCR, &data);
3038        if (data & BMCR_LOOPBACK)
3039                return 0;
3040
3041        /* check if link is up and at 1Gbps */
3042        ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3043        if (ret_val)
3044                return ret_val;
3045
3046        data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3047                 BM_CS_STATUS_SPEED_MASK);
3048
3049        if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3050                     BM_CS_STATUS_SPEED_1000))
3051                return 0;
3052
3053        msleep(200);
3054
3055        /* flush the packets in the fifo buffer */
3056        ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3057                           (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3058                            HV_MUX_DATA_CTRL_FORCE_SPEED));
3059        if (ret_val)
3060                return ret_val;
3061
3062        return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3063}
3064
3065/**
3066 *  e1000_check_polarity_82577 - Checks the polarity.
3067 *  @hw: pointer to the HW structure
3068 *
3069 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3070 *
3071 *  Polarity is determined based on the PHY specific status register.
3072 **/
3073s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3074{
3075        struct e1000_phy_info *phy = &hw->phy;
3076        s32 ret_val;
3077        u16 data;
3078
3079        ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3080
3081        if (!ret_val)
3082                phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3083                                       ? e1000_rev_polarity_reversed
3084                                       : e1000_rev_polarity_normal);
3085
3086        return ret_val;
3087}
3088
3089/**
3090 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3091 *  @hw: pointer to the HW structure
3092 *
3093 *  Calls the PHY setup function to force speed and duplex.
3094 **/
3095s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3096{
3097        struct e1000_phy_info *phy = &hw->phy;
3098        s32 ret_val;
3099        u16 phy_data;
3100        bool link;
3101
3102        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3103        if (ret_val)
3104                return ret_val;
3105
3106        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3107
3108        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3109        if (ret_val)
3110                return ret_val;
3111
3112        udelay(1);
3113
3114        if (phy->autoneg_wait_to_complete) {
3115                e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3116
3117                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3118                                                      100000, &link);
3119                if (ret_val)
3120                        return ret_val;
3121
3122                if (!link)
3123                        e_dbg("Link taking longer than expected.\n");
3124
3125                /* Try once more */
3126                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3127                                                      100000, &link);
3128        }
3129
3130        return ret_val;
3131}
3132
3133/**
3134 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3135 *  @hw: pointer to the HW structure
3136 *
3137 *  Read PHY status to determine if link is up.  If link is up, then
3138 *  set/determine 10base-T extended distance and polarity correction.  Read
3139 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3140 *  determine on the cable length, local and remote receiver.
3141 **/
3142s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3143{
3144        struct e1000_phy_info *phy = &hw->phy;
3145        s32 ret_val;
3146        u16 data;
3147        bool link;
3148
3149        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3150        if (ret_val)
3151                return ret_val;
3152
3153        if (!link) {
3154                e_dbg("Phy info is only valid if link is up\n");
3155                return -E1000_ERR_CONFIG;
3156        }
3157
3158        phy->polarity_correction = true;
3159
3160        ret_val = e1000_check_polarity_82577(hw);
3161        if (ret_val)
3162                return ret_val;
3163
3164        ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3165        if (ret_val)
3166                return ret_val;
3167
3168        phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3169
3170        if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3171            I82577_PHY_STATUS2_SPEED_1000MBPS) {
3172                ret_val = hw->phy.ops.get_cable_length(hw);
3173                if (ret_val)
3174                        return ret_val;
3175
3176                ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3177                if (ret_val)
3178                        return ret_val;
3179
3180                phy->local_rx = (data & LPA_1000LOCALRXOK)
3181                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3182
3183                phy->remote_rx = (data & LPA_1000REMRXOK)
3184                    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3185        } else {
3186                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3187                phy->local_rx = e1000_1000t_rx_status_undefined;
3188                phy->remote_rx = e1000_1000t_rx_status_undefined;
3189        }
3190
3191        return 0;
3192}
3193
3194/**
3195 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3196 *  @hw: pointer to the HW structure
3197 *
3198 * Reads the diagnostic status register and verifies result is valid before
3199 * placing it in the phy_cable_length field.
3200 **/
3201s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3202{
3203        struct e1000_phy_info *phy = &hw->phy;
3204        s32 ret_val;
3205        u16 phy_data, length;
3206
3207        ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3208        if (ret_val)
3209                return ret_val;
3210
3211        length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3212                  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3213
3214        if (length == E1000_CABLE_LENGTH_UNDEFINED)
3215                return -E1000_ERR_PHY;
3216
3217        phy->cable_length = length;
3218
3219        return 0;
3220}
3221