linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/types.h>
   5#include <linux/module.h>
   6#include <net/ipv6.h>
   7#include <net/ip.h>
   8#include <net/tcp.h>
   9#include <linux/if_macvlan.h>
  10#include <linux/prefetch.h>
  11
  12#include "fm10k.h"
  13
  14#define DRV_VERSION     "0.26.1-k"
  15#define DRV_SUMMARY     "Intel(R) Ethernet Switch Host Interface Driver"
  16const char fm10k_driver_version[] = DRV_VERSION;
  17char fm10k_driver_name[] = "fm10k";
  18static const char fm10k_driver_string[] = DRV_SUMMARY;
  19static const char fm10k_copyright[] =
  20        "Copyright(c) 2013 - 2018 Intel Corporation.";
  21
  22MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  23MODULE_DESCRIPTION(DRV_SUMMARY);
  24MODULE_LICENSE("GPL v2");
  25MODULE_VERSION(DRV_VERSION);
  26
  27/* single workqueue for entire fm10k driver */
  28struct workqueue_struct *fm10k_workqueue;
  29
  30/**
  31 * fm10k_init_module - Driver Registration Routine
  32 *
  33 * fm10k_init_module is the first routine called when the driver is
  34 * loaded.  All it does is register with the PCI subsystem.
  35 **/
  36static int __init fm10k_init_module(void)
  37{
  38        pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  39        pr_info("%s\n", fm10k_copyright);
  40
  41        /* create driver workqueue */
  42        fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
  43                                          fm10k_driver_name);
  44        if (!fm10k_workqueue)
  45                return -ENOMEM;
  46
  47        fm10k_dbg_init();
  48
  49        return fm10k_register_pci_driver();
  50}
  51module_init(fm10k_init_module);
  52
  53/**
  54 * fm10k_exit_module - Driver Exit Cleanup Routine
  55 *
  56 * fm10k_exit_module is called just before the driver is removed
  57 * from memory.
  58 **/
  59static void __exit fm10k_exit_module(void)
  60{
  61        fm10k_unregister_pci_driver();
  62
  63        fm10k_dbg_exit();
  64
  65        /* destroy driver workqueue */
  66        destroy_workqueue(fm10k_workqueue);
  67}
  68module_exit(fm10k_exit_module);
  69
  70static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  71                                    struct fm10k_rx_buffer *bi)
  72{
  73        struct page *page = bi->page;
  74        dma_addr_t dma;
  75
  76        /* Only page will be NULL if buffer was consumed */
  77        if (likely(page))
  78                return true;
  79
  80        /* alloc new page for storage */
  81        page = dev_alloc_page();
  82        if (unlikely(!page)) {
  83                rx_ring->rx_stats.alloc_failed++;
  84                return false;
  85        }
  86
  87        /* map page for use */
  88        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  89
  90        /* if mapping failed free memory back to system since
  91         * there isn't much point in holding memory we can't use
  92         */
  93        if (dma_mapping_error(rx_ring->dev, dma)) {
  94                __free_page(page);
  95
  96                rx_ring->rx_stats.alloc_failed++;
  97                return false;
  98        }
  99
 100        bi->dma = dma;
 101        bi->page = page;
 102        bi->page_offset = 0;
 103
 104        return true;
 105}
 106
 107/**
 108 * fm10k_alloc_rx_buffers - Replace used receive buffers
 109 * @rx_ring: ring to place buffers on
 110 * @cleaned_count: number of buffers to replace
 111 **/
 112void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 113{
 114        union fm10k_rx_desc *rx_desc;
 115        struct fm10k_rx_buffer *bi;
 116        u16 i = rx_ring->next_to_use;
 117
 118        /* nothing to do */
 119        if (!cleaned_count)
 120                return;
 121
 122        rx_desc = FM10K_RX_DESC(rx_ring, i);
 123        bi = &rx_ring->rx_buffer[i];
 124        i -= rx_ring->count;
 125
 126        do {
 127                if (!fm10k_alloc_mapped_page(rx_ring, bi))
 128                        break;
 129
 130                /* Refresh the desc even if buffer_addrs didn't change
 131                 * because each write-back erases this info.
 132                 */
 133                rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 134
 135                rx_desc++;
 136                bi++;
 137                i++;
 138                if (unlikely(!i)) {
 139                        rx_desc = FM10K_RX_DESC(rx_ring, 0);
 140                        bi = rx_ring->rx_buffer;
 141                        i -= rx_ring->count;
 142                }
 143
 144                /* clear the status bits for the next_to_use descriptor */
 145                rx_desc->d.staterr = 0;
 146
 147                cleaned_count--;
 148        } while (cleaned_count);
 149
 150        i += rx_ring->count;
 151
 152        if (rx_ring->next_to_use != i) {
 153                /* record the next descriptor to use */
 154                rx_ring->next_to_use = i;
 155
 156                /* update next to alloc since we have filled the ring */
 157                rx_ring->next_to_alloc = i;
 158
 159                /* Force memory writes to complete before letting h/w
 160                 * know there are new descriptors to fetch.  (Only
 161                 * applicable for weak-ordered memory model archs,
 162                 * such as IA-64).
 163                 */
 164                wmb();
 165
 166                /* notify hardware of new descriptors */
 167                writel(i, rx_ring->tail);
 168        }
 169}
 170
 171/**
 172 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 173 * @rx_ring: rx descriptor ring to store buffers on
 174 * @old_buff: donor buffer to have page reused
 175 *
 176 * Synchronizes page for reuse by the interface
 177 **/
 178static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 179                                struct fm10k_rx_buffer *old_buff)
 180{
 181        struct fm10k_rx_buffer *new_buff;
 182        u16 nta = rx_ring->next_to_alloc;
 183
 184        new_buff = &rx_ring->rx_buffer[nta];
 185
 186        /* update, and store next to alloc */
 187        nta++;
 188        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 189
 190        /* transfer page from old buffer to new buffer */
 191        *new_buff = *old_buff;
 192
 193        /* sync the buffer for use by the device */
 194        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 195                                         old_buff->page_offset,
 196                                         FM10K_RX_BUFSZ,
 197                                         DMA_FROM_DEVICE);
 198}
 199
 200static inline bool fm10k_page_is_reserved(struct page *page)
 201{
 202        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 203}
 204
 205static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 206                                    struct page *page,
 207                                    unsigned int __maybe_unused truesize)
 208{
 209        /* avoid re-using remote pages */
 210        if (unlikely(fm10k_page_is_reserved(page)))
 211                return false;
 212
 213#if (PAGE_SIZE < 8192)
 214        /* if we are only owner of page we can reuse it */
 215        if (unlikely(page_count(page) != 1))
 216                return false;
 217
 218        /* flip page offset to other buffer */
 219        rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 220#else
 221        /* move offset up to the next cache line */
 222        rx_buffer->page_offset += truesize;
 223
 224        if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 225                return false;
 226#endif
 227
 228        /* Even if we own the page, we are not allowed to use atomic_set()
 229         * This would break get_page_unless_zero() users.
 230         */
 231        page_ref_inc(page);
 232
 233        return true;
 234}
 235
 236/**
 237 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 238 * @rx_buffer: buffer containing page to add
 239 * @size: packet size from rx_desc
 240 * @rx_desc: descriptor containing length of buffer written by hardware
 241 * @skb: sk_buff to place the data into
 242 *
 243 * This function will add the data contained in rx_buffer->page to the skb.
 244 * This is done either through a direct copy if the data in the buffer is
 245 * less than the skb header size, otherwise it will just attach the page as
 246 * a frag to the skb.
 247 *
 248 * The function will then update the page offset if necessary and return
 249 * true if the buffer can be reused by the interface.
 250 **/
 251static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 252                              unsigned int size,
 253                              union fm10k_rx_desc *rx_desc,
 254                              struct sk_buff *skb)
 255{
 256        struct page *page = rx_buffer->page;
 257        unsigned char *va = page_address(page) + rx_buffer->page_offset;
 258#if (PAGE_SIZE < 8192)
 259        unsigned int truesize = FM10K_RX_BUFSZ;
 260#else
 261        unsigned int truesize = ALIGN(size, 512);
 262#endif
 263        unsigned int pull_len;
 264
 265        if (unlikely(skb_is_nonlinear(skb)))
 266                goto add_tail_frag;
 267
 268        if (likely(size <= FM10K_RX_HDR_LEN)) {
 269                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 270
 271                /* page is not reserved, we can reuse buffer as-is */
 272                if (likely(!fm10k_page_is_reserved(page)))
 273                        return true;
 274
 275                /* this page cannot be reused so discard it */
 276                __free_page(page);
 277                return false;
 278        }
 279
 280        /* we need the header to contain the greater of either ETH_HLEN or
 281         * 60 bytes if the skb->len is less than 60 for skb_pad.
 282         */
 283        pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
 284
 285        /* align pull length to size of long to optimize memcpy performance */
 286        memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 287
 288        /* update all of the pointers */
 289        va += pull_len;
 290        size -= pull_len;
 291
 292add_tail_frag:
 293        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 294                        (unsigned long)va & ~PAGE_MASK, size, truesize);
 295
 296        return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 297}
 298
 299static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 300                                             union fm10k_rx_desc *rx_desc,
 301                                             struct sk_buff *skb)
 302{
 303        unsigned int size = le16_to_cpu(rx_desc->w.length);
 304        struct fm10k_rx_buffer *rx_buffer;
 305        struct page *page;
 306
 307        rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 308        page = rx_buffer->page;
 309        prefetchw(page);
 310
 311        if (likely(!skb)) {
 312                void *page_addr = page_address(page) +
 313                                  rx_buffer->page_offset;
 314
 315                /* prefetch first cache line of first page */
 316                prefetch(page_addr);
 317#if L1_CACHE_BYTES < 128
 318                prefetch(page_addr + L1_CACHE_BYTES);
 319#endif
 320
 321                /* allocate a skb to store the frags */
 322                skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 323                                     FM10K_RX_HDR_LEN);
 324                if (unlikely(!skb)) {
 325                        rx_ring->rx_stats.alloc_failed++;
 326                        return NULL;
 327                }
 328
 329                /* we will be copying header into skb->data in
 330                 * pskb_may_pull so it is in our interest to prefetch
 331                 * it now to avoid a possible cache miss
 332                 */
 333                prefetchw(skb->data);
 334        }
 335
 336        /* we are reusing so sync this buffer for CPU use */
 337        dma_sync_single_range_for_cpu(rx_ring->dev,
 338                                      rx_buffer->dma,
 339                                      rx_buffer->page_offset,
 340                                      size,
 341                                      DMA_FROM_DEVICE);
 342
 343        /* pull page into skb */
 344        if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
 345                /* hand second half of page back to the ring */
 346                fm10k_reuse_rx_page(rx_ring, rx_buffer);
 347        } else {
 348                /* we are not reusing the buffer so unmap it */
 349                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 350                               PAGE_SIZE, DMA_FROM_DEVICE);
 351        }
 352
 353        /* clear contents of rx_buffer */
 354        rx_buffer->page = NULL;
 355
 356        return skb;
 357}
 358
 359static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 360                                     union fm10k_rx_desc *rx_desc,
 361                                     struct sk_buff *skb)
 362{
 363        skb_checksum_none_assert(skb);
 364
 365        /* Rx checksum disabled via ethtool */
 366        if (!(ring->netdev->features & NETIF_F_RXCSUM))
 367                return;
 368
 369        /* TCP/UDP checksum error bit is set */
 370        if (fm10k_test_staterr(rx_desc,
 371                               FM10K_RXD_STATUS_L4E |
 372                               FM10K_RXD_STATUS_L4E2 |
 373                               FM10K_RXD_STATUS_IPE |
 374                               FM10K_RXD_STATUS_IPE2)) {
 375                ring->rx_stats.csum_err++;
 376                return;
 377        }
 378
 379        /* It must be a TCP or UDP packet with a valid checksum */
 380        if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 381                skb->encapsulation = true;
 382        else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 383                return;
 384
 385        skb->ip_summed = CHECKSUM_UNNECESSARY;
 386
 387        ring->rx_stats.csum_good++;
 388}
 389
 390#define FM10K_RSS_L4_TYPES_MASK \
 391        (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
 392         BIT(FM10K_RSSTYPE_IPV4_UDP) | \
 393         BIT(FM10K_RSSTYPE_IPV6_TCP) | \
 394         BIT(FM10K_RSSTYPE_IPV6_UDP))
 395
 396static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 397                                 union fm10k_rx_desc *rx_desc,
 398                                 struct sk_buff *skb)
 399{
 400        u16 rss_type;
 401
 402        if (!(ring->netdev->features & NETIF_F_RXHASH))
 403                return;
 404
 405        rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 406        if (!rss_type)
 407                return;
 408
 409        skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 410                     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
 411                     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 412}
 413
 414static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 415                             union fm10k_rx_desc __maybe_unused *rx_desc,
 416                             struct sk_buff *skb)
 417{
 418        struct net_device *dev = rx_ring->netdev;
 419        struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 420
 421        /* check to see if DGLORT belongs to a MACVLAN */
 422        if (l2_accel) {
 423                u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 424
 425                idx -= l2_accel->dglort;
 426                if (idx < l2_accel->size && l2_accel->macvlan[idx])
 427                        dev = l2_accel->macvlan[idx];
 428                else
 429                        l2_accel = NULL;
 430        }
 431
 432        /* Record Rx queue, or update macvlan statistics */
 433        if (!l2_accel)
 434                skb_record_rx_queue(skb, rx_ring->queue_index);
 435        else
 436                macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
 437                                 false);
 438
 439        skb->protocol = eth_type_trans(skb, dev);
 440}
 441
 442/**
 443 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 444 * @rx_ring: rx descriptor ring packet is being transacted on
 445 * @rx_desc: pointer to the EOP Rx descriptor
 446 * @skb: pointer to current skb being populated
 447 *
 448 * This function checks the ring, descriptor, and packet information in
 449 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 450 * other fields within the skb.
 451 **/
 452static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 453                                             union fm10k_rx_desc *rx_desc,
 454                                             struct sk_buff *skb)
 455{
 456        unsigned int len = skb->len;
 457
 458        fm10k_rx_hash(rx_ring, rx_desc, skb);
 459
 460        fm10k_rx_checksum(rx_ring, rx_desc, skb);
 461
 462        FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 463
 464        FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 465
 466        FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 467
 468        if (rx_desc->w.vlan) {
 469                u16 vid = le16_to_cpu(rx_desc->w.vlan);
 470
 471                if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 472                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 473                else if (vid & VLAN_PRIO_MASK)
 474                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 475                                               vid & VLAN_PRIO_MASK);
 476        }
 477
 478        fm10k_type_trans(rx_ring, rx_desc, skb);
 479
 480        return len;
 481}
 482
 483/**
 484 * fm10k_is_non_eop - process handling of non-EOP buffers
 485 * @rx_ring: Rx ring being processed
 486 * @rx_desc: Rx descriptor for current buffer
 487 *
 488 * This function updates next to clean.  If the buffer is an EOP buffer
 489 * this function exits returning false, otherwise it will place the
 490 * sk_buff in the next buffer to be chained and return true indicating
 491 * that this is in fact a non-EOP buffer.
 492 **/
 493static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 494                             union fm10k_rx_desc *rx_desc)
 495{
 496        u32 ntc = rx_ring->next_to_clean + 1;
 497
 498        /* fetch, update, and store next to clean */
 499        ntc = (ntc < rx_ring->count) ? ntc : 0;
 500        rx_ring->next_to_clean = ntc;
 501
 502        prefetch(FM10K_RX_DESC(rx_ring, ntc));
 503
 504        if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 505                return false;
 506
 507        return true;
 508}
 509
 510/**
 511 * fm10k_cleanup_headers - Correct corrupted or empty headers
 512 * @rx_ring: rx descriptor ring packet is being transacted on
 513 * @rx_desc: pointer to the EOP Rx descriptor
 514 * @skb: pointer to current skb being fixed
 515 *
 516 * Address the case where we are pulling data in on pages only
 517 * and as such no data is present in the skb header.
 518 *
 519 * In addition if skb is not at least 60 bytes we need to pad it so that
 520 * it is large enough to qualify as a valid Ethernet frame.
 521 *
 522 * Returns true if an error was encountered and skb was freed.
 523 **/
 524static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 525                                  union fm10k_rx_desc *rx_desc,
 526                                  struct sk_buff *skb)
 527{
 528        if (unlikely((fm10k_test_staterr(rx_desc,
 529                                         FM10K_RXD_STATUS_RXE)))) {
 530#define FM10K_TEST_RXD_BIT(rxd, bit) \
 531        ((rxd)->w.csum_err & cpu_to_le16(bit))
 532                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 533                        rx_ring->rx_stats.switch_errors++;
 534                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 535                        rx_ring->rx_stats.drops++;
 536                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 537                        rx_ring->rx_stats.pp_errors++;
 538                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 539                        rx_ring->rx_stats.link_errors++;
 540                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 541                        rx_ring->rx_stats.length_errors++;
 542                dev_kfree_skb_any(skb);
 543                rx_ring->rx_stats.errors++;
 544                return true;
 545        }
 546
 547        /* if eth_skb_pad returns an error the skb was freed */
 548        if (eth_skb_pad(skb))
 549                return true;
 550
 551        return false;
 552}
 553
 554/**
 555 * fm10k_receive_skb - helper function to handle rx indications
 556 * @q_vector: structure containing interrupt and ring information
 557 * @skb: packet to send up
 558 **/
 559static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 560                              struct sk_buff *skb)
 561{
 562        napi_gro_receive(&q_vector->napi, skb);
 563}
 564
 565static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 566                              struct fm10k_ring *rx_ring,
 567                              int budget)
 568{
 569        struct sk_buff *skb = rx_ring->skb;
 570        unsigned int total_bytes = 0, total_packets = 0;
 571        u16 cleaned_count = fm10k_desc_unused(rx_ring);
 572
 573        while (likely(total_packets < budget)) {
 574                union fm10k_rx_desc *rx_desc;
 575
 576                /* return some buffers to hardware, one at a time is too slow */
 577                if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 578                        fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 579                        cleaned_count = 0;
 580                }
 581
 582                rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 583
 584                if (!rx_desc->d.staterr)
 585                        break;
 586
 587                /* This memory barrier is needed to keep us from reading
 588                 * any other fields out of the rx_desc until we know the
 589                 * descriptor has been written back
 590                 */
 591                dma_rmb();
 592
 593                /* retrieve a buffer from the ring */
 594                skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 595
 596                /* exit if we failed to retrieve a buffer */
 597                if (!skb)
 598                        break;
 599
 600                cleaned_count++;
 601
 602                /* fetch next buffer in frame if non-eop */
 603                if (fm10k_is_non_eop(rx_ring, rx_desc))
 604                        continue;
 605
 606                /* verify the packet layout is correct */
 607                if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 608                        skb = NULL;
 609                        continue;
 610                }
 611
 612                /* populate checksum, timestamp, VLAN, and protocol */
 613                total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 614
 615                fm10k_receive_skb(q_vector, skb);
 616
 617                /* reset skb pointer */
 618                skb = NULL;
 619
 620                /* update budget accounting */
 621                total_packets++;
 622        }
 623
 624        /* place incomplete frames back on ring for completion */
 625        rx_ring->skb = skb;
 626
 627        u64_stats_update_begin(&rx_ring->syncp);
 628        rx_ring->stats.packets += total_packets;
 629        rx_ring->stats.bytes += total_bytes;
 630        u64_stats_update_end(&rx_ring->syncp);
 631        q_vector->rx.total_packets += total_packets;
 632        q_vector->rx.total_bytes += total_bytes;
 633
 634        return total_packets;
 635}
 636
 637#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 638static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 639{
 640        struct fm10k_intfc *interface = netdev_priv(skb->dev);
 641        struct fm10k_udp_port *vxlan_port;
 642
 643        /* we can only offload a vxlan if we recognize it as such */
 644        vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 645                                              struct fm10k_udp_port, list);
 646
 647        if (!vxlan_port)
 648                return NULL;
 649        if (vxlan_port->port != udp_hdr(skb)->dest)
 650                return NULL;
 651
 652        /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 653        return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 654}
 655
 656#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 657#define NVGRE_TNI htons(0x2000)
 658struct fm10k_nvgre_hdr {
 659        __be16 flags;
 660        __be16 proto;
 661        __be32 tni;
 662};
 663
 664static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 665{
 666        struct fm10k_nvgre_hdr *nvgre_hdr;
 667        int hlen = ip_hdrlen(skb);
 668
 669        /* currently only IPv4 is supported due to hlen above */
 670        if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 671                return NULL;
 672
 673        /* our transport header should be NVGRE */
 674        nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 675
 676        /* verify all reserved flags are 0 */
 677        if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 678                return NULL;
 679
 680        /* report start of ethernet header */
 681        if (nvgre_hdr->flags & NVGRE_TNI)
 682                return (struct ethhdr *)(nvgre_hdr + 1);
 683
 684        return (struct ethhdr *)(&nvgre_hdr->tni);
 685}
 686
 687__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 688{
 689        u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 690        struct ethhdr *eth_hdr;
 691
 692        if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 693            skb->inner_protocol != htons(ETH_P_TEB))
 694                return 0;
 695
 696        switch (vlan_get_protocol(skb)) {
 697        case htons(ETH_P_IP):
 698                l4_hdr = ip_hdr(skb)->protocol;
 699                break;
 700        case htons(ETH_P_IPV6):
 701                l4_hdr = ipv6_hdr(skb)->nexthdr;
 702                break;
 703        default:
 704                return 0;
 705        }
 706
 707        switch (l4_hdr) {
 708        case IPPROTO_UDP:
 709                eth_hdr = fm10k_port_is_vxlan(skb);
 710                break;
 711        case IPPROTO_GRE:
 712                eth_hdr = fm10k_gre_is_nvgre(skb);
 713                break;
 714        default:
 715                return 0;
 716        }
 717
 718        if (!eth_hdr)
 719                return 0;
 720
 721        switch (eth_hdr->h_proto) {
 722        case htons(ETH_P_IP):
 723                inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 724                break;
 725        case htons(ETH_P_IPV6):
 726                inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 727                break;
 728        default:
 729                return 0;
 730        }
 731
 732        switch (inner_l4_hdr) {
 733        case IPPROTO_TCP:
 734                inner_l4_hlen = inner_tcp_hdrlen(skb);
 735                break;
 736        case IPPROTO_UDP:
 737                inner_l4_hlen = 8;
 738                break;
 739        default:
 740                return 0;
 741        }
 742
 743        /* The hardware allows tunnel offloads only if the combined inner and
 744         * outer header is 184 bytes or less
 745         */
 746        if (skb_inner_transport_header(skb) + inner_l4_hlen -
 747            skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 748                return 0;
 749
 750        return eth_hdr->h_proto;
 751}
 752
 753static int fm10k_tso(struct fm10k_ring *tx_ring,
 754                     struct fm10k_tx_buffer *first)
 755{
 756        struct sk_buff *skb = first->skb;
 757        struct fm10k_tx_desc *tx_desc;
 758        unsigned char *th;
 759        u8 hdrlen;
 760
 761        if (skb->ip_summed != CHECKSUM_PARTIAL)
 762                return 0;
 763
 764        if (!skb_is_gso(skb))
 765                return 0;
 766
 767        /* compute header lengths */
 768        if (skb->encapsulation) {
 769                if (!fm10k_tx_encap_offload(skb))
 770                        goto err_vxlan;
 771                th = skb_inner_transport_header(skb);
 772        } else {
 773                th = skb_transport_header(skb);
 774        }
 775
 776        /* compute offset from SOF to transport header and add header len */
 777        hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 778
 779        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 780
 781        /* update gso size and bytecount with header size */
 782        first->gso_segs = skb_shinfo(skb)->gso_segs;
 783        first->bytecount += (first->gso_segs - 1) * hdrlen;
 784
 785        /* populate Tx descriptor header size and mss */
 786        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 787        tx_desc->hdrlen = hdrlen;
 788        tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 789
 790        return 1;
 791
 792err_vxlan:
 793        tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 794        if (net_ratelimit())
 795                netdev_err(tx_ring->netdev,
 796                           "TSO requested for unsupported tunnel, disabling offload\n");
 797        return -1;
 798}
 799
 800static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 801                          struct fm10k_tx_buffer *first)
 802{
 803        struct sk_buff *skb = first->skb;
 804        struct fm10k_tx_desc *tx_desc;
 805        union {
 806                struct iphdr *ipv4;
 807                struct ipv6hdr *ipv6;
 808                u8 *raw;
 809        } network_hdr;
 810        u8 *transport_hdr;
 811        __be16 frag_off;
 812        __be16 protocol;
 813        u8 l4_hdr = 0;
 814
 815        if (skb->ip_summed != CHECKSUM_PARTIAL)
 816                goto no_csum;
 817
 818        if (skb->encapsulation) {
 819                protocol = fm10k_tx_encap_offload(skb);
 820                if (!protocol) {
 821                        if (skb_checksum_help(skb)) {
 822                                dev_warn(tx_ring->dev,
 823                                         "failed to offload encap csum!\n");
 824                                tx_ring->tx_stats.csum_err++;
 825                        }
 826                        goto no_csum;
 827                }
 828                network_hdr.raw = skb_inner_network_header(skb);
 829                transport_hdr = skb_inner_transport_header(skb);
 830        } else {
 831                protocol = vlan_get_protocol(skb);
 832                network_hdr.raw = skb_network_header(skb);
 833                transport_hdr = skb_transport_header(skb);
 834        }
 835
 836        switch (protocol) {
 837        case htons(ETH_P_IP):
 838                l4_hdr = network_hdr.ipv4->protocol;
 839                break;
 840        case htons(ETH_P_IPV6):
 841                l4_hdr = network_hdr.ipv6->nexthdr;
 842                if (likely((transport_hdr - network_hdr.raw) ==
 843                           sizeof(struct ipv6hdr)))
 844                        break;
 845                ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
 846                                      sizeof(struct ipv6hdr),
 847                                 &l4_hdr, &frag_off);
 848                if (unlikely(frag_off))
 849                        l4_hdr = NEXTHDR_FRAGMENT;
 850                break;
 851        default:
 852                break;
 853        }
 854
 855        switch (l4_hdr) {
 856        case IPPROTO_TCP:
 857        case IPPROTO_UDP:
 858                break;
 859        case IPPROTO_GRE:
 860                if (skb->encapsulation)
 861                        break;
 862                /* fall through */
 863        default:
 864                if (unlikely(net_ratelimit())) {
 865                        dev_warn(tx_ring->dev,
 866                                 "partial checksum, version=%d l4 proto=%x\n",
 867                                 protocol, l4_hdr);
 868                }
 869                skb_checksum_help(skb);
 870                tx_ring->tx_stats.csum_err++;
 871                goto no_csum;
 872        }
 873
 874        /* update TX checksum flag */
 875        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 876        tx_ring->tx_stats.csum_good++;
 877
 878no_csum:
 879        /* populate Tx descriptor header size and mss */
 880        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 881        tx_desc->hdrlen = 0;
 882        tx_desc->mss = 0;
 883}
 884
 885#define FM10K_SET_FLAG(_input, _flag, _result) \
 886        ((_flag <= _result) ? \
 887         ((u32)(_input & _flag) * (_result / _flag)) : \
 888         ((u32)(_input & _flag) / (_flag / _result)))
 889
 890static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 891{
 892        /* set type for advanced descriptor with frame checksum insertion */
 893        u32 desc_flags = 0;
 894
 895        /* set checksum offload bits */
 896        desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 897                                     FM10K_TXD_FLAG_CSUM);
 898
 899        return desc_flags;
 900}
 901
 902static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 903                               struct fm10k_tx_desc *tx_desc, u16 i,
 904                               dma_addr_t dma, unsigned int size, u8 desc_flags)
 905{
 906        /* set RS and INT for last frame in a cache line */
 907        if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 908                desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 909
 910        /* record values to descriptor */
 911        tx_desc->buffer_addr = cpu_to_le64(dma);
 912        tx_desc->flags = desc_flags;
 913        tx_desc->buflen = cpu_to_le16(size);
 914
 915        /* return true if we just wrapped the ring */
 916        return i == tx_ring->count;
 917}
 918
 919static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 920{
 921        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 922
 923        /* Memory barrier before checking head and tail */
 924        smp_mb();
 925
 926        /* Check again in a case another CPU has just made room available */
 927        if (likely(fm10k_desc_unused(tx_ring) < size))
 928                return -EBUSY;
 929
 930        /* A reprieve! - use start_queue because it doesn't call schedule */
 931        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 932        ++tx_ring->tx_stats.restart_queue;
 933        return 0;
 934}
 935
 936static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 937{
 938        if (likely(fm10k_desc_unused(tx_ring) >= size))
 939                return 0;
 940        return __fm10k_maybe_stop_tx(tx_ring, size);
 941}
 942
 943static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 944                         struct fm10k_tx_buffer *first)
 945{
 946        struct sk_buff *skb = first->skb;
 947        struct fm10k_tx_buffer *tx_buffer;
 948        struct fm10k_tx_desc *tx_desc;
 949        struct skb_frag_struct *frag;
 950        unsigned char *data;
 951        dma_addr_t dma;
 952        unsigned int data_len, size;
 953        u32 tx_flags = first->tx_flags;
 954        u16 i = tx_ring->next_to_use;
 955        u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 956
 957        tx_desc = FM10K_TX_DESC(tx_ring, i);
 958
 959        /* add HW VLAN tag */
 960        if (skb_vlan_tag_present(skb))
 961                tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 962        else
 963                tx_desc->vlan = 0;
 964
 965        size = skb_headlen(skb);
 966        data = skb->data;
 967
 968        dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 969
 970        data_len = skb->data_len;
 971        tx_buffer = first;
 972
 973        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 974                if (dma_mapping_error(tx_ring->dev, dma))
 975                        goto dma_error;
 976
 977                /* record length, and DMA address */
 978                dma_unmap_len_set(tx_buffer, len, size);
 979                dma_unmap_addr_set(tx_buffer, dma, dma);
 980
 981                while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 982                        if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 983                                               FM10K_MAX_DATA_PER_TXD, flags)) {
 984                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
 985                                i = 0;
 986                        }
 987
 988                        dma += FM10K_MAX_DATA_PER_TXD;
 989                        size -= FM10K_MAX_DATA_PER_TXD;
 990                }
 991
 992                if (likely(!data_len))
 993                        break;
 994
 995                if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
 996                                       dma, size, flags)) {
 997                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
 998                        i = 0;
 999                }
1000
1001                size = skb_frag_size(frag);
1002                data_len -= size;
1003
1004                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1005                                       DMA_TO_DEVICE);
1006
1007                tx_buffer = &tx_ring->tx_buffer[i];
1008        }
1009
1010        /* write last descriptor with LAST bit set */
1011        flags |= FM10K_TXD_FLAG_LAST;
1012
1013        if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1014                i = 0;
1015
1016        /* record bytecount for BQL */
1017        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1018
1019        /* record SW timestamp if HW timestamp is not available */
1020        skb_tx_timestamp(first->skb);
1021
1022        /* Force memory writes to complete before letting h/w know there
1023         * are new descriptors to fetch.  (Only applicable for weak-ordered
1024         * memory model archs, such as IA-64).
1025         *
1026         * We also need this memory barrier to make certain all of the
1027         * status bits have been updated before next_to_watch is written.
1028         */
1029        wmb();
1030
1031        /* set next_to_watch value indicating a packet is present */
1032        first->next_to_watch = tx_desc;
1033
1034        tx_ring->next_to_use = i;
1035
1036        /* Make sure there is space in the ring for the next send. */
1037        fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1038
1039        /* notify HW of packet */
1040        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1041                writel(i, tx_ring->tail);
1042        }
1043
1044        return;
1045dma_error:
1046        dev_err(tx_ring->dev, "TX DMA map failed\n");
1047
1048        /* clear dma mappings for failed tx_buffer map */
1049        for (;;) {
1050                tx_buffer = &tx_ring->tx_buffer[i];
1051                fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1052                if (tx_buffer == first)
1053                        break;
1054                if (i == 0)
1055                        i = tx_ring->count;
1056                i--;
1057        }
1058
1059        tx_ring->next_to_use = i;
1060}
1061
1062netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1063                                  struct fm10k_ring *tx_ring)
1064{
1065        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1066        struct fm10k_tx_buffer *first;
1067        unsigned short f;
1068        u32 tx_flags = 0;
1069        int tso;
1070
1071        /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1072         *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1073         *       + 2 desc gap to keep tail from touching head
1074         * otherwise try next time
1075         */
1076        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1077                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1078
1079        if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1080                tx_ring->tx_stats.tx_busy++;
1081                return NETDEV_TX_BUSY;
1082        }
1083
1084        /* record the location of the first descriptor for this packet */
1085        first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1086        first->skb = skb;
1087        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1088        first->gso_segs = 1;
1089
1090        /* record initial flags and protocol */
1091        first->tx_flags = tx_flags;
1092
1093        tso = fm10k_tso(tx_ring, first);
1094        if (tso < 0)
1095                goto out_drop;
1096        else if (!tso)
1097                fm10k_tx_csum(tx_ring, first);
1098
1099        fm10k_tx_map(tx_ring, first);
1100
1101        return NETDEV_TX_OK;
1102
1103out_drop:
1104        dev_kfree_skb_any(first->skb);
1105        first->skb = NULL;
1106
1107        return NETDEV_TX_OK;
1108}
1109
1110static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1111{
1112        return ring->stats.packets;
1113}
1114
1115/**
1116 * fm10k_get_tx_pending - how many Tx descriptors not processed
1117 * @ring: the ring structure
1118 * @in_sw: is tx_pending being checked in SW or in HW?
1119 */
1120u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1121{
1122        struct fm10k_intfc *interface = ring->q_vector->interface;
1123        struct fm10k_hw *hw = &interface->hw;
1124        u32 head, tail;
1125
1126        if (likely(in_sw)) {
1127                head = ring->next_to_clean;
1128                tail = ring->next_to_use;
1129        } else {
1130                head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1131                tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1132        }
1133
1134        return ((head <= tail) ? tail : tail + ring->count) - head;
1135}
1136
1137bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1138{
1139        u32 tx_done = fm10k_get_tx_completed(tx_ring);
1140        u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1141        u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1142
1143        clear_check_for_tx_hang(tx_ring);
1144
1145        /* Check for a hung queue, but be thorough. This verifies
1146         * that a transmit has been completed since the previous
1147         * check AND there is at least one packet pending. By
1148         * requiring this to fail twice we avoid races with
1149         * clearing the ARMED bit and conditions where we
1150         * run the check_tx_hang logic with a transmit completion
1151         * pending but without time to complete it yet.
1152         */
1153        if (!tx_pending || (tx_done_old != tx_done)) {
1154                /* update completed stats and continue */
1155                tx_ring->tx_stats.tx_done_old = tx_done;
1156                /* reset the countdown */
1157                clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1158
1159                return false;
1160        }
1161
1162        /* make sure it is true for two checks in a row */
1163        return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1164}
1165
1166/**
1167 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1168 * @interface: driver private struct
1169 **/
1170void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1171{
1172        /* Do the reset outside of interrupt context */
1173        if (!test_bit(__FM10K_DOWN, interface->state)) {
1174                interface->tx_timeout_count++;
1175                set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1176                fm10k_service_event_schedule(interface);
1177        }
1178}
1179
1180/**
1181 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1182 * @q_vector: structure containing interrupt and ring information
1183 * @tx_ring: tx ring to clean
1184 * @napi_budget: Used to determine if we are in netpoll
1185 **/
1186static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1187                               struct fm10k_ring *tx_ring, int napi_budget)
1188{
1189        struct fm10k_intfc *interface = q_vector->interface;
1190        struct fm10k_tx_buffer *tx_buffer;
1191        struct fm10k_tx_desc *tx_desc;
1192        unsigned int total_bytes = 0, total_packets = 0;
1193        unsigned int budget = q_vector->tx.work_limit;
1194        unsigned int i = tx_ring->next_to_clean;
1195
1196        if (test_bit(__FM10K_DOWN, interface->state))
1197                return true;
1198
1199        tx_buffer = &tx_ring->tx_buffer[i];
1200        tx_desc = FM10K_TX_DESC(tx_ring, i);
1201        i -= tx_ring->count;
1202
1203        do {
1204                struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1205
1206                /* if next_to_watch is not set then there is no work pending */
1207                if (!eop_desc)
1208                        break;
1209
1210                /* prevent any other reads prior to eop_desc */
1211                smp_rmb();
1212
1213                /* if DD is not set pending work has not been completed */
1214                if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1215                        break;
1216
1217                /* clear next_to_watch to prevent false hangs */
1218                tx_buffer->next_to_watch = NULL;
1219
1220                /* update the statistics for this packet */
1221                total_bytes += tx_buffer->bytecount;
1222                total_packets += tx_buffer->gso_segs;
1223
1224                /* free the skb */
1225                napi_consume_skb(tx_buffer->skb, napi_budget);
1226
1227                /* unmap skb header data */
1228                dma_unmap_single(tx_ring->dev,
1229                                 dma_unmap_addr(tx_buffer, dma),
1230                                 dma_unmap_len(tx_buffer, len),
1231                                 DMA_TO_DEVICE);
1232
1233                /* clear tx_buffer data */
1234                tx_buffer->skb = NULL;
1235                dma_unmap_len_set(tx_buffer, len, 0);
1236
1237                /* unmap remaining buffers */
1238                while (tx_desc != eop_desc) {
1239                        tx_buffer++;
1240                        tx_desc++;
1241                        i++;
1242                        if (unlikely(!i)) {
1243                                i -= tx_ring->count;
1244                                tx_buffer = tx_ring->tx_buffer;
1245                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1246                        }
1247
1248                        /* unmap any remaining paged data */
1249                        if (dma_unmap_len(tx_buffer, len)) {
1250                                dma_unmap_page(tx_ring->dev,
1251                                               dma_unmap_addr(tx_buffer, dma),
1252                                               dma_unmap_len(tx_buffer, len),
1253                                               DMA_TO_DEVICE);
1254                                dma_unmap_len_set(tx_buffer, len, 0);
1255                        }
1256                }
1257
1258                /* move us one more past the eop_desc for start of next pkt */
1259                tx_buffer++;
1260                tx_desc++;
1261                i++;
1262                if (unlikely(!i)) {
1263                        i -= tx_ring->count;
1264                        tx_buffer = tx_ring->tx_buffer;
1265                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1266                }
1267
1268                /* issue prefetch for next Tx descriptor */
1269                prefetch(tx_desc);
1270
1271                /* update budget accounting */
1272                budget--;
1273        } while (likely(budget));
1274
1275        i += tx_ring->count;
1276        tx_ring->next_to_clean = i;
1277        u64_stats_update_begin(&tx_ring->syncp);
1278        tx_ring->stats.bytes += total_bytes;
1279        tx_ring->stats.packets += total_packets;
1280        u64_stats_update_end(&tx_ring->syncp);
1281        q_vector->tx.total_bytes += total_bytes;
1282        q_vector->tx.total_packets += total_packets;
1283
1284        if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1285                /* schedule immediate reset if we believe we hung */
1286                struct fm10k_hw *hw = &interface->hw;
1287
1288                netif_err(interface, drv, tx_ring->netdev,
1289                          "Detected Tx Unit Hang\n"
1290                          "  Tx Queue             <%d>\n"
1291                          "  TDH, TDT             <%x>, <%x>\n"
1292                          "  next_to_use          <%x>\n"
1293                          "  next_to_clean        <%x>\n",
1294                          tx_ring->queue_index,
1295                          fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1296                          fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1297                          tx_ring->next_to_use, i);
1298
1299                netif_stop_subqueue(tx_ring->netdev,
1300                                    tx_ring->queue_index);
1301
1302                netif_info(interface, probe, tx_ring->netdev,
1303                           "tx hang %d detected on queue %d, resetting interface\n",
1304                           interface->tx_timeout_count + 1,
1305                           tx_ring->queue_index);
1306
1307                fm10k_tx_timeout_reset(interface);
1308
1309                /* the netdev is about to reset, no point in enabling stuff */
1310                return true;
1311        }
1312
1313        /* notify netdev of completed buffers */
1314        netdev_tx_completed_queue(txring_txq(tx_ring),
1315                                  total_packets, total_bytes);
1316
1317#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1318        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1319                     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1320                /* Make sure that anybody stopping the queue after this
1321                 * sees the new next_to_clean.
1322                 */
1323                smp_mb();
1324                if (__netif_subqueue_stopped(tx_ring->netdev,
1325                                             tx_ring->queue_index) &&
1326                    !test_bit(__FM10K_DOWN, interface->state)) {
1327                        netif_wake_subqueue(tx_ring->netdev,
1328                                            tx_ring->queue_index);
1329                        ++tx_ring->tx_stats.restart_queue;
1330                }
1331        }
1332
1333        return !!budget;
1334}
1335
1336/**
1337 * fm10k_update_itr - update the dynamic ITR value based on packet size
1338 *
1339 *      Stores a new ITR value based on strictly on packet size.  The
1340 *      divisors and thresholds used by this function were determined based
1341 *      on theoretical maximum wire speed and testing data, in order to
1342 *      minimize response time while increasing bulk throughput.
1343 *
1344 * @ring_container: Container for rings to have ITR updated
1345 **/
1346static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1347{
1348        unsigned int avg_wire_size, packets, itr_round;
1349
1350        /* Only update ITR if we are using adaptive setting */
1351        if (!ITR_IS_ADAPTIVE(ring_container->itr))
1352                goto clear_counts;
1353
1354        packets = ring_container->total_packets;
1355        if (!packets)
1356                goto clear_counts;
1357
1358        avg_wire_size = ring_container->total_bytes / packets;
1359
1360        /* The following is a crude approximation of:
1361         *  wmem_default / (size + overhead) = desired_pkts_per_int
1362         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1363         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1364         *
1365         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1366         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1367         * formula down to
1368         *
1369         *  (34 * (size + 24)) / (size + 640) = ITR
1370         *
1371         * We first do some math on the packet size and then finally bitshift
1372         * by 8 after rounding up. We also have to account for PCIe link speed
1373         * difference as ITR scales based on this.
1374         */
1375        if (avg_wire_size <= 360) {
1376                /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1377                avg_wire_size *= 8;
1378                avg_wire_size += 376;
1379        } else if (avg_wire_size <= 1152) {
1380                /* 77K ints/sec to 45K ints/sec */
1381                avg_wire_size *= 3;
1382                avg_wire_size += 2176;
1383        } else if (avg_wire_size <= 1920) {
1384                /* 45K ints/sec to 38K ints/sec */
1385                avg_wire_size += 4480;
1386        } else {
1387                /* plateau at a limit of 38K ints/sec */
1388                avg_wire_size = 6656;
1389        }
1390
1391        /* Perform final bitshift for division after rounding up to ensure
1392         * that the calculation will never get below a 1. The bit shift
1393         * accounts for changes in the ITR due to PCIe link speed.
1394         */
1395        itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1396        avg_wire_size += BIT(itr_round) - 1;
1397        avg_wire_size >>= itr_round;
1398
1399        /* write back value and retain adaptive flag */
1400        ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1401
1402clear_counts:
1403        ring_container->total_bytes = 0;
1404        ring_container->total_packets = 0;
1405}
1406
1407static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1408{
1409        /* Enable auto-mask and clear the current mask */
1410        u32 itr = FM10K_ITR_ENABLE;
1411
1412        /* Update Tx ITR */
1413        fm10k_update_itr(&q_vector->tx);
1414
1415        /* Update Rx ITR */
1416        fm10k_update_itr(&q_vector->rx);
1417
1418        /* Store Tx itr in timer slot 0 */
1419        itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1420
1421        /* Shift Rx itr to timer slot 1 */
1422        itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1423
1424        /* Write the final value to the ITR register */
1425        writel(itr, q_vector->itr);
1426}
1427
1428static int fm10k_poll(struct napi_struct *napi, int budget)
1429{
1430        struct fm10k_q_vector *q_vector =
1431                               container_of(napi, struct fm10k_q_vector, napi);
1432        struct fm10k_ring *ring;
1433        int per_ring_budget, work_done = 0;
1434        bool clean_complete = true;
1435
1436        fm10k_for_each_ring(ring, q_vector->tx) {
1437                if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1438                        clean_complete = false;
1439        }
1440
1441        /* Handle case where we are called by netpoll with a budget of 0 */
1442        if (budget <= 0)
1443                return budget;
1444
1445        /* attempt to distribute budget to each queue fairly, but don't
1446         * allow the budget to go below 1 because we'll exit polling
1447         */
1448        if (q_vector->rx.count > 1)
1449                per_ring_budget = max(budget / q_vector->rx.count, 1);
1450        else
1451                per_ring_budget = budget;
1452
1453        fm10k_for_each_ring(ring, q_vector->rx) {
1454                int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1455
1456                work_done += work;
1457                if (work >= per_ring_budget)
1458                        clean_complete = false;
1459        }
1460
1461        /* If all work not completed, return budget and keep polling */
1462        if (!clean_complete)
1463                return budget;
1464
1465        /* Exit the polling mode, but don't re-enable interrupts if stack might
1466         * poll us due to busy-polling
1467         */
1468        if (likely(napi_complete_done(napi, work_done)))
1469                fm10k_qv_enable(q_vector);
1470
1471        return min(work_done, budget - 1);
1472}
1473
1474/**
1475 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1476 * @interface: board private structure to initialize
1477 *
1478 * When QoS (Quality of Service) is enabled, allocate queues for
1479 * each traffic class.  If multiqueue isn't available,then abort QoS
1480 * initialization.
1481 *
1482 * This function handles all combinations of Qos and RSS.
1483 *
1484 **/
1485static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1486{
1487        struct net_device *dev = interface->netdev;
1488        struct fm10k_ring_feature *f;
1489        int rss_i, i;
1490        int pcs;
1491
1492        /* Map queue offset and counts onto allocated tx queues */
1493        pcs = netdev_get_num_tc(dev);
1494
1495        if (pcs <= 1)
1496                return false;
1497
1498        /* set QoS mask and indices */
1499        f = &interface->ring_feature[RING_F_QOS];
1500        f->indices = pcs;
1501        f->mask = BIT(fls(pcs - 1)) - 1;
1502
1503        /* determine the upper limit for our current DCB mode */
1504        rss_i = interface->hw.mac.max_queues / pcs;
1505        rss_i = BIT(fls(rss_i) - 1);
1506
1507        /* set RSS mask and indices */
1508        f = &interface->ring_feature[RING_F_RSS];
1509        rss_i = min_t(u16, rss_i, f->limit);
1510        f->indices = rss_i;
1511        f->mask = BIT(fls(rss_i - 1)) - 1;
1512
1513        /* configure pause class to queue mapping */
1514        for (i = 0; i < pcs; i++)
1515                netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1516
1517        interface->num_rx_queues = rss_i * pcs;
1518        interface->num_tx_queues = rss_i * pcs;
1519
1520        return true;
1521}
1522
1523/**
1524 * fm10k_set_rss_queues: Allocate queues for RSS
1525 * @interface: board private structure to initialize
1526 *
1527 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1528 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1529 *
1530 **/
1531static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1532{
1533        struct fm10k_ring_feature *f;
1534        u16 rss_i;
1535
1536        f = &interface->ring_feature[RING_F_RSS];
1537        rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1538
1539        /* record indices and power of 2 mask for RSS */
1540        f->indices = rss_i;
1541        f->mask = BIT(fls(rss_i - 1)) - 1;
1542
1543        interface->num_rx_queues = rss_i;
1544        interface->num_tx_queues = rss_i;
1545
1546        return true;
1547}
1548
1549/**
1550 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1551 * @interface: board private structure to initialize
1552 *
1553 * This is the top level queue allocation routine.  The order here is very
1554 * important, starting with the "most" number of features turned on at once,
1555 * and ending with the smallest set of features.  This way large combinations
1556 * can be allocated if they're turned on, and smaller combinations are the
1557 * fallthrough conditions.
1558 *
1559 **/
1560static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1561{
1562        /* Attempt to setup QoS and RSS first */
1563        if (fm10k_set_qos_queues(interface))
1564                return;
1565
1566        /* If we don't have QoS, just fallback to only RSS. */
1567        fm10k_set_rss_queues(interface);
1568}
1569
1570/**
1571 * fm10k_reset_num_queues - Reset the number of queues to zero
1572 * @interface: board private structure
1573 *
1574 * This function should be called whenever we need to reset the number of
1575 * queues after an error condition.
1576 */
1577static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1578{
1579        interface->num_tx_queues = 0;
1580        interface->num_rx_queues = 0;
1581        interface->num_q_vectors = 0;
1582}
1583
1584/**
1585 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1586 * @interface: board private structure to initialize
1587 * @v_count: q_vectors allocated on interface, used for ring interleaving
1588 * @v_idx: index of vector in interface struct
1589 * @txr_count: total number of Tx rings to allocate
1590 * @txr_idx: index of first Tx ring to allocate
1591 * @rxr_count: total number of Rx rings to allocate
1592 * @rxr_idx: index of first Rx ring to allocate
1593 *
1594 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1595 **/
1596static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1597                                unsigned int v_count, unsigned int v_idx,
1598                                unsigned int txr_count, unsigned int txr_idx,
1599                                unsigned int rxr_count, unsigned int rxr_idx)
1600{
1601        struct fm10k_q_vector *q_vector;
1602        struct fm10k_ring *ring;
1603        int ring_count;
1604
1605        ring_count = txr_count + rxr_count;
1606
1607        /* allocate q_vector and rings */
1608        q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1609        if (!q_vector)
1610                return -ENOMEM;
1611
1612        /* initialize NAPI */
1613        netif_napi_add(interface->netdev, &q_vector->napi,
1614                       fm10k_poll, NAPI_POLL_WEIGHT);
1615
1616        /* tie q_vector and interface together */
1617        interface->q_vector[v_idx] = q_vector;
1618        q_vector->interface = interface;
1619        q_vector->v_idx = v_idx;
1620
1621        /* initialize pointer to rings */
1622        ring = q_vector->ring;
1623
1624        /* save Tx ring container info */
1625        q_vector->tx.ring = ring;
1626        q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1627        q_vector->tx.itr = interface->tx_itr;
1628        q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1629        q_vector->tx.count = txr_count;
1630
1631        while (txr_count) {
1632                /* assign generic ring traits */
1633                ring->dev = &interface->pdev->dev;
1634                ring->netdev = interface->netdev;
1635
1636                /* configure backlink on ring */
1637                ring->q_vector = q_vector;
1638
1639                /* apply Tx specific ring traits */
1640                ring->count = interface->tx_ring_count;
1641                ring->queue_index = txr_idx;
1642
1643                /* assign ring to interface */
1644                interface->tx_ring[txr_idx] = ring;
1645
1646                /* update count and index */
1647                txr_count--;
1648                txr_idx += v_count;
1649
1650                /* push pointer to next ring */
1651                ring++;
1652        }
1653
1654        /* save Rx ring container info */
1655        q_vector->rx.ring = ring;
1656        q_vector->rx.itr = interface->rx_itr;
1657        q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1658        q_vector->rx.count = rxr_count;
1659
1660        while (rxr_count) {
1661                /* assign generic ring traits */
1662                ring->dev = &interface->pdev->dev;
1663                ring->netdev = interface->netdev;
1664                rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1665
1666                /* configure backlink on ring */
1667                ring->q_vector = q_vector;
1668
1669                /* apply Rx specific ring traits */
1670                ring->count = interface->rx_ring_count;
1671                ring->queue_index = rxr_idx;
1672
1673                /* assign ring to interface */
1674                interface->rx_ring[rxr_idx] = ring;
1675
1676                /* update count and index */
1677                rxr_count--;
1678                rxr_idx += v_count;
1679
1680                /* push pointer to next ring */
1681                ring++;
1682        }
1683
1684        fm10k_dbg_q_vector_init(q_vector);
1685
1686        return 0;
1687}
1688
1689/**
1690 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1691 * @interface: board private structure to initialize
1692 * @v_idx: Index of vector to be freed
1693 *
1694 * This function frees the memory allocated to the q_vector.  In addition if
1695 * NAPI is enabled it will delete any references to the NAPI struct prior
1696 * to freeing the q_vector.
1697 **/
1698static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1699{
1700        struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1701        struct fm10k_ring *ring;
1702
1703        fm10k_dbg_q_vector_exit(q_vector);
1704
1705        fm10k_for_each_ring(ring, q_vector->tx)
1706                interface->tx_ring[ring->queue_index] = NULL;
1707
1708        fm10k_for_each_ring(ring, q_vector->rx)
1709                interface->rx_ring[ring->queue_index] = NULL;
1710
1711        interface->q_vector[v_idx] = NULL;
1712        netif_napi_del(&q_vector->napi);
1713        kfree_rcu(q_vector, rcu);
1714}
1715
1716/**
1717 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1718 * @interface: board private structure to initialize
1719 *
1720 * We allocate one q_vector per queue interrupt.  If allocation fails we
1721 * return -ENOMEM.
1722 **/
1723static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1724{
1725        unsigned int q_vectors = interface->num_q_vectors;
1726        unsigned int rxr_remaining = interface->num_rx_queues;
1727        unsigned int txr_remaining = interface->num_tx_queues;
1728        unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1729        int err;
1730
1731        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1732                for (; rxr_remaining; v_idx++) {
1733                        err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1734                                                   0, 0, 1, rxr_idx);
1735                        if (err)
1736                                goto err_out;
1737
1738                        /* update counts and index */
1739                        rxr_remaining--;
1740                        rxr_idx++;
1741                }
1742        }
1743
1744        for (; v_idx < q_vectors; v_idx++) {
1745                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1746                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1747
1748                err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1749                                           tqpv, txr_idx,
1750                                           rqpv, rxr_idx);
1751
1752                if (err)
1753                        goto err_out;
1754
1755                /* update counts and index */
1756                rxr_remaining -= rqpv;
1757                txr_remaining -= tqpv;
1758                rxr_idx++;
1759                txr_idx++;
1760        }
1761
1762        return 0;
1763
1764err_out:
1765        fm10k_reset_num_queues(interface);
1766
1767        while (v_idx--)
1768                fm10k_free_q_vector(interface, v_idx);
1769
1770        return -ENOMEM;
1771}
1772
1773/**
1774 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1775 * @interface: board private structure to initialize
1776 *
1777 * This function frees the memory allocated to the q_vectors.  In addition if
1778 * NAPI is enabled it will delete any references to the NAPI struct prior
1779 * to freeing the q_vector.
1780 **/
1781static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1782{
1783        int v_idx = interface->num_q_vectors;
1784
1785        fm10k_reset_num_queues(interface);
1786
1787        while (v_idx--)
1788                fm10k_free_q_vector(interface, v_idx);
1789}
1790
1791/**
1792 * f10k_reset_msix_capability - reset MSI-X capability
1793 * @interface: board private structure to initialize
1794 *
1795 * Reset the MSI-X capability back to its starting state
1796 **/
1797static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1798{
1799        pci_disable_msix(interface->pdev);
1800        kfree(interface->msix_entries);
1801        interface->msix_entries = NULL;
1802}
1803
1804/**
1805 * f10k_init_msix_capability - configure MSI-X capability
1806 * @interface: board private structure to initialize
1807 *
1808 * Attempt to configure the interrupts using the best available
1809 * capabilities of the hardware and the kernel.
1810 **/
1811static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1812{
1813        struct fm10k_hw *hw = &interface->hw;
1814        int v_budget, vector;
1815
1816        /* It's easy to be greedy for MSI-X vectors, but it really
1817         * doesn't do us much good if we have a lot more vectors
1818         * than CPU's.  So let's be conservative and only ask for
1819         * (roughly) the same number of vectors as there are CPU's.
1820         * the default is to use pairs of vectors
1821         */
1822        v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1823        v_budget = min_t(u16, v_budget, num_online_cpus());
1824
1825        /* account for vectors not related to queues */
1826        v_budget += NON_Q_VECTORS(hw);
1827
1828        /* At the same time, hardware can only support a maximum of
1829         * hw.mac->max_msix_vectors vectors.  With features
1830         * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1831         * descriptor queues supported by our device.  Thus, we cap it off in
1832         * those rare cases where the cpu count also exceeds our vector limit.
1833         */
1834        v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1835
1836        /* A failure in MSI-X entry allocation is fatal. */
1837        interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1838                                          GFP_KERNEL);
1839        if (!interface->msix_entries)
1840                return -ENOMEM;
1841
1842        /* populate entry values */
1843        for (vector = 0; vector < v_budget; vector++)
1844                interface->msix_entries[vector].entry = vector;
1845
1846        /* Attempt to enable MSI-X with requested value */
1847        v_budget = pci_enable_msix_range(interface->pdev,
1848                                         interface->msix_entries,
1849                                         MIN_MSIX_COUNT(hw),
1850                                         v_budget);
1851        if (v_budget < 0) {
1852                kfree(interface->msix_entries);
1853                interface->msix_entries = NULL;
1854                return v_budget;
1855        }
1856
1857        /* record the number of queues available for q_vectors */
1858        interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1859
1860        return 0;
1861}
1862
1863/**
1864 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1865 * @interface: Interface structure continaining rings and devices
1866 *
1867 * Cache the descriptor ring offsets for Qos
1868 **/
1869static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1870{
1871        struct net_device *dev = interface->netdev;
1872        int pc, offset, rss_i, i, q_idx;
1873        u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1874        u8 num_pcs = netdev_get_num_tc(dev);
1875
1876        if (num_pcs <= 1)
1877                return false;
1878
1879        rss_i = interface->ring_feature[RING_F_RSS].indices;
1880
1881        for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1882                q_idx = pc;
1883                for (i = 0; i < rss_i; i++) {
1884                        interface->tx_ring[offset + i]->reg_idx = q_idx;
1885                        interface->tx_ring[offset + i]->qos_pc = pc;
1886                        interface->rx_ring[offset + i]->reg_idx = q_idx;
1887                        interface->rx_ring[offset + i]->qos_pc = pc;
1888                        q_idx += pc_stride;
1889                }
1890        }
1891
1892        return true;
1893}
1894
1895/**
1896 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1897 * @interface: Interface structure continaining rings and devices
1898 *
1899 * Cache the descriptor ring offsets for RSS
1900 **/
1901static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1902{
1903        int i;
1904
1905        for (i = 0; i < interface->num_rx_queues; i++)
1906                interface->rx_ring[i]->reg_idx = i;
1907
1908        for (i = 0; i < interface->num_tx_queues; i++)
1909                interface->tx_ring[i]->reg_idx = i;
1910}
1911
1912/**
1913 * fm10k_assign_rings - Map rings to network devices
1914 * @interface: Interface structure containing rings and devices
1915 *
1916 * This function is meant to go though and configure both the network
1917 * devices so that they contain rings, and configure the rings so that
1918 * they function with their network devices.
1919 **/
1920static void fm10k_assign_rings(struct fm10k_intfc *interface)
1921{
1922        if (fm10k_cache_ring_qos(interface))
1923                return;
1924
1925        fm10k_cache_ring_rss(interface);
1926}
1927
1928static void fm10k_init_reta(struct fm10k_intfc *interface)
1929{
1930        u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1931        u32 reta;
1932
1933        /* If the Rx flow indirection table has been configured manually, we
1934         * need to maintain it when possible.
1935         */
1936        if (netif_is_rxfh_configured(interface->netdev)) {
1937                for (i = FM10K_RETA_SIZE; i--;) {
1938                        reta = interface->reta[i];
1939                        if ((((reta << 24) >> 24) < rss_i) &&
1940                            (((reta << 16) >> 24) < rss_i) &&
1941                            (((reta <<  8) >> 24) < rss_i) &&
1942                            (((reta)       >> 24) < rss_i))
1943                                continue;
1944
1945                        /* this should never happen */
1946                        dev_err(&interface->pdev->dev,
1947                                "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1948                        goto repopulate_reta;
1949                }
1950
1951                /* do nothing if all of the elements are in bounds */
1952                return;
1953        }
1954
1955repopulate_reta:
1956        fm10k_write_reta(interface, NULL);
1957}
1958
1959/**
1960 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1961 * @interface: board private structure to initialize
1962 *
1963 * We determine which queueing scheme to use based on...
1964 * - Hardware queue count (num_*_queues)
1965 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1966 **/
1967int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1968{
1969        int err;
1970
1971        /* Number of supported queues */
1972        fm10k_set_num_queues(interface);
1973
1974        /* Configure MSI-X capability */
1975        err = fm10k_init_msix_capability(interface);
1976        if (err) {
1977                dev_err(&interface->pdev->dev,
1978                        "Unable to initialize MSI-X capability\n");
1979                goto err_init_msix;
1980        }
1981
1982        /* Allocate memory for queues */
1983        err = fm10k_alloc_q_vectors(interface);
1984        if (err) {
1985                dev_err(&interface->pdev->dev,
1986                        "Unable to allocate queue vectors\n");
1987                goto err_alloc_q_vectors;
1988        }
1989
1990        /* Map rings to devices, and map devices to physical queues */
1991        fm10k_assign_rings(interface);
1992
1993        /* Initialize RSS redirection table */
1994        fm10k_init_reta(interface);
1995
1996        return 0;
1997
1998err_alloc_q_vectors:
1999        fm10k_reset_msix_capability(interface);
2000err_init_msix:
2001        fm10k_reset_num_queues(interface);
2002        return err;
2003}
2004
2005/**
2006 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2007 * @interface: board private structure to clear queueing scheme on
2008 *
2009 * We go through and clear queueing specific resources and reset the structure
2010 * to pre-load conditions
2011 **/
2012void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2013{
2014        fm10k_free_q_vectors(interface);
2015        fm10k_reset_msix_capability(interface);
2016}
2017