linux/drivers/net/ethernet/intel/i40e/i40e_xsk.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2018 Intel Corporation. */
   3
   4#include <linux/bpf_trace.h>
   5#include <net/xdp_sock.h>
   6#include <net/xdp.h>
   7
   8#include "i40e.h"
   9#include "i40e_txrx_common.h"
  10#include "i40e_xsk.h"
  11
  12/**
  13 * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
  14 * @vsi: Current VSI
  15 * @umem: UMEM to DMA map
  16 *
  17 * Returns 0 on success, <0 on failure
  18 **/
  19static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
  20{
  21        struct i40e_pf *pf = vsi->back;
  22        struct device *dev;
  23        unsigned int i, j;
  24        dma_addr_t dma;
  25
  26        dev = &pf->pdev->dev;
  27        for (i = 0; i < umem->npgs; i++) {
  28                dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
  29                                         DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
  30                if (dma_mapping_error(dev, dma))
  31                        goto out_unmap;
  32
  33                umem->pages[i].dma = dma;
  34        }
  35
  36        return 0;
  37
  38out_unmap:
  39        for (j = 0; j < i; j++) {
  40                dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
  41                                     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
  42                umem->pages[i].dma = 0;
  43        }
  44
  45        return -1;
  46}
  47
  48/**
  49 * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
  50 * @vsi: Current VSI
  51 * @umem: UMEM to DMA map
  52 **/
  53static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
  54{
  55        struct i40e_pf *pf = vsi->back;
  56        struct device *dev;
  57        unsigned int i;
  58
  59        dev = &pf->pdev->dev;
  60
  61        for (i = 0; i < umem->npgs; i++) {
  62                dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
  63                                     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
  64
  65                umem->pages[i].dma = 0;
  66        }
  67}
  68
  69/**
  70 * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
  71 * @vsi: Current VSI
  72 * @umem: UMEM
  73 * @qid: Rx ring to associate UMEM to
  74 *
  75 * Returns 0 on success, <0 on failure
  76 **/
  77static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
  78                                u16 qid)
  79{
  80        struct net_device *netdev = vsi->netdev;
  81        struct xdp_umem_fq_reuse *reuseq;
  82        bool if_running;
  83        int err;
  84
  85        if (vsi->type != I40E_VSI_MAIN)
  86                return -EINVAL;
  87
  88        if (qid >= vsi->num_queue_pairs)
  89                return -EINVAL;
  90
  91        if (qid >= netdev->real_num_rx_queues ||
  92            qid >= netdev->real_num_tx_queues)
  93                return -EINVAL;
  94
  95        reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
  96        if (!reuseq)
  97                return -ENOMEM;
  98
  99        xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
 100
 101        err = i40e_xsk_umem_dma_map(vsi, umem);
 102        if (err)
 103                return err;
 104
 105        set_bit(qid, vsi->af_xdp_zc_qps);
 106
 107        if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
 108
 109        if (if_running) {
 110                err = i40e_queue_pair_disable(vsi, qid);
 111                if (err)
 112                        return err;
 113
 114                err = i40e_queue_pair_enable(vsi, qid);
 115                if (err)
 116                        return err;
 117
 118                /* Kick start the NAPI context so that receiving will start */
 119                err = i40e_xsk_async_xmit(vsi->netdev, qid);
 120                if (err)
 121                        return err;
 122        }
 123
 124        return 0;
 125}
 126
 127/**
 128 * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
 129 * @vsi: Current VSI
 130 * @qid: Rx ring to associate UMEM to
 131 *
 132 * Returns 0 on success, <0 on failure
 133 **/
 134static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
 135{
 136        struct net_device *netdev = vsi->netdev;
 137        struct xdp_umem *umem;
 138        bool if_running;
 139        int err;
 140
 141        umem = xdp_get_umem_from_qid(netdev, qid);
 142        if (!umem)
 143                return -EINVAL;
 144
 145        if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
 146
 147        if (if_running) {
 148                err = i40e_queue_pair_disable(vsi, qid);
 149                if (err)
 150                        return err;
 151        }
 152
 153        clear_bit(qid, vsi->af_xdp_zc_qps);
 154        i40e_xsk_umem_dma_unmap(vsi, umem);
 155
 156        if (if_running) {
 157                err = i40e_queue_pair_enable(vsi, qid);
 158                if (err)
 159                        return err;
 160        }
 161
 162        return 0;
 163}
 164
 165/**
 166 * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
 167 * @vsi: Current VSI
 168 * @umem: UMEM to enable/associate to a ring, or NULL to disable
 169 * @qid: Rx ring to (dis)associate UMEM (from)to
 170 *
 171 * This function enables or disables a UMEM to a certain ring.
 172 *
 173 * Returns 0 on success, <0 on failure
 174 **/
 175int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
 176                        u16 qid)
 177{
 178        return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
 179                i40e_xsk_umem_disable(vsi, qid);
 180}
 181
 182/**
 183 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
 184 * @rx_ring: Rx ring
 185 * @xdp: xdp_buff used as input to the XDP program
 186 *
 187 * This function enables or disables a UMEM to a certain ring.
 188 *
 189 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
 190 **/
 191static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
 192{
 193        int err, result = I40E_XDP_PASS;
 194        struct i40e_ring *xdp_ring;
 195        struct bpf_prog *xdp_prog;
 196        u32 act;
 197
 198        rcu_read_lock();
 199        /* NB! xdp_prog will always be !NULL, due to the fact that
 200         * this path is enabled by setting an XDP program.
 201         */
 202        xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 203        act = bpf_prog_run_xdp(xdp_prog, xdp);
 204        xdp->handle += xdp->data - xdp->data_hard_start;
 205        switch (act) {
 206        case XDP_PASS:
 207                break;
 208        case XDP_TX:
 209                xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
 210                result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
 211                break;
 212        case XDP_REDIRECT:
 213                err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 214                result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
 215                break;
 216        default:
 217                bpf_warn_invalid_xdp_action(act);
 218                /* fall through */
 219        case XDP_ABORTED:
 220                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 221                /* fallthrough -- handle aborts by dropping packet */
 222        case XDP_DROP:
 223                result = I40E_XDP_CONSUMED;
 224                break;
 225        }
 226        rcu_read_unlock();
 227        return result;
 228}
 229
 230/**
 231 * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
 232 * @rx_ring: Rx ring
 233 * @bi: Rx buffer to populate
 234 *
 235 * This function allocates an Rx buffer. The buffer can come from fill
 236 * queue, or via the recycle queue (next_to_alloc).
 237 *
 238 * Returns true for a successful allocation, false otherwise
 239 **/
 240static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
 241                                 struct i40e_rx_buffer *bi)
 242{
 243        struct xdp_umem *umem = rx_ring->xsk_umem;
 244        void *addr = bi->addr;
 245        u64 handle, hr;
 246
 247        if (addr) {
 248                rx_ring->rx_stats.page_reuse_count++;
 249                return true;
 250        }
 251
 252        if (!xsk_umem_peek_addr(umem, &handle)) {
 253                rx_ring->rx_stats.alloc_page_failed++;
 254                return false;
 255        }
 256
 257        hr = umem->headroom + XDP_PACKET_HEADROOM;
 258
 259        bi->dma = xdp_umem_get_dma(umem, handle);
 260        bi->dma += hr;
 261
 262        bi->addr = xdp_umem_get_data(umem, handle);
 263        bi->addr += hr;
 264
 265        bi->handle = handle + umem->headroom;
 266
 267        xsk_umem_discard_addr(umem);
 268        return true;
 269}
 270
 271/**
 272 * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
 273 * @rx_ring: Rx ring
 274 * @bi: Rx buffer to populate
 275 *
 276 * This function allocates an Rx buffer. The buffer can come from fill
 277 * queue, or via the reuse queue.
 278 *
 279 * Returns true for a successful allocation, false otherwise
 280 **/
 281static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
 282                                      struct i40e_rx_buffer *bi)
 283{
 284        struct xdp_umem *umem = rx_ring->xsk_umem;
 285        u64 handle, hr;
 286
 287        if (!xsk_umem_peek_addr_rq(umem, &handle)) {
 288                rx_ring->rx_stats.alloc_page_failed++;
 289                return false;
 290        }
 291
 292        handle &= rx_ring->xsk_umem->chunk_mask;
 293
 294        hr = umem->headroom + XDP_PACKET_HEADROOM;
 295
 296        bi->dma = xdp_umem_get_dma(umem, handle);
 297        bi->dma += hr;
 298
 299        bi->addr = xdp_umem_get_data(umem, handle);
 300        bi->addr += hr;
 301
 302        bi->handle = handle + umem->headroom;
 303
 304        xsk_umem_discard_addr_rq(umem);
 305        return true;
 306}
 307
 308static __always_inline bool
 309__i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
 310                           bool alloc(struct i40e_ring *rx_ring,
 311                                      struct i40e_rx_buffer *bi))
 312{
 313        u16 ntu = rx_ring->next_to_use;
 314        union i40e_rx_desc *rx_desc;
 315        struct i40e_rx_buffer *bi;
 316        bool ok = true;
 317
 318        rx_desc = I40E_RX_DESC(rx_ring, ntu);
 319        bi = &rx_ring->rx_bi[ntu];
 320        do {
 321                if (!alloc(rx_ring, bi)) {
 322                        ok = false;
 323                        goto no_buffers;
 324                }
 325
 326                dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
 327                                                 rx_ring->rx_buf_len,
 328                                                 DMA_BIDIRECTIONAL);
 329
 330                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
 331
 332                rx_desc++;
 333                bi++;
 334                ntu++;
 335
 336                if (unlikely(ntu == rx_ring->count)) {
 337                        rx_desc = I40E_RX_DESC(rx_ring, 0);
 338                        bi = rx_ring->rx_bi;
 339                        ntu = 0;
 340                }
 341
 342                rx_desc->wb.qword1.status_error_len = 0;
 343                count--;
 344        } while (count);
 345
 346no_buffers:
 347        if (rx_ring->next_to_use != ntu)
 348                i40e_release_rx_desc(rx_ring, ntu);
 349
 350        return ok;
 351}
 352
 353/**
 354 * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
 355 * @rx_ring: Rx ring
 356 * @count: The number of buffers to allocate
 357 *
 358 * This function allocates a number of Rx buffers from the reuse queue
 359 * or fill ring and places them on the Rx ring.
 360 *
 361 * Returns true for a successful allocation, false otherwise
 362 **/
 363bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
 364{
 365        return __i40e_alloc_rx_buffers_zc(rx_ring, count,
 366                                          i40e_alloc_buffer_slow_zc);
 367}
 368
 369/**
 370 * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
 371 * @rx_ring: Rx ring
 372 * @count: The number of buffers to allocate
 373 *
 374 * This function allocates a number of Rx buffers from the fill ring
 375 * or the internal recycle mechanism and places them on the Rx ring.
 376 *
 377 * Returns true for a successful allocation, false otherwise
 378 **/
 379static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
 380{
 381        return __i40e_alloc_rx_buffers_zc(rx_ring, count,
 382                                          i40e_alloc_buffer_zc);
 383}
 384
 385/**
 386 * i40e_get_rx_buffer_zc - Return the current Rx buffer
 387 * @rx_ring: Rx ring
 388 * @size: The size of the rx buffer (read from descriptor)
 389 *
 390 * This function returns the current, received Rx buffer, and also
 391 * does DMA synchronization.  the Rx ring.
 392 *
 393 * Returns the received Rx buffer
 394 **/
 395static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
 396                                                    const unsigned int size)
 397{
 398        struct i40e_rx_buffer *bi;
 399
 400        bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
 401
 402        /* we are reusing so sync this buffer for CPU use */
 403        dma_sync_single_range_for_cpu(rx_ring->dev,
 404                                      bi->dma, 0,
 405                                      size,
 406                                      DMA_BIDIRECTIONAL);
 407
 408        return bi;
 409}
 410
 411/**
 412 * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
 413 * @rx_ring: Rx ring
 414 * @old_bi: The Rx buffer to recycle
 415 *
 416 * This function recycles a finished Rx buffer, and places it on the
 417 * recycle queue (next_to_alloc).
 418 **/
 419static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
 420                                    struct i40e_rx_buffer *old_bi)
 421{
 422        struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
 423        unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
 424        u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
 425        u16 nta = rx_ring->next_to_alloc;
 426
 427        /* update, and store next to alloc */
 428        nta++;
 429        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 430
 431        /* transfer page from old buffer to new buffer */
 432        new_bi->dma = old_bi->dma & mask;
 433        new_bi->dma += hr;
 434
 435        new_bi->addr = (void *)((unsigned long)old_bi->addr & mask);
 436        new_bi->addr += hr;
 437
 438        new_bi->handle = old_bi->handle & mask;
 439        new_bi->handle += rx_ring->xsk_umem->headroom;
 440
 441        old_bi->addr = NULL;
 442}
 443
 444/**
 445 * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
 446 * @alloc: Zero-copy allocator
 447 * @handle: Buffer handle
 448 **/
 449void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
 450{
 451        struct i40e_rx_buffer *bi;
 452        struct i40e_ring *rx_ring;
 453        u64 hr, mask;
 454        u16 nta;
 455
 456        rx_ring = container_of(alloc, struct i40e_ring, zca);
 457        hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
 458        mask = rx_ring->xsk_umem->chunk_mask;
 459
 460        nta = rx_ring->next_to_alloc;
 461        bi = &rx_ring->rx_bi[nta];
 462
 463        nta++;
 464        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 465
 466        handle &= mask;
 467
 468        bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
 469        bi->dma += hr;
 470
 471        bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
 472        bi->addr += hr;
 473
 474        bi->handle = (u64)handle + rx_ring->xsk_umem->headroom;
 475}
 476
 477/**
 478 * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
 479 * @rx_ring: Rx ring
 480 * @bi: Rx buffer
 481 * @xdp: xdp_buff
 482 *
 483 * This functions allocates a new skb from a zero-copy Rx buffer.
 484 *
 485 * Returns the skb, or NULL on failure.
 486 **/
 487static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
 488                                             struct i40e_rx_buffer *bi,
 489                                             struct xdp_buff *xdp)
 490{
 491        unsigned int metasize = xdp->data - xdp->data_meta;
 492        unsigned int datasize = xdp->data_end - xdp->data;
 493        struct sk_buff *skb;
 494
 495        /* allocate a skb to store the frags */
 496        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
 497                               xdp->data_end - xdp->data_hard_start,
 498                               GFP_ATOMIC | __GFP_NOWARN);
 499        if (unlikely(!skb))
 500                return NULL;
 501
 502        skb_reserve(skb, xdp->data - xdp->data_hard_start);
 503        memcpy(__skb_put(skb, datasize), xdp->data, datasize);
 504        if (metasize)
 505                skb_metadata_set(skb, metasize);
 506
 507        i40e_reuse_rx_buffer_zc(rx_ring, bi);
 508        return skb;
 509}
 510
 511/**
 512 * i40e_inc_ntc: Advance the next_to_clean index
 513 * @rx_ring: Rx ring
 514 **/
 515static void i40e_inc_ntc(struct i40e_ring *rx_ring)
 516{
 517        u32 ntc = rx_ring->next_to_clean + 1;
 518
 519        ntc = (ntc < rx_ring->count) ? ntc : 0;
 520        rx_ring->next_to_clean = ntc;
 521        prefetch(I40E_RX_DESC(rx_ring, ntc));
 522}
 523
 524/**
 525 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
 526 * @rx_ring: Rx ring
 527 * @budget: NAPI budget
 528 *
 529 * Returns amount of work completed
 530 **/
 531int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
 532{
 533        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 534        u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 535        unsigned int xdp_res, xdp_xmit = 0;
 536        bool failure = false;
 537        struct sk_buff *skb;
 538        struct xdp_buff xdp;
 539
 540        xdp.rxq = &rx_ring->xdp_rxq;
 541
 542        while (likely(total_rx_packets < (unsigned int)budget)) {
 543                struct i40e_rx_buffer *bi;
 544                union i40e_rx_desc *rx_desc;
 545                unsigned int size;
 546                u64 qword;
 547
 548                if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
 549                        failure = failure ||
 550                                  !i40e_alloc_rx_buffers_fast_zc(rx_ring,
 551                                                                 cleaned_count);
 552                        cleaned_count = 0;
 553                }
 554
 555                rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
 556                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 557
 558                /* This memory barrier is needed to keep us from reading
 559                 * any other fields out of the rx_desc until we have
 560                 * verified the descriptor has been written back.
 561                 */
 562                dma_rmb();
 563
 564                bi = i40e_clean_programming_status(rx_ring, rx_desc,
 565                                                   qword);
 566                if (unlikely(bi)) {
 567                        i40e_reuse_rx_buffer_zc(rx_ring, bi);
 568                        cleaned_count++;
 569                        continue;
 570                }
 571
 572                size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
 573                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
 574                if (!size)
 575                        break;
 576
 577                bi = i40e_get_rx_buffer_zc(rx_ring, size);
 578                xdp.data = bi->addr;
 579                xdp.data_meta = xdp.data;
 580                xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
 581                xdp.data_end = xdp.data + size;
 582                xdp.handle = bi->handle;
 583
 584                xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
 585                if (xdp_res) {
 586                        if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
 587                                xdp_xmit |= xdp_res;
 588                                bi->addr = NULL;
 589                        } else {
 590                                i40e_reuse_rx_buffer_zc(rx_ring, bi);
 591                        }
 592
 593                        total_rx_bytes += size;
 594                        total_rx_packets++;
 595
 596                        cleaned_count++;
 597                        i40e_inc_ntc(rx_ring);
 598                        continue;
 599                }
 600
 601                /* XDP_PASS path */
 602
 603                /* NB! We are not checking for errors using
 604                 * i40e_test_staterr with
 605                 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
 606                 * SBP is *not* set in PRT_SBPVSI (default not set).
 607                 */
 608                skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
 609                if (!skb) {
 610                        rx_ring->rx_stats.alloc_buff_failed++;
 611                        break;
 612                }
 613
 614                cleaned_count++;
 615                i40e_inc_ntc(rx_ring);
 616
 617                if (eth_skb_pad(skb))
 618                        continue;
 619
 620                total_rx_bytes += skb->len;
 621                total_rx_packets++;
 622
 623                i40e_process_skb_fields(rx_ring, rx_desc, skb);
 624                napi_gro_receive(&rx_ring->q_vector->napi, skb);
 625        }
 626
 627        i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
 628        i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
 629        return failure ? budget : (int)total_rx_packets;
 630}
 631
 632/**
 633 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
 634 * @xdp_ring: XDP Tx ring
 635 * @budget: NAPI budget
 636 *
 637 * Returns true if the work is finished.
 638 **/
 639static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
 640{
 641        struct i40e_tx_desc *tx_desc = NULL;
 642        struct i40e_tx_buffer *tx_bi;
 643        bool work_done = true;
 644        struct xdp_desc desc;
 645        dma_addr_t dma;
 646
 647        while (budget-- > 0) {
 648                if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
 649                        xdp_ring->tx_stats.tx_busy++;
 650                        work_done = false;
 651                        break;
 652                }
 653
 654                if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
 655                        break;
 656
 657                dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
 658
 659                dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
 660                                           DMA_BIDIRECTIONAL);
 661
 662                tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
 663                tx_bi->bytecount = desc.len;
 664
 665                tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
 666                tx_desc->buffer_addr = cpu_to_le64(dma);
 667                tx_desc->cmd_type_offset_bsz =
 668                        build_ctob(I40E_TX_DESC_CMD_ICRC
 669                                   | I40E_TX_DESC_CMD_EOP,
 670                                   0, desc.len, 0);
 671
 672                xdp_ring->next_to_use++;
 673                if (xdp_ring->next_to_use == xdp_ring->count)
 674                        xdp_ring->next_to_use = 0;
 675        }
 676
 677        if (tx_desc) {
 678                /* Request an interrupt for the last frame and bump tail ptr. */
 679                tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
 680                                                 I40E_TXD_QW1_CMD_SHIFT);
 681                i40e_xdp_ring_update_tail(xdp_ring);
 682
 683                xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
 684        }
 685
 686        return !!budget && work_done;
 687}
 688
 689/**
 690 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
 691 * @tx_ring: XDP Tx ring
 692 * @tx_bi: Tx buffer info to clean
 693 **/
 694static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
 695                                     struct i40e_tx_buffer *tx_bi)
 696{
 697        xdp_return_frame(tx_bi->xdpf);
 698        dma_unmap_single(tx_ring->dev,
 699                         dma_unmap_addr(tx_bi, dma),
 700                         dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
 701        dma_unmap_len_set(tx_bi, len, 0);
 702}
 703
 704/**
 705 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
 706 * @tx_ring: XDP Tx ring
 707 * @tx_bi: Tx buffer info to clean
 708 *
 709 * Returns true if cleanup/tranmission is done.
 710 **/
 711bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
 712                           struct i40e_ring *tx_ring, int napi_budget)
 713{
 714        unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
 715        u32 i, completed_frames, frames_ready, xsk_frames = 0;
 716        struct xdp_umem *umem = tx_ring->xsk_umem;
 717        u32 head_idx = i40e_get_head(tx_ring);
 718        bool work_done = true, xmit_done;
 719        struct i40e_tx_buffer *tx_bi;
 720
 721        if (head_idx < tx_ring->next_to_clean)
 722                head_idx += tx_ring->count;
 723        frames_ready = head_idx - tx_ring->next_to_clean;
 724
 725        if (frames_ready == 0) {
 726                goto out_xmit;
 727        } else if (frames_ready > budget) {
 728                completed_frames = budget;
 729                work_done = false;
 730        } else {
 731                completed_frames = frames_ready;
 732        }
 733
 734        ntc = tx_ring->next_to_clean;
 735
 736        for (i = 0; i < completed_frames; i++) {
 737                tx_bi = &tx_ring->tx_bi[ntc];
 738
 739                if (tx_bi->xdpf)
 740                        i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
 741                else
 742                        xsk_frames++;
 743
 744                tx_bi->xdpf = NULL;
 745                total_bytes += tx_bi->bytecount;
 746
 747                if (++ntc >= tx_ring->count)
 748                        ntc = 0;
 749        }
 750
 751        tx_ring->next_to_clean += completed_frames;
 752        if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
 753                tx_ring->next_to_clean -= tx_ring->count;
 754
 755        if (xsk_frames)
 756                xsk_umem_complete_tx(umem, xsk_frames);
 757
 758        i40e_arm_wb(tx_ring, vsi, budget);
 759        i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
 760
 761out_xmit:
 762        xmit_done = i40e_xmit_zc(tx_ring, budget);
 763
 764        return work_done && xmit_done;
 765}
 766
 767/**
 768 * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit
 769 * @dev: the netdevice
 770 * @queue_id: queue id to wake up
 771 *
 772 * Returns <0 for errors, 0 otherwise.
 773 **/
 774int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id)
 775{
 776        struct i40e_netdev_priv *np = netdev_priv(dev);
 777        struct i40e_vsi *vsi = np->vsi;
 778        struct i40e_ring *ring;
 779
 780        if (test_bit(__I40E_VSI_DOWN, vsi->state))
 781                return -ENETDOWN;
 782
 783        if (!i40e_enabled_xdp_vsi(vsi))
 784                return -ENXIO;
 785
 786        if (queue_id >= vsi->num_queue_pairs)
 787                return -ENXIO;
 788
 789        if (!vsi->xdp_rings[queue_id]->xsk_umem)
 790                return -ENXIO;
 791
 792        ring = vsi->xdp_rings[queue_id];
 793
 794        /* The idea here is that if NAPI is running, mark a miss, so
 795         * it will run again. If not, trigger an interrupt and
 796         * schedule the NAPI from interrupt context. If NAPI would be
 797         * scheduled here, the interrupt affinity would not be
 798         * honored.
 799         */
 800        if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
 801                i40e_force_wb(vsi, ring->q_vector);
 802
 803        return 0;
 804}
 805
 806void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
 807{
 808        u16 i;
 809
 810        for (i = 0; i < rx_ring->count; i++) {
 811                struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 812
 813                if (!rx_bi->addr)
 814                        continue;
 815
 816                xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
 817                rx_bi->addr = NULL;
 818        }
 819}
 820
 821/**
 822 * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
 823 * @xdp_ring: XDP Tx ring
 824 **/
 825void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
 826{
 827        u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
 828        struct xdp_umem *umem = tx_ring->xsk_umem;
 829        struct i40e_tx_buffer *tx_bi;
 830        u32 xsk_frames = 0;
 831
 832        while (ntc != ntu) {
 833                tx_bi = &tx_ring->tx_bi[ntc];
 834
 835                if (tx_bi->xdpf)
 836                        i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
 837                else
 838                        xsk_frames++;
 839
 840                tx_bi->xdpf = NULL;
 841
 842                ntc++;
 843                if (ntc >= tx_ring->count)
 844                        ntc = 0;
 845        }
 846
 847        if (xsk_frames)
 848                xsk_umem_complete_tx(umem, xsk_frames);
 849}
 850
 851/**
 852 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
 853 * @vsi: vsi
 854 *
 855 * Returns true if any of the Rx rings has an AF_XDP UMEM attached
 856 **/
 857bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
 858{
 859        struct net_device *netdev = vsi->netdev;
 860        int i;
 861
 862        for (i = 0; i < vsi->num_queue_pairs; i++) {
 863                if (xdp_get_umem_from_qid(netdev, i))
 864                        return true;
 865        }
 866
 867        return false;
 868}
 869