linux/drivers/net/ethernet/intel/iavf/iavf_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include "iavf.h"
   5#include "iavf_prototype.h"
   6#include "iavf_client.h"
   7/* All iavf tracepoints are defined by the include below, which must
   8 * be included exactly once across the whole kernel with
   9 * CREATE_TRACE_POINTS defined
  10 */
  11#define CREATE_TRACE_POINTS
  12#include "iavf_trace.h"
  13
  14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  16static int iavf_close(struct net_device *netdev);
  17static int iavf_init_get_resources(struct iavf_adapter *adapter);
  18static int iavf_check_reset_complete(struct iavf_hw *hw);
  19
  20char iavf_driver_name[] = "iavf";
  21static const char iavf_driver_string[] =
  22        "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  23
  24#define DRV_KERN "-k"
  25
  26#define DRV_VERSION_MAJOR 3
  27#define DRV_VERSION_MINOR 2
  28#define DRV_VERSION_BUILD 3
  29#define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
  30             __stringify(DRV_VERSION_MINOR) "." \
  31             __stringify(DRV_VERSION_BUILD) \
  32             DRV_KERN
  33const char iavf_driver_version[] = DRV_VERSION;
  34static const char iavf_copyright[] =
  35        "Copyright (c) 2013 - 2018 Intel Corporation.";
  36
  37/* iavf_pci_tbl - PCI Device ID Table
  38 *
  39 * Wildcard entries (PCI_ANY_ID) should come last
  40 * Last entry must be all 0s
  41 *
  42 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  43 *   Class, Class Mask, private data (not used) }
  44 */
  45static const struct pci_device_id iavf_pci_tbl[] = {
  46        {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  47        {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  48        {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  49        {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  50        /* required last entry */
  51        {0, }
  52};
  53
  54MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  55
  56MODULE_ALIAS("i40evf");
  57MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  58MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  59MODULE_LICENSE("GPL v2");
  60MODULE_VERSION(DRV_VERSION);
  61
  62static const struct net_device_ops iavf_netdev_ops;
  63struct workqueue_struct *iavf_wq;
  64
  65/**
  66 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
  67 * @hw:   pointer to the HW structure
  68 * @mem:  ptr to mem struct to fill out
  69 * @size: size of memory requested
  70 * @alignment: what to align the allocation to
  71 **/
  72enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
  73                                         struct iavf_dma_mem *mem,
  74                                         u64 size, u32 alignment)
  75{
  76        struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  77
  78        if (!mem)
  79                return IAVF_ERR_PARAM;
  80
  81        mem->size = ALIGN(size, alignment);
  82        mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
  83                                     (dma_addr_t *)&mem->pa, GFP_KERNEL);
  84        if (mem->va)
  85                return 0;
  86        else
  87                return IAVF_ERR_NO_MEMORY;
  88}
  89
  90/**
  91 * iavf_free_dma_mem_d - OS specific memory free for shared code
  92 * @hw:   pointer to the HW structure
  93 * @mem:  ptr to mem struct to free
  94 **/
  95enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
  96                                     struct iavf_dma_mem *mem)
  97{
  98        struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  99
 100        if (!mem || !mem->va)
 101                return IAVF_ERR_PARAM;
 102        dma_free_coherent(&adapter->pdev->dev, mem->size,
 103                          mem->va, (dma_addr_t)mem->pa);
 104        return 0;
 105}
 106
 107/**
 108 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
 109 * @hw:   pointer to the HW structure
 110 * @mem:  ptr to mem struct to fill out
 111 * @size: size of memory requested
 112 **/
 113enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
 114                                          struct iavf_virt_mem *mem, u32 size)
 115{
 116        if (!mem)
 117                return IAVF_ERR_PARAM;
 118
 119        mem->size = size;
 120        mem->va = kzalloc(size, GFP_KERNEL);
 121
 122        if (mem->va)
 123                return 0;
 124        else
 125                return IAVF_ERR_NO_MEMORY;
 126}
 127
 128/**
 129 * iavf_free_virt_mem_d - OS specific memory free for shared code
 130 * @hw:   pointer to the HW structure
 131 * @mem:  ptr to mem struct to free
 132 **/
 133enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
 134                                      struct iavf_virt_mem *mem)
 135{
 136        if (!mem)
 137                return IAVF_ERR_PARAM;
 138
 139        /* it's ok to kfree a NULL pointer */
 140        kfree(mem->va);
 141
 142        return 0;
 143}
 144
 145/**
 146 * iavf_debug_d - OS dependent version of debug printing
 147 * @hw:  pointer to the HW structure
 148 * @mask: debug level mask
 149 * @fmt_str: printf-type format description
 150 **/
 151void iavf_debug_d(void *hw, u32 mask, char *fmt_str, ...)
 152{
 153        char buf[512];
 154        va_list argptr;
 155
 156        if (!(mask & ((struct iavf_hw *)hw)->debug_mask))
 157                return;
 158
 159        va_start(argptr, fmt_str);
 160        vsnprintf(buf, sizeof(buf), fmt_str, argptr);
 161        va_end(argptr);
 162
 163        /* the debug string is already formatted with a newline */
 164        pr_info("%s", buf);
 165}
 166
 167/**
 168 * iavf_schedule_reset - Set the flags and schedule a reset event
 169 * @adapter: board private structure
 170 **/
 171void iavf_schedule_reset(struct iavf_adapter *adapter)
 172{
 173        if (!(adapter->flags &
 174              (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 175                adapter->flags |= IAVF_FLAG_RESET_NEEDED;
 176                queue_work(iavf_wq, &adapter->reset_task);
 177        }
 178}
 179
 180/**
 181 * iavf_tx_timeout - Respond to a Tx Hang
 182 * @netdev: network interface device structure
 183 **/
 184static void iavf_tx_timeout(struct net_device *netdev)
 185{
 186        struct iavf_adapter *adapter = netdev_priv(netdev);
 187
 188        adapter->tx_timeout_count++;
 189        iavf_schedule_reset(adapter);
 190}
 191
 192/**
 193 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 194 * @adapter: board private structure
 195 **/
 196static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 197{
 198        struct iavf_hw *hw = &adapter->hw;
 199
 200        if (!adapter->msix_entries)
 201                return;
 202
 203        wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 204
 205        iavf_flush(hw);
 206
 207        synchronize_irq(adapter->msix_entries[0].vector);
 208}
 209
 210/**
 211 * iavf_misc_irq_enable - Enable default interrupt generation settings
 212 * @adapter: board private structure
 213 **/
 214static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 215{
 216        struct iavf_hw *hw = &adapter->hw;
 217
 218        wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 219                                       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 220        wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 221
 222        iavf_flush(hw);
 223}
 224
 225/**
 226 * iavf_irq_disable - Mask off interrupt generation on the NIC
 227 * @adapter: board private structure
 228 **/
 229static void iavf_irq_disable(struct iavf_adapter *adapter)
 230{
 231        int i;
 232        struct iavf_hw *hw = &adapter->hw;
 233
 234        if (!adapter->msix_entries)
 235                return;
 236
 237        for (i = 1; i < adapter->num_msix_vectors; i++) {
 238                wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 239                synchronize_irq(adapter->msix_entries[i].vector);
 240        }
 241        iavf_flush(hw);
 242}
 243
 244/**
 245 * iavf_irq_enable_queues - Enable interrupt for specified queues
 246 * @adapter: board private structure
 247 * @mask: bitmap of queues to enable
 248 **/
 249void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
 250{
 251        struct iavf_hw *hw = &adapter->hw;
 252        int i;
 253
 254        for (i = 1; i < adapter->num_msix_vectors; i++) {
 255                if (mask & BIT(i - 1)) {
 256                        wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 257                             IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 258                             IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 259                }
 260        }
 261}
 262
 263/**
 264 * iavf_irq_enable - Enable default interrupt generation settings
 265 * @adapter: board private structure
 266 * @flush: boolean value whether to run rd32()
 267 **/
 268void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 269{
 270        struct iavf_hw *hw = &adapter->hw;
 271
 272        iavf_misc_irq_enable(adapter);
 273        iavf_irq_enable_queues(adapter, ~0);
 274
 275        if (flush)
 276                iavf_flush(hw);
 277}
 278
 279/**
 280 * iavf_msix_aq - Interrupt handler for vector 0
 281 * @irq: interrupt number
 282 * @data: pointer to netdev
 283 **/
 284static irqreturn_t iavf_msix_aq(int irq, void *data)
 285{
 286        struct net_device *netdev = data;
 287        struct iavf_adapter *adapter = netdev_priv(netdev);
 288        struct iavf_hw *hw = &adapter->hw;
 289
 290        /* handle non-queue interrupts, these reads clear the registers */
 291        rd32(hw, IAVF_VFINT_ICR01);
 292        rd32(hw, IAVF_VFINT_ICR0_ENA1);
 293
 294        /* schedule work on the private workqueue */
 295        queue_work(iavf_wq, &adapter->adminq_task);
 296
 297        return IRQ_HANDLED;
 298}
 299
 300/**
 301 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 302 * @irq: interrupt number
 303 * @data: pointer to a q_vector
 304 **/
 305static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 306{
 307        struct iavf_q_vector *q_vector = data;
 308
 309        if (!q_vector->tx.ring && !q_vector->rx.ring)
 310                return IRQ_HANDLED;
 311
 312        napi_schedule_irqoff(&q_vector->napi);
 313
 314        return IRQ_HANDLED;
 315}
 316
 317/**
 318 * iavf_map_vector_to_rxq - associate irqs with rx queues
 319 * @adapter: board private structure
 320 * @v_idx: interrupt number
 321 * @r_idx: queue number
 322 **/
 323static void
 324iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 325{
 326        struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 327        struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 328        struct iavf_hw *hw = &adapter->hw;
 329
 330        rx_ring->q_vector = q_vector;
 331        rx_ring->next = q_vector->rx.ring;
 332        rx_ring->vsi = &adapter->vsi;
 333        q_vector->rx.ring = rx_ring;
 334        q_vector->rx.count++;
 335        q_vector->rx.next_update = jiffies + 1;
 336        q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 337        q_vector->ring_mask |= BIT(r_idx);
 338        wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 339             q_vector->rx.current_itr);
 340        q_vector->rx.current_itr = q_vector->rx.target_itr;
 341}
 342
 343/**
 344 * iavf_map_vector_to_txq - associate irqs with tx queues
 345 * @adapter: board private structure
 346 * @v_idx: interrupt number
 347 * @t_idx: queue number
 348 **/
 349static void
 350iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 351{
 352        struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 353        struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 354        struct iavf_hw *hw = &adapter->hw;
 355
 356        tx_ring->q_vector = q_vector;
 357        tx_ring->next = q_vector->tx.ring;
 358        tx_ring->vsi = &adapter->vsi;
 359        q_vector->tx.ring = tx_ring;
 360        q_vector->tx.count++;
 361        q_vector->tx.next_update = jiffies + 1;
 362        q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 363        q_vector->num_ringpairs++;
 364        wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 365             q_vector->tx.target_itr);
 366        q_vector->tx.current_itr = q_vector->tx.target_itr;
 367}
 368
 369/**
 370 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 371 * @adapter: board private structure to initialize
 372 *
 373 * This function maps descriptor rings to the queue-specific vectors
 374 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 375 * one vector per ring/queue, but on a constrained vector budget, we
 376 * group the rings as "efficiently" as possible.  You would add new
 377 * mapping configurations in here.
 378 **/
 379static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 380{
 381        int rings_remaining = adapter->num_active_queues;
 382        int ridx = 0, vidx = 0;
 383        int q_vectors;
 384
 385        q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 386
 387        for (; ridx < rings_remaining; ridx++) {
 388                iavf_map_vector_to_rxq(adapter, vidx, ridx);
 389                iavf_map_vector_to_txq(adapter, vidx, ridx);
 390
 391                /* In the case where we have more queues than vectors, continue
 392                 * round-robin on vectors until all queues are mapped.
 393                 */
 394                if (++vidx >= q_vectors)
 395                        vidx = 0;
 396        }
 397
 398        adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 399}
 400
 401/**
 402 * iavf_irq_affinity_notify - Callback for affinity changes
 403 * @notify: context as to what irq was changed
 404 * @mask: the new affinity mask
 405 *
 406 * This is a callback function used by the irq_set_affinity_notifier function
 407 * so that we may register to receive changes to the irq affinity masks.
 408 **/
 409static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 410                                     const cpumask_t *mask)
 411{
 412        struct iavf_q_vector *q_vector =
 413                container_of(notify, struct iavf_q_vector, affinity_notify);
 414
 415        cpumask_copy(&q_vector->affinity_mask, mask);
 416}
 417
 418/**
 419 * iavf_irq_affinity_release - Callback for affinity notifier release
 420 * @ref: internal core kernel usage
 421 *
 422 * This is a callback function used by the irq_set_affinity_notifier function
 423 * to inform the current notification subscriber that they will no longer
 424 * receive notifications.
 425 **/
 426static void iavf_irq_affinity_release(struct kref *ref) {}
 427
 428/**
 429 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 430 * @adapter: board private structure
 431 * @basename: device basename
 432 *
 433 * Allocates MSI-X vectors for tx and rx handling, and requests
 434 * interrupts from the kernel.
 435 **/
 436static int
 437iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 438{
 439        unsigned int vector, q_vectors;
 440        unsigned int rx_int_idx = 0, tx_int_idx = 0;
 441        int irq_num, err;
 442        int cpu;
 443
 444        iavf_irq_disable(adapter);
 445        /* Decrement for Other and TCP Timer vectors */
 446        q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 447
 448        for (vector = 0; vector < q_vectors; vector++) {
 449                struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 450
 451                irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 452
 453                if (q_vector->tx.ring && q_vector->rx.ring) {
 454                        snprintf(q_vector->name, sizeof(q_vector->name),
 455                                 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
 456                        tx_int_idx++;
 457                } else if (q_vector->rx.ring) {
 458                        snprintf(q_vector->name, sizeof(q_vector->name),
 459                                 "iavf-%s-rx-%d", basename, rx_int_idx++);
 460                } else if (q_vector->tx.ring) {
 461                        snprintf(q_vector->name, sizeof(q_vector->name),
 462                                 "iavf-%s-tx-%d", basename, tx_int_idx++);
 463                } else {
 464                        /* skip this unused q_vector */
 465                        continue;
 466                }
 467                err = request_irq(irq_num,
 468                                  iavf_msix_clean_rings,
 469                                  0,
 470                                  q_vector->name,
 471                                  q_vector);
 472                if (err) {
 473                        dev_info(&adapter->pdev->dev,
 474                                 "Request_irq failed, error: %d\n", err);
 475                        goto free_queue_irqs;
 476                }
 477                /* register for affinity change notifications */
 478                q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 479                q_vector->affinity_notify.release =
 480                                                   iavf_irq_affinity_release;
 481                irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 482                /* Spread the IRQ affinity hints across online CPUs. Note that
 483                 * get_cpu_mask returns a mask with a permanent lifetime so
 484                 * it's safe to use as a hint for irq_set_affinity_hint.
 485                 */
 486                cpu = cpumask_local_spread(q_vector->v_idx, -1);
 487                irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
 488        }
 489
 490        return 0;
 491
 492free_queue_irqs:
 493        while (vector) {
 494                vector--;
 495                irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 496                irq_set_affinity_notifier(irq_num, NULL);
 497                irq_set_affinity_hint(irq_num, NULL);
 498                free_irq(irq_num, &adapter->q_vectors[vector]);
 499        }
 500        return err;
 501}
 502
 503/**
 504 * iavf_request_misc_irq - Initialize MSI-X interrupts
 505 * @adapter: board private structure
 506 *
 507 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 508 * vector is only for the admin queue, and stays active even when the netdev
 509 * is closed.
 510 **/
 511static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 512{
 513        struct net_device *netdev = adapter->netdev;
 514        int err;
 515
 516        snprintf(adapter->misc_vector_name,
 517                 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 518                 dev_name(&adapter->pdev->dev));
 519        err = request_irq(adapter->msix_entries[0].vector,
 520                          &iavf_msix_aq, 0,
 521                          adapter->misc_vector_name, netdev);
 522        if (err) {
 523                dev_err(&adapter->pdev->dev,
 524                        "request_irq for %s failed: %d\n",
 525                        adapter->misc_vector_name, err);
 526                free_irq(adapter->msix_entries[0].vector, netdev);
 527        }
 528        return err;
 529}
 530
 531/**
 532 * iavf_free_traffic_irqs - Free MSI-X interrupts
 533 * @adapter: board private structure
 534 *
 535 * Frees all MSI-X vectors other than 0.
 536 **/
 537static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 538{
 539        int vector, irq_num, q_vectors;
 540
 541        if (!adapter->msix_entries)
 542                return;
 543
 544        q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 545
 546        for (vector = 0; vector < q_vectors; vector++) {
 547                irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 548                irq_set_affinity_notifier(irq_num, NULL);
 549                irq_set_affinity_hint(irq_num, NULL);
 550                free_irq(irq_num, &adapter->q_vectors[vector]);
 551        }
 552}
 553
 554/**
 555 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 556 * @adapter: board private structure
 557 *
 558 * Frees MSI-X vector 0.
 559 **/
 560static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 561{
 562        struct net_device *netdev = adapter->netdev;
 563
 564        if (!adapter->msix_entries)
 565                return;
 566
 567        free_irq(adapter->msix_entries[0].vector, netdev);
 568}
 569
 570/**
 571 * iavf_configure_tx - Configure Transmit Unit after Reset
 572 * @adapter: board private structure
 573 *
 574 * Configure the Tx unit of the MAC after a reset.
 575 **/
 576static void iavf_configure_tx(struct iavf_adapter *adapter)
 577{
 578        struct iavf_hw *hw = &adapter->hw;
 579        int i;
 580
 581        for (i = 0; i < adapter->num_active_queues; i++)
 582                adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 583}
 584
 585/**
 586 * iavf_configure_rx - Configure Receive Unit after Reset
 587 * @adapter: board private structure
 588 *
 589 * Configure the Rx unit of the MAC after a reset.
 590 **/
 591static void iavf_configure_rx(struct iavf_adapter *adapter)
 592{
 593        unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 594        struct iavf_hw *hw = &adapter->hw;
 595        int i;
 596
 597        /* Legacy Rx will always default to a 2048 buffer size. */
 598#if (PAGE_SIZE < 8192)
 599        if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 600                struct net_device *netdev = adapter->netdev;
 601
 602                /* For jumbo frames on systems with 4K pages we have to use
 603                 * an order 1 page, so we might as well increase the size
 604                 * of our Rx buffer to make better use of the available space
 605                 */
 606                rx_buf_len = IAVF_RXBUFFER_3072;
 607
 608                /* We use a 1536 buffer size for configurations with
 609                 * standard Ethernet mtu.  On x86 this gives us enough room
 610                 * for shared info and 192 bytes of padding.
 611                 */
 612                if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 613                    (netdev->mtu <= ETH_DATA_LEN))
 614                        rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 615        }
 616#endif
 617
 618        for (i = 0; i < adapter->num_active_queues; i++) {
 619                adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 620                adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 621
 622                if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 623                        clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 624                else
 625                        set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 626        }
 627}
 628
 629/**
 630 * iavf_find_vlan - Search filter list for specific vlan filter
 631 * @adapter: board private structure
 632 * @vlan: vlan tag
 633 *
 634 * Returns ptr to the filter object or NULL. Must be called while holding the
 635 * mac_vlan_list_lock.
 636 **/
 637static struct
 638iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
 639{
 640        struct iavf_vlan_filter *f;
 641
 642        list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 643                if (vlan == f->vlan)
 644                        return f;
 645        }
 646        return NULL;
 647}
 648
 649/**
 650 * iavf_add_vlan - Add a vlan filter to the list
 651 * @adapter: board private structure
 652 * @vlan: VLAN tag
 653 *
 654 * Returns ptr to the filter object or NULL when no memory available.
 655 **/
 656static struct
 657iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
 658{
 659        struct iavf_vlan_filter *f = NULL;
 660
 661        spin_lock_bh(&adapter->mac_vlan_list_lock);
 662
 663        f = iavf_find_vlan(adapter, vlan);
 664        if (!f) {
 665                f = kzalloc(sizeof(*f), GFP_ATOMIC);
 666                if (!f)
 667                        goto clearout;
 668
 669                f->vlan = vlan;
 670
 671                list_add_tail(&f->list, &adapter->vlan_filter_list);
 672                f->add = true;
 673                adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 674        }
 675
 676clearout:
 677        spin_unlock_bh(&adapter->mac_vlan_list_lock);
 678        return f;
 679}
 680
 681/**
 682 * iavf_del_vlan - Remove a vlan filter from the list
 683 * @adapter: board private structure
 684 * @vlan: VLAN tag
 685 **/
 686static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
 687{
 688        struct iavf_vlan_filter *f;
 689
 690        spin_lock_bh(&adapter->mac_vlan_list_lock);
 691
 692        f = iavf_find_vlan(adapter, vlan);
 693        if (f) {
 694                f->remove = true;
 695                adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
 696        }
 697
 698        spin_unlock_bh(&adapter->mac_vlan_list_lock);
 699}
 700
 701/**
 702 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 703 * @netdev: network device struct
 704 * @proto: unused protocol data
 705 * @vid: VLAN tag
 706 **/
 707static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 708                                __always_unused __be16 proto, u16 vid)
 709{
 710        struct iavf_adapter *adapter = netdev_priv(netdev);
 711
 712        if (!VLAN_ALLOWED(adapter))
 713                return -EIO;
 714        if (iavf_add_vlan(adapter, vid) == NULL)
 715                return -ENOMEM;
 716        return 0;
 717}
 718
 719/**
 720 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 721 * @netdev: network device struct
 722 * @proto: unused protocol data
 723 * @vid: VLAN tag
 724 **/
 725static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 726                                 __always_unused __be16 proto, u16 vid)
 727{
 728        struct iavf_adapter *adapter = netdev_priv(netdev);
 729
 730        if (VLAN_ALLOWED(adapter)) {
 731                iavf_del_vlan(adapter, vid);
 732                return 0;
 733        }
 734        return -EIO;
 735}
 736
 737/**
 738 * iavf_find_filter - Search filter list for specific mac filter
 739 * @adapter: board private structure
 740 * @macaddr: the MAC address
 741 *
 742 * Returns ptr to the filter object or NULL. Must be called while holding the
 743 * mac_vlan_list_lock.
 744 **/
 745static struct
 746iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 747                                  const u8 *macaddr)
 748{
 749        struct iavf_mac_filter *f;
 750
 751        if (!macaddr)
 752                return NULL;
 753
 754        list_for_each_entry(f, &adapter->mac_filter_list, list) {
 755                if (ether_addr_equal(macaddr, f->macaddr))
 756                        return f;
 757        }
 758        return NULL;
 759}
 760
 761/**
 762 * iavf_add_filter - Add a mac filter to the filter list
 763 * @adapter: board private structure
 764 * @macaddr: the MAC address
 765 *
 766 * Returns ptr to the filter object or NULL when no memory available.
 767 **/
 768static struct
 769iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 770                                 const u8 *macaddr)
 771{
 772        struct iavf_mac_filter *f;
 773
 774        if (!macaddr)
 775                return NULL;
 776
 777        f = iavf_find_filter(adapter, macaddr);
 778        if (!f) {
 779                f = kzalloc(sizeof(*f), GFP_ATOMIC);
 780                if (!f)
 781                        return f;
 782
 783                ether_addr_copy(f->macaddr, macaddr);
 784
 785                list_add_tail(&f->list, &adapter->mac_filter_list);
 786                f->add = true;
 787                adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 788        } else {
 789                f->remove = false;
 790        }
 791
 792        return f;
 793}
 794
 795/**
 796 * iavf_set_mac - NDO callback to set port mac address
 797 * @netdev: network interface device structure
 798 * @p: pointer to an address structure
 799 *
 800 * Returns 0 on success, negative on failure
 801 **/
 802static int iavf_set_mac(struct net_device *netdev, void *p)
 803{
 804        struct iavf_adapter *adapter = netdev_priv(netdev);
 805        struct iavf_hw *hw = &adapter->hw;
 806        struct iavf_mac_filter *f;
 807        struct sockaddr *addr = p;
 808
 809        if (!is_valid_ether_addr(addr->sa_data))
 810                return -EADDRNOTAVAIL;
 811
 812        if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
 813                return 0;
 814
 815        if (adapter->flags & IAVF_FLAG_ADDR_SET_BY_PF)
 816                return -EPERM;
 817
 818        spin_lock_bh(&adapter->mac_vlan_list_lock);
 819
 820        f = iavf_find_filter(adapter, hw->mac.addr);
 821        if (f) {
 822                f->remove = true;
 823                adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 824        }
 825
 826        f = iavf_add_filter(adapter, addr->sa_data);
 827
 828        spin_unlock_bh(&adapter->mac_vlan_list_lock);
 829
 830        if (f) {
 831                ether_addr_copy(hw->mac.addr, addr->sa_data);
 832                ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
 833        }
 834
 835        return (f == NULL) ? -ENOMEM : 0;
 836}
 837
 838/**
 839 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
 840 * @netdev: the netdevice
 841 * @addr: address to add
 842 *
 843 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
 844 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 845 */
 846static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
 847{
 848        struct iavf_adapter *adapter = netdev_priv(netdev);
 849
 850        if (iavf_add_filter(adapter, addr))
 851                return 0;
 852        else
 853                return -ENOMEM;
 854}
 855
 856/**
 857 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
 858 * @netdev: the netdevice
 859 * @addr: address to add
 860 *
 861 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
 862 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 863 */
 864static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
 865{
 866        struct iavf_adapter *adapter = netdev_priv(netdev);
 867        struct iavf_mac_filter *f;
 868
 869        /* Under some circumstances, we might receive a request to delete
 870         * our own device address from our uc list. Because we store the
 871         * device address in the VSI's MAC/VLAN filter list, we need to ignore
 872         * such requests and not delete our device address from this list.
 873         */
 874        if (ether_addr_equal(addr, netdev->dev_addr))
 875                return 0;
 876
 877        f = iavf_find_filter(adapter, addr);
 878        if (f) {
 879                f->remove = true;
 880                adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 881        }
 882        return 0;
 883}
 884
 885/**
 886 * iavf_set_rx_mode - NDO callback to set the netdev filters
 887 * @netdev: network interface device structure
 888 **/
 889static void iavf_set_rx_mode(struct net_device *netdev)
 890{
 891        struct iavf_adapter *adapter = netdev_priv(netdev);
 892
 893        spin_lock_bh(&adapter->mac_vlan_list_lock);
 894        __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 895        __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 896        spin_unlock_bh(&adapter->mac_vlan_list_lock);
 897
 898        if (netdev->flags & IFF_PROMISC &&
 899            !(adapter->flags & IAVF_FLAG_PROMISC_ON))
 900                adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
 901        else if (!(netdev->flags & IFF_PROMISC) &&
 902                 adapter->flags & IAVF_FLAG_PROMISC_ON)
 903                adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
 904
 905        if (netdev->flags & IFF_ALLMULTI &&
 906            !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
 907                adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
 908        else if (!(netdev->flags & IFF_ALLMULTI) &&
 909                 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
 910                adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
 911}
 912
 913/**
 914 * iavf_napi_enable_all - enable NAPI on all queue vectors
 915 * @adapter: board private structure
 916 **/
 917static void iavf_napi_enable_all(struct iavf_adapter *adapter)
 918{
 919        int q_idx;
 920        struct iavf_q_vector *q_vector;
 921        int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 922
 923        for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 924                struct napi_struct *napi;
 925
 926                q_vector = &adapter->q_vectors[q_idx];
 927                napi = &q_vector->napi;
 928                napi_enable(napi);
 929        }
 930}
 931
 932/**
 933 * iavf_napi_disable_all - disable NAPI on all queue vectors
 934 * @adapter: board private structure
 935 **/
 936static void iavf_napi_disable_all(struct iavf_adapter *adapter)
 937{
 938        int q_idx;
 939        struct iavf_q_vector *q_vector;
 940        int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 941
 942        for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 943                q_vector = &adapter->q_vectors[q_idx];
 944                napi_disable(&q_vector->napi);
 945        }
 946}
 947
 948/**
 949 * iavf_configure - set up transmit and receive data structures
 950 * @adapter: board private structure
 951 **/
 952static void iavf_configure(struct iavf_adapter *adapter)
 953{
 954        struct net_device *netdev = adapter->netdev;
 955        int i;
 956
 957        iavf_set_rx_mode(netdev);
 958
 959        iavf_configure_tx(adapter);
 960        iavf_configure_rx(adapter);
 961        adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
 962
 963        for (i = 0; i < adapter->num_active_queues; i++) {
 964                struct iavf_ring *ring = &adapter->rx_rings[i];
 965
 966                iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
 967        }
 968}
 969
 970/**
 971 * iavf_up_complete - Finish the last steps of bringing up a connection
 972 * @adapter: board private structure
 973 *
 974 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 975 **/
 976static void iavf_up_complete(struct iavf_adapter *adapter)
 977{
 978        adapter->state = __IAVF_RUNNING;
 979        clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
 980
 981        iavf_napi_enable_all(adapter);
 982
 983        adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
 984        if (CLIENT_ENABLED(adapter))
 985                adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
 986        mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
 987}
 988
 989/**
 990 * iavf_down - Shutdown the connection processing
 991 * @adapter: board private structure
 992 *
 993 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 994 **/
 995void iavf_down(struct iavf_adapter *adapter)
 996{
 997        struct net_device *netdev = adapter->netdev;
 998        struct iavf_vlan_filter *vlf;
 999        struct iavf_mac_filter *f;
1000        struct iavf_cloud_filter *cf;
1001
1002        if (adapter->state <= __IAVF_DOWN_PENDING)
1003                return;
1004
1005        netif_carrier_off(netdev);
1006        netif_tx_disable(netdev);
1007        adapter->link_up = false;
1008        iavf_napi_disable_all(adapter);
1009        iavf_irq_disable(adapter);
1010
1011        spin_lock_bh(&adapter->mac_vlan_list_lock);
1012
1013        /* clear the sync flag on all filters */
1014        __dev_uc_unsync(adapter->netdev, NULL);
1015        __dev_mc_unsync(adapter->netdev, NULL);
1016
1017        /* remove all MAC filters */
1018        list_for_each_entry(f, &adapter->mac_filter_list, list) {
1019                f->remove = true;
1020        }
1021
1022        /* remove all VLAN filters */
1023        list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1024                vlf->remove = true;
1025        }
1026
1027        spin_unlock_bh(&adapter->mac_vlan_list_lock);
1028
1029        /* remove all cloud filters */
1030        spin_lock_bh(&adapter->cloud_filter_list_lock);
1031        list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1032                cf->del = true;
1033        }
1034        spin_unlock_bh(&adapter->cloud_filter_list_lock);
1035
1036        if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1037            adapter->state != __IAVF_RESETTING) {
1038                /* cancel any current operation */
1039                adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1040                /* Schedule operations to close down the HW. Don't wait
1041                 * here for this to complete. The watchdog is still running
1042                 * and it will take care of this.
1043                 */
1044                adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1045                adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1046                adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1047                adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1048        }
1049
1050        mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1051}
1052
1053/**
1054 * iavf_acquire_msix_vectors - Setup the MSIX capability
1055 * @adapter: board private structure
1056 * @vectors: number of vectors to request
1057 *
1058 * Work with the OS to set up the MSIX vectors needed.
1059 *
1060 * Returns 0 on success, negative on failure
1061 **/
1062static int
1063iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1064{
1065        int err, vector_threshold;
1066
1067        /* We'll want at least 3 (vector_threshold):
1068         * 0) Other (Admin Queue and link, mostly)
1069         * 1) TxQ[0] Cleanup
1070         * 2) RxQ[0] Cleanup
1071         */
1072        vector_threshold = MIN_MSIX_COUNT;
1073
1074        /* The more we get, the more we will assign to Tx/Rx Cleanup
1075         * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1076         * Right now, we simply care about how many we'll get; we'll
1077         * set them up later while requesting irq's.
1078         */
1079        err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1080                                    vector_threshold, vectors);
1081        if (err < 0) {
1082                dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1083                kfree(adapter->msix_entries);
1084                adapter->msix_entries = NULL;
1085                return err;
1086        }
1087
1088        /* Adjust for only the vectors we'll use, which is minimum
1089         * of max_msix_q_vectors + NONQ_VECS, or the number of
1090         * vectors we were allocated.
1091         */
1092        adapter->num_msix_vectors = err;
1093        return 0;
1094}
1095
1096/**
1097 * iavf_free_queues - Free memory for all rings
1098 * @adapter: board private structure to initialize
1099 *
1100 * Free all of the memory associated with queue pairs.
1101 **/
1102static void iavf_free_queues(struct iavf_adapter *adapter)
1103{
1104        if (!adapter->vsi_res)
1105                return;
1106        adapter->num_active_queues = 0;
1107        kfree(adapter->tx_rings);
1108        adapter->tx_rings = NULL;
1109        kfree(adapter->rx_rings);
1110        adapter->rx_rings = NULL;
1111}
1112
1113/**
1114 * iavf_alloc_queues - Allocate memory for all rings
1115 * @adapter: board private structure to initialize
1116 *
1117 * We allocate one ring per queue at run-time since we don't know the
1118 * number of queues at compile-time.  The polling_netdev array is
1119 * intended for Multiqueue, but should work fine with a single queue.
1120 **/
1121static int iavf_alloc_queues(struct iavf_adapter *adapter)
1122{
1123        int i, num_active_queues;
1124
1125        /* If we're in reset reallocating queues we don't actually know yet for
1126         * certain the PF gave us the number of queues we asked for but we'll
1127         * assume it did.  Once basic reset is finished we'll confirm once we
1128         * start negotiating config with PF.
1129         */
1130        if (adapter->num_req_queues)
1131                num_active_queues = adapter->num_req_queues;
1132        else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1133                 adapter->num_tc)
1134                num_active_queues = adapter->ch_config.total_qps;
1135        else
1136                num_active_queues = min_t(int,
1137                                          adapter->vsi_res->num_queue_pairs,
1138                                          (int)(num_online_cpus()));
1139
1140
1141        adapter->tx_rings = kcalloc(num_active_queues,
1142                                    sizeof(struct iavf_ring), GFP_KERNEL);
1143        if (!adapter->tx_rings)
1144                goto err_out;
1145        adapter->rx_rings = kcalloc(num_active_queues,
1146                                    sizeof(struct iavf_ring), GFP_KERNEL);
1147        if (!adapter->rx_rings)
1148                goto err_out;
1149
1150        for (i = 0; i < num_active_queues; i++) {
1151                struct iavf_ring *tx_ring;
1152                struct iavf_ring *rx_ring;
1153
1154                tx_ring = &adapter->tx_rings[i];
1155
1156                tx_ring->queue_index = i;
1157                tx_ring->netdev = adapter->netdev;
1158                tx_ring->dev = &adapter->pdev->dev;
1159                tx_ring->count = adapter->tx_desc_count;
1160                tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1161                if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1162                        tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1163
1164                rx_ring = &adapter->rx_rings[i];
1165                rx_ring->queue_index = i;
1166                rx_ring->netdev = adapter->netdev;
1167                rx_ring->dev = &adapter->pdev->dev;
1168                rx_ring->count = adapter->rx_desc_count;
1169                rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1170        }
1171
1172        adapter->num_active_queues = num_active_queues;
1173
1174        return 0;
1175
1176err_out:
1177        iavf_free_queues(adapter);
1178        return -ENOMEM;
1179}
1180
1181/**
1182 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1183 * @adapter: board private structure to initialize
1184 *
1185 * Attempt to configure the interrupts using the best available
1186 * capabilities of the hardware and the kernel.
1187 **/
1188static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1189{
1190        int vector, v_budget;
1191        int pairs = 0;
1192        int err = 0;
1193
1194        if (!adapter->vsi_res) {
1195                err = -EIO;
1196                goto out;
1197        }
1198        pairs = adapter->num_active_queues;
1199
1200        /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1201         * us much good if we have more vectors than CPUs. However, we already
1202         * limit the total number of queues by the number of CPUs so we do not
1203         * need any further limiting here.
1204         */
1205        v_budget = min_t(int, pairs + NONQ_VECS,
1206                         (int)adapter->vf_res->max_vectors);
1207
1208        adapter->msix_entries = kcalloc(v_budget,
1209                                        sizeof(struct msix_entry), GFP_KERNEL);
1210        if (!adapter->msix_entries) {
1211                err = -ENOMEM;
1212                goto out;
1213        }
1214
1215        for (vector = 0; vector < v_budget; vector++)
1216                adapter->msix_entries[vector].entry = vector;
1217
1218        err = iavf_acquire_msix_vectors(adapter, v_budget);
1219
1220out:
1221        netif_set_real_num_rx_queues(adapter->netdev, pairs);
1222        netif_set_real_num_tx_queues(adapter->netdev, pairs);
1223        return err;
1224}
1225
1226/**
1227 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1228 * @adapter: board private structure
1229 *
1230 * Return 0 on success, negative on failure
1231 **/
1232static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1233{
1234        struct iavf_aqc_get_set_rss_key_data *rss_key =
1235                (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1236        struct iavf_hw *hw = &adapter->hw;
1237        int ret = 0;
1238
1239        if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1240                /* bail because we already have a command pending */
1241                dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1242                        adapter->current_op);
1243                return -EBUSY;
1244        }
1245
1246        ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1247        if (ret) {
1248                dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1249                        iavf_stat_str(hw, ret),
1250                        iavf_aq_str(hw, hw->aq.asq_last_status));
1251                return ret;
1252
1253        }
1254
1255        ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1256                                  adapter->rss_lut, adapter->rss_lut_size);
1257        if (ret) {
1258                dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1259                        iavf_stat_str(hw, ret),
1260                        iavf_aq_str(hw, hw->aq.asq_last_status));
1261        }
1262
1263        return ret;
1264
1265}
1266
1267/**
1268 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1269 * @adapter: board private structure
1270 *
1271 * Returns 0 on success, negative on failure
1272 **/
1273static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1274{
1275        struct iavf_hw *hw = &adapter->hw;
1276        u32 *dw;
1277        u16 i;
1278
1279        dw = (u32 *)adapter->rss_key;
1280        for (i = 0; i <= adapter->rss_key_size / 4; i++)
1281                wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1282
1283        dw = (u32 *)adapter->rss_lut;
1284        for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1285                wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1286
1287        iavf_flush(hw);
1288
1289        return 0;
1290}
1291
1292/**
1293 * iavf_config_rss - Configure RSS keys and lut
1294 * @adapter: board private structure
1295 *
1296 * Returns 0 on success, negative on failure
1297 **/
1298int iavf_config_rss(struct iavf_adapter *adapter)
1299{
1300
1301        if (RSS_PF(adapter)) {
1302                adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1303                                        IAVF_FLAG_AQ_SET_RSS_KEY;
1304                return 0;
1305        } else if (RSS_AQ(adapter)) {
1306                return iavf_config_rss_aq(adapter);
1307        } else {
1308                return iavf_config_rss_reg(adapter);
1309        }
1310}
1311
1312/**
1313 * iavf_fill_rss_lut - Fill the lut with default values
1314 * @adapter: board private structure
1315 **/
1316static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1317{
1318        u16 i;
1319
1320        for (i = 0; i < adapter->rss_lut_size; i++)
1321                adapter->rss_lut[i] = i % adapter->num_active_queues;
1322}
1323
1324/**
1325 * iavf_init_rss - Prepare for RSS
1326 * @adapter: board private structure
1327 *
1328 * Return 0 on success, negative on failure
1329 **/
1330static int iavf_init_rss(struct iavf_adapter *adapter)
1331{
1332        struct iavf_hw *hw = &adapter->hw;
1333        int ret;
1334
1335        if (!RSS_PF(adapter)) {
1336                /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1337                if (adapter->vf_res->vf_cap_flags &
1338                    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1339                        adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1340                else
1341                        adapter->hena = IAVF_DEFAULT_RSS_HENA;
1342
1343                wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1344                wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1345        }
1346
1347        iavf_fill_rss_lut(adapter);
1348        netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1349        ret = iavf_config_rss(adapter);
1350
1351        return ret;
1352}
1353
1354/**
1355 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1356 * @adapter: board private structure to initialize
1357 *
1358 * We allocate one q_vector per queue interrupt.  If allocation fails we
1359 * return -ENOMEM.
1360 **/
1361static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1362{
1363        int q_idx = 0, num_q_vectors;
1364        struct iavf_q_vector *q_vector;
1365
1366        num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1367        adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1368                                     GFP_KERNEL);
1369        if (!adapter->q_vectors)
1370                return -ENOMEM;
1371
1372        for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1373                q_vector = &adapter->q_vectors[q_idx];
1374                q_vector->adapter = adapter;
1375                q_vector->vsi = &adapter->vsi;
1376                q_vector->v_idx = q_idx;
1377                q_vector->reg_idx = q_idx;
1378                cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1379                netif_napi_add(adapter->netdev, &q_vector->napi,
1380                               iavf_napi_poll, NAPI_POLL_WEIGHT);
1381        }
1382
1383        return 0;
1384}
1385
1386/**
1387 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1388 * @adapter: board private structure to initialize
1389 *
1390 * This function frees the memory allocated to the q_vectors.  In addition if
1391 * NAPI is enabled it will delete any references to the NAPI struct prior
1392 * to freeing the q_vector.
1393 **/
1394static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1395{
1396        int q_idx, num_q_vectors;
1397        int napi_vectors;
1398
1399        if (!adapter->q_vectors)
1400                return;
1401
1402        num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1403        napi_vectors = adapter->num_active_queues;
1404
1405        for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1406                struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1407
1408                if (q_idx < napi_vectors)
1409                        netif_napi_del(&q_vector->napi);
1410        }
1411        kfree(adapter->q_vectors);
1412        adapter->q_vectors = NULL;
1413}
1414
1415/**
1416 * iavf_reset_interrupt_capability - Reset MSIX setup
1417 * @adapter: board private structure
1418 *
1419 **/
1420void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1421{
1422        if (!adapter->msix_entries)
1423                return;
1424
1425        pci_disable_msix(adapter->pdev);
1426        kfree(adapter->msix_entries);
1427        adapter->msix_entries = NULL;
1428}
1429
1430/**
1431 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1432 * @adapter: board private structure to initialize
1433 *
1434 **/
1435int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1436{
1437        int err;
1438
1439        err = iavf_alloc_queues(adapter);
1440        if (err) {
1441                dev_err(&adapter->pdev->dev,
1442                        "Unable to allocate memory for queues\n");
1443                goto err_alloc_queues;
1444        }
1445
1446        rtnl_lock();
1447        err = iavf_set_interrupt_capability(adapter);
1448        rtnl_unlock();
1449        if (err) {
1450                dev_err(&adapter->pdev->dev,
1451                        "Unable to setup interrupt capabilities\n");
1452                goto err_set_interrupt;
1453        }
1454
1455        err = iavf_alloc_q_vectors(adapter);
1456        if (err) {
1457                dev_err(&adapter->pdev->dev,
1458                        "Unable to allocate memory for queue vectors\n");
1459                goto err_alloc_q_vectors;
1460        }
1461
1462        /* If we've made it so far while ADq flag being ON, then we haven't
1463         * bailed out anywhere in middle. And ADq isn't just enabled but actual
1464         * resources have been allocated in the reset path.
1465         * Now we can truly claim that ADq is enabled.
1466         */
1467        if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1468            adapter->num_tc)
1469                dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1470                         adapter->num_tc);
1471
1472        dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1473                 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1474                 adapter->num_active_queues);
1475
1476        return 0;
1477err_alloc_q_vectors:
1478        iavf_reset_interrupt_capability(adapter);
1479err_set_interrupt:
1480        iavf_free_queues(adapter);
1481err_alloc_queues:
1482        return err;
1483}
1484
1485/**
1486 * iavf_free_rss - Free memory used by RSS structs
1487 * @adapter: board private structure
1488 **/
1489static void iavf_free_rss(struct iavf_adapter *adapter)
1490{
1491        kfree(adapter->rss_key);
1492        adapter->rss_key = NULL;
1493
1494        kfree(adapter->rss_lut);
1495        adapter->rss_lut = NULL;
1496}
1497
1498/**
1499 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1500 * @adapter: board private structure
1501 *
1502 * Returns 0 on success, negative on failure
1503 **/
1504static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1505{
1506        struct net_device *netdev = adapter->netdev;
1507        int err;
1508
1509        if (netif_running(netdev))
1510                iavf_free_traffic_irqs(adapter);
1511        iavf_free_misc_irq(adapter);
1512        iavf_reset_interrupt_capability(adapter);
1513        iavf_free_q_vectors(adapter);
1514        iavf_free_queues(adapter);
1515
1516        err =  iavf_init_interrupt_scheme(adapter);
1517        if (err)
1518                goto err;
1519
1520        netif_tx_stop_all_queues(netdev);
1521
1522        err = iavf_request_misc_irq(adapter);
1523        if (err)
1524                goto err;
1525
1526        set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1527
1528        iavf_map_rings_to_vectors(adapter);
1529
1530        if (RSS_AQ(adapter))
1531                adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1532        else
1533                err = iavf_init_rss(adapter);
1534err:
1535        return err;
1536}
1537
1538/**
1539 * iavf_process_aq_command - process aq_required flags
1540 * and sends aq command
1541 * @adapter: pointer to iavf adapter structure
1542 *
1543 * Returns 0 on success
1544 * Returns error code if no command was sent
1545 * or error code if the command failed.
1546 **/
1547static int iavf_process_aq_command(struct iavf_adapter *adapter)
1548{
1549        if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1550                return iavf_send_vf_config_msg(adapter);
1551        if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1552                iavf_disable_queues(adapter);
1553                return 0;
1554        }
1555
1556        if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1557                iavf_map_queues(adapter);
1558                return 0;
1559        }
1560
1561        if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1562                iavf_add_ether_addrs(adapter);
1563                return 0;
1564        }
1565
1566        if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1567                iavf_add_vlans(adapter);
1568                return 0;
1569        }
1570
1571        if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1572                iavf_del_ether_addrs(adapter);
1573                return 0;
1574        }
1575
1576        if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1577                iavf_del_vlans(adapter);
1578                return 0;
1579        }
1580
1581        if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1582                iavf_enable_vlan_stripping(adapter);
1583                return 0;
1584        }
1585
1586        if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1587                iavf_disable_vlan_stripping(adapter);
1588                return 0;
1589        }
1590
1591        if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1592                iavf_configure_queues(adapter);
1593                return 0;
1594        }
1595
1596        if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1597                iavf_enable_queues(adapter);
1598                return 0;
1599        }
1600
1601        if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1602                /* This message goes straight to the firmware, not the
1603                 * PF, so we don't have to set current_op as we will
1604                 * not get a response through the ARQ.
1605                 */
1606                adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1607                return 0;
1608        }
1609        if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1610                iavf_get_hena(adapter);
1611                return 0;
1612        }
1613        if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1614                iavf_set_hena(adapter);
1615                return 0;
1616        }
1617        if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1618                iavf_set_rss_key(adapter);
1619                return 0;
1620        }
1621        if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1622                iavf_set_rss_lut(adapter);
1623                return 0;
1624        }
1625
1626        if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1627                iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1628                                       FLAG_VF_MULTICAST_PROMISC);
1629                return 0;
1630        }
1631
1632        if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1633                iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1634                return 0;
1635        }
1636
1637        if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1638            (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1639                iavf_set_promiscuous(adapter, 0);
1640                return 0;
1641        }
1642
1643        if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1644                iavf_enable_channels(adapter);
1645                return 0;
1646        }
1647
1648        if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1649                iavf_disable_channels(adapter);
1650                return 0;
1651        }
1652        if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1653                iavf_add_cloud_filter(adapter);
1654                return 0;
1655        }
1656
1657        if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1658                iavf_del_cloud_filter(adapter);
1659                return 0;
1660        }
1661        if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1662                iavf_del_cloud_filter(adapter);
1663                return 0;
1664        }
1665        if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1666                iavf_add_cloud_filter(adapter);
1667                return 0;
1668        }
1669        return -EAGAIN;
1670}
1671
1672/**
1673 * iavf_startup - first step of driver startup
1674 * @adapter: board private structure
1675 *
1676 * Function process __IAVF_STARTUP driver state.
1677 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1678 * when fails it returns -EAGAIN
1679 **/
1680static int iavf_startup(struct iavf_adapter *adapter)
1681{
1682        struct pci_dev *pdev = adapter->pdev;
1683        struct iavf_hw *hw = &adapter->hw;
1684        int err;
1685
1686        WARN_ON(adapter->state != __IAVF_STARTUP);
1687
1688        /* driver loaded, probe complete */
1689        adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1690        adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1691        err = iavf_set_mac_type(hw);
1692        if (err) {
1693                dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1694                goto err;
1695        }
1696
1697        err = iavf_check_reset_complete(hw);
1698        if (err) {
1699                dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1700                         err);
1701                goto err;
1702        }
1703        hw->aq.num_arq_entries = IAVF_AQ_LEN;
1704        hw->aq.num_asq_entries = IAVF_AQ_LEN;
1705        hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1706        hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1707
1708        err = iavf_init_adminq(hw);
1709        if (err) {
1710                dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1711                goto err;
1712        }
1713        err = iavf_send_api_ver(adapter);
1714        if (err) {
1715                dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1716                iavf_shutdown_adminq(hw);
1717                goto err;
1718        }
1719        adapter->state = __IAVF_INIT_VERSION_CHECK;
1720err:
1721        return err;
1722}
1723
1724/**
1725 * iavf_init_version_check - second step of driver startup
1726 * @adapter: board private structure
1727 *
1728 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1729 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1730 * when fails it returns -EAGAIN
1731 **/
1732static int iavf_init_version_check(struct iavf_adapter *adapter)
1733{
1734        struct pci_dev *pdev = adapter->pdev;
1735        struct iavf_hw *hw = &adapter->hw;
1736        int err = -EAGAIN;
1737
1738        WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1739
1740        if (!iavf_asq_done(hw)) {
1741                dev_err(&pdev->dev, "Admin queue command never completed\n");
1742                iavf_shutdown_adminq(hw);
1743                adapter->state = __IAVF_STARTUP;
1744                goto err;
1745        }
1746
1747        /* aq msg sent, awaiting reply */
1748        err = iavf_verify_api_ver(adapter);
1749        if (err) {
1750                if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1751                        err = iavf_send_api_ver(adapter);
1752                else
1753                        dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1754                                adapter->pf_version.major,
1755                                adapter->pf_version.minor,
1756                                VIRTCHNL_VERSION_MAJOR,
1757                                VIRTCHNL_VERSION_MINOR);
1758                goto err;
1759        }
1760        err = iavf_send_vf_config_msg(adapter);
1761        if (err) {
1762                dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1763                        err);
1764                goto err;
1765        }
1766        adapter->state = __IAVF_INIT_GET_RESOURCES;
1767
1768err:
1769        return err;
1770}
1771
1772/**
1773 * iavf_init_get_resources - third step of driver startup
1774 * @adapter: board private structure
1775 *
1776 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1777 * finishes driver initialization procedure.
1778 * When success the state is changed to __IAVF_DOWN
1779 * when fails it returns -EAGAIN
1780 **/
1781static int iavf_init_get_resources(struct iavf_adapter *adapter)
1782{
1783        struct net_device *netdev = adapter->netdev;
1784        struct pci_dev *pdev = adapter->pdev;
1785        struct iavf_hw *hw = &adapter->hw;
1786        int err = 0, bufsz;
1787
1788        WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1789        /* aq msg sent, awaiting reply */
1790        if (!adapter->vf_res) {
1791                bufsz = sizeof(struct virtchnl_vf_resource) +
1792                        (IAVF_MAX_VF_VSI *
1793                        sizeof(struct virtchnl_vsi_resource));
1794                adapter->vf_res = kzalloc(bufsz, GFP_KERNEL);
1795                if (!adapter->vf_res)
1796                        goto err;
1797        }
1798        err = iavf_get_vf_config(adapter);
1799        if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1800                err = iavf_send_vf_config_msg(adapter);
1801                goto err;
1802        } else if (err == IAVF_ERR_PARAM) {
1803                /* We only get ERR_PARAM if the device is in a very bad
1804                 * state or if we've been disabled for previous bad
1805                 * behavior. Either way, we're done now.
1806                 */
1807                iavf_shutdown_adminq(hw);
1808                dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1809                return 0;
1810        }
1811        if (err) {
1812                dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1813                goto err_alloc;
1814        }
1815
1816        if (iavf_process_config(adapter))
1817                goto err_alloc;
1818        adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1819
1820        adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1821
1822        netdev->netdev_ops = &iavf_netdev_ops;
1823        iavf_set_ethtool_ops(netdev);
1824        netdev->watchdog_timeo = 5 * HZ;
1825
1826        /* MTU range: 68 - 9710 */
1827        netdev->min_mtu = ETH_MIN_MTU;
1828        netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1829
1830        if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1831                dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1832                         adapter->hw.mac.addr);
1833                eth_hw_addr_random(netdev);
1834                ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1835        } else {
1836                adapter->flags |= IAVF_FLAG_ADDR_SET_BY_PF;
1837                ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1838                ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1839        }
1840
1841        adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1842        adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1843        err = iavf_init_interrupt_scheme(adapter);
1844        if (err)
1845                goto err_sw_init;
1846        iavf_map_rings_to_vectors(adapter);
1847        if (adapter->vf_res->vf_cap_flags &
1848                VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1849                adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1850
1851        err = iavf_request_misc_irq(adapter);
1852        if (err)
1853                goto err_sw_init;
1854
1855        netif_carrier_off(netdev);
1856        adapter->link_up = false;
1857
1858        /* set the semaphore to prevent any callbacks after device registration
1859         * up to time when state of driver will be set to __IAVF_DOWN
1860         */
1861        rtnl_lock();
1862        if (!adapter->netdev_registered) {
1863                err = register_netdevice(netdev);
1864                if (err) {
1865                        rtnl_unlock();
1866                        goto err_register;
1867                }
1868        }
1869
1870        adapter->netdev_registered = true;
1871
1872        netif_tx_stop_all_queues(netdev);
1873        if (CLIENT_ALLOWED(adapter)) {
1874                err = iavf_lan_add_device(adapter);
1875                if (err) {
1876                        rtnl_unlock();
1877                        dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1878                                 err);
1879                }
1880        }
1881        dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1882        if (netdev->features & NETIF_F_GRO)
1883                dev_info(&pdev->dev, "GRO is enabled\n");
1884
1885        adapter->state = __IAVF_DOWN;
1886        set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1887        rtnl_unlock();
1888
1889        iavf_misc_irq_enable(adapter);
1890        wake_up(&adapter->down_waitqueue);
1891
1892        adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1893        adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1894        if (!adapter->rss_key || !adapter->rss_lut)
1895                goto err_mem;
1896        if (RSS_AQ(adapter))
1897                adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1898        else
1899                iavf_init_rss(adapter);
1900
1901        return err;
1902err_mem:
1903        iavf_free_rss(adapter);
1904err_register:
1905        iavf_free_misc_irq(adapter);
1906err_sw_init:
1907        iavf_reset_interrupt_capability(adapter);
1908err_alloc:
1909        kfree(adapter->vf_res);
1910        adapter->vf_res = NULL;
1911err:
1912        return err;
1913}
1914
1915/**
1916 * iavf_watchdog_task - Periodic call-back task
1917 * @work: pointer to work_struct
1918 **/
1919static void iavf_watchdog_task(struct work_struct *work)
1920{
1921        struct iavf_adapter *adapter = container_of(work,
1922                                                    struct iavf_adapter,
1923                                                    watchdog_task.work);
1924        struct iavf_hw *hw = &adapter->hw;
1925        u32 reg_val;
1926
1927        if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1928                goto restart_watchdog;
1929
1930        if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1931                adapter->state = __IAVF_COMM_FAILED;
1932
1933        switch (adapter->state) {
1934        case __IAVF_COMM_FAILED:
1935                reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1936                          IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1937                if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1938                    reg_val == VIRTCHNL_VFR_COMPLETED) {
1939                        /* A chance for redemption! */
1940                        dev_err(&adapter->pdev->dev,
1941                                "Hardware came out of reset. Attempting reinit.\n");
1942                        adapter->state = __IAVF_STARTUP;
1943                        adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1944                        queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1945                        clear_bit(__IAVF_IN_CRITICAL_TASK,
1946                                  &adapter->crit_section);
1947                        /* Don't reschedule the watchdog, since we've restarted
1948                         * the init task. When init_task contacts the PF and
1949                         * gets everything set up again, it'll restart the
1950                         * watchdog for us. Down, boy. Sit. Stay. Woof.
1951                         */
1952                        return;
1953                }
1954                adapter->aq_required = 0;
1955                adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1956                clear_bit(__IAVF_IN_CRITICAL_TASK,
1957                          &adapter->crit_section);
1958                queue_delayed_work(iavf_wq,
1959                                   &adapter->watchdog_task,
1960                                   msecs_to_jiffies(10));
1961                goto watchdog_done;
1962        case __IAVF_RESETTING:
1963                clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1964                queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1965                return;
1966        case __IAVF_DOWN:
1967        case __IAVF_DOWN_PENDING:
1968        case __IAVF_TESTING:
1969        case __IAVF_RUNNING:
1970                if (adapter->current_op) {
1971                        if (!iavf_asq_done(hw)) {
1972                                dev_dbg(&adapter->pdev->dev,
1973                                        "Admin queue timeout\n");
1974                                iavf_send_api_ver(adapter);
1975                        }
1976                } else {
1977                        if (!iavf_process_aq_command(adapter) &&
1978                            adapter->state == __IAVF_RUNNING)
1979                                iavf_request_stats(adapter);
1980                }
1981                break;
1982        case __IAVF_REMOVE:
1983                clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1984                return;
1985        default:
1986                goto restart_watchdog;
1987        }
1988
1989                /* check for hw reset */
1990        reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1991        if (!reg_val) {
1992                adapter->state = __IAVF_RESETTING;
1993                adapter->flags |= IAVF_FLAG_RESET_PENDING;
1994                adapter->aq_required = 0;
1995                adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1996                dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1997                queue_work(iavf_wq, &adapter->reset_task);
1998                goto watchdog_done;
1999        }
2000
2001        schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2002watchdog_done:
2003        if (adapter->state == __IAVF_RUNNING ||
2004            adapter->state == __IAVF_COMM_FAILED)
2005                iavf_detect_recover_hung(&adapter->vsi);
2006        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2007restart_watchdog:
2008        if (adapter->aq_required)
2009                queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2010                                   msecs_to_jiffies(20));
2011        else
2012                queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2013        queue_work(iavf_wq, &adapter->adminq_task);
2014}
2015
2016static void iavf_disable_vf(struct iavf_adapter *adapter)
2017{
2018        struct iavf_mac_filter *f, *ftmp;
2019        struct iavf_vlan_filter *fv, *fvtmp;
2020        struct iavf_cloud_filter *cf, *cftmp;
2021
2022        adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2023
2024        /* We don't use netif_running() because it may be true prior to
2025         * ndo_open() returning, so we can't assume it means all our open
2026         * tasks have finished, since we're not holding the rtnl_lock here.
2027         */
2028        if (adapter->state == __IAVF_RUNNING) {
2029                set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2030                netif_carrier_off(adapter->netdev);
2031                netif_tx_disable(adapter->netdev);
2032                adapter->link_up = false;
2033                iavf_napi_disable_all(adapter);
2034                iavf_irq_disable(adapter);
2035                iavf_free_traffic_irqs(adapter);
2036                iavf_free_all_tx_resources(adapter);
2037                iavf_free_all_rx_resources(adapter);
2038        }
2039
2040        spin_lock_bh(&adapter->mac_vlan_list_lock);
2041
2042        /* Delete all of the filters */
2043        list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2044                list_del(&f->list);
2045                kfree(f);
2046        }
2047
2048        list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2049                list_del(&fv->list);
2050                kfree(fv);
2051        }
2052
2053        spin_unlock_bh(&adapter->mac_vlan_list_lock);
2054
2055        spin_lock_bh(&adapter->cloud_filter_list_lock);
2056        list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2057                list_del(&cf->list);
2058                kfree(cf);
2059                adapter->num_cloud_filters--;
2060        }
2061        spin_unlock_bh(&adapter->cloud_filter_list_lock);
2062
2063        iavf_free_misc_irq(adapter);
2064        iavf_reset_interrupt_capability(adapter);
2065        iavf_free_queues(adapter);
2066        iavf_free_q_vectors(adapter);
2067        kfree(adapter->vf_res);
2068        iavf_shutdown_adminq(&adapter->hw);
2069        adapter->netdev->flags &= ~IFF_UP;
2070        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2071        adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2072        adapter->state = __IAVF_DOWN;
2073        wake_up(&adapter->down_waitqueue);
2074        dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2075}
2076
2077#define IAVF_RESET_WAIT_MS 10
2078#define IAVF_RESET_WAIT_COUNT 500
2079/**
2080 * iavf_reset_task - Call-back task to handle hardware reset
2081 * @work: pointer to work_struct
2082 *
2083 * During reset we need to shut down and reinitialize the admin queue
2084 * before we can use it to communicate with the PF again. We also clear
2085 * and reinit the rings because that context is lost as well.
2086 **/
2087static void iavf_reset_task(struct work_struct *work)
2088{
2089        struct iavf_adapter *adapter = container_of(work,
2090                                                      struct iavf_adapter,
2091                                                      reset_task);
2092        struct virtchnl_vf_resource *vfres = adapter->vf_res;
2093        struct net_device *netdev = adapter->netdev;
2094        struct iavf_hw *hw = &adapter->hw;
2095        struct iavf_vlan_filter *vlf;
2096        struct iavf_cloud_filter *cf;
2097        struct iavf_mac_filter *f;
2098        u32 reg_val;
2099        int i = 0, err;
2100        bool running;
2101
2102        /* When device is being removed it doesn't make sense to run the reset
2103         * task, just return in such a case.
2104         */
2105        if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2106                return;
2107
2108        while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2109                                &adapter->crit_section))
2110                usleep_range(500, 1000);
2111        if (CLIENT_ENABLED(adapter)) {
2112                adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2113                                    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2114                                    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2115                                    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2116                cancel_delayed_work_sync(&adapter->client_task);
2117                iavf_notify_client_close(&adapter->vsi, true);
2118        }
2119        iavf_misc_irq_disable(adapter);
2120        if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2121                adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2122                /* Restart the AQ here. If we have been reset but didn't
2123                 * detect it, or if the PF had to reinit, our AQ will be hosed.
2124                 */
2125                iavf_shutdown_adminq(hw);
2126                iavf_init_adminq(hw);
2127                iavf_request_reset(adapter);
2128        }
2129        adapter->flags |= IAVF_FLAG_RESET_PENDING;
2130
2131        /* poll until we see the reset actually happen */
2132        for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2133                reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2134                          IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2135                if (!reg_val)
2136                        break;
2137                usleep_range(5000, 10000);
2138        }
2139        if (i == IAVF_RESET_WAIT_COUNT) {
2140                dev_info(&adapter->pdev->dev, "Never saw reset\n");
2141                goto continue_reset; /* act like the reset happened */
2142        }
2143
2144        /* wait until the reset is complete and the PF is responding to us */
2145        for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2146                /* sleep first to make sure a minimum wait time is met */
2147                msleep(IAVF_RESET_WAIT_MS);
2148
2149                reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2150                          IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2151                if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2152                        break;
2153        }
2154
2155        pci_set_master(adapter->pdev);
2156
2157        if (i == IAVF_RESET_WAIT_COUNT) {
2158                dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2159                        reg_val);
2160                iavf_disable_vf(adapter);
2161                clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2162                return; /* Do not attempt to reinit. It's dead, Jim. */
2163        }
2164
2165continue_reset:
2166        /* We don't use netif_running() because it may be true prior to
2167         * ndo_open() returning, so we can't assume it means all our open
2168         * tasks have finished, since we're not holding the rtnl_lock here.
2169         */
2170        running = ((adapter->state == __IAVF_RUNNING) ||
2171                   (adapter->state == __IAVF_RESETTING));
2172
2173        if (running) {
2174                netif_carrier_off(netdev);
2175                netif_tx_stop_all_queues(netdev);
2176                adapter->link_up = false;
2177                iavf_napi_disable_all(adapter);
2178        }
2179        iavf_irq_disable(adapter);
2180
2181        adapter->state = __IAVF_RESETTING;
2182        adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2183
2184        /* free the Tx/Rx rings and descriptors, might be better to just
2185         * re-use them sometime in the future
2186         */
2187        iavf_free_all_rx_resources(adapter);
2188        iavf_free_all_tx_resources(adapter);
2189
2190        adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2191        /* kill and reinit the admin queue */
2192        iavf_shutdown_adminq(hw);
2193        adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2194        err = iavf_init_adminq(hw);
2195        if (err)
2196                dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2197                         err);
2198        adapter->aq_required = 0;
2199
2200        if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2201                err = iavf_reinit_interrupt_scheme(adapter);
2202                if (err)
2203                        goto reset_err;
2204        }
2205
2206        adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2207        adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2208
2209        spin_lock_bh(&adapter->mac_vlan_list_lock);
2210
2211        /* re-add all MAC filters */
2212        list_for_each_entry(f, &adapter->mac_filter_list, list) {
2213                f->add = true;
2214        }
2215        /* re-add all VLAN filters */
2216        list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2217                vlf->add = true;
2218        }
2219
2220        spin_unlock_bh(&adapter->mac_vlan_list_lock);
2221
2222        /* check if TCs are running and re-add all cloud filters */
2223        spin_lock_bh(&adapter->cloud_filter_list_lock);
2224        if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2225            adapter->num_tc) {
2226                list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2227                        cf->add = true;
2228                }
2229        }
2230        spin_unlock_bh(&adapter->cloud_filter_list_lock);
2231
2232        adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2233        adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2234        adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2235        iavf_misc_irq_enable(adapter);
2236
2237        mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2238
2239        /* We were running when the reset started, so we need to restore some
2240         * state here.
2241         */
2242        if (running) {
2243                /* allocate transmit descriptors */
2244                err = iavf_setup_all_tx_resources(adapter);
2245                if (err)
2246                        goto reset_err;
2247
2248                /* allocate receive descriptors */
2249                err = iavf_setup_all_rx_resources(adapter);
2250                if (err)
2251                        goto reset_err;
2252
2253                if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2254                        err = iavf_request_traffic_irqs(adapter, netdev->name);
2255                        if (err)
2256                                goto reset_err;
2257
2258                        adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2259                }
2260
2261                iavf_configure(adapter);
2262
2263                iavf_up_complete(adapter);
2264
2265                iavf_irq_enable(adapter, true);
2266        } else {
2267                adapter->state = __IAVF_DOWN;
2268                wake_up(&adapter->down_waitqueue);
2269        }
2270        clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2271        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2272
2273        return;
2274reset_err:
2275        clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2276        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2277        dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2278        iavf_close(netdev);
2279}
2280
2281/**
2282 * iavf_adminq_task - worker thread to clean the admin queue
2283 * @work: pointer to work_struct containing our data
2284 **/
2285static void iavf_adminq_task(struct work_struct *work)
2286{
2287        struct iavf_adapter *adapter =
2288                container_of(work, struct iavf_adapter, adminq_task);
2289        struct iavf_hw *hw = &adapter->hw;
2290        struct iavf_arq_event_info event;
2291        enum virtchnl_ops v_op;
2292        enum iavf_status ret, v_ret;
2293        u32 val, oldval;
2294        u16 pending;
2295
2296        if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2297                goto out;
2298
2299        event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2300        event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2301        if (!event.msg_buf)
2302                goto out;
2303
2304        do {
2305                ret = iavf_clean_arq_element(hw, &event, &pending);
2306                v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2307                v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2308
2309                if (ret || !v_op)
2310                        break; /* No event to process or error cleaning ARQ */
2311
2312                iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2313                                         event.msg_len);
2314                if (pending != 0)
2315                        memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2316        } while (pending);
2317
2318        if ((adapter->flags &
2319             (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2320            adapter->state == __IAVF_RESETTING)
2321                goto freedom;
2322
2323        /* check for error indications */
2324        val = rd32(hw, hw->aq.arq.len);
2325        if (val == 0xdeadbeef) /* indicates device in reset */
2326                goto freedom;
2327        oldval = val;
2328        if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2329                dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2330                val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2331        }
2332        if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2333                dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2334                val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2335        }
2336        if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2337                dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2338                val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2339        }
2340        if (oldval != val)
2341                wr32(hw, hw->aq.arq.len, val);
2342
2343        val = rd32(hw, hw->aq.asq.len);
2344        oldval = val;
2345        if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2346                dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2347                val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2348        }
2349        if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2350                dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2351                val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2352        }
2353        if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2354                dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2355                val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2356        }
2357        if (oldval != val)
2358                wr32(hw, hw->aq.asq.len, val);
2359
2360freedom:
2361        kfree(event.msg_buf);
2362out:
2363        /* re-enable Admin queue interrupt cause */
2364        iavf_misc_irq_enable(adapter);
2365}
2366
2367/**
2368 * iavf_client_task - worker thread to perform client work
2369 * @work: pointer to work_struct containing our data
2370 *
2371 * This task handles client interactions. Because client calls can be
2372 * reentrant, we can't handle them in the watchdog.
2373 **/
2374static void iavf_client_task(struct work_struct *work)
2375{
2376        struct iavf_adapter *adapter =
2377                container_of(work, struct iavf_adapter, client_task.work);
2378
2379        /* If we can't get the client bit, just give up. We'll be rescheduled
2380         * later.
2381         */
2382
2383        if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2384                return;
2385
2386        if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2387                iavf_client_subtask(adapter);
2388                adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2389                goto out;
2390        }
2391        if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2392                iavf_notify_client_l2_params(&adapter->vsi);
2393                adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2394                goto out;
2395        }
2396        if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2397                iavf_notify_client_close(&adapter->vsi, false);
2398                adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2399                goto out;
2400        }
2401        if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2402                iavf_notify_client_open(&adapter->vsi);
2403                adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2404        }
2405out:
2406        clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2407}
2408
2409/**
2410 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2411 * @adapter: board private structure
2412 *
2413 * Free all transmit software resources
2414 **/
2415void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2416{
2417        int i;
2418
2419        if (!adapter->tx_rings)
2420                return;
2421
2422        for (i = 0; i < adapter->num_active_queues; i++)
2423                if (adapter->tx_rings[i].desc)
2424                        iavf_free_tx_resources(&adapter->tx_rings[i]);
2425}
2426
2427/**
2428 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2429 * @adapter: board private structure
2430 *
2431 * If this function returns with an error, then it's possible one or
2432 * more of the rings is populated (while the rest are not).  It is the
2433 * callers duty to clean those orphaned rings.
2434 *
2435 * Return 0 on success, negative on failure
2436 **/
2437static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2438{
2439        int i, err = 0;
2440
2441        for (i = 0; i < adapter->num_active_queues; i++) {
2442                adapter->tx_rings[i].count = adapter->tx_desc_count;
2443                err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2444                if (!err)
2445                        continue;
2446                dev_err(&adapter->pdev->dev,
2447                        "Allocation for Tx Queue %u failed\n", i);
2448                break;
2449        }
2450
2451        return err;
2452}
2453
2454/**
2455 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2456 * @adapter: board private structure
2457 *
2458 * If this function returns with an error, then it's possible one or
2459 * more of the rings is populated (while the rest are not).  It is the
2460 * callers duty to clean those orphaned rings.
2461 *
2462 * Return 0 on success, negative on failure
2463 **/
2464static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2465{
2466        int i, err = 0;
2467
2468        for (i = 0; i < adapter->num_active_queues; i++) {
2469                adapter->rx_rings[i].count = adapter->rx_desc_count;
2470                err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2471                if (!err)
2472                        continue;
2473                dev_err(&adapter->pdev->dev,
2474                        "Allocation for Rx Queue %u failed\n", i);
2475                break;
2476        }
2477        return err;
2478}
2479
2480/**
2481 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2482 * @adapter: board private structure
2483 *
2484 * Free all receive software resources
2485 **/
2486void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2487{
2488        int i;
2489
2490        if (!adapter->rx_rings)
2491                return;
2492
2493        for (i = 0; i < adapter->num_active_queues; i++)
2494                if (adapter->rx_rings[i].desc)
2495                        iavf_free_rx_resources(&adapter->rx_rings[i]);
2496}
2497
2498/**
2499 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2500 * @adapter: board private structure
2501 * @max_tx_rate: max Tx bw for a tc
2502 **/
2503static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2504                                      u64 max_tx_rate)
2505{
2506        int speed = 0, ret = 0;
2507
2508        switch (adapter->link_speed) {
2509        case IAVF_LINK_SPEED_40GB:
2510                speed = 40000;
2511                break;
2512        case IAVF_LINK_SPEED_25GB:
2513                speed = 25000;
2514                break;
2515        case IAVF_LINK_SPEED_20GB:
2516                speed = 20000;
2517                break;
2518        case IAVF_LINK_SPEED_10GB:
2519                speed = 10000;
2520                break;
2521        case IAVF_LINK_SPEED_1GB:
2522                speed = 1000;
2523                break;
2524        case IAVF_LINK_SPEED_100MB:
2525                speed = 100;
2526                break;
2527        default:
2528                break;
2529        }
2530
2531        if (max_tx_rate > speed) {
2532                dev_err(&adapter->pdev->dev,
2533                        "Invalid tx rate specified\n");
2534                ret = -EINVAL;
2535        }
2536
2537        return ret;
2538}
2539
2540/**
2541 * iavf_validate_channel_config - validate queue mapping info
2542 * @adapter: board private structure
2543 * @mqprio_qopt: queue parameters
2544 *
2545 * This function validates if the config provided by the user to
2546 * configure queue channels is valid or not. Returns 0 on a valid
2547 * config.
2548 **/
2549static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2550                                   struct tc_mqprio_qopt_offload *mqprio_qopt)
2551{
2552        u64 total_max_rate = 0;
2553        int i, num_qps = 0;
2554        u64 tx_rate = 0;
2555        int ret = 0;
2556
2557        if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2558            mqprio_qopt->qopt.num_tc < 1)
2559                return -EINVAL;
2560
2561        for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2562                if (!mqprio_qopt->qopt.count[i] ||
2563                    mqprio_qopt->qopt.offset[i] != num_qps)
2564                        return -EINVAL;
2565                if (mqprio_qopt->min_rate[i]) {
2566                        dev_err(&adapter->pdev->dev,
2567                                "Invalid min tx rate (greater than 0) specified\n");
2568                        return -EINVAL;
2569                }
2570                /*convert to Mbps */
2571                tx_rate = div_u64(mqprio_qopt->max_rate[i],
2572                                  IAVF_MBPS_DIVISOR);
2573                total_max_rate += tx_rate;
2574                num_qps += mqprio_qopt->qopt.count[i];
2575        }
2576        if (num_qps > IAVF_MAX_REQ_QUEUES)
2577                return -EINVAL;
2578
2579        ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2580        return ret;
2581}
2582
2583/**
2584 * iavf_del_all_cloud_filters - delete all cloud filters
2585 * on the traffic classes
2586 **/
2587static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2588{
2589        struct iavf_cloud_filter *cf, *cftmp;
2590
2591        spin_lock_bh(&adapter->cloud_filter_list_lock);
2592        list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2593                                 list) {
2594                list_del(&cf->list);
2595                kfree(cf);
2596                adapter->num_cloud_filters--;
2597        }
2598        spin_unlock_bh(&adapter->cloud_filter_list_lock);
2599}
2600
2601/**
2602 * __iavf_setup_tc - configure multiple traffic classes
2603 * @netdev: network interface device structure
2604 * @type_date: tc offload data
2605 *
2606 * This function processes the config information provided by the
2607 * user to configure traffic classes/queue channels and packages the
2608 * information to request the PF to setup traffic classes.
2609 *
2610 * Returns 0 on success.
2611 **/
2612static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2613{
2614        struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2615        struct iavf_adapter *adapter = netdev_priv(netdev);
2616        struct virtchnl_vf_resource *vfres = adapter->vf_res;
2617        u8 num_tc = 0, total_qps = 0;
2618        int ret = 0, netdev_tc = 0;
2619        u64 max_tx_rate;
2620        u16 mode;
2621        int i;
2622
2623        num_tc = mqprio_qopt->qopt.num_tc;
2624        mode = mqprio_qopt->mode;
2625
2626        /* delete queue_channel */
2627        if (!mqprio_qopt->qopt.hw) {
2628                if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2629                        /* reset the tc configuration */
2630                        netdev_reset_tc(netdev);
2631                        adapter->num_tc = 0;
2632                        netif_tx_stop_all_queues(netdev);
2633                        netif_tx_disable(netdev);
2634                        iavf_del_all_cloud_filters(adapter);
2635                        adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2636                        goto exit;
2637                } else {
2638                        return -EINVAL;
2639                }
2640        }
2641
2642        /* add queue channel */
2643        if (mode == TC_MQPRIO_MODE_CHANNEL) {
2644                if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2645                        dev_err(&adapter->pdev->dev, "ADq not supported\n");
2646                        return -EOPNOTSUPP;
2647                }
2648                if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2649                        dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2650                        return -EINVAL;
2651                }
2652
2653                ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2654                if (ret)
2655                        return ret;
2656                /* Return if same TC config is requested */
2657                if (adapter->num_tc == num_tc)
2658                        return 0;
2659                adapter->num_tc = num_tc;
2660
2661                for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2662                        if (i < num_tc) {
2663                                adapter->ch_config.ch_info[i].count =
2664                                        mqprio_qopt->qopt.count[i];
2665                                adapter->ch_config.ch_info[i].offset =
2666                                        mqprio_qopt->qopt.offset[i];
2667                                total_qps += mqprio_qopt->qopt.count[i];
2668                                max_tx_rate = mqprio_qopt->max_rate[i];
2669                                /* convert to Mbps */
2670                                max_tx_rate = div_u64(max_tx_rate,
2671                                                      IAVF_MBPS_DIVISOR);
2672                                adapter->ch_config.ch_info[i].max_tx_rate =
2673                                        max_tx_rate;
2674                        } else {
2675                                adapter->ch_config.ch_info[i].count = 1;
2676                                adapter->ch_config.ch_info[i].offset = 0;
2677                        }
2678                }
2679                adapter->ch_config.total_qps = total_qps;
2680                netif_tx_stop_all_queues(netdev);
2681                netif_tx_disable(netdev);
2682                adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2683                netdev_reset_tc(netdev);
2684                /* Report the tc mapping up the stack */
2685                netdev_set_num_tc(adapter->netdev, num_tc);
2686                for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2687                        u16 qcount = mqprio_qopt->qopt.count[i];
2688                        u16 qoffset = mqprio_qopt->qopt.offset[i];
2689
2690                        if (i < num_tc)
2691                                netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2692                                                    qoffset);
2693                }
2694        }
2695exit:
2696        return ret;
2697}
2698
2699/**
2700 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2701 * @adapter: board private structure
2702 * @cls_flower: pointer to struct flow_cls_offload
2703 * @filter: pointer to cloud filter structure
2704 */
2705static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2706                                 struct flow_cls_offload *f,
2707                                 struct iavf_cloud_filter *filter)
2708{
2709        struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2710        struct flow_dissector *dissector = rule->match.dissector;
2711        u16 n_proto_mask = 0;
2712        u16 n_proto_key = 0;
2713        u8 field_flags = 0;
2714        u16 addr_type = 0;
2715        u16 n_proto = 0;
2716        int i = 0;
2717        struct virtchnl_filter *vf = &filter->f;
2718
2719        if (dissector->used_keys &
2720            ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2721              BIT(FLOW_DISSECTOR_KEY_BASIC) |
2722              BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2723              BIT(FLOW_DISSECTOR_KEY_VLAN) |
2724              BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2725              BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2726              BIT(FLOW_DISSECTOR_KEY_PORTS) |
2727              BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2728                dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2729                        dissector->used_keys);
2730                return -EOPNOTSUPP;
2731        }
2732
2733        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2734                struct flow_match_enc_keyid match;
2735
2736                flow_rule_match_enc_keyid(rule, &match);
2737                if (match.mask->keyid != 0)
2738                        field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2739        }
2740
2741        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2742                struct flow_match_basic match;
2743
2744                flow_rule_match_basic(rule, &match);
2745                n_proto_key = ntohs(match.key->n_proto);
2746                n_proto_mask = ntohs(match.mask->n_proto);
2747
2748                if (n_proto_key == ETH_P_ALL) {
2749                        n_proto_key = 0;
2750                        n_proto_mask = 0;
2751                }
2752                n_proto = n_proto_key & n_proto_mask;
2753                if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2754                        return -EINVAL;
2755                if (n_proto == ETH_P_IPV6) {
2756                        /* specify flow type as TCP IPv6 */
2757                        vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2758                }
2759
2760                if (match.key->ip_proto != IPPROTO_TCP) {
2761                        dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2762                        return -EINVAL;
2763                }
2764        }
2765
2766        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2767                struct flow_match_eth_addrs match;
2768
2769                flow_rule_match_eth_addrs(rule, &match);
2770
2771                /* use is_broadcast and is_zero to check for all 0xf or 0 */
2772                if (!is_zero_ether_addr(match.mask->dst)) {
2773                        if (is_broadcast_ether_addr(match.mask->dst)) {
2774                                field_flags |= IAVF_CLOUD_FIELD_OMAC;
2775                        } else {
2776                                dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2777                                        match.mask->dst);
2778                                return IAVF_ERR_CONFIG;
2779                        }
2780                }
2781
2782                if (!is_zero_ether_addr(match.mask->src)) {
2783                        if (is_broadcast_ether_addr(match.mask->src)) {
2784                                field_flags |= IAVF_CLOUD_FIELD_IMAC;
2785                        } else {
2786                                dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2787                                        match.mask->src);
2788                                return IAVF_ERR_CONFIG;
2789                        }
2790                }
2791
2792                if (!is_zero_ether_addr(match.key->dst))
2793                        if (is_valid_ether_addr(match.key->dst) ||
2794                            is_multicast_ether_addr(match.key->dst)) {
2795                                /* set the mask if a valid dst_mac address */
2796                                for (i = 0; i < ETH_ALEN; i++)
2797                                        vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2798                                ether_addr_copy(vf->data.tcp_spec.dst_mac,
2799                                                match.key->dst);
2800                        }
2801
2802                if (!is_zero_ether_addr(match.key->src))
2803                        if (is_valid_ether_addr(match.key->src) ||
2804                            is_multicast_ether_addr(match.key->src)) {
2805                                /* set the mask if a valid dst_mac address */
2806                                for (i = 0; i < ETH_ALEN; i++)
2807                                        vf->mask.tcp_spec.src_mac[i] |= 0xff;
2808                                ether_addr_copy(vf->data.tcp_spec.src_mac,
2809                                                match.key->src);
2810                }
2811        }
2812
2813        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2814                struct flow_match_vlan match;
2815
2816                flow_rule_match_vlan(rule, &match);
2817                if (match.mask->vlan_id) {
2818                        if (match.mask->vlan_id == VLAN_VID_MASK) {
2819                                field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2820                        } else {
2821                                dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2822                                        match.mask->vlan_id);
2823                                return IAVF_ERR_CONFIG;
2824                        }
2825                }
2826                vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2827                vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2828        }
2829
2830        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2831                struct flow_match_control match;
2832
2833                flow_rule_match_control(rule, &match);
2834                addr_type = match.key->addr_type;
2835        }
2836
2837        if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2838                struct flow_match_ipv4_addrs match;
2839
2840                flow_rule_match_ipv4_addrs(rule, &match);
2841                if (match.mask->dst) {
2842                        if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2843                                field_flags |= IAVF_CLOUD_FIELD_IIP;
2844                        } else {
2845                                dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2846                                        be32_to_cpu(match.mask->dst));
2847                                return IAVF_ERR_CONFIG;
2848                        }
2849                }
2850
2851                if (match.mask->src) {
2852                        if (match.mask->src == cpu_to_be32(0xffffffff)) {
2853                                field_flags |= IAVF_CLOUD_FIELD_IIP;
2854                        } else {
2855                                dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2856                                        be32_to_cpu(match.mask->dst));
2857                                return IAVF_ERR_CONFIG;
2858                        }
2859                }
2860
2861                if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2862                        dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2863                        return IAVF_ERR_CONFIG;
2864                }
2865                if (match.key->dst) {
2866                        vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2867                        vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2868                }
2869                if (match.key->src) {
2870                        vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2871                        vf->data.tcp_spec.src_ip[0] = match.key->src;
2872                }
2873        }
2874
2875        if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2876                struct flow_match_ipv6_addrs match;
2877
2878                flow_rule_match_ipv6_addrs(rule, &match);
2879
2880                /* validate mask, make sure it is not IPV6_ADDR_ANY */
2881                if (ipv6_addr_any(&match.mask->dst)) {
2882                        dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2883                                IPV6_ADDR_ANY);
2884                        return IAVF_ERR_CONFIG;
2885                }
2886
2887                /* src and dest IPv6 address should not be LOOPBACK
2888                 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2889                 */
2890                if (ipv6_addr_loopback(&match.key->dst) ||
2891                    ipv6_addr_loopback(&match.key->src)) {
2892                        dev_err(&adapter->pdev->dev,
2893                                "ipv6 addr should not be loopback\n");
2894                        return IAVF_ERR_CONFIG;
2895                }
2896                if (!ipv6_addr_any(&match.mask->dst) ||
2897                    !ipv6_addr_any(&match.mask->src))
2898                        field_flags |= IAVF_CLOUD_FIELD_IIP;
2899
2900                for (i = 0; i < 4; i++)
2901                        vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2902                memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2903                       sizeof(vf->data.tcp_spec.dst_ip));
2904                for (i = 0; i < 4; i++)
2905                        vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2906                memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2907                       sizeof(vf->data.tcp_spec.src_ip));
2908        }
2909        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2910                struct flow_match_ports match;
2911
2912                flow_rule_match_ports(rule, &match);
2913                if (match.mask->src) {
2914                        if (match.mask->src == cpu_to_be16(0xffff)) {
2915                                field_flags |= IAVF_CLOUD_FIELD_IIP;
2916                        } else {
2917                                dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2918                                        be16_to_cpu(match.mask->src));
2919                                return IAVF_ERR_CONFIG;
2920                        }
2921                }
2922
2923                if (match.mask->dst) {
2924                        if (match.mask->dst == cpu_to_be16(0xffff)) {
2925                                field_flags |= IAVF_CLOUD_FIELD_IIP;
2926                        } else {
2927                                dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2928                                        be16_to_cpu(match.mask->dst));
2929                                return IAVF_ERR_CONFIG;
2930                        }
2931                }
2932                if (match.key->dst) {
2933                        vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2934                        vf->data.tcp_spec.dst_port = match.key->dst;
2935                }
2936
2937                if (match.key->src) {
2938                        vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2939                        vf->data.tcp_spec.src_port = match.key->src;
2940                }
2941        }
2942        vf->field_flags = field_flags;
2943
2944        return 0;
2945}
2946
2947/**
2948 * iavf_handle_tclass - Forward to a traffic class on the device
2949 * @adapter: board private structure
2950 * @tc: traffic class index on the device
2951 * @filter: pointer to cloud filter structure
2952 */
2953static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2954                              struct iavf_cloud_filter *filter)
2955{
2956        if (tc == 0)
2957                return 0;
2958        if (tc < adapter->num_tc) {
2959                if (!filter->f.data.tcp_spec.dst_port) {
2960                        dev_err(&adapter->pdev->dev,
2961                                "Specify destination port to redirect to traffic class other than TC0\n");
2962                        return -EINVAL;
2963                }
2964        }
2965        /* redirect to a traffic class on the same device */
2966        filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2967        filter->f.action_meta = tc;
2968        return 0;
2969}
2970
2971/**
2972 * iavf_configure_clsflower - Add tc flower filters
2973 * @adapter: board private structure
2974 * @cls_flower: Pointer to struct flow_cls_offload
2975 */
2976static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2977                                    struct flow_cls_offload *cls_flower)
2978{
2979        int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2980        struct iavf_cloud_filter *filter = NULL;
2981        int err = -EINVAL, count = 50;
2982
2983        if (tc < 0) {
2984                dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2985                return -EINVAL;
2986        }
2987
2988        filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2989        if (!filter)
2990                return -ENOMEM;
2991
2992        while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2993                                &adapter->crit_section)) {
2994                if (--count == 0)
2995                        goto err;
2996                udelay(1);
2997        }
2998
2999        filter->cookie = cls_flower->cookie;
3000
3001        /* set the mask to all zeroes to begin with */
3002        memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3003        /* start out with flow type and eth type IPv4 to begin with */
3004        filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3005        err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3006        if (err < 0)
3007                goto err;
3008
3009        err = iavf_handle_tclass(adapter, tc, filter);
3010        if (err < 0)
3011                goto err;
3012
3013        /* add filter to the list */
3014        spin_lock_bh(&adapter->cloud_filter_list_lock);
3015        list_add_tail(&filter->list, &adapter->cloud_filter_list);
3016        adapter->num_cloud_filters++;
3017        filter->add = true;
3018        adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3019        spin_unlock_bh(&adapter->cloud_filter_list_lock);
3020err:
3021        if (err)
3022                kfree(filter);
3023
3024        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3025        return err;
3026}
3027
3028/* iavf_find_cf - Find the cloud filter in the list
3029 * @adapter: Board private structure
3030 * @cookie: filter specific cookie
3031 *
3032 * Returns ptr to the filter object or NULL. Must be called while holding the
3033 * cloud_filter_list_lock.
3034 */
3035static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3036                                              unsigned long *cookie)
3037{
3038        struct iavf_cloud_filter *filter = NULL;
3039
3040        if (!cookie)
3041                return NULL;
3042
3043        list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3044                if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3045                        return filter;
3046        }
3047        return NULL;
3048}
3049
3050/**
3051 * iavf_delete_clsflower - Remove tc flower filters
3052 * @adapter: board private structure
3053 * @cls_flower: Pointer to struct flow_cls_offload
3054 */
3055static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3056                                 struct flow_cls_offload *cls_flower)
3057{
3058        struct iavf_cloud_filter *filter = NULL;
3059        int err = 0;
3060
3061        spin_lock_bh(&adapter->cloud_filter_list_lock);
3062        filter = iavf_find_cf(adapter, &cls_flower->cookie);
3063        if (filter) {
3064                filter->del = true;
3065                adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3066        } else {
3067                err = -EINVAL;
3068        }
3069        spin_unlock_bh(&adapter->cloud_filter_list_lock);
3070
3071        return err;
3072}
3073
3074/**
3075 * iavf_setup_tc_cls_flower - flower classifier offloads
3076 * @netdev: net device to configure
3077 * @type_data: offload data
3078 */
3079static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3080                                    struct flow_cls_offload *cls_flower)
3081{
3082        if (cls_flower->common.chain_index)
3083                return -EOPNOTSUPP;
3084
3085        switch (cls_flower->command) {
3086        case FLOW_CLS_REPLACE:
3087                return iavf_configure_clsflower(adapter, cls_flower);
3088        case FLOW_CLS_DESTROY:
3089                return iavf_delete_clsflower(adapter, cls_flower);
3090        case FLOW_CLS_STATS:
3091                return -EOPNOTSUPP;
3092        default:
3093                return -EOPNOTSUPP;
3094        }
3095}
3096
3097/**
3098 * iavf_setup_tc_block_cb - block callback for tc
3099 * @type: type of offload
3100 * @type_data: offload data
3101 * @cb_priv:
3102 *
3103 * This function is the block callback for traffic classes
3104 **/
3105static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3106                                  void *cb_priv)
3107{
3108        switch (type) {
3109        case TC_SETUP_CLSFLOWER:
3110                return iavf_setup_tc_cls_flower(cb_priv, type_data);
3111        default:
3112                return -EOPNOTSUPP;
3113        }
3114}
3115
3116static LIST_HEAD(iavf_block_cb_list);
3117
3118/**
3119 * iavf_setup_tc - configure multiple traffic classes
3120 * @netdev: network interface device structure
3121 * @type: type of offload
3122 * @type_date: tc offload data
3123 *
3124 * This function is the callback to ndo_setup_tc in the
3125 * netdev_ops.
3126 *
3127 * Returns 0 on success
3128 **/
3129static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3130                         void *type_data)
3131{
3132        struct iavf_adapter *adapter = netdev_priv(netdev);
3133
3134        switch (type) {
3135        case TC_SETUP_QDISC_MQPRIO:
3136                return __iavf_setup_tc(netdev, type_data);
3137        case TC_SETUP_BLOCK:
3138                return flow_block_cb_setup_simple(type_data,
3139                                                  &iavf_block_cb_list,
3140                                                  iavf_setup_tc_block_cb,
3141                                                  adapter, adapter, true);
3142        default:
3143                return -EOPNOTSUPP;
3144        }
3145}
3146
3147/**
3148 * iavf_open - Called when a network interface is made active
3149 * @netdev: network interface device structure
3150 *
3151 * Returns 0 on success, negative value on failure
3152 *
3153 * The open entry point is called when a network interface is made
3154 * active by the system (IFF_UP).  At this point all resources needed
3155 * for transmit and receive operations are allocated, the interrupt
3156 * handler is registered with the OS, the watchdog is started,
3157 * and the stack is notified that the interface is ready.
3158 **/
3159static int iavf_open(struct net_device *netdev)
3160{
3161        struct iavf_adapter *adapter = netdev_priv(netdev);
3162        int err;
3163
3164        if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3165                dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3166                return -EIO;
3167        }
3168
3169        while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3170                                &adapter->crit_section))
3171                usleep_range(500, 1000);
3172
3173        if (adapter->state != __IAVF_DOWN) {
3174                err = -EBUSY;
3175                goto err_unlock;
3176        }
3177
3178        /* allocate transmit descriptors */
3179        err = iavf_setup_all_tx_resources(adapter);
3180        if (err)
3181                goto err_setup_tx;
3182
3183        /* allocate receive descriptors */
3184        err = iavf_setup_all_rx_resources(adapter);
3185        if (err)
3186                goto err_setup_rx;
3187
3188        /* clear any pending interrupts, may auto mask */
3189        err = iavf_request_traffic_irqs(adapter, netdev->name);
3190        if (err)
3191                goto err_req_irq;
3192
3193        spin_lock_bh(&adapter->mac_vlan_list_lock);
3194
3195        iavf_add_filter(adapter, adapter->hw.mac.addr);
3196
3197        spin_unlock_bh(&adapter->mac_vlan_list_lock);
3198
3199        iavf_configure(adapter);
3200
3201        iavf_up_complete(adapter);
3202
3203        iavf_irq_enable(adapter, true);
3204
3205        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3206
3207        return 0;
3208
3209err_req_irq:
3210        iavf_down(adapter);
3211        iavf_free_traffic_irqs(adapter);
3212err_setup_rx:
3213        iavf_free_all_rx_resources(adapter);
3214err_setup_tx:
3215        iavf_free_all_tx_resources(adapter);
3216err_unlock:
3217        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3218
3219        return err;
3220}
3221
3222/**
3223 * iavf_close - Disables a network interface
3224 * @netdev: network interface device structure
3225 *
3226 * Returns 0, this is not allowed to fail
3227 *
3228 * The close entry point is called when an interface is de-activated
3229 * by the OS.  The hardware is still under the drivers control, but
3230 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3231 * are freed, along with all transmit and receive resources.
3232 **/
3233static int iavf_close(struct net_device *netdev)
3234{
3235        struct iavf_adapter *adapter = netdev_priv(netdev);
3236        int status;
3237
3238        if (adapter->state <= __IAVF_DOWN_PENDING)
3239                return 0;
3240
3241        while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3242                                &adapter->crit_section))
3243                usleep_range(500, 1000);
3244
3245        set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3246        if (CLIENT_ENABLED(adapter))
3247                adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3248
3249        iavf_down(adapter);
3250        adapter->state = __IAVF_DOWN_PENDING;
3251        iavf_free_traffic_irqs(adapter);
3252
3253        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3254
3255        /* We explicitly don't free resources here because the hardware is
3256         * still active and can DMA into memory. Resources are cleared in
3257         * iavf_virtchnl_completion() after we get confirmation from the PF
3258         * driver that the rings have been stopped.
3259         *
3260         * Also, we wait for state to transition to __IAVF_DOWN before
3261         * returning. State change occurs in iavf_virtchnl_completion() after
3262         * VF resources are released (which occurs after PF driver processes and
3263         * responds to admin queue commands).
3264         */
3265
3266        status = wait_event_timeout(adapter->down_waitqueue,
3267                                    adapter->state == __IAVF_DOWN,
3268                                    msecs_to_jiffies(500));
3269        if (!status)
3270                netdev_warn(netdev, "Device resources not yet released\n");
3271        return 0;
3272}
3273
3274/**
3275 * iavf_change_mtu - Change the Maximum Transfer Unit
3276 * @netdev: network interface device structure
3277 * @new_mtu: new value for maximum frame size
3278 *
3279 * Returns 0 on success, negative on failure
3280 **/
3281static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3282{
3283        struct iavf_adapter *adapter = netdev_priv(netdev);
3284
3285        netdev->mtu = new_mtu;
3286        if (CLIENT_ENABLED(adapter)) {
3287                iavf_notify_client_l2_params(&adapter->vsi);
3288                adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3289        }
3290        adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3291        queue_work(iavf_wq, &adapter->reset_task);
3292
3293        return 0;
3294}
3295
3296/**
3297 * iavf_set_features - set the netdev feature flags
3298 * @netdev: ptr to the netdev being adjusted
3299 * @features: the feature set that the stack is suggesting
3300 * Note: expects to be called while under rtnl_lock()
3301 **/
3302static int iavf_set_features(struct net_device *netdev,
3303                             netdev_features_t features)
3304{
3305        struct iavf_adapter *adapter = netdev_priv(netdev);
3306
3307        /* Don't allow changing VLAN_RX flag when adapter is not capable
3308         * of VLAN offload
3309         */
3310        if (!VLAN_ALLOWED(adapter)) {
3311                if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3312                        return -EINVAL;
3313        } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3314                if (features & NETIF_F_HW_VLAN_CTAG_RX)
3315                        adapter->aq_required |=
3316                                IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3317                else
3318                        adapter->aq_required |=
3319                                IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3320        }
3321
3322        return 0;
3323}
3324
3325/**
3326 * iavf_features_check - Validate encapsulated packet conforms to limits
3327 * @skb: skb buff
3328 * @dev: This physical port's netdev
3329 * @features: Offload features that the stack believes apply
3330 **/
3331static netdev_features_t iavf_features_check(struct sk_buff *skb,
3332                                             struct net_device *dev,
3333                                             netdev_features_t features)
3334{
3335        size_t len;
3336
3337        /* No point in doing any of this if neither checksum nor GSO are
3338         * being requested for this frame.  We can rule out both by just
3339         * checking for CHECKSUM_PARTIAL
3340         */
3341        if (skb->ip_summed != CHECKSUM_PARTIAL)
3342                return features;
3343
3344        /* We cannot support GSO if the MSS is going to be less than
3345         * 64 bytes.  If it is then we need to drop support for GSO.
3346         */
3347        if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3348                features &= ~NETIF_F_GSO_MASK;
3349
3350        /* MACLEN can support at most 63 words */
3351        len = skb_network_header(skb) - skb->data;
3352        if (len & ~(63 * 2))
3353                goto out_err;
3354
3355        /* IPLEN and EIPLEN can support at most 127 dwords */
3356        len = skb_transport_header(skb) - skb_network_header(skb);
3357        if (len & ~(127 * 4))
3358                goto out_err;
3359
3360        if (skb->encapsulation) {
3361                /* L4TUNLEN can support 127 words */
3362                len = skb_inner_network_header(skb) - skb_transport_header(skb);
3363                if (len & ~(127 * 2))
3364                        goto out_err;
3365
3366                /* IPLEN can support at most 127 dwords */
3367                len = skb_inner_transport_header(skb) -
3368                      skb_inner_network_header(skb);
3369                if (len & ~(127 * 4))
3370                        goto out_err;
3371        }
3372
3373        /* No need to validate L4LEN as TCP is the only protocol with a
3374         * a flexible value and we support all possible values supported
3375         * by TCP, which is at most 15 dwords
3376         */
3377
3378        return features;
3379out_err:
3380        return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3381}
3382
3383/**
3384 * iavf_fix_features - fix up the netdev feature bits
3385 * @netdev: our net device
3386 * @features: desired feature bits
3387 *
3388 * Returns fixed-up features bits
3389 **/
3390static netdev_features_t iavf_fix_features(struct net_device *netdev,
3391                                           netdev_features_t features)
3392{
3393        struct iavf_adapter *adapter = netdev_priv(netdev);
3394
3395        if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3396                features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3397                              NETIF_F_HW_VLAN_CTAG_RX |
3398                              NETIF_F_HW_VLAN_CTAG_FILTER);
3399
3400        return features;
3401}
3402
3403static const struct net_device_ops iavf_netdev_ops = {
3404        .ndo_open               = iavf_open,
3405        .ndo_stop               = iavf_close,
3406        .ndo_start_xmit         = iavf_xmit_frame,
3407        .ndo_set_rx_mode        = iavf_set_rx_mode,
3408        .ndo_validate_addr      = eth_validate_addr,
3409        .ndo_set_mac_address    = iavf_set_mac,
3410        .ndo_change_mtu         = iavf_change_mtu,
3411        .ndo_tx_timeout         = iavf_tx_timeout,
3412        .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
3413        .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
3414        .ndo_features_check     = iavf_features_check,
3415        .ndo_fix_features       = iavf_fix_features,
3416        .ndo_set_features       = iavf_set_features,
3417        .ndo_setup_tc           = iavf_setup_tc,
3418};
3419
3420/**
3421 * iavf_check_reset_complete - check that VF reset is complete
3422 * @hw: pointer to hw struct
3423 *
3424 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3425 **/
3426static int iavf_check_reset_complete(struct iavf_hw *hw)
3427{
3428        u32 rstat;
3429        int i;
3430
3431        for (i = 0; i < 100; i++) {
3432                rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3433                             IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3434                if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3435                    (rstat == VIRTCHNL_VFR_COMPLETED))
3436                        return 0;
3437                usleep_range(10, 20);
3438        }
3439        return -EBUSY;
3440}
3441
3442/**
3443 * iavf_process_config - Process the config information we got from the PF
3444 * @adapter: board private structure
3445 *
3446 * Verify that we have a valid config struct, and set up our netdev features
3447 * and our VSI struct.
3448 **/
3449int iavf_process_config(struct iavf_adapter *adapter)
3450{
3451        struct virtchnl_vf_resource *vfres = adapter->vf_res;
3452        int i, num_req_queues = adapter->num_req_queues;
3453        struct net_device *netdev = adapter->netdev;
3454        struct iavf_vsi *vsi = &adapter->vsi;
3455        netdev_features_t hw_enc_features;
3456        netdev_features_t hw_features;
3457
3458        /* got VF config message back from PF, now we can parse it */
3459        for (i = 0; i < vfres->num_vsis; i++) {
3460                if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3461                        adapter->vsi_res = &vfres->vsi_res[i];
3462        }
3463        if (!adapter->vsi_res) {
3464                dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3465                return -ENODEV;
3466        }
3467
3468        if (num_req_queues &&
3469            num_req_queues != adapter->vsi_res->num_queue_pairs) {
3470                /* Problem.  The PF gave us fewer queues than what we had
3471                 * negotiated in our request.  Need a reset to see if we can't
3472                 * get back to a working state.
3473                 */
3474                dev_err(&adapter->pdev->dev,
3475                        "Requested %d queues, but PF only gave us %d.\n",
3476                        num_req_queues,
3477                        adapter->vsi_res->num_queue_pairs);
3478                adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3479                adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3480                iavf_schedule_reset(adapter);
3481                return -ENODEV;
3482        }
3483        adapter->num_req_queues = 0;
3484
3485        hw_enc_features = NETIF_F_SG                    |
3486                          NETIF_F_IP_CSUM               |
3487                          NETIF_F_IPV6_CSUM             |
3488                          NETIF_F_HIGHDMA               |
3489                          NETIF_F_SOFT_FEATURES |
3490                          NETIF_F_TSO                   |
3491                          NETIF_F_TSO_ECN               |
3492                          NETIF_F_TSO6                  |
3493                          NETIF_F_SCTP_CRC              |
3494                          NETIF_F_RXHASH                |
3495                          NETIF_F_RXCSUM                |
3496                          0;
3497
3498        /* advertise to stack only if offloads for encapsulated packets is
3499         * supported
3500         */
3501        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3502                hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL       |
3503                                   NETIF_F_GSO_GRE              |
3504                                   NETIF_F_GSO_GRE_CSUM         |
3505                                   NETIF_F_GSO_IPXIP4           |
3506                                   NETIF_F_GSO_IPXIP6           |
3507                                   NETIF_F_GSO_UDP_TUNNEL_CSUM  |
3508                                   NETIF_F_GSO_PARTIAL          |
3509                                   0;
3510
3511                if (!(vfres->vf_cap_flags &
3512                      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3513                        netdev->gso_partial_features |=
3514                                NETIF_F_GSO_UDP_TUNNEL_CSUM;
3515
3516                netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3517                netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3518                netdev->hw_enc_features |= hw_enc_features;
3519        }
3520        /* record features VLANs can make use of */
3521        netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3522
3523        /* Write features and hw_features separately to avoid polluting
3524         * with, or dropping, features that are set when we registered.
3525         */
3526        hw_features = hw_enc_features;
3527
3528        /* Enable VLAN features if supported */
3529        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3530                hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3531                                NETIF_F_HW_VLAN_CTAG_RX);
3532        /* Enable cloud filter if ADQ is supported */
3533        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3534                hw_features |= NETIF_F_HW_TC;
3535
3536        netdev->hw_features |= hw_features;
3537
3538        netdev->features |= hw_features;
3539
3540        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3541                netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3542
3543        netdev->priv_flags |= IFF_UNICAST_FLT;
3544
3545        /* Do not turn on offloads when they are requested to be turned off.
3546         * TSO needs minimum 576 bytes to work correctly.
3547         */
3548        if (netdev->wanted_features) {
3549                if (!(netdev->wanted_features & NETIF_F_TSO) ||
3550                    netdev->mtu < 576)
3551                        netdev->features &= ~NETIF_F_TSO;
3552                if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3553                    netdev->mtu < 576)
3554                        netdev->features &= ~NETIF_F_TSO6;
3555                if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3556                        netdev->features &= ~NETIF_F_TSO_ECN;
3557                if (!(netdev->wanted_features & NETIF_F_GRO))
3558                        netdev->features &= ~NETIF_F_GRO;
3559                if (!(netdev->wanted_features & NETIF_F_GSO))
3560                        netdev->features &= ~NETIF_F_GSO;
3561        }
3562
3563        adapter->vsi.id = adapter->vsi_res->vsi_id;
3564
3565        adapter->vsi.back = adapter;
3566        adapter->vsi.base_vector = 1;
3567        adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3568        vsi->netdev = adapter->netdev;
3569        vsi->qs_handle = adapter->vsi_res->qset_handle;
3570        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3571                adapter->rss_key_size = vfres->rss_key_size;
3572                adapter->rss_lut_size = vfres->rss_lut_size;
3573        } else {
3574                adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3575                adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3576        }
3577
3578        return 0;
3579}
3580
3581/**
3582 * iavf_init_task - worker thread to perform delayed initialization
3583 * @work: pointer to work_struct containing our data
3584 *
3585 * This task completes the work that was begun in probe. Due to the nature
3586 * of VF-PF communications, we may need to wait tens of milliseconds to get
3587 * responses back from the PF. Rather than busy-wait in probe and bog down the
3588 * whole system, we'll do it in a task so we can sleep.
3589 * This task only runs during driver init. Once we've established
3590 * communications with the PF driver and set up our netdev, the watchdog
3591 * takes over.
3592 **/
3593static void iavf_init_task(struct work_struct *work)
3594{
3595        struct iavf_adapter *adapter = container_of(work,
3596                                                    struct iavf_adapter,
3597                                                    init_task.work);
3598        struct iavf_hw *hw = &adapter->hw;
3599
3600        switch (adapter->state) {
3601        case __IAVF_STARTUP:
3602                if (iavf_startup(adapter) < 0)
3603                        goto init_failed;
3604                break;
3605        case __IAVF_INIT_VERSION_CHECK:
3606                if (iavf_init_version_check(adapter) < 0)
3607                        goto init_failed;
3608                break;
3609        case __IAVF_INIT_GET_RESOURCES:
3610                if (iavf_init_get_resources(adapter) < 0)
3611                        goto init_failed;
3612                return;
3613        default:
3614                goto init_failed;
3615        }
3616
3617        queue_delayed_work(iavf_wq, &adapter->init_task,
3618                           msecs_to_jiffies(30));
3619        return;
3620init_failed:
3621        if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3622                dev_err(&adapter->pdev->dev,
3623                        "Failed to communicate with PF; waiting before retry\n");
3624                adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3625                iavf_shutdown_adminq(hw);
3626                adapter->state = __IAVF_STARTUP;
3627                queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3628                return;
3629        }
3630        queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3631}
3632
3633/**
3634 * iavf_shutdown - Shutdown the device in preparation for a reboot
3635 * @pdev: pci device structure
3636 **/
3637static void iavf_shutdown(struct pci_dev *pdev)
3638{
3639        struct net_device *netdev = pci_get_drvdata(pdev);
3640        struct iavf_adapter *adapter = netdev_priv(netdev);
3641
3642        netif_device_detach(netdev);
3643
3644        if (netif_running(netdev))
3645                iavf_close(netdev);
3646
3647        /* Prevent the watchdog from running. */
3648        adapter->state = __IAVF_REMOVE;
3649        adapter->aq_required = 0;
3650
3651#ifdef CONFIG_PM
3652        pci_save_state(pdev);
3653
3654#endif
3655        pci_disable_device(pdev);
3656}
3657
3658/**
3659 * iavf_probe - Device Initialization Routine
3660 * @pdev: PCI device information struct
3661 * @ent: entry in iavf_pci_tbl
3662 *
3663 * Returns 0 on success, negative on failure
3664 *
3665 * iavf_probe initializes an adapter identified by a pci_dev structure.
3666 * The OS initialization, configuring of the adapter private structure,
3667 * and a hardware reset occur.
3668 **/
3669static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3670{
3671        struct net_device *netdev;
3672        struct iavf_adapter *adapter = NULL;
3673        struct iavf_hw *hw = NULL;
3674        int err;
3675
3676        err = pci_enable_device(pdev);
3677        if (err)
3678                return err;
3679
3680        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3681        if (err) {
3682                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3683                if (err) {
3684                        dev_err(&pdev->dev,
3685                                "DMA configuration failed: 0x%x\n", err);
3686                        goto err_dma;
3687                }
3688        }
3689
3690        err = pci_request_regions(pdev, iavf_driver_name);
3691        if (err) {
3692                dev_err(&pdev->dev,
3693                        "pci_request_regions failed 0x%x\n", err);
3694                goto err_pci_reg;
3695        }
3696
3697        pci_enable_pcie_error_reporting(pdev);
3698
3699        pci_set_master(pdev);
3700
3701        netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3702                                   IAVF_MAX_REQ_QUEUES);
3703        if (!netdev) {
3704                err = -ENOMEM;
3705                goto err_alloc_etherdev;
3706        }
3707
3708        SET_NETDEV_DEV(netdev, &pdev->dev);
3709
3710        pci_set_drvdata(pdev, netdev);
3711        adapter = netdev_priv(netdev);
3712
3713        adapter->netdev = netdev;
3714        adapter->pdev = pdev;
3715
3716        hw = &adapter->hw;
3717        hw->back = adapter;
3718
3719        adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3720        adapter->state = __IAVF_STARTUP;
3721
3722        /* Call save state here because it relies on the adapter struct. */
3723        pci_save_state(pdev);
3724
3725        hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3726                              pci_resource_len(pdev, 0));
3727        if (!hw->hw_addr) {
3728                err = -EIO;
3729                goto err_ioremap;
3730        }
3731        hw->vendor_id = pdev->vendor;
3732        hw->device_id = pdev->device;
3733        pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3734        hw->subsystem_vendor_id = pdev->subsystem_vendor;
3735        hw->subsystem_device_id = pdev->subsystem_device;
3736        hw->bus.device = PCI_SLOT(pdev->devfn);
3737        hw->bus.func = PCI_FUNC(pdev->devfn);
3738        hw->bus.bus_id = pdev->bus->number;
3739
3740        /* set up the locks for the AQ, do this only once in probe
3741         * and destroy them only once in remove
3742         */
3743        mutex_init(&hw->aq.asq_mutex);
3744        mutex_init(&hw->aq.arq_mutex);
3745
3746        spin_lock_init(&adapter->mac_vlan_list_lock);
3747        spin_lock_init(&adapter->cloud_filter_list_lock);
3748
3749        INIT_LIST_HEAD(&adapter->mac_filter_list);
3750        INIT_LIST_HEAD(&adapter->vlan_filter_list);
3751        INIT_LIST_HEAD(&adapter->cloud_filter_list);
3752
3753        INIT_WORK(&adapter->reset_task, iavf_reset_task);
3754        INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3755        INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3756        INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3757        INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3758        queue_delayed_work(iavf_wq, &adapter->init_task,
3759                           msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3760
3761        /* Setup the wait queue for indicating transition to down status */
3762        init_waitqueue_head(&adapter->down_waitqueue);
3763
3764        return 0;
3765
3766err_ioremap:
3767        free_netdev(netdev);
3768err_alloc_etherdev:
3769        pci_release_regions(pdev);
3770err_pci_reg:
3771err_dma:
3772        pci_disable_device(pdev);
3773        return err;
3774}
3775
3776#ifdef CONFIG_PM
3777/**
3778 * iavf_suspend - Power management suspend routine
3779 * @pdev: PCI device information struct
3780 * @state: unused
3781 *
3782 * Called when the system (VM) is entering sleep/suspend.
3783 **/
3784static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3785{
3786        struct net_device *netdev = pci_get_drvdata(pdev);
3787        struct iavf_adapter *adapter = netdev_priv(netdev);
3788        int retval = 0;
3789
3790        netif_device_detach(netdev);
3791
3792        while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3793                                &adapter->crit_section))
3794                usleep_range(500, 1000);
3795
3796        if (netif_running(netdev)) {
3797                rtnl_lock();
3798                iavf_down(adapter);
3799                rtnl_unlock();
3800        }
3801        iavf_free_misc_irq(adapter);
3802        iavf_reset_interrupt_capability(adapter);
3803
3804        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3805
3806        retval = pci_save_state(pdev);
3807        if (retval)
3808                return retval;
3809
3810        pci_disable_device(pdev);
3811
3812        return 0;
3813}
3814
3815/**
3816 * iavf_resume - Power management resume routine
3817 * @pdev: PCI device information struct
3818 *
3819 * Called when the system (VM) is resumed from sleep/suspend.
3820 **/
3821static int iavf_resume(struct pci_dev *pdev)
3822{
3823        struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3824        struct net_device *netdev = adapter->netdev;
3825        u32 err;
3826
3827        pci_set_power_state(pdev, PCI_D0);
3828        pci_restore_state(pdev);
3829        /* pci_restore_state clears dev->state_saved so call
3830         * pci_save_state to restore it.
3831         */
3832        pci_save_state(pdev);
3833
3834        err = pci_enable_device_mem(pdev);
3835        if (err) {
3836                dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3837                return err;
3838        }
3839        pci_set_master(pdev);
3840
3841        rtnl_lock();
3842        err = iavf_set_interrupt_capability(adapter);
3843        if (err) {
3844                rtnl_unlock();
3845                dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3846                return err;
3847        }
3848        err = iavf_request_misc_irq(adapter);
3849        rtnl_unlock();
3850        if (err) {
3851                dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3852                return err;
3853        }
3854
3855        queue_work(iavf_wq, &adapter->reset_task);
3856
3857        netif_device_attach(netdev);
3858
3859        return err;
3860}
3861
3862#endif /* CONFIG_PM */
3863/**
3864 * iavf_remove - Device Removal Routine
3865 * @pdev: PCI device information struct
3866 *
3867 * iavf_remove is called by the PCI subsystem to alert the driver
3868 * that it should release a PCI device.  The could be caused by a
3869 * Hot-Plug event, or because the driver is going to be removed from
3870 * memory.
3871 **/
3872static void iavf_remove(struct pci_dev *pdev)
3873{
3874        struct net_device *netdev = pci_get_drvdata(pdev);
3875        struct iavf_adapter *adapter = netdev_priv(netdev);
3876        struct iavf_vlan_filter *vlf, *vlftmp;
3877        struct iavf_mac_filter *f, *ftmp;
3878        struct iavf_cloud_filter *cf, *cftmp;
3879        struct iavf_hw *hw = &adapter->hw;
3880        int err;
3881        /* Indicate we are in remove and not to run reset_task */
3882        set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3883        cancel_delayed_work_sync(&adapter->init_task);
3884        cancel_work_sync(&adapter->reset_task);
3885        cancel_delayed_work_sync(&adapter->client_task);
3886        if (adapter->netdev_registered) {
3887                unregister_netdev(netdev);
3888                adapter->netdev_registered = false;
3889        }
3890        if (CLIENT_ALLOWED(adapter)) {
3891                err = iavf_lan_del_device(adapter);
3892                if (err)
3893                        dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3894                                 err);
3895        }
3896
3897        /* Shut down all the garbage mashers on the detention level */
3898        adapter->state = __IAVF_REMOVE;
3899        adapter->aq_required = 0;
3900        adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3901        iavf_request_reset(adapter);
3902        msleep(50);
3903        /* If the FW isn't responding, kick it once, but only once. */
3904        if (!iavf_asq_done(hw)) {
3905                iavf_request_reset(adapter);
3906                msleep(50);
3907        }
3908        iavf_free_all_tx_resources(adapter);
3909        iavf_free_all_rx_resources(adapter);
3910        iavf_misc_irq_disable(adapter);
3911        iavf_free_misc_irq(adapter);
3912        iavf_reset_interrupt_capability(adapter);
3913        iavf_free_q_vectors(adapter);
3914
3915        cancel_delayed_work_sync(&adapter->watchdog_task);
3916
3917        cancel_work_sync(&adapter->adminq_task);
3918
3919        iavf_free_rss(adapter);
3920
3921        if (hw->aq.asq.count)
3922                iavf_shutdown_adminq(hw);
3923
3924        /* destroy the locks only once, here */
3925        mutex_destroy(&hw->aq.arq_mutex);
3926        mutex_destroy(&hw->aq.asq_mutex);
3927
3928        iounmap(hw->hw_addr);
3929        pci_release_regions(pdev);
3930        iavf_free_all_tx_resources(adapter);
3931        iavf_free_all_rx_resources(adapter);
3932        iavf_free_queues(adapter);
3933        kfree(adapter->vf_res);
3934        spin_lock_bh(&adapter->mac_vlan_list_lock);
3935        /* If we got removed before an up/down sequence, we've got a filter
3936         * hanging out there that we need to get rid of.
3937         */
3938        list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3939                list_del(&f->list);
3940                kfree(f);
3941        }
3942        list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3943                                 list) {
3944                list_del(&vlf->list);
3945                kfree(vlf);
3946        }
3947
3948        spin_unlock_bh(&adapter->mac_vlan_list_lock);
3949
3950        spin_lock_bh(&adapter->cloud_filter_list_lock);
3951        list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3952                list_del(&cf->list);
3953                kfree(cf);
3954        }
3955        spin_unlock_bh(&adapter->cloud_filter_list_lock);
3956
3957        free_netdev(netdev);
3958
3959        pci_disable_pcie_error_reporting(pdev);
3960
3961        pci_disable_device(pdev);
3962}
3963
3964static struct pci_driver iavf_driver = {
3965        .name     = iavf_driver_name,
3966        .id_table = iavf_pci_tbl,
3967        .probe    = iavf_probe,
3968        .remove   = iavf_remove,
3969#ifdef CONFIG_PM
3970        .suspend  = iavf_suspend,
3971        .resume   = iavf_resume,
3972#endif
3973        .shutdown = iavf_shutdown,
3974};
3975
3976/**
3977 * iavf_init_module - Driver Registration Routine
3978 *
3979 * iavf_init_module is the first routine called when the driver is
3980 * loaded. All it does is register with the PCI subsystem.
3981 **/
3982static int __init iavf_init_module(void)
3983{
3984        int ret;
3985
3986        pr_info("iavf: %s - version %s\n", iavf_driver_string,
3987                iavf_driver_version);
3988
3989        pr_info("%s\n", iavf_copyright);
3990
3991        iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3992                                  iavf_driver_name);
3993        if (!iavf_wq) {
3994                pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3995                return -ENOMEM;
3996        }
3997        ret = pci_register_driver(&iavf_driver);
3998        return ret;
3999}
4000
4001module_init(iavf_init_module);
4002
4003/**
4004 * iavf_exit_module - Driver Exit Cleanup Routine
4005 *
4006 * iavf_exit_module is called just before the driver is removed
4007 * from memory.
4008 **/
4009static void __exit iavf_exit_module(void)
4010{
4011        pci_unregister_driver(&iavf_driver);
4012        destroy_workqueue(iavf_wq);
4013}
4014
4015module_exit(iavf_exit_module);
4016
4017/* iavf_main.c */
4018