linux/drivers/net/ethernet/intel/iavf/iavf_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/prefetch.h>
   5
   6#include "iavf.h"
   7#include "iavf_trace.h"
   8#include "iavf_prototype.h"
   9
  10static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  11                                u32 td_tag)
  12{
  13        return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
  14                           ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
  15                           ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
  16                           ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
  17                           ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
  18}
  19
  20#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
  21
  22/**
  23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
  24 * @ring:      the ring that owns the buffer
  25 * @tx_buffer: the buffer to free
  26 **/
  27static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
  28                                            struct iavf_tx_buffer *tx_buffer)
  29{
  30        if (tx_buffer->skb) {
  31                if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
  32                        kfree(tx_buffer->raw_buf);
  33                else
  34                        dev_kfree_skb_any(tx_buffer->skb);
  35                if (dma_unmap_len(tx_buffer, len))
  36                        dma_unmap_single(ring->dev,
  37                                         dma_unmap_addr(tx_buffer, dma),
  38                                         dma_unmap_len(tx_buffer, len),
  39                                         DMA_TO_DEVICE);
  40        } else if (dma_unmap_len(tx_buffer, len)) {
  41                dma_unmap_page(ring->dev,
  42                               dma_unmap_addr(tx_buffer, dma),
  43                               dma_unmap_len(tx_buffer, len),
  44                               DMA_TO_DEVICE);
  45        }
  46
  47        tx_buffer->next_to_watch = NULL;
  48        tx_buffer->skb = NULL;
  49        dma_unmap_len_set(tx_buffer, len, 0);
  50        /* tx_buffer must be completely set up in the transmit path */
  51}
  52
  53/**
  54 * iavf_clean_tx_ring - Free any empty Tx buffers
  55 * @tx_ring: ring to be cleaned
  56 **/
  57void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
  58{
  59        unsigned long bi_size;
  60        u16 i;
  61
  62        /* ring already cleared, nothing to do */
  63        if (!tx_ring->tx_bi)
  64                return;
  65
  66        /* Free all the Tx ring sk_buffs */
  67        for (i = 0; i < tx_ring->count; i++)
  68                iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  69
  70        bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
  71        memset(tx_ring->tx_bi, 0, bi_size);
  72
  73        /* Zero out the descriptor ring */
  74        memset(tx_ring->desc, 0, tx_ring->size);
  75
  76        tx_ring->next_to_use = 0;
  77        tx_ring->next_to_clean = 0;
  78
  79        if (!tx_ring->netdev)
  80                return;
  81
  82        /* cleanup Tx queue statistics */
  83        netdev_tx_reset_queue(txring_txq(tx_ring));
  84}
  85
  86/**
  87 * iavf_free_tx_resources - Free Tx resources per queue
  88 * @tx_ring: Tx descriptor ring for a specific queue
  89 *
  90 * Free all transmit software resources
  91 **/
  92void iavf_free_tx_resources(struct iavf_ring *tx_ring)
  93{
  94        iavf_clean_tx_ring(tx_ring);
  95        kfree(tx_ring->tx_bi);
  96        tx_ring->tx_bi = NULL;
  97
  98        if (tx_ring->desc) {
  99                dma_free_coherent(tx_ring->dev, tx_ring->size,
 100                                  tx_ring->desc, tx_ring->dma);
 101                tx_ring->desc = NULL;
 102        }
 103}
 104
 105/**
 106 * iavf_get_tx_pending - how many Tx descriptors not processed
 107 * @ring: the ring of descriptors
 108 * @in_sw: is tx_pending being checked in SW or HW
 109 *
 110 * Since there is no access to the ring head register
 111 * in XL710, we need to use our local copies
 112 **/
 113u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
 114{
 115        u32 head, tail;
 116
 117        head = ring->next_to_clean;
 118        tail = readl(ring->tail);
 119
 120        if (head != tail)
 121                return (head < tail) ?
 122                        tail - head : (tail + ring->count - head);
 123
 124        return 0;
 125}
 126
 127/**
 128 * iavf_detect_recover_hung - Function to detect and recover hung_queues
 129 * @vsi:  pointer to vsi struct with tx queues
 130 *
 131 * VSI has netdev and netdev has TX queues. This function is to check each of
 132 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 133 **/
 134void iavf_detect_recover_hung(struct iavf_vsi *vsi)
 135{
 136        struct iavf_ring *tx_ring = NULL;
 137        struct net_device *netdev;
 138        unsigned int i;
 139        int packets;
 140
 141        if (!vsi)
 142                return;
 143
 144        if (test_bit(__IAVF_VSI_DOWN, vsi->state))
 145                return;
 146
 147        netdev = vsi->netdev;
 148        if (!netdev)
 149                return;
 150
 151        if (!netif_carrier_ok(netdev))
 152                return;
 153
 154        for (i = 0; i < vsi->back->num_active_queues; i++) {
 155                tx_ring = &vsi->back->tx_rings[i];
 156                if (tx_ring && tx_ring->desc) {
 157                        /* If packet counter has not changed the queue is
 158                         * likely stalled, so force an interrupt for this
 159                         * queue.
 160                         *
 161                         * prev_pkt_ctr would be negative if there was no
 162                         * pending work.
 163                         */
 164                        packets = tx_ring->stats.packets & INT_MAX;
 165                        if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 166                                iavf_force_wb(vsi, tx_ring->q_vector);
 167                                continue;
 168                        }
 169
 170                        /* Memory barrier between read of packet count and call
 171                         * to iavf_get_tx_pending()
 172                         */
 173                        smp_rmb();
 174                        tx_ring->tx_stats.prev_pkt_ctr =
 175                          iavf_get_tx_pending(tx_ring, true) ? packets : -1;
 176                }
 177        }
 178}
 179
 180#define WB_STRIDE 4
 181
 182/**
 183 * iavf_clean_tx_irq - Reclaim resources after transmit completes
 184 * @vsi: the VSI we care about
 185 * @tx_ring: Tx ring to clean
 186 * @napi_budget: Used to determine if we are in netpoll
 187 *
 188 * Returns true if there's any budget left (e.g. the clean is finished)
 189 **/
 190static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
 191                              struct iavf_ring *tx_ring, int napi_budget)
 192{
 193        int i = tx_ring->next_to_clean;
 194        struct iavf_tx_buffer *tx_buf;
 195        struct iavf_tx_desc *tx_desc;
 196        unsigned int total_bytes = 0, total_packets = 0;
 197        unsigned int budget = vsi->work_limit;
 198
 199        tx_buf = &tx_ring->tx_bi[i];
 200        tx_desc = IAVF_TX_DESC(tx_ring, i);
 201        i -= tx_ring->count;
 202
 203        do {
 204                struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
 205
 206                /* if next_to_watch is not set then there is no work pending */
 207                if (!eop_desc)
 208                        break;
 209
 210                /* prevent any other reads prior to eop_desc */
 211                smp_rmb();
 212
 213                iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 214                /* if the descriptor isn't done, no work yet to do */
 215                if (!(eop_desc->cmd_type_offset_bsz &
 216                      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
 217                        break;
 218
 219                /* clear next_to_watch to prevent false hangs */
 220                tx_buf->next_to_watch = NULL;
 221
 222                /* update the statistics for this packet */
 223                total_bytes += tx_buf->bytecount;
 224                total_packets += tx_buf->gso_segs;
 225
 226                /* free the skb */
 227                napi_consume_skb(tx_buf->skb, napi_budget);
 228
 229                /* unmap skb header data */
 230                dma_unmap_single(tx_ring->dev,
 231                                 dma_unmap_addr(tx_buf, dma),
 232                                 dma_unmap_len(tx_buf, len),
 233                                 DMA_TO_DEVICE);
 234
 235                /* clear tx_buffer data */
 236                tx_buf->skb = NULL;
 237                dma_unmap_len_set(tx_buf, len, 0);
 238
 239                /* unmap remaining buffers */
 240                while (tx_desc != eop_desc) {
 241                        iavf_trace(clean_tx_irq_unmap,
 242                                   tx_ring, tx_desc, tx_buf);
 243
 244                        tx_buf++;
 245                        tx_desc++;
 246                        i++;
 247                        if (unlikely(!i)) {
 248                                i -= tx_ring->count;
 249                                tx_buf = tx_ring->tx_bi;
 250                                tx_desc = IAVF_TX_DESC(tx_ring, 0);
 251                        }
 252
 253                        /* unmap any remaining paged data */
 254                        if (dma_unmap_len(tx_buf, len)) {
 255                                dma_unmap_page(tx_ring->dev,
 256                                               dma_unmap_addr(tx_buf, dma),
 257                                               dma_unmap_len(tx_buf, len),
 258                                               DMA_TO_DEVICE);
 259                                dma_unmap_len_set(tx_buf, len, 0);
 260                        }
 261                }
 262
 263                /* move us one more past the eop_desc for start of next pkt */
 264                tx_buf++;
 265                tx_desc++;
 266                i++;
 267                if (unlikely(!i)) {
 268                        i -= tx_ring->count;
 269                        tx_buf = tx_ring->tx_bi;
 270                        tx_desc = IAVF_TX_DESC(tx_ring, 0);
 271                }
 272
 273                prefetch(tx_desc);
 274
 275                /* update budget accounting */
 276                budget--;
 277        } while (likely(budget));
 278
 279        i += tx_ring->count;
 280        tx_ring->next_to_clean = i;
 281        u64_stats_update_begin(&tx_ring->syncp);
 282        tx_ring->stats.bytes += total_bytes;
 283        tx_ring->stats.packets += total_packets;
 284        u64_stats_update_end(&tx_ring->syncp);
 285        tx_ring->q_vector->tx.total_bytes += total_bytes;
 286        tx_ring->q_vector->tx.total_packets += total_packets;
 287
 288        if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
 289                /* check to see if there are < 4 descriptors
 290                 * waiting to be written back, then kick the hardware to force
 291                 * them to be written back in case we stay in NAPI.
 292                 * In this mode on X722 we do not enable Interrupt.
 293                 */
 294                unsigned int j = iavf_get_tx_pending(tx_ring, false);
 295
 296                if (budget &&
 297                    ((j / WB_STRIDE) == 0) && (j > 0) &&
 298                    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
 299                    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
 300                        tx_ring->arm_wb = true;
 301        }
 302
 303        /* notify netdev of completed buffers */
 304        netdev_tx_completed_queue(txring_txq(tx_ring),
 305                                  total_packets, total_bytes);
 306
 307#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 308        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 309                     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 310                /* Make sure that anybody stopping the queue after this
 311                 * sees the new next_to_clean.
 312                 */
 313                smp_mb();
 314                if (__netif_subqueue_stopped(tx_ring->netdev,
 315                                             tx_ring->queue_index) &&
 316                   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
 317                        netif_wake_subqueue(tx_ring->netdev,
 318                                            tx_ring->queue_index);
 319                        ++tx_ring->tx_stats.restart_queue;
 320                }
 321        }
 322
 323        return !!budget;
 324}
 325
 326/**
 327 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 328 * @vsi: the VSI we care about
 329 * @q_vector: the vector on which to enable writeback
 330 *
 331 **/
 332static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
 333                                  struct iavf_q_vector *q_vector)
 334{
 335        u16 flags = q_vector->tx.ring[0].flags;
 336        u32 val;
 337
 338        if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
 339                return;
 340
 341        if (q_vector->arm_wb_state)
 342                return;
 343
 344        val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 345              IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 346
 347        wr32(&vsi->back->hw,
 348             IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
 349        q_vector->arm_wb_state = true;
 350}
 351
 352/**
 353 * iavf_force_wb - Issue SW Interrupt so HW does a wb
 354 * @vsi: the VSI we care about
 355 * @q_vector: the vector  on which to force writeback
 356 *
 357 **/
 358void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
 359{
 360        u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 361                  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 362                  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 363                  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 364                  /* allow 00 to be written to the index */;
 365
 366        wr32(&vsi->back->hw,
 367             IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
 368             val);
 369}
 370
 371static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
 372                                        struct iavf_ring_container *rc)
 373{
 374        return &q_vector->rx == rc;
 375}
 376
 377static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
 378{
 379        unsigned int divisor;
 380
 381        switch (q_vector->adapter->link_speed) {
 382        case IAVF_LINK_SPEED_40GB:
 383                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
 384                break;
 385        case IAVF_LINK_SPEED_25GB:
 386        case IAVF_LINK_SPEED_20GB:
 387                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
 388                break;
 389        default:
 390        case IAVF_LINK_SPEED_10GB:
 391                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
 392                break;
 393        case IAVF_LINK_SPEED_1GB:
 394        case IAVF_LINK_SPEED_100MB:
 395                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
 396                break;
 397        }
 398
 399        return divisor;
 400}
 401
 402/**
 403 * iavf_update_itr - update the dynamic ITR value based on statistics
 404 * @q_vector: structure containing interrupt and ring information
 405 * @rc: structure containing ring performance data
 406 *
 407 * Stores a new ITR value based on packets and byte
 408 * counts during the last interrupt.  The advantage of per interrupt
 409 * computation is faster updates and more accurate ITR for the current
 410 * traffic pattern.  Constants in this function were computed
 411 * based on theoretical maximum wire speed and thresholds were set based
 412 * on testing data as well as attempting to minimize response time
 413 * while increasing bulk throughput.
 414 **/
 415static void iavf_update_itr(struct iavf_q_vector *q_vector,
 416                            struct iavf_ring_container *rc)
 417{
 418        unsigned int avg_wire_size, packets, bytes, itr;
 419        unsigned long next_update = jiffies;
 420
 421        /* If we don't have any rings just leave ourselves set for maximum
 422         * possible latency so we take ourselves out of the equation.
 423         */
 424        if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
 425                return;
 426
 427        /* For Rx we want to push the delay up and default to low latency.
 428         * for Tx we want to pull the delay down and default to high latency.
 429         */
 430        itr = iavf_container_is_rx(q_vector, rc) ?
 431              IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
 432              IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
 433
 434        /* If we didn't update within up to 1 - 2 jiffies we can assume
 435         * that either packets are coming in so slow there hasn't been
 436         * any work, or that there is so much work that NAPI is dealing
 437         * with interrupt moderation and we don't need to do anything.
 438         */
 439        if (time_after(next_update, rc->next_update))
 440                goto clear_counts;
 441
 442        /* If itr_countdown is set it means we programmed an ITR within
 443         * the last 4 interrupt cycles. This has a side effect of us
 444         * potentially firing an early interrupt. In order to work around
 445         * this we need to throw out any data received for a few
 446         * interrupts following the update.
 447         */
 448        if (q_vector->itr_countdown) {
 449                itr = rc->target_itr;
 450                goto clear_counts;
 451        }
 452
 453        packets = rc->total_packets;
 454        bytes = rc->total_bytes;
 455
 456        if (iavf_container_is_rx(q_vector, rc)) {
 457                /* If Rx there are 1 to 4 packets and bytes are less than
 458                 * 9000 assume insufficient data to use bulk rate limiting
 459                 * approach unless Tx is already in bulk rate limiting. We
 460                 * are likely latency driven.
 461                 */
 462                if (packets && packets < 4 && bytes < 9000 &&
 463                    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
 464                        itr = IAVF_ITR_ADAPTIVE_LATENCY;
 465                        goto adjust_by_size;
 466                }
 467        } else if (packets < 4) {
 468                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
 469                 * bulk mode and we are receiving 4 or fewer packets just
 470                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
 471                 * that the Rx can relax.
 472                 */
 473                if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
 474                    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
 475                     IAVF_ITR_ADAPTIVE_MAX_USECS)
 476                        goto clear_counts;
 477        } else if (packets > 32) {
 478                /* If we have processed over 32 packets in a single interrupt
 479                 * for Tx assume we need to switch over to "bulk" mode.
 480                 */
 481                rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
 482        }
 483
 484        /* We have no packets to actually measure against. This means
 485         * either one of the other queues on this vector is active or
 486         * we are a Tx queue doing TSO with too high of an interrupt rate.
 487         *
 488         * Between 4 and 56 we can assume that our current interrupt delay
 489         * is only slightly too low. As such we should increase it by a small
 490         * fixed amount.
 491         */
 492        if (packets < 56) {
 493                itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
 494                if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 495                        itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 496                        itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 497                }
 498                goto clear_counts;
 499        }
 500
 501        if (packets <= 256) {
 502                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
 503                itr &= IAVF_ITR_MASK;
 504
 505                /* Between 56 and 112 is our "goldilocks" zone where we are
 506                 * working out "just right". Just report that our current
 507                 * ITR is good for us.
 508                 */
 509                if (packets <= 112)
 510                        goto clear_counts;
 511
 512                /* If packet count is 128 or greater we are likely looking
 513                 * at a slight overrun of the delay we want. Try halving
 514                 * our delay to see if that will cut the number of packets
 515                 * in half per interrupt.
 516                 */
 517                itr /= 2;
 518                itr &= IAVF_ITR_MASK;
 519                if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
 520                        itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
 521
 522                goto clear_counts;
 523        }
 524
 525        /* The paths below assume we are dealing with a bulk ITR since
 526         * number of packets is greater than 256. We are just going to have
 527         * to compute a value and try to bring the count under control,
 528         * though for smaller packet sizes there isn't much we can do as
 529         * NAPI polling will likely be kicking in sooner rather than later.
 530         */
 531        itr = IAVF_ITR_ADAPTIVE_BULK;
 532
 533adjust_by_size:
 534        /* If packet counts are 256 or greater we can assume we have a gross
 535         * overestimation of what the rate should be. Instead of trying to fine
 536         * tune it just use the formula below to try and dial in an exact value
 537         * give the current packet size of the frame.
 538         */
 539        avg_wire_size = bytes / packets;
 540
 541        /* The following is a crude approximation of:
 542         *  wmem_default / (size + overhead) = desired_pkts_per_int
 543         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
 544         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 545         *
 546         * Assuming wmem_default is 212992 and overhead is 640 bytes per
 547         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 548         * formula down to
 549         *
 550         *  (170 * (size + 24)) / (size + 640) = ITR
 551         *
 552         * We first do some math on the packet size and then finally bitshift
 553         * by 8 after rounding up. We also have to account for PCIe link speed
 554         * difference as ITR scales based on this.
 555         */
 556        if (avg_wire_size <= 60) {
 557                /* Start at 250k ints/sec */
 558                avg_wire_size = 4096;
 559        } else if (avg_wire_size <= 380) {
 560                /* 250K ints/sec to 60K ints/sec */
 561                avg_wire_size *= 40;
 562                avg_wire_size += 1696;
 563        } else if (avg_wire_size <= 1084) {
 564                /* 60K ints/sec to 36K ints/sec */
 565                avg_wire_size *= 15;
 566                avg_wire_size += 11452;
 567        } else if (avg_wire_size <= 1980) {
 568                /* 36K ints/sec to 30K ints/sec */
 569                avg_wire_size *= 5;
 570                avg_wire_size += 22420;
 571        } else {
 572                /* plateau at a limit of 30K ints/sec */
 573                avg_wire_size = 32256;
 574        }
 575
 576        /* If we are in low latency mode halve our delay which doubles the
 577         * rate to somewhere between 100K to 16K ints/sec
 578         */
 579        if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
 580                avg_wire_size /= 2;
 581
 582        /* Resultant value is 256 times larger than it needs to be. This
 583         * gives us room to adjust the value as needed to either increase
 584         * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
 585         *
 586         * Use addition as we have already recorded the new latency flag
 587         * for the ITR value.
 588         */
 589        itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
 590               IAVF_ITR_ADAPTIVE_MIN_INC;
 591
 592        if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 593                itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 594                itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 595        }
 596
 597clear_counts:
 598        /* write back value */
 599        rc->target_itr = itr;
 600
 601        /* next update should occur within next jiffy */
 602        rc->next_update = next_update + 1;
 603
 604        rc->total_bytes = 0;
 605        rc->total_packets = 0;
 606}
 607
 608/**
 609 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
 610 * @tx_ring: the tx ring to set up
 611 *
 612 * Return 0 on success, negative on error
 613 **/
 614int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
 615{
 616        struct device *dev = tx_ring->dev;
 617        int bi_size;
 618
 619        if (!dev)
 620                return -ENOMEM;
 621
 622        /* warn if we are about to overwrite the pointer */
 623        WARN_ON(tx_ring->tx_bi);
 624        bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
 625        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 626        if (!tx_ring->tx_bi)
 627                goto err;
 628
 629        /* round up to nearest 4K */
 630        tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
 631        tx_ring->size = ALIGN(tx_ring->size, 4096);
 632        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 633                                           &tx_ring->dma, GFP_KERNEL);
 634        if (!tx_ring->desc) {
 635                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 636                         tx_ring->size);
 637                goto err;
 638        }
 639
 640        tx_ring->next_to_use = 0;
 641        tx_ring->next_to_clean = 0;
 642        tx_ring->tx_stats.prev_pkt_ctr = -1;
 643        return 0;
 644
 645err:
 646        kfree(tx_ring->tx_bi);
 647        tx_ring->tx_bi = NULL;
 648        return -ENOMEM;
 649}
 650
 651/**
 652 * iavf_clean_rx_ring - Free Rx buffers
 653 * @rx_ring: ring to be cleaned
 654 **/
 655void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
 656{
 657        unsigned long bi_size;
 658        u16 i;
 659
 660        /* ring already cleared, nothing to do */
 661        if (!rx_ring->rx_bi)
 662                return;
 663
 664        if (rx_ring->skb) {
 665                dev_kfree_skb(rx_ring->skb);
 666                rx_ring->skb = NULL;
 667        }
 668
 669        /* Free all the Rx ring sk_buffs */
 670        for (i = 0; i < rx_ring->count; i++) {
 671                struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 672
 673                if (!rx_bi->page)
 674                        continue;
 675
 676                /* Invalidate cache lines that may have been written to by
 677                 * device so that we avoid corrupting memory.
 678                 */
 679                dma_sync_single_range_for_cpu(rx_ring->dev,
 680                                              rx_bi->dma,
 681                                              rx_bi->page_offset,
 682                                              rx_ring->rx_buf_len,
 683                                              DMA_FROM_DEVICE);
 684
 685                /* free resources associated with mapping */
 686                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
 687                                     iavf_rx_pg_size(rx_ring),
 688                                     DMA_FROM_DEVICE,
 689                                     IAVF_RX_DMA_ATTR);
 690
 691                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
 692
 693                rx_bi->page = NULL;
 694                rx_bi->page_offset = 0;
 695        }
 696
 697        bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 698        memset(rx_ring->rx_bi, 0, bi_size);
 699
 700        /* Zero out the descriptor ring */
 701        memset(rx_ring->desc, 0, rx_ring->size);
 702
 703        rx_ring->next_to_alloc = 0;
 704        rx_ring->next_to_clean = 0;
 705        rx_ring->next_to_use = 0;
 706}
 707
 708/**
 709 * iavf_free_rx_resources - Free Rx resources
 710 * @rx_ring: ring to clean the resources from
 711 *
 712 * Free all receive software resources
 713 **/
 714void iavf_free_rx_resources(struct iavf_ring *rx_ring)
 715{
 716        iavf_clean_rx_ring(rx_ring);
 717        kfree(rx_ring->rx_bi);
 718        rx_ring->rx_bi = NULL;
 719
 720        if (rx_ring->desc) {
 721                dma_free_coherent(rx_ring->dev, rx_ring->size,
 722                                  rx_ring->desc, rx_ring->dma);
 723                rx_ring->desc = NULL;
 724        }
 725}
 726
 727/**
 728 * iavf_setup_rx_descriptors - Allocate Rx descriptors
 729 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 730 *
 731 * Returns 0 on success, negative on failure
 732 **/
 733int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
 734{
 735        struct device *dev = rx_ring->dev;
 736        int bi_size;
 737
 738        /* warn if we are about to overwrite the pointer */
 739        WARN_ON(rx_ring->rx_bi);
 740        bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 741        rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 742        if (!rx_ring->rx_bi)
 743                goto err;
 744
 745        u64_stats_init(&rx_ring->syncp);
 746
 747        /* Round up to nearest 4K */
 748        rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
 749        rx_ring->size = ALIGN(rx_ring->size, 4096);
 750        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 751                                           &rx_ring->dma, GFP_KERNEL);
 752
 753        if (!rx_ring->desc) {
 754                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 755                         rx_ring->size);
 756                goto err;
 757        }
 758
 759        rx_ring->next_to_alloc = 0;
 760        rx_ring->next_to_clean = 0;
 761        rx_ring->next_to_use = 0;
 762
 763        return 0;
 764err:
 765        kfree(rx_ring->rx_bi);
 766        rx_ring->rx_bi = NULL;
 767        return -ENOMEM;
 768}
 769
 770/**
 771 * iavf_release_rx_desc - Store the new tail and head values
 772 * @rx_ring: ring to bump
 773 * @val: new head index
 774 **/
 775static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
 776{
 777        rx_ring->next_to_use = val;
 778
 779        /* update next to alloc since we have filled the ring */
 780        rx_ring->next_to_alloc = val;
 781
 782        /* Force memory writes to complete before letting h/w
 783         * know there are new descriptors to fetch.  (Only
 784         * applicable for weak-ordered memory model archs,
 785         * such as IA-64).
 786         */
 787        wmb();
 788        writel(val, rx_ring->tail);
 789}
 790
 791/**
 792 * iavf_rx_offset - Return expected offset into page to access data
 793 * @rx_ring: Ring we are requesting offset of
 794 *
 795 * Returns the offset value for ring into the data buffer.
 796 */
 797static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
 798{
 799        return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
 800}
 801
 802/**
 803 * iavf_alloc_mapped_page - recycle or make a new page
 804 * @rx_ring: ring to use
 805 * @bi: rx_buffer struct to modify
 806 *
 807 * Returns true if the page was successfully allocated or
 808 * reused.
 809 **/
 810static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
 811                                   struct iavf_rx_buffer *bi)
 812{
 813        struct page *page = bi->page;
 814        dma_addr_t dma;
 815
 816        /* since we are recycling buffers we should seldom need to alloc */
 817        if (likely(page)) {
 818                rx_ring->rx_stats.page_reuse_count++;
 819                return true;
 820        }
 821
 822        /* alloc new page for storage */
 823        page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
 824        if (unlikely(!page)) {
 825                rx_ring->rx_stats.alloc_page_failed++;
 826                return false;
 827        }
 828
 829        /* map page for use */
 830        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 831                                 iavf_rx_pg_size(rx_ring),
 832                                 DMA_FROM_DEVICE,
 833                                 IAVF_RX_DMA_ATTR);
 834
 835        /* if mapping failed free memory back to system since
 836         * there isn't much point in holding memory we can't use
 837         */
 838        if (dma_mapping_error(rx_ring->dev, dma)) {
 839                __free_pages(page, iavf_rx_pg_order(rx_ring));
 840                rx_ring->rx_stats.alloc_page_failed++;
 841                return false;
 842        }
 843
 844        bi->dma = dma;
 845        bi->page = page;
 846        bi->page_offset = iavf_rx_offset(rx_ring);
 847
 848        /* initialize pagecnt_bias to 1 representing we fully own page */
 849        bi->pagecnt_bias = 1;
 850
 851        return true;
 852}
 853
 854/**
 855 * iavf_receive_skb - Send a completed packet up the stack
 856 * @rx_ring:  rx ring in play
 857 * @skb: packet to send up
 858 * @vlan_tag: vlan tag for packet
 859 **/
 860static void iavf_receive_skb(struct iavf_ring *rx_ring,
 861                             struct sk_buff *skb, u16 vlan_tag)
 862{
 863        struct iavf_q_vector *q_vector = rx_ring->q_vector;
 864
 865        if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 866            (vlan_tag & VLAN_VID_MASK))
 867                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 868
 869        napi_gro_receive(&q_vector->napi, skb);
 870}
 871
 872/**
 873 * iavf_alloc_rx_buffers - Replace used receive buffers
 874 * @rx_ring: ring to place buffers on
 875 * @cleaned_count: number of buffers to replace
 876 *
 877 * Returns false if all allocations were successful, true if any fail
 878 **/
 879bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
 880{
 881        u16 ntu = rx_ring->next_to_use;
 882        union iavf_rx_desc *rx_desc;
 883        struct iavf_rx_buffer *bi;
 884
 885        /* do nothing if no valid netdev defined */
 886        if (!rx_ring->netdev || !cleaned_count)
 887                return false;
 888
 889        rx_desc = IAVF_RX_DESC(rx_ring, ntu);
 890        bi = &rx_ring->rx_bi[ntu];
 891
 892        do {
 893                if (!iavf_alloc_mapped_page(rx_ring, bi))
 894                        goto no_buffers;
 895
 896                /* sync the buffer for use by the device */
 897                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 898                                                 bi->page_offset,
 899                                                 rx_ring->rx_buf_len,
 900                                                 DMA_FROM_DEVICE);
 901
 902                /* Refresh the desc even if buffer_addrs didn't change
 903                 * because each write-back erases this info.
 904                 */
 905                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 906
 907                rx_desc++;
 908                bi++;
 909                ntu++;
 910                if (unlikely(ntu == rx_ring->count)) {
 911                        rx_desc = IAVF_RX_DESC(rx_ring, 0);
 912                        bi = rx_ring->rx_bi;
 913                        ntu = 0;
 914                }
 915
 916                /* clear the status bits for the next_to_use descriptor */
 917                rx_desc->wb.qword1.status_error_len = 0;
 918
 919                cleaned_count--;
 920        } while (cleaned_count);
 921
 922        if (rx_ring->next_to_use != ntu)
 923                iavf_release_rx_desc(rx_ring, ntu);
 924
 925        return false;
 926
 927no_buffers:
 928        if (rx_ring->next_to_use != ntu)
 929                iavf_release_rx_desc(rx_ring, ntu);
 930
 931        /* make sure to come back via polling to try again after
 932         * allocation failure
 933         */
 934        return true;
 935}
 936
 937/**
 938 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
 939 * @vsi: the VSI we care about
 940 * @skb: skb currently being received and modified
 941 * @rx_desc: the receive descriptor
 942 **/
 943static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
 944                                    struct sk_buff *skb,
 945                                    union iavf_rx_desc *rx_desc)
 946{
 947        struct iavf_rx_ptype_decoded decoded;
 948        u32 rx_error, rx_status;
 949        bool ipv4, ipv6;
 950        u8 ptype;
 951        u64 qword;
 952
 953        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 954        ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
 955        rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
 956                   IAVF_RXD_QW1_ERROR_SHIFT;
 957        rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
 958                    IAVF_RXD_QW1_STATUS_SHIFT;
 959        decoded = decode_rx_desc_ptype(ptype);
 960
 961        skb->ip_summed = CHECKSUM_NONE;
 962
 963        skb_checksum_none_assert(skb);
 964
 965        /* Rx csum enabled and ip headers found? */
 966        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 967                return;
 968
 969        /* did the hardware decode the packet and checksum? */
 970        if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
 971                return;
 972
 973        /* both known and outer_ip must be set for the below code to work */
 974        if (!(decoded.known && decoded.outer_ip))
 975                return;
 976
 977        ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 978               (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
 979        ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 980               (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
 981
 982        if (ipv4 &&
 983            (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
 984                         BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
 985                goto checksum_fail;
 986
 987        /* likely incorrect csum if alternate IP extension headers found */
 988        if (ipv6 &&
 989            rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 990                /* don't increment checksum err here, non-fatal err */
 991                return;
 992
 993        /* there was some L4 error, count error and punt packet to the stack */
 994        if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
 995                goto checksum_fail;
 996
 997        /* handle packets that were not able to be checksummed due
 998         * to arrival speed, in this case the stack can compute
 999         * the csum.
1000         */
1001        if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1002                return;
1003
1004        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1005        switch (decoded.inner_prot) {
1006        case IAVF_RX_PTYPE_INNER_PROT_TCP:
1007        case IAVF_RX_PTYPE_INNER_PROT_UDP:
1008        case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1009                skb->ip_summed = CHECKSUM_UNNECESSARY;
1010                /* fall though */
1011        default:
1012                break;
1013        }
1014
1015        return;
1016
1017checksum_fail:
1018        vsi->back->hw_csum_rx_error++;
1019}
1020
1021/**
1022 * iavf_ptype_to_htype - get a hash type
1023 * @ptype: the ptype value from the descriptor
1024 *
1025 * Returns a hash type to be used by skb_set_hash
1026 **/
1027static inline int iavf_ptype_to_htype(u8 ptype)
1028{
1029        struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1030
1031        if (!decoded.known)
1032                return PKT_HASH_TYPE_NONE;
1033
1034        if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1035            decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1036                return PKT_HASH_TYPE_L4;
1037        else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1038                 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1039                return PKT_HASH_TYPE_L3;
1040        else
1041                return PKT_HASH_TYPE_L2;
1042}
1043
1044/**
1045 * iavf_rx_hash - set the hash value in the skb
1046 * @ring: descriptor ring
1047 * @rx_desc: specific descriptor
1048 * @skb: skb currently being received and modified
1049 * @rx_ptype: Rx packet type
1050 **/
1051static inline void iavf_rx_hash(struct iavf_ring *ring,
1052                                union iavf_rx_desc *rx_desc,
1053                                struct sk_buff *skb,
1054                                u8 rx_ptype)
1055{
1056        u32 hash;
1057        const __le64 rss_mask =
1058                cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1059                            IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1060
1061        if (ring->netdev->features & NETIF_F_RXHASH)
1062                return;
1063
1064        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1065                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1066                skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1067        }
1068}
1069
1070/**
1071 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1072 * @rx_ring: rx descriptor ring packet is being transacted on
1073 * @rx_desc: pointer to the EOP Rx descriptor
1074 * @skb: pointer to current skb being populated
1075 * @rx_ptype: the packet type decoded by hardware
1076 *
1077 * This function checks the ring, descriptor, and packet information in
1078 * order to populate the hash, checksum, VLAN, protocol, and
1079 * other fields within the skb.
1080 **/
1081static inline
1082void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1083                             union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1084                             u8 rx_ptype)
1085{
1086        iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1087
1088        iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1089
1090        skb_record_rx_queue(skb, rx_ring->queue_index);
1091
1092        /* modifies the skb - consumes the enet header */
1093        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1094}
1095
1096/**
1097 * iavf_cleanup_headers - Correct empty headers
1098 * @rx_ring: rx descriptor ring packet is being transacted on
1099 * @skb: pointer to current skb being fixed
1100 *
1101 * Also address the case where we are pulling data in on pages only
1102 * and as such no data is present in the skb header.
1103 *
1104 * In addition if skb is not at least 60 bytes we need to pad it so that
1105 * it is large enough to qualify as a valid Ethernet frame.
1106 *
1107 * Returns true if an error was encountered and skb was freed.
1108 **/
1109static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1110{
1111        /* if eth_skb_pad returns an error the skb was freed */
1112        if (eth_skb_pad(skb))
1113                return true;
1114
1115        return false;
1116}
1117
1118/**
1119 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1120 * @rx_ring: rx descriptor ring to store buffers on
1121 * @old_buff: donor buffer to have page reused
1122 *
1123 * Synchronizes page for reuse by the adapter
1124 **/
1125static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1126                               struct iavf_rx_buffer *old_buff)
1127{
1128        struct iavf_rx_buffer *new_buff;
1129        u16 nta = rx_ring->next_to_alloc;
1130
1131        new_buff = &rx_ring->rx_bi[nta];
1132
1133        /* update, and store next to alloc */
1134        nta++;
1135        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1136
1137        /* transfer page from old buffer to new buffer */
1138        new_buff->dma           = old_buff->dma;
1139        new_buff->page          = old_buff->page;
1140        new_buff->page_offset   = old_buff->page_offset;
1141        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1142}
1143
1144/**
1145 * iavf_page_is_reusable - check if any reuse is possible
1146 * @page: page struct to check
1147 *
1148 * A page is not reusable if it was allocated under low memory
1149 * conditions, or it's not in the same NUMA node as this CPU.
1150 */
1151static inline bool iavf_page_is_reusable(struct page *page)
1152{
1153        return (page_to_nid(page) == numa_mem_id()) &&
1154                !page_is_pfmemalloc(page);
1155}
1156
1157/**
1158 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1159 * the adapter for another receive
1160 *
1161 * @rx_buffer: buffer containing the page
1162 *
1163 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1164 * an unused region in the page.
1165 *
1166 * For small pages, @truesize will be a constant value, half the size
1167 * of the memory at page.  We'll attempt to alternate between high and
1168 * low halves of the page, with one half ready for use by the hardware
1169 * and the other half being consumed by the stack.  We use the page
1170 * ref count to determine whether the stack has finished consuming the
1171 * portion of this page that was passed up with a previous packet.  If
1172 * the page ref count is >1, we'll assume the "other" half page is
1173 * still busy, and this page cannot be reused.
1174 *
1175 * For larger pages, @truesize will be the actual space used by the
1176 * received packet (adjusted upward to an even multiple of the cache
1177 * line size).  This will advance through the page by the amount
1178 * actually consumed by the received packets while there is still
1179 * space for a buffer.  Each region of larger pages will be used at
1180 * most once, after which the page will not be reused.
1181 *
1182 * In either case, if the page is reusable its refcount is increased.
1183 **/
1184static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1185{
1186        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1187        struct page *page = rx_buffer->page;
1188
1189        /* Is any reuse possible? */
1190        if (unlikely(!iavf_page_is_reusable(page)))
1191                return false;
1192
1193#if (PAGE_SIZE < 8192)
1194        /* if we are only owner of page we can reuse it */
1195        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1196                return false;
1197#else
1198#define IAVF_LAST_OFFSET \
1199        (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1200        if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1201                return false;
1202#endif
1203
1204        /* If we have drained the page fragment pool we need to update
1205         * the pagecnt_bias and page count so that we fully restock the
1206         * number of references the driver holds.
1207         */
1208        if (unlikely(!pagecnt_bias)) {
1209                page_ref_add(page, USHRT_MAX);
1210                rx_buffer->pagecnt_bias = USHRT_MAX;
1211        }
1212
1213        return true;
1214}
1215
1216/**
1217 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1218 * @rx_ring: rx descriptor ring to transact packets on
1219 * @rx_buffer: buffer containing page to add
1220 * @skb: sk_buff to place the data into
1221 * @size: packet length from rx_desc
1222 *
1223 * This function will add the data contained in rx_buffer->page to the skb.
1224 * It will just attach the page as a frag to the skb.
1225 *
1226 * The function will then update the page offset.
1227 **/
1228static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1229                             struct iavf_rx_buffer *rx_buffer,
1230                             struct sk_buff *skb,
1231                             unsigned int size)
1232{
1233#if (PAGE_SIZE < 8192)
1234        unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1235#else
1236        unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1237#endif
1238
1239        if (!size)
1240                return;
1241
1242        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1243                        rx_buffer->page_offset, size, truesize);
1244
1245        /* page is being used so we must update the page offset */
1246#if (PAGE_SIZE < 8192)
1247        rx_buffer->page_offset ^= truesize;
1248#else
1249        rx_buffer->page_offset += truesize;
1250#endif
1251}
1252
1253/**
1254 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1255 * @rx_ring: rx descriptor ring to transact packets on
1256 * @size: size of buffer to add to skb
1257 *
1258 * This function will pull an Rx buffer from the ring and synchronize it
1259 * for use by the CPU.
1260 */
1261static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1262                                                 const unsigned int size)
1263{
1264        struct iavf_rx_buffer *rx_buffer;
1265
1266        if (!size)
1267                return NULL;
1268
1269        rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1270        prefetchw(rx_buffer->page);
1271
1272        /* we are reusing so sync this buffer for CPU use */
1273        dma_sync_single_range_for_cpu(rx_ring->dev,
1274                                      rx_buffer->dma,
1275                                      rx_buffer->page_offset,
1276                                      size,
1277                                      DMA_FROM_DEVICE);
1278
1279        /* We have pulled a buffer for use, so decrement pagecnt_bias */
1280        rx_buffer->pagecnt_bias--;
1281
1282        return rx_buffer;
1283}
1284
1285/**
1286 * iavf_construct_skb - Allocate skb and populate it
1287 * @rx_ring: rx descriptor ring to transact packets on
1288 * @rx_buffer: rx buffer to pull data from
1289 * @size: size of buffer to add to skb
1290 *
1291 * This function allocates an skb.  It then populates it with the page
1292 * data from the current receive descriptor, taking care to set up the
1293 * skb correctly.
1294 */
1295static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1296                                          struct iavf_rx_buffer *rx_buffer,
1297                                          unsigned int size)
1298{
1299        void *va;
1300#if (PAGE_SIZE < 8192)
1301        unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1302#else
1303        unsigned int truesize = SKB_DATA_ALIGN(size);
1304#endif
1305        unsigned int headlen;
1306        struct sk_buff *skb;
1307
1308        if (!rx_buffer)
1309                return NULL;
1310        /* prefetch first cache line of first page */
1311        va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1312        prefetch(va);
1313#if L1_CACHE_BYTES < 128
1314        prefetch(va + L1_CACHE_BYTES);
1315#endif
1316
1317        /* allocate a skb to store the frags */
1318        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1319                               IAVF_RX_HDR_SIZE,
1320                               GFP_ATOMIC | __GFP_NOWARN);
1321        if (unlikely(!skb))
1322                return NULL;
1323
1324        /* Determine available headroom for copy */
1325        headlen = size;
1326        if (headlen > IAVF_RX_HDR_SIZE)
1327                headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1328
1329        /* align pull length to size of long to optimize memcpy performance */
1330        memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1331
1332        /* update all of the pointers */
1333        size -= headlen;
1334        if (size) {
1335                skb_add_rx_frag(skb, 0, rx_buffer->page,
1336                                rx_buffer->page_offset + headlen,
1337                                size, truesize);
1338
1339                /* buffer is used by skb, update page_offset */
1340#if (PAGE_SIZE < 8192)
1341                rx_buffer->page_offset ^= truesize;
1342#else
1343                rx_buffer->page_offset += truesize;
1344#endif
1345        } else {
1346                /* buffer is unused, reset bias back to rx_buffer */
1347                rx_buffer->pagecnt_bias++;
1348        }
1349
1350        return skb;
1351}
1352
1353/**
1354 * iavf_build_skb - Build skb around an existing buffer
1355 * @rx_ring: Rx descriptor ring to transact packets on
1356 * @rx_buffer: Rx buffer to pull data from
1357 * @size: size of buffer to add to skb
1358 *
1359 * This function builds an skb around an existing Rx buffer, taking care
1360 * to set up the skb correctly and avoid any memcpy overhead.
1361 */
1362static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1363                                      struct iavf_rx_buffer *rx_buffer,
1364                                      unsigned int size)
1365{
1366        void *va;
1367#if (PAGE_SIZE < 8192)
1368        unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1369#else
1370        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1371                                SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1372#endif
1373        struct sk_buff *skb;
1374
1375        if (!rx_buffer)
1376                return NULL;
1377        /* prefetch first cache line of first page */
1378        va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1379        prefetch(va);
1380#if L1_CACHE_BYTES < 128
1381        prefetch(va + L1_CACHE_BYTES);
1382#endif
1383        /* build an skb around the page buffer */
1384        skb = build_skb(va - IAVF_SKB_PAD, truesize);
1385        if (unlikely(!skb))
1386                return NULL;
1387
1388        /* update pointers within the skb to store the data */
1389        skb_reserve(skb, IAVF_SKB_PAD);
1390        __skb_put(skb, size);
1391
1392        /* buffer is used by skb, update page_offset */
1393#if (PAGE_SIZE < 8192)
1394        rx_buffer->page_offset ^= truesize;
1395#else
1396        rx_buffer->page_offset += truesize;
1397#endif
1398
1399        return skb;
1400}
1401
1402/**
1403 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1404 * @rx_ring: rx descriptor ring to transact packets on
1405 * @rx_buffer: rx buffer to pull data from
1406 *
1407 * This function will clean up the contents of the rx_buffer.  It will
1408 * either recycle the buffer or unmap it and free the associated resources.
1409 */
1410static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1411                               struct iavf_rx_buffer *rx_buffer)
1412{
1413        if (!rx_buffer)
1414                return;
1415
1416        if (iavf_can_reuse_rx_page(rx_buffer)) {
1417                /* hand second half of page back to the ring */
1418                iavf_reuse_rx_page(rx_ring, rx_buffer);
1419                rx_ring->rx_stats.page_reuse_count++;
1420        } else {
1421                /* we are not reusing the buffer so unmap it */
1422                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1423                                     iavf_rx_pg_size(rx_ring),
1424                                     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1425                __page_frag_cache_drain(rx_buffer->page,
1426                                        rx_buffer->pagecnt_bias);
1427        }
1428
1429        /* clear contents of buffer_info */
1430        rx_buffer->page = NULL;
1431}
1432
1433/**
1434 * iavf_is_non_eop - process handling of non-EOP buffers
1435 * @rx_ring: Rx ring being processed
1436 * @rx_desc: Rx descriptor for current buffer
1437 * @skb: Current socket buffer containing buffer in progress
1438 *
1439 * This function updates next to clean.  If the buffer is an EOP buffer
1440 * this function exits returning false, otherwise it will place the
1441 * sk_buff in the next buffer to be chained and return true indicating
1442 * that this is in fact a non-EOP buffer.
1443 **/
1444static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1445                            union iavf_rx_desc *rx_desc,
1446                            struct sk_buff *skb)
1447{
1448        u32 ntc = rx_ring->next_to_clean + 1;
1449
1450        /* fetch, update, and store next to clean */
1451        ntc = (ntc < rx_ring->count) ? ntc : 0;
1452        rx_ring->next_to_clean = ntc;
1453
1454        prefetch(IAVF_RX_DESC(rx_ring, ntc));
1455
1456        /* if we are the last buffer then there is nothing else to do */
1457#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1458        if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1459                return false;
1460
1461        rx_ring->rx_stats.non_eop_descs++;
1462
1463        return true;
1464}
1465
1466/**
1467 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1468 * @rx_ring: rx descriptor ring to transact packets on
1469 * @budget: Total limit on number of packets to process
1470 *
1471 * This function provides a "bounce buffer" approach to Rx interrupt
1472 * processing.  The advantage to this is that on systems that have
1473 * expensive overhead for IOMMU access this provides a means of avoiding
1474 * it by maintaining the mapping of the page to the system.
1475 *
1476 * Returns amount of work completed
1477 **/
1478static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1479{
1480        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1481        struct sk_buff *skb = rx_ring->skb;
1482        u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1483        bool failure = false;
1484
1485        while (likely(total_rx_packets < (unsigned int)budget)) {
1486                struct iavf_rx_buffer *rx_buffer;
1487                union iavf_rx_desc *rx_desc;
1488                unsigned int size;
1489                u16 vlan_tag;
1490                u8 rx_ptype;
1491                u64 qword;
1492
1493                /* return some buffers to hardware, one at a time is too slow */
1494                if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1495                        failure = failure ||
1496                                  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1497                        cleaned_count = 0;
1498                }
1499
1500                rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1501
1502                /* status_error_len will always be zero for unused descriptors
1503                 * because it's cleared in cleanup, and overlaps with hdr_addr
1504                 * which is always zero because packet split isn't used, if the
1505                 * hardware wrote DD then the length will be non-zero
1506                 */
1507                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1508
1509                /* This memory barrier is needed to keep us from reading
1510                 * any other fields out of the rx_desc until we have
1511                 * verified the descriptor has been written back.
1512                 */
1513                dma_rmb();
1514#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1515                if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1516                        break;
1517
1518                size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1519                       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1520
1521                iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1522                rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1523
1524                /* retrieve a buffer from the ring */
1525                if (skb)
1526                        iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1527                else if (ring_uses_build_skb(rx_ring))
1528                        skb = iavf_build_skb(rx_ring, rx_buffer, size);
1529                else
1530                        skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1531
1532                /* exit if we failed to retrieve a buffer */
1533                if (!skb) {
1534                        rx_ring->rx_stats.alloc_buff_failed++;
1535                        if (rx_buffer)
1536                                rx_buffer->pagecnt_bias++;
1537                        break;
1538                }
1539
1540                iavf_put_rx_buffer(rx_ring, rx_buffer);
1541                cleaned_count++;
1542
1543                if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1544                        continue;
1545
1546                /* ERR_MASK will only have valid bits if EOP set, and
1547                 * what we are doing here is actually checking
1548                 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1549                 * the error field
1550                 */
1551                if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1552                        dev_kfree_skb_any(skb);
1553                        skb = NULL;
1554                        continue;
1555                }
1556
1557                if (iavf_cleanup_headers(rx_ring, skb)) {
1558                        skb = NULL;
1559                        continue;
1560                }
1561
1562                /* probably a little skewed due to removing CRC */
1563                total_rx_bytes += skb->len;
1564
1565                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1566                rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1567                           IAVF_RXD_QW1_PTYPE_SHIFT;
1568
1569                /* populate checksum, VLAN, and protocol */
1570                iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1571
1572
1573                vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1574                           le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1575
1576                iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1577                iavf_receive_skb(rx_ring, skb, vlan_tag);
1578                skb = NULL;
1579
1580                /* update budget accounting */
1581                total_rx_packets++;
1582        }
1583
1584        rx_ring->skb = skb;
1585
1586        u64_stats_update_begin(&rx_ring->syncp);
1587        rx_ring->stats.packets += total_rx_packets;
1588        rx_ring->stats.bytes += total_rx_bytes;
1589        u64_stats_update_end(&rx_ring->syncp);
1590        rx_ring->q_vector->rx.total_packets += total_rx_packets;
1591        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1592
1593        /* guarantee a trip back through this routine if there was a failure */
1594        return failure ? budget : (int)total_rx_packets;
1595}
1596
1597static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1598{
1599        u32 val;
1600
1601        /* We don't bother with setting the CLEARPBA bit as the data sheet
1602         * points out doing so is "meaningless since it was already
1603         * auto-cleared". The auto-clearing happens when the interrupt is
1604         * asserted.
1605         *
1606         * Hardware errata 28 for also indicates that writing to a
1607         * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1608         * an event in the PBA anyway so we need to rely on the automask
1609         * to hold pending events for us until the interrupt is re-enabled
1610         *
1611         * The itr value is reported in microseconds, and the register
1612         * value is recorded in 2 microsecond units. For this reason we
1613         * only need to shift by the interval shift - 1 instead of the
1614         * full value.
1615         */
1616        itr &= IAVF_ITR_MASK;
1617
1618        val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1619              (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1620              (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1621
1622        return val;
1623}
1624
1625/* a small macro to shorten up some long lines */
1626#define INTREG IAVF_VFINT_DYN_CTLN1
1627
1628/* The act of updating the ITR will cause it to immediately trigger. In order
1629 * to prevent this from throwing off adaptive update statistics we defer the
1630 * update so that it can only happen so often. So after either Tx or Rx are
1631 * updated we make the adaptive scheme wait until either the ITR completely
1632 * expires via the next_update expiration or we have been through at least
1633 * 3 interrupts.
1634 */
1635#define ITR_COUNTDOWN_START 3
1636
1637/**
1638 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1639 * @vsi: the VSI we care about
1640 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1641 *
1642 **/
1643static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1644                                          struct iavf_q_vector *q_vector)
1645{
1646        struct iavf_hw *hw = &vsi->back->hw;
1647        u32 intval;
1648
1649        /* These will do nothing if dynamic updates are not enabled */
1650        iavf_update_itr(q_vector, &q_vector->tx);
1651        iavf_update_itr(q_vector, &q_vector->rx);
1652
1653        /* This block of logic allows us to get away with only updating
1654         * one ITR value with each interrupt. The idea is to perform a
1655         * pseudo-lazy update with the following criteria.
1656         *
1657         * 1. Rx is given higher priority than Tx if both are in same state
1658         * 2. If we must reduce an ITR that is given highest priority.
1659         * 3. We then give priority to increasing ITR based on amount.
1660         */
1661        if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1662                /* Rx ITR needs to be reduced, this is highest priority */
1663                intval = iavf_buildreg_itr(IAVF_RX_ITR,
1664                                           q_vector->rx.target_itr);
1665                q_vector->rx.current_itr = q_vector->rx.target_itr;
1666                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1667        } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1668                   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1669                    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1670                /* Tx ITR needs to be reduced, this is second priority
1671                 * Tx ITR needs to be increased more than Rx, fourth priority
1672                 */
1673                intval = iavf_buildreg_itr(IAVF_TX_ITR,
1674                                           q_vector->tx.target_itr);
1675                q_vector->tx.current_itr = q_vector->tx.target_itr;
1676                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1677        } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1678                /* Rx ITR needs to be increased, third priority */
1679                intval = iavf_buildreg_itr(IAVF_RX_ITR,
1680                                           q_vector->rx.target_itr);
1681                q_vector->rx.current_itr = q_vector->rx.target_itr;
1682                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1683        } else {
1684                /* No ITR update, lowest priority */
1685                intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1686                if (q_vector->itr_countdown)
1687                        q_vector->itr_countdown--;
1688        }
1689
1690        if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1691                wr32(hw, INTREG(q_vector->reg_idx), intval);
1692}
1693
1694/**
1695 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1696 * @napi: napi struct with our devices info in it
1697 * @budget: amount of work driver is allowed to do this pass, in packets
1698 *
1699 * This function will clean all queues associated with a q_vector.
1700 *
1701 * Returns the amount of work done
1702 **/
1703int iavf_napi_poll(struct napi_struct *napi, int budget)
1704{
1705        struct iavf_q_vector *q_vector =
1706                               container_of(napi, struct iavf_q_vector, napi);
1707        struct iavf_vsi *vsi = q_vector->vsi;
1708        struct iavf_ring *ring;
1709        bool clean_complete = true;
1710        bool arm_wb = false;
1711        int budget_per_ring;
1712        int work_done = 0;
1713
1714        if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1715                napi_complete(napi);
1716                return 0;
1717        }
1718
1719        /* Since the actual Tx work is minimal, we can give the Tx a larger
1720         * budget and be more aggressive about cleaning up the Tx descriptors.
1721         */
1722        iavf_for_each_ring(ring, q_vector->tx) {
1723                if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1724                        clean_complete = false;
1725                        continue;
1726                }
1727                arm_wb |= ring->arm_wb;
1728                ring->arm_wb = false;
1729        }
1730
1731        /* Handle case where we are called by netpoll with a budget of 0 */
1732        if (budget <= 0)
1733                goto tx_only;
1734
1735        /* We attempt to distribute budget to each Rx queue fairly, but don't
1736         * allow the budget to go below 1 because that would exit polling early.
1737         */
1738        budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1739
1740        iavf_for_each_ring(ring, q_vector->rx) {
1741                int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1742
1743                work_done += cleaned;
1744                /* if we clean as many as budgeted, we must not be done */
1745                if (cleaned >= budget_per_ring)
1746                        clean_complete = false;
1747        }
1748
1749        /* If work not completed, return budget and polling will return */
1750        if (!clean_complete) {
1751                int cpu_id = smp_processor_id();
1752
1753                /* It is possible that the interrupt affinity has changed but,
1754                 * if the cpu is pegged at 100%, polling will never exit while
1755                 * traffic continues and the interrupt will be stuck on this
1756                 * cpu.  We check to make sure affinity is correct before we
1757                 * continue to poll, otherwise we must stop polling so the
1758                 * interrupt can move to the correct cpu.
1759                 */
1760                if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1761                        /* Tell napi that we are done polling */
1762                        napi_complete_done(napi, work_done);
1763
1764                        /* Force an interrupt */
1765                        iavf_force_wb(vsi, q_vector);
1766
1767                        /* Return budget-1 so that polling stops */
1768                        return budget - 1;
1769                }
1770tx_only:
1771                if (arm_wb) {
1772                        q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1773                        iavf_enable_wb_on_itr(vsi, q_vector);
1774                }
1775                return budget;
1776        }
1777
1778        if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1779                q_vector->arm_wb_state = false;
1780
1781        /* Exit the polling mode, but don't re-enable interrupts if stack might
1782         * poll us due to busy-polling
1783         */
1784        if (likely(napi_complete_done(napi, work_done)))
1785                iavf_update_enable_itr(vsi, q_vector);
1786
1787        return min(work_done, budget - 1);
1788}
1789
1790/**
1791 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1792 * @skb:     send buffer
1793 * @tx_ring: ring to send buffer on
1794 * @flags:   the tx flags to be set
1795 *
1796 * Checks the skb and set up correspondingly several generic transmit flags
1797 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1798 *
1799 * Returns error code indicate the frame should be dropped upon error and the
1800 * otherwise  returns 0 to indicate the flags has been set properly.
1801 **/
1802static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1803                                             struct iavf_ring *tx_ring,
1804                                             u32 *flags)
1805{
1806        __be16 protocol = skb->protocol;
1807        u32  tx_flags = 0;
1808
1809        if (protocol == htons(ETH_P_8021Q) &&
1810            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1811                /* When HW VLAN acceleration is turned off by the user the
1812                 * stack sets the protocol to 8021q so that the driver
1813                 * can take any steps required to support the SW only
1814                 * VLAN handling.  In our case the driver doesn't need
1815                 * to take any further steps so just set the protocol
1816                 * to the encapsulated ethertype.
1817                 */
1818                skb->protocol = vlan_get_protocol(skb);
1819                goto out;
1820        }
1821
1822        /* if we have a HW VLAN tag being added, default to the HW one */
1823        if (skb_vlan_tag_present(skb)) {
1824                tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1825                tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1826        /* else if it is a SW VLAN, check the next protocol and store the tag */
1827        } else if (protocol == htons(ETH_P_8021Q)) {
1828                struct vlan_hdr *vhdr, _vhdr;
1829
1830                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1831                if (!vhdr)
1832                        return -EINVAL;
1833
1834                protocol = vhdr->h_vlan_encapsulated_proto;
1835                tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT;
1836                tx_flags |= IAVF_TX_FLAGS_SW_VLAN;
1837        }
1838
1839out:
1840        *flags = tx_flags;
1841        return 0;
1842}
1843
1844/**
1845 * iavf_tso - set up the tso context descriptor
1846 * @first:    pointer to first Tx buffer for xmit
1847 * @hdr_len:  ptr to the size of the packet header
1848 * @cd_type_cmd_tso_mss: Quad Word 1
1849 *
1850 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1851 **/
1852static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1853                    u64 *cd_type_cmd_tso_mss)
1854{
1855        struct sk_buff *skb = first->skb;
1856        u64 cd_cmd, cd_tso_len, cd_mss;
1857        union {
1858                struct iphdr *v4;
1859                struct ipv6hdr *v6;
1860                unsigned char *hdr;
1861        } ip;
1862        union {
1863                struct tcphdr *tcp;
1864                struct udphdr *udp;
1865                unsigned char *hdr;
1866        } l4;
1867        u32 paylen, l4_offset;
1868        u16 gso_segs, gso_size;
1869        int err;
1870
1871        if (skb->ip_summed != CHECKSUM_PARTIAL)
1872                return 0;
1873
1874        if (!skb_is_gso(skb))
1875                return 0;
1876
1877        err = skb_cow_head(skb, 0);
1878        if (err < 0)
1879                return err;
1880
1881        ip.hdr = skb_network_header(skb);
1882        l4.hdr = skb_transport_header(skb);
1883
1884        /* initialize outer IP header fields */
1885        if (ip.v4->version == 4) {
1886                ip.v4->tot_len = 0;
1887                ip.v4->check = 0;
1888        } else {
1889                ip.v6->payload_len = 0;
1890        }
1891
1892        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1893                                         SKB_GSO_GRE_CSUM |
1894                                         SKB_GSO_IPXIP4 |
1895                                         SKB_GSO_IPXIP6 |
1896                                         SKB_GSO_UDP_TUNNEL |
1897                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
1898                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1899                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1900                        l4.udp->len = 0;
1901
1902                        /* determine offset of outer transport header */
1903                        l4_offset = l4.hdr - skb->data;
1904
1905                        /* remove payload length from outer checksum */
1906                        paylen = skb->len - l4_offset;
1907                        csum_replace_by_diff(&l4.udp->check,
1908                                             (__force __wsum)htonl(paylen));
1909                }
1910
1911                /* reset pointers to inner headers */
1912                ip.hdr = skb_inner_network_header(skb);
1913                l4.hdr = skb_inner_transport_header(skb);
1914
1915                /* initialize inner IP header fields */
1916                if (ip.v4->version == 4) {
1917                        ip.v4->tot_len = 0;
1918                        ip.v4->check = 0;
1919                } else {
1920                        ip.v6->payload_len = 0;
1921                }
1922        }
1923
1924        /* determine offset of inner transport header */
1925        l4_offset = l4.hdr - skb->data;
1926
1927        /* remove payload length from inner checksum */
1928        paylen = skb->len - l4_offset;
1929        csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1930
1931        /* compute length of segmentation header */
1932        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1933
1934        /* pull values out of skb_shinfo */
1935        gso_size = skb_shinfo(skb)->gso_size;
1936        gso_segs = skb_shinfo(skb)->gso_segs;
1937
1938        /* update GSO size and bytecount with header size */
1939        first->gso_segs = gso_segs;
1940        first->bytecount += (first->gso_segs - 1) * *hdr_len;
1941
1942        /* find the field values */
1943        cd_cmd = IAVF_TX_CTX_DESC_TSO;
1944        cd_tso_len = skb->len - *hdr_len;
1945        cd_mss = gso_size;
1946        *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1947                                (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1948                                (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1949        return 1;
1950}
1951
1952/**
1953 * iavf_tx_enable_csum - Enable Tx checksum offloads
1954 * @skb: send buffer
1955 * @tx_flags: pointer to Tx flags currently set
1956 * @td_cmd: Tx descriptor command bits to set
1957 * @td_offset: Tx descriptor header offsets to set
1958 * @tx_ring: Tx descriptor ring
1959 * @cd_tunneling: ptr to context desc bits
1960 **/
1961static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1962                               u32 *td_cmd, u32 *td_offset,
1963                               struct iavf_ring *tx_ring,
1964                               u32 *cd_tunneling)
1965{
1966        union {
1967                struct iphdr *v4;
1968                struct ipv6hdr *v6;
1969                unsigned char *hdr;
1970        } ip;
1971        union {
1972                struct tcphdr *tcp;
1973                struct udphdr *udp;
1974                unsigned char *hdr;
1975        } l4;
1976        unsigned char *exthdr;
1977        u32 offset, cmd = 0;
1978        __be16 frag_off;
1979        u8 l4_proto = 0;
1980
1981        if (skb->ip_summed != CHECKSUM_PARTIAL)
1982                return 0;
1983
1984        ip.hdr = skb_network_header(skb);
1985        l4.hdr = skb_transport_header(skb);
1986
1987        /* compute outer L2 header size */
1988        offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1989
1990        if (skb->encapsulation) {
1991                u32 tunnel = 0;
1992                /* define outer network header type */
1993                if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1994                        tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1995                                  IAVF_TX_CTX_EXT_IP_IPV4 :
1996                                  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1997
1998                        l4_proto = ip.v4->protocol;
1999                } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2000                        tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
2001
2002                        exthdr = ip.hdr + sizeof(*ip.v6);
2003                        l4_proto = ip.v6->nexthdr;
2004                        if (l4.hdr != exthdr)
2005                                ipv6_skip_exthdr(skb, exthdr - skb->data,
2006                                                 &l4_proto, &frag_off);
2007                }
2008
2009                /* define outer transport */
2010                switch (l4_proto) {
2011                case IPPROTO_UDP:
2012                        tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2013                        *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2014                        break;
2015                case IPPROTO_GRE:
2016                        tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2017                        *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2018                        break;
2019                case IPPROTO_IPIP:
2020                case IPPROTO_IPV6:
2021                        *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2022                        l4.hdr = skb_inner_network_header(skb);
2023                        break;
2024                default:
2025                        if (*tx_flags & IAVF_TX_FLAGS_TSO)
2026                                return -1;
2027
2028                        skb_checksum_help(skb);
2029                        return 0;
2030                }
2031
2032                /* compute outer L3 header size */
2033                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2034                          IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2035
2036                /* switch IP header pointer from outer to inner header */
2037                ip.hdr = skb_inner_network_header(skb);
2038
2039                /* compute tunnel header size */
2040                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2041                          IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2042
2043                /* indicate if we need to offload outer UDP header */
2044                if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2045                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2046                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2047                        tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2048
2049                /* record tunnel offload values */
2050                *cd_tunneling |= tunnel;
2051
2052                /* switch L4 header pointer from outer to inner */
2053                l4.hdr = skb_inner_transport_header(skb);
2054                l4_proto = 0;
2055
2056                /* reset type as we transition from outer to inner headers */
2057                *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2058                if (ip.v4->version == 4)
2059                        *tx_flags |= IAVF_TX_FLAGS_IPV4;
2060                if (ip.v6->version == 6)
2061                        *tx_flags |= IAVF_TX_FLAGS_IPV6;
2062        }
2063
2064        /* Enable IP checksum offloads */
2065        if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2066                l4_proto = ip.v4->protocol;
2067                /* the stack computes the IP header already, the only time we
2068                 * need the hardware to recompute it is in the case of TSO.
2069                 */
2070                cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2071                       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2072                       IAVF_TX_DESC_CMD_IIPT_IPV4;
2073        } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2074                cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2075
2076                exthdr = ip.hdr + sizeof(*ip.v6);
2077                l4_proto = ip.v6->nexthdr;
2078                if (l4.hdr != exthdr)
2079                        ipv6_skip_exthdr(skb, exthdr - skb->data,
2080                                         &l4_proto, &frag_off);
2081        }
2082
2083        /* compute inner L3 header size */
2084        offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2085
2086        /* Enable L4 checksum offloads */
2087        switch (l4_proto) {
2088        case IPPROTO_TCP:
2089                /* enable checksum offloads */
2090                cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2091                offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2092                break;
2093        case IPPROTO_SCTP:
2094                /* enable SCTP checksum offload */
2095                cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2096                offset |= (sizeof(struct sctphdr) >> 2) <<
2097                          IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2098                break;
2099        case IPPROTO_UDP:
2100                /* enable UDP checksum offload */
2101                cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2102                offset |= (sizeof(struct udphdr) >> 2) <<
2103                          IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2104                break;
2105        default:
2106                if (*tx_flags & IAVF_TX_FLAGS_TSO)
2107                        return -1;
2108                skb_checksum_help(skb);
2109                return 0;
2110        }
2111
2112        *td_cmd |= cmd;
2113        *td_offset |= offset;
2114
2115        return 1;
2116}
2117
2118/**
2119 * iavf_create_tx_ctx Build the Tx context descriptor
2120 * @tx_ring:  ring to create the descriptor on
2121 * @cd_type_cmd_tso_mss: Quad Word 1
2122 * @cd_tunneling: Quad Word 0 - bits 0-31
2123 * @cd_l2tag2: Quad Word 0 - bits 32-63
2124 **/
2125static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2126                               const u64 cd_type_cmd_tso_mss,
2127                               const u32 cd_tunneling, const u32 cd_l2tag2)
2128{
2129        struct iavf_tx_context_desc *context_desc;
2130        int i = tx_ring->next_to_use;
2131
2132        if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2133            !cd_tunneling && !cd_l2tag2)
2134                return;
2135
2136        /* grab the next descriptor */
2137        context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2138
2139        i++;
2140        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2141
2142        /* cpu_to_le32 and assign to struct fields */
2143        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2144        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2145        context_desc->rsvd = cpu_to_le16(0);
2146        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2147}
2148
2149/**
2150 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2151 * @skb:      send buffer
2152 *
2153 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2154 * and so we need to figure out the cases where we need to linearize the skb.
2155 *
2156 * For TSO we need to count the TSO header and segment payload separately.
2157 * As such we need to check cases where we have 7 fragments or more as we
2158 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2159 * the segment payload in the first descriptor, and another 7 for the
2160 * fragments.
2161 **/
2162bool __iavf_chk_linearize(struct sk_buff *skb)
2163{
2164        const struct skb_frag_struct *frag, *stale;
2165        int nr_frags, sum;
2166
2167        /* no need to check if number of frags is less than 7 */
2168        nr_frags = skb_shinfo(skb)->nr_frags;
2169        if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2170                return false;
2171
2172        /* We need to walk through the list and validate that each group
2173         * of 6 fragments totals at least gso_size.
2174         */
2175        nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2176        frag = &skb_shinfo(skb)->frags[0];
2177
2178        /* Initialize size to the negative value of gso_size minus 1.  We
2179         * use this as the worst case scenerio in which the frag ahead
2180         * of us only provides one byte which is why we are limited to 6
2181         * descriptors for a single transmit as the header and previous
2182         * fragment are already consuming 2 descriptors.
2183         */
2184        sum = 1 - skb_shinfo(skb)->gso_size;
2185
2186        /* Add size of frags 0 through 4 to create our initial sum */
2187        sum += skb_frag_size(frag++);
2188        sum += skb_frag_size(frag++);
2189        sum += skb_frag_size(frag++);
2190        sum += skb_frag_size(frag++);
2191        sum += skb_frag_size(frag++);
2192
2193        /* Walk through fragments adding latest fragment, testing it, and
2194         * then removing stale fragments from the sum.
2195         */
2196        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2197                int stale_size = skb_frag_size(stale);
2198
2199                sum += skb_frag_size(frag++);
2200
2201                /* The stale fragment may present us with a smaller
2202                 * descriptor than the actual fragment size. To account
2203                 * for that we need to remove all the data on the front and
2204                 * figure out what the remainder would be in the last
2205                 * descriptor associated with the fragment.
2206                 */
2207                if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2208                        int align_pad = -(stale->page_offset) &
2209                                        (IAVF_MAX_READ_REQ_SIZE - 1);
2210
2211                        sum -= align_pad;
2212                        stale_size -= align_pad;
2213
2214                        do {
2215                                sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2216                                stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2217                        } while (stale_size > IAVF_MAX_DATA_PER_TXD);
2218                }
2219
2220                /* if sum is negative we failed to make sufficient progress */
2221                if (sum < 0)
2222                        return true;
2223
2224                if (!nr_frags--)
2225                        break;
2226
2227                sum -= stale_size;
2228        }
2229
2230        return false;
2231}
2232
2233/**
2234 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2235 * @tx_ring: the ring to be checked
2236 * @size:    the size buffer we want to assure is available
2237 *
2238 * Returns -EBUSY if a stop is needed, else 0
2239 **/
2240int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2241{
2242        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2243        /* Memory barrier before checking head and tail */
2244        smp_mb();
2245
2246        /* Check again in a case another CPU has just made room available. */
2247        if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2248                return -EBUSY;
2249
2250        /* A reprieve! - use start_queue because it doesn't call schedule */
2251        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2252        ++tx_ring->tx_stats.restart_queue;
2253        return 0;
2254}
2255
2256/**
2257 * iavf_tx_map - Build the Tx descriptor
2258 * @tx_ring:  ring to send buffer on
2259 * @skb:      send buffer
2260 * @first:    first buffer info buffer to use
2261 * @tx_flags: collected send information
2262 * @hdr_len:  size of the packet header
2263 * @td_cmd:   the command field in the descriptor
2264 * @td_offset: offset for checksum or crc
2265 **/
2266static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2267                               struct iavf_tx_buffer *first, u32 tx_flags,
2268                               const u8 hdr_len, u32 td_cmd, u32 td_offset)
2269{
2270        unsigned int data_len = skb->data_len;
2271        unsigned int size = skb_headlen(skb);
2272        struct skb_frag_struct *frag;
2273        struct iavf_tx_buffer *tx_bi;
2274        struct iavf_tx_desc *tx_desc;
2275        u16 i = tx_ring->next_to_use;
2276        u32 td_tag = 0;
2277        dma_addr_t dma;
2278
2279        if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2280                td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2281                td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2282                         IAVF_TX_FLAGS_VLAN_SHIFT;
2283        }
2284
2285        first->tx_flags = tx_flags;
2286
2287        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2288
2289        tx_desc = IAVF_TX_DESC(tx_ring, i);
2290        tx_bi = first;
2291
2292        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2293                unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2294
2295                if (dma_mapping_error(tx_ring->dev, dma))
2296                        goto dma_error;
2297
2298                /* record length, and DMA address */
2299                dma_unmap_len_set(tx_bi, len, size);
2300                dma_unmap_addr_set(tx_bi, dma, dma);
2301
2302                /* align size to end of page */
2303                max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2304                tx_desc->buffer_addr = cpu_to_le64(dma);
2305
2306                while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2307                        tx_desc->cmd_type_offset_bsz =
2308                                build_ctob(td_cmd, td_offset,
2309                                           max_data, td_tag);
2310
2311                        tx_desc++;
2312                        i++;
2313
2314                        if (i == tx_ring->count) {
2315                                tx_desc = IAVF_TX_DESC(tx_ring, 0);
2316                                i = 0;
2317                        }
2318
2319                        dma += max_data;
2320                        size -= max_data;
2321
2322                        max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2323                        tx_desc->buffer_addr = cpu_to_le64(dma);
2324                }
2325
2326                if (likely(!data_len))
2327                        break;
2328
2329                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2330                                                          size, td_tag);
2331
2332                tx_desc++;
2333                i++;
2334
2335                if (i == tx_ring->count) {
2336                        tx_desc = IAVF_TX_DESC(tx_ring, 0);
2337                        i = 0;
2338                }
2339
2340                size = skb_frag_size(frag);
2341                data_len -= size;
2342
2343                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2344                                       DMA_TO_DEVICE);
2345
2346                tx_bi = &tx_ring->tx_bi[i];
2347        }
2348
2349        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2350
2351        i++;
2352        if (i == tx_ring->count)
2353                i = 0;
2354
2355        tx_ring->next_to_use = i;
2356
2357        iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2358
2359        /* write last descriptor with RS and EOP bits */
2360        td_cmd |= IAVF_TXD_CMD;
2361        tx_desc->cmd_type_offset_bsz =
2362                        build_ctob(td_cmd, td_offset, size, td_tag);
2363
2364        skb_tx_timestamp(skb);
2365
2366        /* Force memory writes to complete before letting h/w know there
2367         * are new descriptors to fetch.
2368         *
2369         * We also use this memory barrier to make certain all of the
2370         * status bits have been updated before next_to_watch is written.
2371         */
2372        wmb();
2373
2374        /* set next_to_watch value indicating a packet is present */
2375        first->next_to_watch = tx_desc;
2376
2377        /* notify HW of packet */
2378        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2379                writel(i, tx_ring->tail);
2380        }
2381
2382        return;
2383
2384dma_error:
2385        dev_info(tx_ring->dev, "TX DMA map failed\n");
2386
2387        /* clear dma mappings for failed tx_bi map */
2388        for (;;) {
2389                tx_bi = &tx_ring->tx_bi[i];
2390                iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2391                if (tx_bi == first)
2392                        break;
2393                if (i == 0)
2394                        i = tx_ring->count;
2395                i--;
2396        }
2397
2398        tx_ring->next_to_use = i;
2399}
2400
2401/**
2402 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2403 * @skb:     send buffer
2404 * @tx_ring: ring to send buffer on
2405 *
2406 * Returns NETDEV_TX_OK if sent, else an error code
2407 **/
2408static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2409                                        struct iavf_ring *tx_ring)
2410{
2411        u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2412        u32 cd_tunneling = 0, cd_l2tag2 = 0;
2413        struct iavf_tx_buffer *first;
2414        u32 td_offset = 0;
2415        u32 tx_flags = 0;
2416        __be16 protocol;
2417        u32 td_cmd = 0;
2418        u8 hdr_len = 0;
2419        int tso, count;
2420
2421        /* prefetch the data, we'll need it later */
2422        prefetch(skb->data);
2423
2424        iavf_trace(xmit_frame_ring, skb, tx_ring);
2425
2426        count = iavf_xmit_descriptor_count(skb);
2427        if (iavf_chk_linearize(skb, count)) {
2428                if (__skb_linearize(skb)) {
2429                        dev_kfree_skb_any(skb);
2430                        return NETDEV_TX_OK;
2431                }
2432                count = iavf_txd_use_count(skb->len);
2433                tx_ring->tx_stats.tx_linearize++;
2434        }
2435
2436        /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2437         *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2438         *       + 4 desc gap to avoid the cache line where head is,
2439         *       + 1 desc for context descriptor,
2440         * otherwise try next time
2441         */
2442        if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2443                tx_ring->tx_stats.tx_busy++;
2444                return NETDEV_TX_BUSY;
2445        }
2446
2447        /* record the location of the first descriptor for this packet */
2448        first = &tx_ring->tx_bi[tx_ring->next_to_use];
2449        first->skb = skb;
2450        first->bytecount = skb->len;
2451        first->gso_segs = 1;
2452
2453        /* prepare the xmit flags */
2454        if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2455                goto out_drop;
2456
2457        /* obtain protocol of skb */
2458        protocol = vlan_get_protocol(skb);
2459
2460        /* setup IPv4/IPv6 offloads */
2461        if (protocol == htons(ETH_P_IP))
2462                tx_flags |= IAVF_TX_FLAGS_IPV4;
2463        else if (protocol == htons(ETH_P_IPV6))
2464                tx_flags |= IAVF_TX_FLAGS_IPV6;
2465
2466        tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2467
2468        if (tso < 0)
2469                goto out_drop;
2470        else if (tso)
2471                tx_flags |= IAVF_TX_FLAGS_TSO;
2472
2473        /* Always offload the checksum, since it's in the data descriptor */
2474        tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2475                                  tx_ring, &cd_tunneling);
2476        if (tso < 0)
2477                goto out_drop;
2478
2479        /* always enable CRC insertion offload */
2480        td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2481
2482        iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2483                           cd_tunneling, cd_l2tag2);
2484
2485        iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2486                    td_cmd, td_offset);
2487
2488        return NETDEV_TX_OK;
2489
2490out_drop:
2491        iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2492        dev_kfree_skb_any(first->skb);
2493        first->skb = NULL;
2494        return NETDEV_TX_OK;
2495}
2496
2497/**
2498 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2499 * @skb:    send buffer
2500 * @netdev: network interface device structure
2501 *
2502 * Returns NETDEV_TX_OK if sent, else an error code
2503 **/
2504netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2505{
2506        struct iavf_adapter *adapter = netdev_priv(netdev);
2507        struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2508
2509        /* hardware can't handle really short frames, hardware padding works
2510         * beyond this point
2511         */
2512        if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2513                if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2514                        return NETDEV_TX_OK;
2515                skb->len = IAVF_MIN_TX_LEN;
2516                skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2517        }
2518
2519        return iavf_xmit_frame_ring(skb, tx_ring);
2520}
2521