linux/drivers/net/ethernet/intel/ice/ice_lib.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_lib.h"
   6#include "ice_dcb_lib.h"
   7
   8/**
   9 * ice_setup_rx_ctx - Configure a receive ring context
  10 * @ring: The Rx ring to configure
  11 *
  12 * Configure the Rx descriptor ring in RLAN context.
  13 */
  14static int ice_setup_rx_ctx(struct ice_ring *ring)
  15{
  16        struct ice_vsi *vsi = ring->vsi;
  17        struct ice_hw *hw = &vsi->back->hw;
  18        u32 rxdid = ICE_RXDID_FLEX_NIC;
  19        struct ice_rlan_ctx rlan_ctx;
  20        u32 regval;
  21        u16 pf_q;
  22        int err;
  23
  24        /* what is Rx queue number in global space of 2K Rx queues */
  25        pf_q = vsi->rxq_map[ring->q_index];
  26
  27        /* clear the context structure first */
  28        memset(&rlan_ctx, 0, sizeof(rlan_ctx));
  29
  30        rlan_ctx.base = ring->dma >> 7;
  31
  32        rlan_ctx.qlen = ring->count;
  33
  34        /* Receive Packet Data Buffer Size.
  35         * The Packet Data Buffer Size is defined in 128 byte units.
  36         */
  37        rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
  38
  39        /* use 32 byte descriptors */
  40        rlan_ctx.dsize = 1;
  41
  42        /* Strip the Ethernet CRC bytes before the packet is posted to host
  43         * memory.
  44         */
  45        rlan_ctx.crcstrip = 1;
  46
  47        /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
  48        rlan_ctx.l2tsel = 1;
  49
  50        rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
  51        rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
  52        rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
  53
  54        /* This controls whether VLAN is stripped from inner headers
  55         * The VLAN in the inner L2 header is stripped to the receive
  56         * descriptor if enabled by this flag.
  57         */
  58        rlan_ctx.showiv = 0;
  59
  60        /* Max packet size for this queue - must not be set to a larger value
  61         * than 5 x DBUF
  62         */
  63        rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
  64                               ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
  65
  66        /* Rx queue threshold in units of 64 */
  67        rlan_ctx.lrxqthresh = 1;
  68
  69         /* Enable Flexible Descriptors in the queue context which
  70          * allows this driver to select a specific receive descriptor format
  71          */
  72        if (vsi->type != ICE_VSI_VF) {
  73                regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
  74                regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
  75                        QRXFLXP_CNTXT_RXDID_IDX_M;
  76
  77                /* increasing context priority to pick up profile ID;
  78                 * default is 0x01; setting to 0x03 to ensure profile
  79                 * is programming if prev context is of same priority
  80                 */
  81                regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
  82                        QRXFLXP_CNTXT_RXDID_PRIO_M;
  83
  84                wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
  85        }
  86
  87        /* Absolute queue number out of 2K needs to be passed */
  88        err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
  89        if (err) {
  90                dev_err(&vsi->back->pdev->dev,
  91                        "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
  92                        pf_q, err);
  93                return -EIO;
  94        }
  95
  96        if (vsi->type == ICE_VSI_VF)
  97                return 0;
  98
  99        /* init queue specific tail register */
 100        ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 101        writel(0, ring->tail);
 102        ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
 103
 104        return 0;
 105}
 106
 107/**
 108 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 109 * @ring: The Tx ring to configure
 110 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 111 * @pf_q: queue index in the PF space
 112 *
 113 * Configure the Tx descriptor ring in TLAN context.
 114 */
 115static void
 116ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 117{
 118        struct ice_vsi *vsi = ring->vsi;
 119        struct ice_hw *hw = &vsi->back->hw;
 120
 121        tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 122
 123        tlan_ctx->port_num = vsi->port_info->lport;
 124
 125        /* Transmit Queue Length */
 126        tlan_ctx->qlen = ring->count;
 127
 128        ice_set_cgd_num(tlan_ctx, ring);
 129
 130        /* PF number */
 131        tlan_ctx->pf_num = hw->pf_id;
 132
 133        /* queue belongs to a specific VSI type
 134         * VF / VM index should be programmed per vmvf_type setting:
 135         * for vmvf_type = VF, it is VF number between 0-256
 136         * for vmvf_type = VM, it is VM number between 0-767
 137         * for PF or EMP this field should be set to zero
 138         */
 139        switch (vsi->type) {
 140        case ICE_VSI_LB:
 141                /* fall through */
 142        case ICE_VSI_PF:
 143                tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 144                break;
 145        case ICE_VSI_VF:
 146                /* Firmware expects vmvf_num to be absolute VF ID */
 147                tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
 148                tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 149                break;
 150        default:
 151                return;
 152        }
 153
 154        /* make sure the context is associated with the right VSI */
 155        tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 156
 157        tlan_ctx->tso_ena = ICE_TX_LEGACY;
 158        tlan_ctx->tso_qnum = pf_q;
 159
 160        /* Legacy or Advanced Host Interface:
 161         * 0: Advanced Host Interface
 162         * 1: Legacy Host Interface
 163         */
 164        tlan_ctx->legacy_int = ICE_TX_LEGACY;
 165}
 166
 167/**
 168 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 169 * @pf: the PF being configured
 170 * @pf_q: the PF queue
 171 * @ena: enable or disable state of the queue
 172 *
 173 * This routine will wait for the given Rx queue of the PF to reach the
 174 * enabled or disabled state.
 175 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 176 * multiple retries; else will return 0 in case of success.
 177 */
 178static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
 179{
 180        int i;
 181
 182        for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
 183                if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
 184                              QRX_CTRL_QENA_STAT_M))
 185                        return 0;
 186
 187                usleep_range(20, 40);
 188        }
 189
 190        return -ETIMEDOUT;
 191}
 192
 193/**
 194 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
 195 * @vsi: the VSI being configured
 196 * @ena: start or stop the Rx rings
 197 */
 198static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
 199{
 200        struct ice_pf *pf = vsi->back;
 201        struct ice_hw *hw = &pf->hw;
 202        int i, ret = 0;
 203
 204        for (i = 0; i < vsi->num_rxq; i++) {
 205                int pf_q = vsi->rxq_map[i];
 206                u32 rx_reg;
 207
 208                rx_reg = rd32(hw, QRX_CTRL(pf_q));
 209
 210                /* Skip if the queue is already in the requested state */
 211                if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 212                        continue;
 213
 214                /* turn on/off the queue */
 215                if (ena)
 216                        rx_reg |= QRX_CTRL_QENA_REQ_M;
 217                else
 218                        rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 219                wr32(hw, QRX_CTRL(pf_q), rx_reg);
 220
 221                /* wait for the change to finish */
 222                ret = ice_pf_rxq_wait(pf, pf_q, ena);
 223                if (ret) {
 224                        dev_err(&pf->pdev->dev,
 225                                "VSI idx %d Rx ring %d %sable timeout\n",
 226                                vsi->idx, pf_q, (ena ? "en" : "dis"));
 227                        break;
 228                }
 229        }
 230
 231        return ret;
 232}
 233
 234/**
 235 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
 236 * @vsi: VSI pointer
 237 *
 238 * On error: returns error code (negative)
 239 * On success: returns 0
 240 */
 241static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
 242{
 243        struct ice_pf *pf = vsi->back;
 244
 245        /* allocate memory for both Tx and Rx ring pointers */
 246        vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 247                                     sizeof(*vsi->tx_rings), GFP_KERNEL);
 248        if (!vsi->tx_rings)
 249                goto err_txrings;
 250
 251        vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 252                                     sizeof(*vsi->rx_rings), GFP_KERNEL);
 253        if (!vsi->rx_rings)
 254                goto err_rxrings;
 255
 256        /* There is no need to allocate q_vectors for a loopback VSI. */
 257        if (vsi->type == ICE_VSI_LB)
 258                return 0;
 259
 260        /* allocate memory for q_vector pointers */
 261        vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors,
 262                                      sizeof(*vsi->q_vectors), GFP_KERNEL);
 263        if (!vsi->q_vectors)
 264                goto err_vectors;
 265
 266        return 0;
 267
 268err_vectors:
 269        devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 270err_rxrings:
 271        devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 272err_txrings:
 273        return -ENOMEM;
 274}
 275
 276/**
 277 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 278 * @vsi: the VSI being configured
 279 */
 280static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 281{
 282        switch (vsi->type) {
 283        case ICE_VSI_PF:
 284                /* fall through */
 285        case ICE_VSI_LB:
 286                vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 287                vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 288                break;
 289        default:
 290                dev_dbg(&vsi->back->pdev->dev,
 291                        "Not setting number of Tx/Rx descriptors for VSI type %d\n",
 292                        vsi->type);
 293                break;
 294        }
 295}
 296
 297/**
 298 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 299 * @vsi: the VSI being configured
 300 * @vf_id: ID of the VF being configured
 301 *
 302 * Return 0 on success and a negative value on error
 303 */
 304static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 305{
 306        struct ice_pf *pf = vsi->back;
 307        struct ice_vf *vf = NULL;
 308
 309        if (vsi->type == ICE_VSI_VF)
 310                vsi->vf_id = vf_id;
 311
 312        switch (vsi->type) {
 313        case ICE_VSI_PF:
 314                vsi->alloc_txq = pf->num_lan_tx;
 315                vsi->alloc_rxq = pf->num_lan_rx;
 316                vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
 317                break;
 318        case ICE_VSI_VF:
 319                vf = &pf->vf[vsi->vf_id];
 320                vsi->alloc_txq = vf->num_vf_qs;
 321                vsi->alloc_rxq = vf->num_vf_qs;
 322                /* pf->num_vf_msix includes (VF miscellaneous vector +
 323                 * data queue interrupts). Since vsi->num_q_vectors is number
 324                 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 325                 * original vector count
 326                 */
 327                vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF;
 328                break;
 329        case ICE_VSI_LB:
 330                vsi->alloc_txq = 1;
 331                vsi->alloc_rxq = 1;
 332                break;
 333        default:
 334                dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 335                break;
 336        }
 337
 338        ice_vsi_set_num_desc(vsi);
 339}
 340
 341/**
 342 * ice_get_free_slot - get the next non-NULL location index in array
 343 * @array: array to search
 344 * @size: size of the array
 345 * @curr: last known occupied index to be used as a search hint
 346 *
 347 * void * is being used to keep the functionality generic. This lets us use this
 348 * function on any array of pointers.
 349 */
 350static int ice_get_free_slot(void *array, int size, int curr)
 351{
 352        int **tmp_array = (int **)array;
 353        int next;
 354
 355        if (curr < (size - 1) && !tmp_array[curr + 1]) {
 356                next = curr + 1;
 357        } else {
 358                int i = 0;
 359
 360                while ((i < size) && (tmp_array[i]))
 361                        i++;
 362                if (i == size)
 363                        next = ICE_NO_VSI;
 364                else
 365                        next = i;
 366        }
 367        return next;
 368}
 369
 370/**
 371 * ice_vsi_delete - delete a VSI from the switch
 372 * @vsi: pointer to VSI being removed
 373 */
 374void ice_vsi_delete(struct ice_vsi *vsi)
 375{
 376        struct ice_pf *pf = vsi->back;
 377        struct ice_vsi_ctx *ctxt;
 378        enum ice_status status;
 379
 380        ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 381        if (!ctxt)
 382                return;
 383
 384        if (vsi->type == ICE_VSI_VF)
 385                ctxt->vf_num = vsi->vf_id;
 386        ctxt->vsi_num = vsi->vsi_num;
 387
 388        memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 389
 390        status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 391        if (status)
 392                dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
 393                        vsi->vsi_num);
 394
 395        devm_kfree(&pf->pdev->dev, ctxt);
 396}
 397
 398/**
 399 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 400 * @vsi: pointer to VSI being cleared
 401 */
 402static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 403{
 404        struct ice_pf *pf = vsi->back;
 405
 406        /* free the ring and vector containers */
 407        if (vsi->q_vectors) {
 408                devm_kfree(&pf->pdev->dev, vsi->q_vectors);
 409                vsi->q_vectors = NULL;
 410        }
 411        if (vsi->tx_rings) {
 412                devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 413                vsi->tx_rings = NULL;
 414        }
 415        if (vsi->rx_rings) {
 416                devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 417                vsi->rx_rings = NULL;
 418        }
 419}
 420
 421/**
 422 * ice_vsi_clear - clean up and deallocate the provided VSI
 423 * @vsi: pointer to VSI being cleared
 424 *
 425 * This deallocates the VSI's queue resources, removes it from the PF's
 426 * VSI array if necessary, and deallocates the VSI
 427 *
 428 * Returns 0 on success, negative on failure
 429 */
 430int ice_vsi_clear(struct ice_vsi *vsi)
 431{
 432        struct ice_pf *pf = NULL;
 433
 434        if (!vsi)
 435                return 0;
 436
 437        if (!vsi->back)
 438                return -EINVAL;
 439
 440        pf = vsi->back;
 441
 442        if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 443                dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
 444                        vsi->idx);
 445                return -EINVAL;
 446        }
 447
 448        mutex_lock(&pf->sw_mutex);
 449        /* updates the PF for this cleared VSI */
 450
 451        pf->vsi[vsi->idx] = NULL;
 452        if (vsi->idx < pf->next_vsi)
 453                pf->next_vsi = vsi->idx;
 454
 455        ice_vsi_free_arrays(vsi);
 456        mutex_unlock(&pf->sw_mutex);
 457        devm_kfree(&pf->pdev->dev, vsi);
 458
 459        return 0;
 460}
 461
 462/**
 463 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 464 * @irq: interrupt number
 465 * @data: pointer to a q_vector
 466 */
 467static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 468{
 469        struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 470
 471        if (!q_vector->tx.ring && !q_vector->rx.ring)
 472                return IRQ_HANDLED;
 473
 474        napi_schedule(&q_vector->napi);
 475
 476        return IRQ_HANDLED;
 477}
 478
 479/**
 480 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 481 * @pf: board private structure
 482 * @type: type of VSI
 483 * @vf_id: ID of the VF being configured
 484 *
 485 * returns a pointer to a VSI on success, NULL on failure.
 486 */
 487static struct ice_vsi *
 488ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
 489{
 490        struct ice_vsi *vsi = NULL;
 491
 492        /* Need to protect the allocation of the VSIs at the PF level */
 493        mutex_lock(&pf->sw_mutex);
 494
 495        /* If we have already allocated our maximum number of VSIs,
 496         * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 497         * is available to be populated
 498         */
 499        if (pf->next_vsi == ICE_NO_VSI) {
 500                dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
 501                goto unlock_pf;
 502        }
 503
 504        vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
 505        if (!vsi)
 506                goto unlock_pf;
 507
 508        vsi->type = type;
 509        vsi->back = pf;
 510        set_bit(__ICE_DOWN, vsi->state);
 511        vsi->idx = pf->next_vsi;
 512        vsi->work_lmt = ICE_DFLT_IRQ_WORK;
 513
 514        if (type == ICE_VSI_VF)
 515                ice_vsi_set_num_qs(vsi, vf_id);
 516        else
 517                ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 518
 519        switch (vsi->type) {
 520        case ICE_VSI_PF:
 521                if (ice_vsi_alloc_arrays(vsi))
 522                        goto err_rings;
 523
 524                /* Setup default MSIX irq handler for VSI */
 525                vsi->irq_handler = ice_msix_clean_rings;
 526                break;
 527        case ICE_VSI_VF:
 528                if (ice_vsi_alloc_arrays(vsi))
 529                        goto err_rings;
 530                break;
 531        case ICE_VSI_LB:
 532                if (ice_vsi_alloc_arrays(vsi))
 533                        goto err_rings;
 534                break;
 535        default:
 536                dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 537                goto unlock_pf;
 538        }
 539
 540        /* fill VSI slot in the PF struct */
 541        pf->vsi[pf->next_vsi] = vsi;
 542
 543        /* prepare pf->next_vsi for next use */
 544        pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 545                                         pf->next_vsi);
 546        goto unlock_pf;
 547
 548err_rings:
 549        devm_kfree(&pf->pdev->dev, vsi);
 550        vsi = NULL;
 551unlock_pf:
 552        mutex_unlock(&pf->sw_mutex);
 553        return vsi;
 554}
 555
 556/**
 557 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 558 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 559 *
 560 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 561 */
 562static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
 563{
 564        int offset, i;
 565
 566        mutex_lock(qs_cfg->qs_mutex);
 567        offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
 568                                            0, qs_cfg->q_count, 0);
 569        if (offset >= qs_cfg->pf_map_size) {
 570                mutex_unlock(qs_cfg->qs_mutex);
 571                return -ENOMEM;
 572        }
 573
 574        bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
 575        for (i = 0; i < qs_cfg->q_count; i++)
 576                qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
 577        mutex_unlock(qs_cfg->qs_mutex);
 578
 579        return 0;
 580}
 581
 582/**
 583 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 584 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 585 *
 586 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 587 */
 588static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
 589{
 590        int i, index = 0;
 591
 592        mutex_lock(qs_cfg->qs_mutex);
 593        for (i = 0; i < qs_cfg->q_count; i++) {
 594                index = find_next_zero_bit(qs_cfg->pf_map,
 595                                           qs_cfg->pf_map_size, index);
 596                if (index >= qs_cfg->pf_map_size)
 597                        goto err_scatter;
 598                set_bit(index, qs_cfg->pf_map);
 599                qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
 600        }
 601        mutex_unlock(qs_cfg->qs_mutex);
 602
 603        return 0;
 604err_scatter:
 605        for (index = 0; index < i; index++) {
 606                clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
 607                qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
 608        }
 609        mutex_unlock(qs_cfg->qs_mutex);
 610
 611        return -ENOMEM;
 612}
 613
 614/**
 615 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 616 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 617 *
 618 * This function first tries to find contiguous space. If it is not successful,
 619 * it tries with the scatter approach.
 620 *
 621 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 622 */
 623static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 624{
 625        int ret = 0;
 626
 627        ret = __ice_vsi_get_qs_contig(qs_cfg);
 628        if (ret) {
 629                /* contig failed, so try with scatter approach */
 630                qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 631                qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
 632                                        qs_cfg->scatter_count);
 633                ret = __ice_vsi_get_qs_sc(qs_cfg);
 634        }
 635        return ret;
 636}
 637
 638/**
 639 * ice_vsi_get_qs - Assign queues from PF to VSI
 640 * @vsi: the VSI to assign queues to
 641 *
 642 * Returns 0 on success and a negative value on error
 643 */
 644static int ice_vsi_get_qs(struct ice_vsi *vsi)
 645{
 646        struct ice_pf *pf = vsi->back;
 647        struct ice_qs_cfg tx_qs_cfg = {
 648                .qs_mutex = &pf->avail_q_mutex,
 649                .pf_map = pf->avail_txqs,
 650                .pf_map_size = ICE_MAX_TXQS,
 651                .q_count = vsi->alloc_txq,
 652                .scatter_count = ICE_MAX_SCATTER_TXQS,
 653                .vsi_map = vsi->txq_map,
 654                .vsi_map_offset = 0,
 655                .mapping_mode = vsi->tx_mapping_mode
 656        };
 657        struct ice_qs_cfg rx_qs_cfg = {
 658                .qs_mutex = &pf->avail_q_mutex,
 659                .pf_map = pf->avail_rxqs,
 660                .pf_map_size = ICE_MAX_RXQS,
 661                .q_count = vsi->alloc_rxq,
 662                .scatter_count = ICE_MAX_SCATTER_RXQS,
 663                .vsi_map = vsi->rxq_map,
 664                .vsi_map_offset = 0,
 665                .mapping_mode = vsi->rx_mapping_mode
 666        };
 667        int ret = 0;
 668
 669        vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
 670        vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
 671
 672        ret = __ice_vsi_get_qs(&tx_qs_cfg);
 673        if (!ret)
 674                ret = __ice_vsi_get_qs(&rx_qs_cfg);
 675
 676        return ret;
 677}
 678
 679/**
 680 * ice_vsi_put_qs - Release queues from VSI to PF
 681 * @vsi: the VSI that is going to release queues
 682 */
 683void ice_vsi_put_qs(struct ice_vsi *vsi)
 684{
 685        struct ice_pf *pf = vsi->back;
 686        int i;
 687
 688        mutex_lock(&pf->avail_q_mutex);
 689
 690        for (i = 0; i < vsi->alloc_txq; i++) {
 691                clear_bit(vsi->txq_map[i], pf->avail_txqs);
 692                vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 693        }
 694
 695        for (i = 0; i < vsi->alloc_rxq; i++) {
 696                clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 697                vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 698        }
 699
 700        mutex_unlock(&pf->avail_q_mutex);
 701}
 702
 703/**
 704 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
 705 * @vsi: the VSI being removed
 706 */
 707static void ice_rss_clean(struct ice_vsi *vsi)
 708{
 709        struct ice_pf *pf;
 710
 711        pf = vsi->back;
 712
 713        if (vsi->rss_hkey_user)
 714                devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
 715        if (vsi->rss_lut_user)
 716                devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
 717}
 718
 719/**
 720 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 721 * @vsi: the VSI being configured
 722 */
 723static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 724{
 725        struct ice_hw_common_caps *cap;
 726        struct ice_pf *pf = vsi->back;
 727
 728        if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 729                vsi->rss_size = 1;
 730                return;
 731        }
 732
 733        cap = &pf->hw.func_caps.common_cap;
 734        switch (vsi->type) {
 735        case ICE_VSI_PF:
 736                /* PF VSI will inherit RSS instance of PF */
 737                vsi->rss_table_size = cap->rss_table_size;
 738                vsi->rss_size = min_t(int, num_online_cpus(),
 739                                      BIT(cap->rss_table_entry_width));
 740                vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 741                break;
 742        case ICE_VSI_VF:
 743                /* VF VSI will gets a small RSS table
 744                 * For VSI_LUT, LUT size should be set to 64 bytes
 745                 */
 746                vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 747                vsi->rss_size = min_t(int, num_online_cpus(),
 748                                      BIT(cap->rss_table_entry_width));
 749                vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 750                break;
 751        case ICE_VSI_LB:
 752                break;
 753        default:
 754                dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
 755                         vsi->type);
 756                break;
 757        }
 758}
 759
 760/**
 761 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 762 * @ctxt: the VSI context being set
 763 *
 764 * This initializes a default VSI context for all sections except the Queues.
 765 */
 766static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 767{
 768        u32 table = 0;
 769
 770        memset(&ctxt->info, 0, sizeof(ctxt->info));
 771        /* VSI's should be allocated from shared pool */
 772        ctxt->alloc_from_pool = true;
 773        /* Src pruning enabled by default */
 774        ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 775        /* Traffic from VSI can be sent to LAN */
 776        ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 777        /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 778         * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 779         * packets untagged/tagged.
 780         */
 781        ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 782                                  ICE_AQ_VSI_VLAN_MODE_M) >>
 783                                 ICE_AQ_VSI_VLAN_MODE_S);
 784        /* Have 1:1 UP mapping for both ingress/egress tables */
 785        table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 786        table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 787        table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 788        table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 789        table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 790        table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 791        table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 792        table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 793        ctxt->info.ingress_table = cpu_to_le32(table);
 794        ctxt->info.egress_table = cpu_to_le32(table);
 795        /* Have 1:1 UP mapping for outer to inner UP table */
 796        ctxt->info.outer_up_table = cpu_to_le32(table);
 797        /* No Outer tag support outer_tag_flags remains to zero */
 798}
 799
 800/**
 801 * ice_vsi_setup_q_map - Setup a VSI queue map
 802 * @vsi: the VSI being configured
 803 * @ctxt: VSI context structure
 804 */
 805static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 806{
 807        u16 offset = 0, qmap = 0, tx_count = 0;
 808        u16 qcount_tx = vsi->alloc_txq;
 809        u16 qcount_rx = vsi->alloc_rxq;
 810        u16 tx_numq_tc, rx_numq_tc;
 811        u16 pow = 0, max_rss = 0;
 812        bool ena_tc0 = false;
 813        u8 netdev_tc = 0;
 814        int i;
 815
 816        /* at least TC0 should be enabled by default */
 817        if (vsi->tc_cfg.numtc) {
 818                if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 819                        ena_tc0 = true;
 820        } else {
 821                ena_tc0 = true;
 822        }
 823
 824        if (ena_tc0) {
 825                vsi->tc_cfg.numtc++;
 826                vsi->tc_cfg.ena_tc |= 1;
 827        }
 828
 829        rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
 830        if (!rx_numq_tc)
 831                rx_numq_tc = 1;
 832        tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
 833        if (!tx_numq_tc)
 834                tx_numq_tc = 1;
 835
 836        /* TC mapping is a function of the number of Rx queues assigned to the
 837         * VSI for each traffic class and the offset of these queues.
 838         * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 839         * queues allocated to TC0. No:of queues is a power-of-2.
 840         *
 841         * If TC is not enabled, the queue offset is set to 0, and allocate one
 842         * queue, this way, traffic for the given TC will be sent to the default
 843         * queue.
 844         *
 845         * Setup number and offset of Rx queues for all TCs for the VSI
 846         */
 847
 848        qcount_rx = rx_numq_tc;
 849
 850        /* qcount will change if RSS is enabled */
 851        if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
 852                if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
 853                        if (vsi->type == ICE_VSI_PF)
 854                                max_rss = ICE_MAX_LG_RSS_QS;
 855                        else
 856                                max_rss = ICE_MAX_SMALL_RSS_QS;
 857                        qcount_rx = min_t(int, rx_numq_tc, max_rss);
 858                        qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
 859                }
 860        }
 861
 862        /* find the (rounded up) power-of-2 of qcount */
 863        pow = order_base_2(qcount_rx);
 864
 865        ice_for_each_traffic_class(i) {
 866                if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 867                        /* TC is not enabled */
 868                        vsi->tc_cfg.tc_info[i].qoffset = 0;
 869                        vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 870                        vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 871                        vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 872                        ctxt->info.tc_mapping[i] = 0;
 873                        continue;
 874                }
 875
 876                /* TC is enabled */
 877                vsi->tc_cfg.tc_info[i].qoffset = offset;
 878                vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
 879                vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
 880                vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 881
 882                qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 883                        ICE_AQ_VSI_TC_Q_OFFSET_M) |
 884                        ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 885                         ICE_AQ_VSI_TC_Q_NUM_M);
 886                offset += qcount_rx;
 887                tx_count += tx_numq_tc;
 888                ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 889        }
 890
 891        /* if offset is non-zero, means it is calculated correctly based on
 892         * enabled TCs for a given VSI otherwise qcount_rx will always
 893         * be correct and non-zero because it is based off - VSI's
 894         * allocated Rx queues which is at least 1 (hence qcount_tx will be
 895         * at least 1)
 896         */
 897        if (offset)
 898                vsi->num_rxq = offset;
 899        else
 900                vsi->num_rxq = qcount_rx;
 901
 902        vsi->num_txq = tx_count;
 903
 904        if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 905                dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 906                /* since there is a chance that num_rxq could have been changed
 907                 * in the above for loop, make num_txq equal to num_rxq.
 908                 */
 909                vsi->num_txq = vsi->num_rxq;
 910        }
 911
 912        /* Rx queue mapping */
 913        ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 914        /* q_mapping buffer holds the info for the first queue allocated for
 915         * this VSI in the PF space and also the number of queues associated
 916         * with this VSI.
 917         */
 918        ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 919        ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 920}
 921
 922/**
 923 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 924 * @ctxt: the VSI context being set
 925 * @vsi: the VSI being configured
 926 */
 927static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 928{
 929        u8 lut_type, hash_type;
 930        struct ice_pf *pf;
 931
 932        pf = vsi->back;
 933
 934        switch (vsi->type) {
 935        case ICE_VSI_PF:
 936                /* PF VSI will inherit RSS instance of PF */
 937                lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
 938                hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 939                break;
 940        case ICE_VSI_VF:
 941                /* VF VSI will gets a small RSS table which is a VSI LUT type */
 942                lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 943                hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 944                break;
 945        case ICE_VSI_LB:
 946                dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type);
 947                return;
 948        default:
 949                dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 950                return;
 951        }
 952
 953        ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
 954                                ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
 955                                ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
 956                                 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
 957}
 958
 959/**
 960 * ice_vsi_init - Create and initialize a VSI
 961 * @vsi: the VSI being configured
 962 *
 963 * This initializes a VSI context depending on the VSI type to be added and
 964 * passes it down to the add_vsi aq command to create a new VSI.
 965 */
 966static int ice_vsi_init(struct ice_vsi *vsi)
 967{
 968        struct ice_pf *pf = vsi->back;
 969        struct ice_hw *hw = &pf->hw;
 970        struct ice_vsi_ctx *ctxt;
 971        int ret = 0;
 972
 973        ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 974        if (!ctxt)
 975                return -ENOMEM;
 976
 977        ctxt->info = vsi->info;
 978        switch (vsi->type) {
 979        case ICE_VSI_LB:
 980                /* fall through */
 981        case ICE_VSI_PF:
 982                ctxt->flags = ICE_AQ_VSI_TYPE_PF;
 983                break;
 984        case ICE_VSI_VF:
 985                ctxt->flags = ICE_AQ_VSI_TYPE_VF;
 986                /* VF number here is the absolute VF number (0-255) */
 987                ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
 988                break;
 989        default:
 990                return -ENODEV;
 991        }
 992
 993        ice_set_dflt_vsi_ctx(ctxt);
 994        /* if the switch is in VEB mode, allow VSI loopback */
 995        if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
 996                ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
 997
 998        /* Set LUT type and HASH type if RSS is enabled */
 999        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1000                ice_set_rss_vsi_ctx(ctxt, vsi);
1001
1002        ctxt->info.sw_id = vsi->port_info->sw_id;
1003        ice_vsi_setup_q_map(vsi, ctxt);
1004
1005        /* Enable MAC Antispoof with new VSI being initialized or updated */
1006        if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
1007                ctxt->info.valid_sections |=
1008                        cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1009                ctxt->info.sec_flags |=
1010                        ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
1011        }
1012
1013        ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1014        if (ret) {
1015                dev_err(&pf->pdev->dev,
1016                        "Add VSI failed, err %d\n", ret);
1017                return -EIO;
1018        }
1019
1020        /* keep context for update VSI operations */
1021        vsi->info = ctxt->info;
1022
1023        /* record VSI number returned */
1024        vsi->vsi_num = ctxt->vsi_num;
1025
1026        devm_kfree(&pf->pdev->dev, ctxt);
1027        return ret;
1028}
1029
1030/**
1031 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1032 * @vsi: VSI having the memory freed
1033 * @v_idx: index of the vector to be freed
1034 */
1035static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1036{
1037        struct ice_q_vector *q_vector;
1038        struct ice_pf *pf = vsi->back;
1039        struct ice_ring *ring;
1040
1041        if (!vsi->q_vectors[v_idx]) {
1042                dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1043                        v_idx);
1044                return;
1045        }
1046        q_vector = vsi->q_vectors[v_idx];
1047
1048        ice_for_each_ring(ring, q_vector->tx)
1049                ring->q_vector = NULL;
1050        ice_for_each_ring(ring, q_vector->rx)
1051                ring->q_vector = NULL;
1052
1053        /* only VSI with an associated netdev is set up with NAPI */
1054        if (vsi->netdev)
1055                netif_napi_del(&q_vector->napi);
1056
1057        devm_kfree(&pf->pdev->dev, q_vector);
1058        vsi->q_vectors[v_idx] = NULL;
1059}
1060
1061/**
1062 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1063 * @vsi: the VSI having memory freed
1064 */
1065void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1066{
1067        int v_idx;
1068
1069        ice_for_each_q_vector(vsi, v_idx)
1070                ice_free_q_vector(vsi, v_idx);
1071}
1072
1073/**
1074 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1075 * @vsi: the VSI being configured
1076 * @v_idx: index of the vector in the VSI struct
1077 *
1078 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1079 */
1080static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1081{
1082        struct ice_pf *pf = vsi->back;
1083        struct ice_q_vector *q_vector;
1084
1085        /* allocate q_vector */
1086        q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1087        if (!q_vector)
1088                return -ENOMEM;
1089
1090        q_vector->vsi = vsi;
1091        q_vector->v_idx = v_idx;
1092        if (vsi->type == ICE_VSI_VF)
1093                goto out;
1094        /* only set affinity_mask if the CPU is online */
1095        if (cpu_online(v_idx))
1096                cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1097
1098        /* This will not be called in the driver load path because the netdev
1099         * will not be created yet. All other cases with register the NAPI
1100         * handler here (i.e. resume, reset/rebuild, etc.)
1101         */
1102        if (vsi->netdev)
1103                netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1104                               NAPI_POLL_WEIGHT);
1105
1106out:
1107        /* tie q_vector and VSI together */
1108        vsi->q_vectors[v_idx] = q_vector;
1109
1110        return 0;
1111}
1112
1113/**
1114 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1115 * @vsi: the VSI being configured
1116 *
1117 * We allocate one q_vector per queue interrupt. If allocation fails we
1118 * return -ENOMEM.
1119 */
1120static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1121{
1122        struct ice_pf *pf = vsi->back;
1123        int v_idx = 0, num_q_vectors;
1124        int err;
1125
1126        if (vsi->q_vectors[0]) {
1127                dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1128                        vsi->vsi_num);
1129                return -EEXIST;
1130        }
1131
1132        if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1133                num_q_vectors = vsi->num_q_vectors;
1134        } else {
1135                err = -EINVAL;
1136                goto err_out;
1137        }
1138
1139        for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1140                err = ice_vsi_alloc_q_vector(vsi, v_idx);
1141                if (err)
1142                        goto err_out;
1143        }
1144
1145        return 0;
1146
1147err_out:
1148        while (v_idx--)
1149                ice_free_q_vector(vsi, v_idx);
1150
1151        dev_err(&pf->pdev->dev,
1152                "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1153                vsi->num_q_vectors, vsi->vsi_num, err);
1154        vsi->num_q_vectors = 0;
1155        return err;
1156}
1157
1158/**
1159 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1160 * @vsi: ptr to the VSI
1161 *
1162 * This should only be called after ice_vsi_alloc() which allocates the
1163 * corresponding SW VSI structure and initializes num_queue_pairs for the
1164 * newly allocated VSI.
1165 *
1166 * Returns 0 on success or negative on failure
1167 */
1168static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1169{
1170        struct ice_pf *pf = vsi->back;
1171        u16 num_q_vectors;
1172
1173        /* SRIOV doesn't grab irq_tracker entries for each VSI */
1174        if (vsi->type == ICE_VSI_VF)
1175                return 0;
1176
1177        if (vsi->base_vector) {
1178                dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
1179                        vsi->vsi_num, vsi->base_vector);
1180                return -EEXIST;
1181        }
1182
1183        if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1184                return -ENOENT;
1185
1186        num_q_vectors = vsi->num_q_vectors;
1187        /* reserve slots from OS requested IRQs */
1188        vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1189                                       vsi->idx);
1190        if (vsi->base_vector < 0) {
1191                dev_err(&pf->pdev->dev,
1192                        "Failed to get tracking for %d vectors for VSI %d, err=%d\n",
1193                        num_q_vectors, vsi->vsi_num, vsi->base_vector);
1194                return -ENOENT;
1195        }
1196        pf->num_avail_sw_msix -= num_q_vectors;
1197
1198        return 0;
1199}
1200
1201/**
1202 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1203 * @vsi: the VSI having rings deallocated
1204 */
1205static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1206{
1207        int i;
1208
1209        if (vsi->tx_rings) {
1210                for (i = 0; i < vsi->alloc_txq; i++) {
1211                        if (vsi->tx_rings[i]) {
1212                                kfree_rcu(vsi->tx_rings[i], rcu);
1213                                vsi->tx_rings[i] = NULL;
1214                        }
1215                }
1216        }
1217        if (vsi->rx_rings) {
1218                for (i = 0; i < vsi->alloc_rxq; i++) {
1219                        if (vsi->rx_rings[i]) {
1220                                kfree_rcu(vsi->rx_rings[i], rcu);
1221                                vsi->rx_rings[i] = NULL;
1222                        }
1223                }
1224        }
1225}
1226
1227/**
1228 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1229 * @vsi: VSI which is having rings allocated
1230 */
1231static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1232{
1233        struct ice_pf *pf = vsi->back;
1234        int i;
1235
1236        /* Allocate Tx rings */
1237        for (i = 0; i < vsi->alloc_txq; i++) {
1238                struct ice_ring *ring;
1239
1240                /* allocate with kzalloc(), free with kfree_rcu() */
1241                ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1242
1243                if (!ring)
1244                        goto err_out;
1245
1246                ring->q_index = i;
1247                ring->reg_idx = vsi->txq_map[i];
1248                ring->ring_active = false;
1249                ring->vsi = vsi;
1250                ring->dev = &pf->pdev->dev;
1251                ring->count = vsi->num_tx_desc;
1252                vsi->tx_rings[i] = ring;
1253        }
1254
1255        /* Allocate Rx rings */
1256        for (i = 0; i < vsi->alloc_rxq; i++) {
1257                struct ice_ring *ring;
1258
1259                /* allocate with kzalloc(), free with kfree_rcu() */
1260                ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1261                if (!ring)
1262                        goto err_out;
1263
1264                ring->q_index = i;
1265                ring->reg_idx = vsi->rxq_map[i];
1266                ring->ring_active = false;
1267                ring->vsi = vsi;
1268                ring->netdev = vsi->netdev;
1269                ring->dev = &pf->pdev->dev;
1270                ring->count = vsi->num_rx_desc;
1271                vsi->rx_rings[i] = ring;
1272        }
1273
1274        return 0;
1275
1276err_out:
1277        ice_vsi_clear_rings(vsi);
1278        return -ENOMEM;
1279}
1280
1281/**
1282 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1283 * @vsi: the VSI being configured
1284 *
1285 * This function maps descriptor rings to the queue-specific vectors allotted
1286 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1287 * and Rx rings to the vector as "efficiently" as possible.
1288 */
1289#ifdef CONFIG_DCB
1290void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1291#else
1292static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1293#endif /* CONFIG_DCB */
1294{
1295        int q_vectors = vsi->num_q_vectors;
1296        int tx_rings_rem, rx_rings_rem;
1297        int v_id;
1298
1299        /* initially assigning remaining rings count to VSIs num queue value */
1300        tx_rings_rem = vsi->num_txq;
1301        rx_rings_rem = vsi->num_rxq;
1302
1303        for (v_id = 0; v_id < q_vectors; v_id++) {
1304                struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1305                int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1306
1307                /* Tx rings mapping to vector */
1308                tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1309                q_vector->num_ring_tx = tx_rings_per_v;
1310                q_vector->tx.ring = NULL;
1311                q_vector->tx.itr_idx = ICE_TX_ITR;
1312                q_base = vsi->num_txq - tx_rings_rem;
1313
1314                for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1315                        struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1316
1317                        tx_ring->q_vector = q_vector;
1318                        tx_ring->next = q_vector->tx.ring;
1319                        q_vector->tx.ring = tx_ring;
1320                }
1321                tx_rings_rem -= tx_rings_per_v;
1322
1323                /* Rx rings mapping to vector */
1324                rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1325                q_vector->num_ring_rx = rx_rings_per_v;
1326                q_vector->rx.ring = NULL;
1327                q_vector->rx.itr_idx = ICE_RX_ITR;
1328                q_base = vsi->num_rxq - rx_rings_rem;
1329
1330                for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1331                        struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1332
1333                        rx_ring->q_vector = q_vector;
1334                        rx_ring->next = q_vector->rx.ring;
1335                        q_vector->rx.ring = rx_ring;
1336                }
1337                rx_rings_rem -= rx_rings_per_v;
1338        }
1339}
1340
1341/**
1342 * ice_vsi_manage_rss_lut - disable/enable RSS
1343 * @vsi: the VSI being changed
1344 * @ena: boolean value indicating if this is an enable or disable request
1345 *
1346 * In the event of disable request for RSS, this function will zero out RSS
1347 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1348 * LUT.
1349 */
1350int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1351{
1352        int err = 0;
1353        u8 *lut;
1354
1355        lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1356                           GFP_KERNEL);
1357        if (!lut)
1358                return -ENOMEM;
1359
1360        if (ena) {
1361                if (vsi->rss_lut_user)
1362                        memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1363                else
1364                        ice_fill_rss_lut(lut, vsi->rss_table_size,
1365                                         vsi->rss_size);
1366        }
1367
1368        err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1369        devm_kfree(&vsi->back->pdev->dev, lut);
1370        return err;
1371}
1372
1373/**
1374 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1375 * @vsi: VSI to be configured
1376 */
1377static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1378{
1379        struct ice_aqc_get_set_rss_keys *key;
1380        struct ice_pf *pf = vsi->back;
1381        enum ice_status status;
1382        int err = 0;
1383        u8 *lut;
1384
1385        vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
1386
1387        lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1388        if (!lut)
1389                return -ENOMEM;
1390
1391        if (vsi->rss_lut_user)
1392                memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1393        else
1394                ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1395
1396        status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1397                                    vsi->rss_table_size);
1398
1399        if (status) {
1400                dev_err(&pf->pdev->dev,
1401                        "set_rss_lut failed, error %d\n", status);
1402                err = -EIO;
1403                goto ice_vsi_cfg_rss_exit;
1404        }
1405
1406        key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1407        if (!key) {
1408                err = -ENOMEM;
1409                goto ice_vsi_cfg_rss_exit;
1410        }
1411
1412        if (vsi->rss_hkey_user)
1413                memcpy(key,
1414                       (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1415                       ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1416        else
1417                netdev_rss_key_fill((void *)key,
1418                                    ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1419
1420        status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1421
1422        if (status) {
1423                dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1424                        status);
1425                err = -EIO;
1426        }
1427
1428        devm_kfree(&pf->pdev->dev, key);
1429ice_vsi_cfg_rss_exit:
1430        devm_kfree(&pf->pdev->dev, lut);
1431        return err;
1432}
1433
1434/**
1435 * ice_add_mac_to_list - Add a MAC address filter entry to the list
1436 * @vsi: the VSI to be forwarded to
1437 * @add_list: pointer to the list which contains MAC filter entries
1438 * @macaddr: the MAC address to be added.
1439 *
1440 * Adds MAC address filter entry to the temp list
1441 *
1442 * Returns 0 on success or ENOMEM on failure.
1443 */
1444int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1445                        const u8 *macaddr)
1446{
1447        struct ice_fltr_list_entry *tmp;
1448        struct ice_pf *pf = vsi->back;
1449
1450        tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1451        if (!tmp)
1452                return -ENOMEM;
1453
1454        tmp->fltr_info.flag = ICE_FLTR_TX;
1455        tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1456        tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1457        tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1458        tmp->fltr_info.vsi_handle = vsi->idx;
1459        ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
1460
1461        INIT_LIST_HEAD(&tmp->list_entry);
1462        list_add(&tmp->list_entry, add_list);
1463
1464        return 0;
1465}
1466
1467/**
1468 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1469 * @vsi: the VSI to be updated
1470 */
1471void ice_update_eth_stats(struct ice_vsi *vsi)
1472{
1473        struct ice_eth_stats *prev_es, *cur_es;
1474        struct ice_hw *hw = &vsi->back->hw;
1475        u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1476
1477        prev_es = &vsi->eth_stats_prev;
1478        cur_es = &vsi->eth_stats;
1479
1480        ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
1481                          vsi->stat_offsets_loaded, &prev_es->rx_bytes,
1482                          &cur_es->rx_bytes);
1483
1484        ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
1485                          vsi->stat_offsets_loaded, &prev_es->rx_unicast,
1486                          &cur_es->rx_unicast);
1487
1488        ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
1489                          vsi->stat_offsets_loaded, &prev_es->rx_multicast,
1490                          &cur_es->rx_multicast);
1491
1492        ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
1493                          vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
1494                          &cur_es->rx_broadcast);
1495
1496        ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1497                          &prev_es->rx_discards, &cur_es->rx_discards);
1498
1499        ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
1500                          vsi->stat_offsets_loaded, &prev_es->tx_bytes,
1501                          &cur_es->tx_bytes);
1502
1503        ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
1504                          vsi->stat_offsets_loaded, &prev_es->tx_unicast,
1505                          &cur_es->tx_unicast);
1506
1507        ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
1508                          vsi->stat_offsets_loaded, &prev_es->tx_multicast,
1509                          &cur_es->tx_multicast);
1510
1511        ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
1512                          vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
1513                          &cur_es->tx_broadcast);
1514
1515        ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1516                          &prev_es->tx_errors, &cur_es->tx_errors);
1517
1518        vsi->stat_offsets_loaded = true;
1519}
1520
1521/**
1522 * ice_free_fltr_list - free filter lists helper
1523 * @dev: pointer to the device struct
1524 * @h: pointer to the list head to be freed
1525 *
1526 * Helper function to free filter lists previously created using
1527 * ice_add_mac_to_list
1528 */
1529void ice_free_fltr_list(struct device *dev, struct list_head *h)
1530{
1531        struct ice_fltr_list_entry *e, *tmp;
1532
1533        list_for_each_entry_safe(e, tmp, h, list_entry) {
1534                list_del(&e->list_entry);
1535                devm_kfree(dev, e);
1536        }
1537}
1538
1539/**
1540 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1541 * @vsi: the VSI being configured
1542 * @vid: VLAN ID to be added
1543 */
1544int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
1545{
1546        struct ice_fltr_list_entry *tmp;
1547        struct ice_pf *pf = vsi->back;
1548        LIST_HEAD(tmp_add_list);
1549        enum ice_status status;
1550        int err = 0;
1551
1552        tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1553        if (!tmp)
1554                return -ENOMEM;
1555
1556        tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1557        tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1558        tmp->fltr_info.flag = ICE_FLTR_TX;
1559        tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1560        tmp->fltr_info.vsi_handle = vsi->idx;
1561        tmp->fltr_info.l_data.vlan.vlan_id = vid;
1562
1563        INIT_LIST_HEAD(&tmp->list_entry);
1564        list_add(&tmp->list_entry, &tmp_add_list);
1565
1566        status = ice_add_vlan(&pf->hw, &tmp_add_list);
1567        if (status) {
1568                err = -ENODEV;
1569                dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1570                        vid, vsi->vsi_num);
1571        }
1572
1573        ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1574        return err;
1575}
1576
1577/**
1578 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1579 * @vsi: the VSI being configured
1580 * @vid: VLAN ID to be removed
1581 *
1582 * Returns 0 on success and negative on failure
1583 */
1584int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1585{
1586        struct ice_fltr_list_entry *list;
1587        struct ice_pf *pf = vsi->back;
1588        LIST_HEAD(tmp_add_list);
1589        enum ice_status status;
1590        int err = 0;
1591
1592        list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1593        if (!list)
1594                return -ENOMEM;
1595
1596        list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1597        list->fltr_info.vsi_handle = vsi->idx;
1598        list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1599        list->fltr_info.l_data.vlan.vlan_id = vid;
1600        list->fltr_info.flag = ICE_FLTR_TX;
1601        list->fltr_info.src_id = ICE_SRC_ID_VSI;
1602
1603        INIT_LIST_HEAD(&list->list_entry);
1604        list_add(&list->list_entry, &tmp_add_list);
1605
1606        status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1607        if (status == ICE_ERR_DOES_NOT_EXIST) {
1608                dev_dbg(&pf->pdev->dev,
1609                        "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1610                        vid, vsi->vsi_num, status);
1611        } else if (status) {
1612                dev_err(&pf->pdev->dev,
1613                        "Error removing VLAN %d on vsi %i error: %d\n",
1614                        vid, vsi->vsi_num, status);
1615                err = -EIO;
1616        }
1617
1618        ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1619        return err;
1620}
1621
1622/**
1623 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1624 * @vsi: the VSI being configured
1625 *
1626 * Return 0 on success and a negative value on error
1627 * Configure the Rx VSI for operation.
1628 */
1629int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1630{
1631        u16 i;
1632
1633        if (vsi->type == ICE_VSI_VF)
1634                goto setup_rings;
1635
1636        if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1637                vsi->max_frame = vsi->netdev->mtu +
1638                        ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1639        else
1640                vsi->max_frame = ICE_RXBUF_2048;
1641
1642        vsi->rx_buf_len = ICE_RXBUF_2048;
1643setup_rings:
1644        /* set up individual rings */
1645        for (i = 0; i < vsi->num_rxq; i++) {
1646                int err;
1647
1648                err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1649                if (err) {
1650                        dev_err(&vsi->back->pdev->dev,
1651                                "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1652                                i, err);
1653                        return err;
1654                }
1655        }
1656
1657        return 0;
1658}
1659
1660/**
1661 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1662 * @vsi: the VSI being configured
1663 * @rings: Tx ring array to be configured
1664 * @offset: offset within vsi->txq_map
1665 *
1666 * Return 0 on success and a negative value on error
1667 * Configure the Tx VSI for operation.
1668 */
1669static int
1670ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1671{
1672        struct ice_aqc_add_tx_qgrp *qg_buf;
1673        struct ice_aqc_add_txqs_perq *txq;
1674        struct ice_pf *pf = vsi->back;
1675        u8 num_q_grps, q_idx = 0;
1676        enum ice_status status;
1677        u16 buf_len, i, pf_q;
1678        int err = 0, tc;
1679
1680        buf_len = sizeof(*qg_buf);
1681        qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
1682        if (!qg_buf)
1683                return -ENOMEM;
1684
1685        qg_buf->num_txqs = 1;
1686        num_q_grps = 1;
1687
1688        /* set up and configure the Tx queues for each enabled TC */
1689        ice_for_each_traffic_class(tc) {
1690                if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1691                        break;
1692
1693                for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1694                        struct ice_tlan_ctx tlan_ctx = { 0 };
1695
1696                        pf_q = vsi->txq_map[q_idx + offset];
1697                        ice_setup_tx_ctx(rings[q_idx], &tlan_ctx, pf_q);
1698                        /* copy context contents into the qg_buf */
1699                        qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1700                        ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1701                                    ice_tlan_ctx_info);
1702
1703                        /* init queue specific tail reg. It is referred as
1704                         * transmit comm scheduler queue doorbell.
1705                         */
1706                        rings[q_idx]->tail =
1707                                pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1708                        status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
1709                                                 i, num_q_grps, qg_buf,
1710                                                 buf_len, NULL);
1711                        if (status) {
1712                                dev_err(&pf->pdev->dev,
1713                                        "Failed to set LAN Tx queue context, error: %d\n",
1714                                        status);
1715                                err = -ENODEV;
1716                                goto err_cfg_txqs;
1717                        }
1718
1719                        /* Add Tx Queue TEID into the VSI Tx ring from the
1720                         * response. This will complete configuring and
1721                         * enabling the queue.
1722                         */
1723                        txq = &qg_buf->txqs[0];
1724                        if (pf_q == le16_to_cpu(txq->txq_id))
1725                                rings[q_idx]->txq_teid =
1726                                        le32_to_cpu(txq->q_teid);
1727
1728                        q_idx++;
1729                }
1730        }
1731err_cfg_txqs:
1732        devm_kfree(&pf->pdev->dev, qg_buf);
1733        return err;
1734}
1735
1736/**
1737 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1738 * @vsi: the VSI being configured
1739 *
1740 * Return 0 on success and a negative value on error
1741 * Configure the Tx VSI for operation.
1742 */
1743int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1744{
1745        return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
1746}
1747
1748/**
1749 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1750 * @intrl: interrupt rate limit in usecs
1751 * @gran: interrupt rate limit granularity in usecs
1752 *
1753 * This function converts a decimal interrupt rate limit in usecs to the format
1754 * expected by firmware.
1755 */
1756u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1757{
1758        u32 val = intrl / gran;
1759
1760        if (val)
1761                return val | GLINT_RATE_INTRL_ENA_M;
1762        return 0;
1763}
1764
1765/**
1766 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1767 * @hw: board specific structure
1768 */
1769static void ice_cfg_itr_gran(struct ice_hw *hw)
1770{
1771        u32 regval = rd32(hw, GLINT_CTL);
1772
1773        /* no need to update global register if ITR gran is already set */
1774        if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1775            (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1776             GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1777            (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1778             GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1779            (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1780             GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1781            (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1782              GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1783                return;
1784
1785        regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1786                  GLINT_CTL_ITR_GRAN_200_M) |
1787                 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1788                  GLINT_CTL_ITR_GRAN_100_M) |
1789                 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1790                  GLINT_CTL_ITR_GRAN_50_M) |
1791                 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1792                  GLINT_CTL_ITR_GRAN_25_M);
1793        wr32(hw, GLINT_CTL, regval);
1794}
1795
1796/**
1797 * ice_cfg_itr - configure the initial interrupt throttle values
1798 * @hw: pointer to the HW structure
1799 * @q_vector: interrupt vector that's being configured
1800 *
1801 * Configure interrupt throttling values for the ring containers that are
1802 * associated with the interrupt vector passed in.
1803 */
1804static void
1805ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1806{
1807        ice_cfg_itr_gran(hw);
1808
1809        if (q_vector->num_ring_rx) {
1810                struct ice_ring_container *rc = &q_vector->rx;
1811
1812                /* if this value is set then don't overwrite with default */
1813                if (!rc->itr_setting)
1814                        rc->itr_setting = ICE_DFLT_RX_ITR;
1815
1816                rc->target_itr = ITR_TO_REG(rc->itr_setting);
1817                rc->next_update = jiffies + 1;
1818                rc->current_itr = rc->target_itr;
1819                wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1820                     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1821        }
1822
1823        if (q_vector->num_ring_tx) {
1824                struct ice_ring_container *rc = &q_vector->tx;
1825
1826                /* if this value is set then don't overwrite with default */
1827                if (!rc->itr_setting)
1828                        rc->itr_setting = ICE_DFLT_TX_ITR;
1829
1830                rc->target_itr = ITR_TO_REG(rc->itr_setting);
1831                rc->next_update = jiffies + 1;
1832                rc->current_itr = rc->target_itr;
1833                wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1834                     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1835        }
1836}
1837
1838/**
1839 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1840 * @vsi: the VSI being configured
1841 * @txq: Tx queue being mapped to MSI-X vector
1842 * @msix_idx: MSI-X vector index within the function
1843 * @itr_idx: ITR index of the interrupt cause
1844 *
1845 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1846 * within the function space.
1847 */
1848#ifdef CONFIG_PCI_IOV
1849void
1850ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1851#else
1852static void
1853ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1854#endif /* CONFIG_PCI_IOV */
1855{
1856        struct ice_pf *pf = vsi->back;
1857        struct ice_hw *hw = &pf->hw;
1858        u32 val;
1859
1860        itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
1861
1862        val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1863              ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
1864
1865        wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1866}
1867
1868/**
1869 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1870 * @vsi: the VSI being configured
1871 * @rxq: Rx queue being mapped to MSI-X vector
1872 * @msix_idx: MSI-X vector index within the function
1873 * @itr_idx: ITR index of the interrupt cause
1874 *
1875 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1876 * within the function space.
1877 */
1878#ifdef CONFIG_PCI_IOV
1879void
1880ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1881#else
1882static void
1883ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1884#endif /* CONFIG_PCI_IOV */
1885{
1886        struct ice_pf *pf = vsi->back;
1887        struct ice_hw *hw = &pf->hw;
1888        u32 val;
1889
1890        itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
1891
1892        val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1893              ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
1894
1895        wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1896
1897        ice_flush(hw);
1898}
1899
1900/**
1901 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1902 * @vsi: the VSI being configured
1903 *
1904 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1905 * for the VF VSI.
1906 */
1907void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1908{
1909        struct ice_pf *pf = vsi->back;
1910        struct ice_hw *hw = &pf->hw;
1911        u32 txq = 0, rxq = 0;
1912        int i, q;
1913
1914        for (i = 0; i < vsi->num_q_vectors; i++) {
1915                struct ice_q_vector *q_vector = vsi->q_vectors[i];
1916                u16 reg_idx = q_vector->reg_idx;
1917
1918                ice_cfg_itr(hw, q_vector);
1919
1920                wr32(hw, GLINT_RATE(reg_idx),
1921                     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1922
1923                /* Both Transmit Queue Interrupt Cause Control register
1924                 * and Receive Queue Interrupt Cause control register
1925                 * expects MSIX_INDX field to be the vector index
1926                 * within the function space and not the absolute
1927                 * vector index across PF or across device.
1928                 * For SR-IOV VF VSIs queue vector index always starts
1929                 * with 1 since first vector index(0) is used for OICR
1930                 * in VF space. Since VMDq and other PF VSIs are within
1931                 * the PF function space, use the vector index that is
1932                 * tracked for this PF.
1933                 */
1934                for (q = 0; q < q_vector->num_ring_tx; q++) {
1935                        ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1936                                              q_vector->tx.itr_idx);
1937                        txq++;
1938                }
1939
1940                for (q = 0; q < q_vector->num_ring_rx; q++) {
1941                        ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1942                                              q_vector->rx.itr_idx);
1943                        rxq++;
1944                }
1945        }
1946}
1947
1948/**
1949 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1950 * @vsi: the VSI being changed
1951 */
1952int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1953{
1954        struct device *dev = &vsi->back->pdev->dev;
1955        struct ice_hw *hw = &vsi->back->hw;
1956        struct ice_vsi_ctx *ctxt;
1957        enum ice_status status;
1958        int ret = 0;
1959
1960        ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
1961        if (!ctxt)
1962                return -ENOMEM;
1963
1964        /* Here we are configuring the VSI to let the driver add VLAN tags by
1965         * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1966         * insertion happens in the Tx hot path, in ice_tx_map.
1967         */
1968        ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1969
1970        /* Preserve existing VLAN strip setting */
1971        ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1972                                  ICE_AQ_VSI_VLAN_EMOD_M);
1973
1974        ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1975
1976        status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1977        if (status) {
1978                dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
1979                        status, hw->adminq.sq_last_status);
1980                ret = -EIO;
1981                goto out;
1982        }
1983
1984        vsi->info.vlan_flags = ctxt->info.vlan_flags;
1985out:
1986        devm_kfree(dev, ctxt);
1987        return ret;
1988}
1989
1990/**
1991 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1992 * @vsi: the VSI being changed
1993 * @ena: boolean value indicating if this is a enable or disable request
1994 */
1995int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1996{
1997        struct device *dev = &vsi->back->pdev->dev;
1998        struct ice_hw *hw = &vsi->back->hw;
1999        struct ice_vsi_ctx *ctxt;
2000        enum ice_status status;
2001        int ret = 0;
2002
2003        ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2004        if (!ctxt)
2005                return -ENOMEM;
2006
2007        /* Here we are configuring what the VSI should do with the VLAN tag in
2008         * the Rx packet. We can either leave the tag in the packet or put it in
2009         * the Rx descriptor.
2010         */
2011        if (ena)
2012                /* Strip VLAN tag from Rx packet and put it in the desc */
2013                ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2014        else
2015                /* Disable stripping. Leave tag in packet */
2016                ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2017
2018        /* Allow all packets untagged/tagged */
2019        ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2020
2021        ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2022
2023        status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2024        if (status) {
2025                dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
2026                        ena, status, hw->adminq.sq_last_status);
2027                ret = -EIO;
2028                goto out;
2029        }
2030
2031        vsi->info.vlan_flags = ctxt->info.vlan_flags;
2032out:
2033        devm_kfree(dev, ctxt);
2034        return ret;
2035}
2036
2037/**
2038 * ice_vsi_start_rx_rings - start VSI's Rx rings
2039 * @vsi: the VSI whose rings are to be started
2040 *
2041 * Returns 0 on success and a negative value on error
2042 */
2043int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2044{
2045        return ice_vsi_ctrl_rx_rings(vsi, true);
2046}
2047
2048/**
2049 * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2050 * @vsi: the VSI
2051 *
2052 * Returns 0 on success and a negative value on error
2053 */
2054int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2055{
2056        return ice_vsi_ctrl_rx_rings(vsi, false);
2057}
2058
2059/**
2060 * ice_trigger_sw_intr - trigger a software interrupt
2061 * @hw: pointer to the HW structure
2062 * @q_vector: interrupt vector to trigger the software interrupt for
2063 */
2064void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
2065{
2066        wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
2067             (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
2068             GLINT_DYN_CTL_SWINT_TRIG_M |
2069             GLINT_DYN_CTL_INTENA_M);
2070}
2071
2072/**
2073 * ice_vsi_stop_tx_rings - Disable Tx rings
2074 * @vsi: the VSI being configured
2075 * @rst_src: reset source
2076 * @rel_vmvf_num: Relative ID of VF/VM
2077 * @rings: Tx ring array to be stopped
2078 * @offset: offset within vsi->txq_map
2079 */
2080static int
2081ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2082                      u16 rel_vmvf_num, struct ice_ring **rings, int offset)
2083{
2084        struct ice_pf *pf = vsi->back;
2085        struct ice_hw *hw = &pf->hw;
2086        int tc, q_idx = 0, err = 0;
2087        u16 *q_ids, *q_handles, i;
2088        enum ice_status status;
2089        u32 *q_teids, val;
2090
2091        if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2092                return -EINVAL;
2093
2094        q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
2095                               GFP_KERNEL);
2096        if (!q_teids)
2097                return -ENOMEM;
2098
2099        q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
2100                             GFP_KERNEL);
2101        if (!q_ids) {
2102                err = -ENOMEM;
2103                goto err_alloc_q_ids;
2104        }
2105
2106        q_handles = devm_kcalloc(&pf->pdev->dev, vsi->num_txq,
2107                                 sizeof(*q_handles), GFP_KERNEL);
2108        if (!q_handles) {
2109                err = -ENOMEM;
2110                goto err_alloc_q_handles;
2111        }
2112
2113        /* set up the Tx queue list to be disabled for each enabled TC */
2114        ice_for_each_traffic_class(tc) {
2115                if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2116                        break;
2117
2118                for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2119                        struct ice_q_vector *q_vector;
2120
2121                        if (!rings || !rings[q_idx]) {
2122                                err = -EINVAL;
2123                                goto err_out;
2124                        }
2125
2126                        q_ids[i] = vsi->txq_map[q_idx + offset];
2127                        q_teids[i] = rings[q_idx]->txq_teid;
2128                        q_handles[i] = i;
2129
2130                        /* clear cause_ena bit for disabled queues */
2131                        val = rd32(hw, QINT_TQCTL(rings[i]->reg_idx));
2132                        val &= ~QINT_TQCTL_CAUSE_ENA_M;
2133                        wr32(hw, QINT_TQCTL(rings[i]->reg_idx), val);
2134
2135                        /* software is expected to wait for 100 ns */
2136                        ndelay(100);
2137
2138                        /* trigger a software interrupt for the vector
2139                         * associated to the queue to schedule NAPI handler
2140                         */
2141                        q_vector = rings[i]->q_vector;
2142                        if (q_vector)
2143                                ice_trigger_sw_intr(hw, q_vector);
2144
2145                        q_idx++;
2146                }
2147                status = ice_dis_vsi_txq(vsi->port_info, vsi->idx, tc,
2148                                         vsi->num_txq, q_handles, q_ids,
2149                                         q_teids, rst_src, rel_vmvf_num, NULL);
2150
2151                /* if the disable queue command was exercised during an active
2152                 * reset flow, ICE_ERR_RESET_ONGOING is returned. This is not
2153                 * an error as the reset operation disables queues at the
2154                 * hardware level anyway.
2155                 */
2156                if (status == ICE_ERR_RESET_ONGOING) {
2157                        dev_dbg(&pf->pdev->dev,
2158                                "Reset in progress. LAN Tx queues already disabled\n");
2159                } else if (status) {
2160                        dev_err(&pf->pdev->dev,
2161                                "Failed to disable LAN Tx queues, error: %d\n",
2162                                status);
2163                        err = -ENODEV;
2164                }
2165        }
2166
2167err_out:
2168        devm_kfree(&pf->pdev->dev, q_handles);
2169
2170err_alloc_q_handles:
2171        devm_kfree(&pf->pdev->dev, q_ids);
2172
2173err_alloc_q_ids:
2174        devm_kfree(&pf->pdev->dev, q_teids);
2175
2176        return err;
2177}
2178
2179/**
2180 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2181 * @vsi: the VSI being configured
2182 * @rst_src: reset source
2183 * @rel_vmvf_num: Relative ID of VF/VM
2184 */
2185int
2186ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2187                          u16 rel_vmvf_num)
2188{
2189        return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings,
2190                                     0);
2191}
2192
2193/**
2194 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2195 * @vsi: VSI to enable or disable VLAN pruning on
2196 * @ena: set to true to enable VLAN pruning and false to disable it
2197 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2198 *
2199 * returns 0 if VSI is updated, negative otherwise
2200 */
2201int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2202{
2203        struct ice_vsi_ctx *ctxt;
2204        struct device *dev;
2205        struct ice_pf *pf;
2206        int status;
2207
2208        if (!vsi)
2209                return -EINVAL;
2210
2211        pf = vsi->back;
2212        dev = &pf->pdev->dev;
2213        ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2214        if (!ctxt)
2215                return -ENOMEM;
2216
2217        ctxt->info = vsi->info;
2218
2219        if (ena) {
2220                ctxt->info.sec_flags |=
2221                        ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2222                        ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2223                ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2224        } else {
2225                ctxt->info.sec_flags &=
2226                        ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2227                          ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2228                ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2229        }
2230
2231        if (!vlan_promisc)
2232                ctxt->info.valid_sections =
2233                        cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2234                                    ICE_AQ_VSI_PROP_SW_VALID);
2235
2236        status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2237        if (status) {
2238                netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2239                           ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2240                           pf->hw.adminq.sq_last_status);
2241                goto err_out;
2242        }
2243
2244        vsi->info.sec_flags = ctxt->info.sec_flags;
2245        vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2246
2247        devm_kfree(dev, ctxt);
2248        return 0;
2249
2250err_out:
2251        devm_kfree(dev, ctxt);
2252        return -EIO;
2253}
2254
2255static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2256{
2257        struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2258
2259        vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2260        vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2261}
2262
2263/**
2264 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2265 * @vsi: VSI to set the q_vectors register index on
2266 */
2267static int
2268ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2269{
2270        u16 i;
2271
2272        if (!vsi || !vsi->q_vectors)
2273                return -EINVAL;
2274
2275        ice_for_each_q_vector(vsi, i) {
2276                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2277
2278                if (!q_vector) {
2279                        dev_err(&vsi->back->pdev->dev,
2280                                "Failed to set reg_idx on q_vector %d VSI %d\n",
2281                                i, vsi->vsi_num);
2282                        goto clear_reg_idx;
2283                }
2284
2285                if (vsi->type == ICE_VSI_VF) {
2286                        struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2287
2288                        q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2289                } else {
2290                        q_vector->reg_idx =
2291                                q_vector->v_idx + vsi->base_vector;
2292                }
2293        }
2294
2295        return 0;
2296
2297clear_reg_idx:
2298        ice_for_each_q_vector(vsi, i) {
2299                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2300
2301                if (q_vector)
2302                        q_vector->reg_idx = 0;
2303        }
2304
2305        return -EINVAL;
2306}
2307
2308/**
2309 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule
2310 * @vsi: the VSI being configured
2311 * @add_rule: boolean value to add or remove ethertype filter rule
2312 */
2313static void
2314ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule)
2315{
2316        struct ice_fltr_list_entry *list;
2317        struct ice_pf *pf = vsi->back;
2318        LIST_HEAD(tmp_add_list);
2319        enum ice_status status;
2320
2321        list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2322        if (!list)
2323                return;
2324
2325        list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2326        list->fltr_info.fltr_act = ICE_DROP_PACKET;
2327        list->fltr_info.flag = ICE_FLTR_TX;
2328        list->fltr_info.src_id = ICE_SRC_ID_VSI;
2329        list->fltr_info.vsi_handle = vsi->idx;
2330        list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype;
2331
2332        INIT_LIST_HEAD(&list->list_entry);
2333        list_add(&list->list_entry, &tmp_add_list);
2334
2335        if (add_rule)
2336                status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2337        else
2338                status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2339
2340        if (status)
2341                dev_err(&pf->pdev->dev,
2342                        "Failure Adding or Removing Ethertype on VSI %i error: %d\n",
2343                        vsi->vsi_num, status);
2344
2345        ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2346}
2347
2348/**
2349 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2350 * @vsi: the VSI being configured
2351 * @tx: bool to determine Tx or Rx rule
2352 * @create: bool to determine create or remove Rule
2353 */
2354void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2355{
2356        struct ice_fltr_list_entry *list;
2357        struct ice_pf *pf = vsi->back;
2358        LIST_HEAD(tmp_add_list);
2359        enum ice_status status;
2360
2361        list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2362        if (!list)
2363                return;
2364
2365        list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2366        list->fltr_info.vsi_handle = vsi->idx;
2367        list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP;
2368
2369        if (tx) {
2370                list->fltr_info.fltr_act = ICE_DROP_PACKET;
2371                list->fltr_info.flag = ICE_FLTR_TX;
2372                list->fltr_info.src_id = ICE_SRC_ID_VSI;
2373        } else {
2374                list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2375                list->fltr_info.flag = ICE_FLTR_RX;
2376                list->fltr_info.src_id = ICE_SRC_ID_LPORT;
2377        }
2378
2379        INIT_LIST_HEAD(&list->list_entry);
2380        list_add(&list->list_entry, &tmp_add_list);
2381
2382        if (create)
2383                status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2384        else
2385                status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2386
2387        if (status)
2388                dev_err(&pf->pdev->dev,
2389                        "Fail %s %s LLDP rule on VSI %i error: %d\n",
2390                        create ? "adding" : "removing", tx ? "TX" : "RX",
2391                        vsi->vsi_num, status);
2392
2393        ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2394}
2395
2396/**
2397 * ice_vsi_setup - Set up a VSI by a given type
2398 * @pf: board private structure
2399 * @pi: pointer to the port_info instance
2400 * @type: VSI type
2401 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2402 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2403 *         fill-in ICE_INVAL_VFID as input.
2404 *
2405 * This allocates the sw VSI structure and its queue resources.
2406 *
2407 * Returns pointer to the successfully allocated and configured VSI sw struct on
2408 * success, NULL on failure.
2409 */
2410struct ice_vsi *
2411ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2412              enum ice_vsi_type type, u16 vf_id)
2413{
2414        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2415        struct device *dev = &pf->pdev->dev;
2416        enum ice_status status;
2417        struct ice_vsi *vsi;
2418        int ret, i;
2419
2420        if (type == ICE_VSI_VF)
2421                vsi = ice_vsi_alloc(pf, type, vf_id);
2422        else
2423                vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2424
2425        if (!vsi) {
2426                dev_err(dev, "could not allocate VSI\n");
2427                return NULL;
2428        }
2429
2430        vsi->port_info = pi;
2431        vsi->vsw = pf->first_sw;
2432        if (vsi->type == ICE_VSI_PF)
2433                vsi->ethtype = ETH_P_PAUSE;
2434
2435        if (vsi->type == ICE_VSI_VF)
2436                vsi->vf_id = vf_id;
2437
2438        if (ice_vsi_get_qs(vsi)) {
2439                dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2440                        vsi->idx);
2441                goto unroll_get_qs;
2442        }
2443
2444        /* set RSS capabilities */
2445        ice_vsi_set_rss_params(vsi);
2446
2447        /* set TC configuration */
2448        ice_vsi_set_tc_cfg(vsi);
2449
2450        /* create the VSI */
2451        ret = ice_vsi_init(vsi);
2452        if (ret)
2453                goto unroll_get_qs;
2454
2455        switch (vsi->type) {
2456        case ICE_VSI_PF:
2457                ret = ice_vsi_alloc_q_vectors(vsi);
2458                if (ret)
2459                        goto unroll_vsi_init;
2460
2461                ret = ice_vsi_setup_vector_base(vsi);
2462                if (ret)
2463                        goto unroll_alloc_q_vector;
2464
2465                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2466                if (ret)
2467                        goto unroll_vector_base;
2468
2469                ret = ice_vsi_alloc_rings(vsi);
2470                if (ret)
2471                        goto unroll_vector_base;
2472
2473                ice_vsi_map_rings_to_vectors(vsi);
2474
2475                /* Do not exit if configuring RSS had an issue, at least
2476                 * receive traffic on first queue. Hence no need to capture
2477                 * return value
2478                 */
2479                if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2480                        ice_vsi_cfg_rss_lut_key(vsi);
2481                break;
2482        case ICE_VSI_VF:
2483                /* VF driver will take care of creating netdev for this type and
2484                 * map queues to vectors through Virtchnl, PF driver only
2485                 * creates a VSI and corresponding structures for bookkeeping
2486                 * purpose
2487                 */
2488                ret = ice_vsi_alloc_q_vectors(vsi);
2489                if (ret)
2490                        goto unroll_vsi_init;
2491
2492                ret = ice_vsi_alloc_rings(vsi);
2493                if (ret)
2494                        goto unroll_alloc_q_vector;
2495
2496                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2497                if (ret)
2498                        goto unroll_vector_base;
2499
2500                pf->q_left_tx -= vsi->alloc_txq;
2501                pf->q_left_rx -= vsi->alloc_rxq;
2502
2503                /* Do not exit if configuring RSS had an issue, at least
2504                 * receive traffic on first queue. Hence no need to capture
2505                 * return value
2506                 */
2507                if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2508                        ice_vsi_cfg_rss_lut_key(vsi);
2509                break;
2510        case ICE_VSI_LB:
2511                ret = ice_vsi_alloc_rings(vsi);
2512                if (ret)
2513                        goto unroll_vsi_init;
2514                break;
2515        default:
2516                /* clean up the resources and exit */
2517                goto unroll_vsi_init;
2518        }
2519
2520        /* configure VSI nodes based on number of queues and TC's */
2521        for (i = 0; i < vsi->tc_cfg.numtc; i++)
2522                max_txqs[i] = pf->num_lan_tx;
2523
2524        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2525                                 max_txqs);
2526        if (status) {
2527                dev_err(&pf->pdev->dev,
2528                        "VSI %d failed lan queue config, error %d\n",
2529                        vsi->vsi_num, status);
2530                goto unroll_vector_base;
2531        }
2532
2533        /* Add switch rule to drop all Tx Flow Control Frames, of look up
2534         * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2535         * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2536         * The rule is added once for PF VSI in order to create appropriate
2537         * recipe, since VSI/VSI list is ignored with drop action...
2538         * Also add rules to handle LLDP Tx and Rx packets.  Tx LLDP packets
2539         * need to be dropped so that VFs cannot send LLDP packets to reconfig
2540         * DCB settings in the HW.  Also, if the FW DCBX engine is not running
2541         * then Rx LLDP packets need to be redirected up the stack.
2542         */
2543        if (vsi->type == ICE_VSI_PF) {
2544                ice_vsi_add_rem_eth_mac(vsi, true);
2545
2546                /* Tx LLDP packets */
2547                ice_cfg_sw_lldp(vsi, true, true);
2548
2549                /* Rx LLDP packets */
2550                if (!test_bit(ICE_FLAG_ENABLE_FW_LLDP, pf->flags))
2551                        ice_cfg_sw_lldp(vsi, false, true);
2552        }
2553
2554        return vsi;
2555
2556unroll_vector_base:
2557        /* reclaim SW interrupts back to the common pool */
2558        ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2559        pf->num_avail_sw_msix += vsi->num_q_vectors;
2560unroll_alloc_q_vector:
2561        ice_vsi_free_q_vectors(vsi);
2562unroll_vsi_init:
2563        ice_vsi_delete(vsi);
2564unroll_get_qs:
2565        ice_vsi_put_qs(vsi);
2566        pf->q_left_tx += vsi->alloc_txq;
2567        pf->q_left_rx += vsi->alloc_rxq;
2568        ice_vsi_clear(vsi);
2569
2570        return NULL;
2571}
2572
2573/**
2574 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2575 * @vsi: the VSI being cleaned up
2576 */
2577static void ice_vsi_release_msix(struct ice_vsi *vsi)
2578{
2579        struct ice_pf *pf = vsi->back;
2580        struct ice_hw *hw = &pf->hw;
2581        u32 txq = 0;
2582        u32 rxq = 0;
2583        int i, q;
2584
2585        for (i = 0; i < vsi->num_q_vectors; i++) {
2586                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2587                u16 reg_idx = q_vector->reg_idx;
2588
2589                wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2590                wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2591                for (q = 0; q < q_vector->num_ring_tx; q++) {
2592                        wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2593                        txq++;
2594                }
2595
2596                for (q = 0; q < q_vector->num_ring_rx; q++) {
2597                        wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2598                        rxq++;
2599                }
2600        }
2601
2602        ice_flush(hw);
2603}
2604
2605/**
2606 * ice_vsi_free_irq - Free the IRQ association with the OS
2607 * @vsi: the VSI being configured
2608 */
2609void ice_vsi_free_irq(struct ice_vsi *vsi)
2610{
2611        struct ice_pf *pf = vsi->back;
2612        int base = vsi->base_vector;
2613
2614        if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2615                int i;
2616
2617                if (!vsi->q_vectors || !vsi->irqs_ready)
2618                        return;
2619
2620                ice_vsi_release_msix(vsi);
2621                if (vsi->type == ICE_VSI_VF)
2622                        return;
2623
2624                vsi->irqs_ready = false;
2625                ice_for_each_q_vector(vsi, i) {
2626                        u16 vector = i + base;
2627                        int irq_num;
2628
2629                        irq_num = pf->msix_entries[vector].vector;
2630
2631                        /* free only the irqs that were actually requested */
2632                        if (!vsi->q_vectors[i] ||
2633                            !(vsi->q_vectors[i]->num_ring_tx ||
2634                              vsi->q_vectors[i]->num_ring_rx))
2635                                continue;
2636
2637                        /* clear the affinity notifier in the IRQ descriptor */
2638                        irq_set_affinity_notifier(irq_num, NULL);
2639
2640                        /* clear the affinity_mask in the IRQ descriptor */
2641                        irq_set_affinity_hint(irq_num, NULL);
2642                        synchronize_irq(irq_num);
2643                        devm_free_irq(&pf->pdev->dev, irq_num,
2644                                      vsi->q_vectors[i]);
2645                }
2646        }
2647}
2648
2649/**
2650 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2651 * @vsi: the VSI having resources freed
2652 */
2653void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2654{
2655        int i;
2656
2657        if (!vsi->tx_rings)
2658                return;
2659
2660        ice_for_each_txq(vsi, i)
2661                if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2662                        ice_free_tx_ring(vsi->tx_rings[i]);
2663}
2664
2665/**
2666 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2667 * @vsi: the VSI having resources freed
2668 */
2669void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2670{
2671        int i;
2672
2673        if (!vsi->rx_rings)
2674                return;
2675
2676        ice_for_each_rxq(vsi, i)
2677                if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2678                        ice_free_rx_ring(vsi->rx_rings[i]);
2679}
2680
2681/**
2682 * ice_vsi_close - Shut down a VSI
2683 * @vsi: the VSI being shut down
2684 */
2685void ice_vsi_close(struct ice_vsi *vsi)
2686{
2687        if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2688                ice_down(vsi);
2689
2690        ice_vsi_free_irq(vsi);
2691        ice_vsi_free_tx_rings(vsi);
2692        ice_vsi_free_rx_rings(vsi);
2693}
2694
2695/**
2696 * ice_free_res - free a block of resources
2697 * @res: pointer to the resource
2698 * @index: starting index previously returned by ice_get_res
2699 * @id: identifier to track owner
2700 *
2701 * Returns number of resources freed
2702 */
2703int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2704{
2705        int count = 0;
2706        int i;
2707
2708        if (!res || index >= res->end)
2709                return -EINVAL;
2710
2711        id |= ICE_RES_VALID_BIT;
2712        for (i = index; i < res->end && res->list[i] == id; i++) {
2713                res->list[i] = 0;
2714                count++;
2715        }
2716
2717        return count;
2718}
2719
2720/**
2721 * ice_search_res - Search the tracker for a block of resources
2722 * @res: pointer to the resource
2723 * @needed: size of the block needed
2724 * @id: identifier to track owner
2725 *
2726 * Returns the base item index of the block, or -ENOMEM for error
2727 */
2728static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2729{
2730        int start = 0, end = 0;
2731
2732        if (needed > res->end)
2733                return -ENOMEM;
2734
2735        id |= ICE_RES_VALID_BIT;
2736
2737        do {
2738                /* skip already allocated entries */
2739                if (res->list[end++] & ICE_RES_VALID_BIT) {
2740                        start = end;
2741                        if ((start + needed) > res->end)
2742                                break;
2743                }
2744
2745                if (end == (start + needed)) {
2746                        int i = start;
2747
2748                        /* there was enough, so assign it to the requestor */
2749                        while (i != end)
2750                                res->list[i++] = id;
2751
2752                        return start;
2753                }
2754        } while (end < res->end);
2755
2756        return -ENOMEM;
2757}
2758
2759/**
2760 * ice_get_res - get a block of resources
2761 * @pf: board private structure
2762 * @res: pointer to the resource
2763 * @needed: size of the block needed
2764 * @id: identifier to track owner
2765 *
2766 * Returns the base item index of the block, or negative for error
2767 */
2768int
2769ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2770{
2771        if (!res || !pf)
2772                return -EINVAL;
2773
2774        if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2775                dev_err(&pf->pdev->dev,
2776                        "param err: needed=%d, num_entries = %d id=0x%04x\n",
2777                        needed, res->num_entries, id);
2778                return -EINVAL;
2779        }
2780
2781        return ice_search_res(res, needed, id);
2782}
2783
2784/**
2785 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2786 * @vsi: the VSI being un-configured
2787 */
2788void ice_vsi_dis_irq(struct ice_vsi *vsi)
2789{
2790        int base = vsi->base_vector;
2791        struct ice_pf *pf = vsi->back;
2792        struct ice_hw *hw = &pf->hw;
2793        u32 val;
2794        int i;
2795
2796        /* disable interrupt causation from each queue */
2797        if (vsi->tx_rings) {
2798                ice_for_each_txq(vsi, i) {
2799                        if (vsi->tx_rings[i]) {
2800                                u16 reg;
2801
2802                                reg = vsi->tx_rings[i]->reg_idx;
2803                                val = rd32(hw, QINT_TQCTL(reg));
2804                                val &= ~QINT_TQCTL_CAUSE_ENA_M;
2805                                wr32(hw, QINT_TQCTL(reg), val);
2806                        }
2807                }
2808        }
2809
2810        if (vsi->rx_rings) {
2811                ice_for_each_rxq(vsi, i) {
2812                        if (vsi->rx_rings[i]) {
2813                                u16 reg;
2814
2815                                reg = vsi->rx_rings[i]->reg_idx;
2816                                val = rd32(hw, QINT_RQCTL(reg));
2817                                val &= ~QINT_RQCTL_CAUSE_ENA_M;
2818                                wr32(hw, QINT_RQCTL(reg), val);
2819                        }
2820                }
2821        }
2822
2823        /* disable each interrupt */
2824        if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2825                ice_for_each_q_vector(vsi, i)
2826                        wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2827
2828                ice_flush(hw);
2829
2830                ice_for_each_q_vector(vsi, i)
2831                        synchronize_irq(pf->msix_entries[i + base].vector);
2832        }
2833}
2834
2835/**
2836 * ice_napi_del - Remove NAPI handler for the VSI
2837 * @vsi: VSI for which NAPI handler is to be removed
2838 */
2839void ice_napi_del(struct ice_vsi *vsi)
2840{
2841        int v_idx;
2842
2843        if (!vsi->netdev)
2844                return;
2845
2846        ice_for_each_q_vector(vsi, v_idx)
2847                netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2848}
2849
2850/**
2851 * ice_vsi_release - Delete a VSI and free its resources
2852 * @vsi: the VSI being removed
2853 *
2854 * Returns 0 on success or < 0 on error
2855 */
2856int ice_vsi_release(struct ice_vsi *vsi)
2857{
2858        struct ice_pf *pf;
2859
2860        if (!vsi->back)
2861                return -ENODEV;
2862        pf = vsi->back;
2863
2864        /* do not unregister while driver is in the reset recovery pending
2865         * state. Since reset/rebuild happens through PF service task workqueue,
2866         * it's not a good idea to unregister netdev that is associated to the
2867         * PF that is running the work queue items currently. This is done to
2868         * avoid check_flush_dependency() warning on this wq
2869         */
2870        if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2871                unregister_netdev(vsi->netdev);
2872
2873        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2874                ice_rss_clean(vsi);
2875
2876        /* Disable VSI and free resources */
2877        if (vsi->type != ICE_VSI_LB)
2878                ice_vsi_dis_irq(vsi);
2879        ice_vsi_close(vsi);
2880
2881        /* SR-IOV determines needed MSIX resources all at once instead of per
2882         * VSI since when VFs are spawned we know how many VFs there are and how
2883         * many interrupts each VF needs. SR-IOV MSIX resources are also
2884         * cleared in the same manner.
2885         */
2886        if (vsi->type != ICE_VSI_VF) {
2887                /* reclaim SW interrupts back to the common pool */
2888                ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2889                pf->num_avail_sw_msix += vsi->num_q_vectors;
2890        }
2891
2892        if (vsi->type == ICE_VSI_PF) {
2893                ice_vsi_add_rem_eth_mac(vsi, false);
2894                ice_cfg_sw_lldp(vsi, true, false);
2895                /* The Rx rule will only exist to remove if the LLDP FW
2896                 * engine is currently stopped
2897                 */
2898                if (!test_bit(ICE_FLAG_ENABLE_FW_LLDP, pf->flags))
2899                        ice_cfg_sw_lldp(vsi, false, false);
2900        }
2901
2902        ice_remove_vsi_fltr(&pf->hw, vsi->idx);
2903        ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2904        ice_vsi_delete(vsi);
2905        ice_vsi_free_q_vectors(vsi);
2906
2907        /* make sure unregister_netdev() was called by checking __ICE_DOWN */
2908        if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
2909                free_netdev(vsi->netdev);
2910                vsi->netdev = NULL;
2911        }
2912
2913        ice_vsi_clear_rings(vsi);
2914
2915        ice_vsi_put_qs(vsi);
2916        pf->q_left_tx += vsi->alloc_txq;
2917        pf->q_left_rx += vsi->alloc_rxq;
2918
2919        /* retain SW VSI data structure since it is needed to unregister and
2920         * free VSI netdev when PF is not in reset recovery pending state,\
2921         * for ex: during rmmod.
2922         */
2923        if (!ice_is_reset_in_progress(pf->state))
2924                ice_vsi_clear(vsi);
2925
2926        return 0;
2927}
2928
2929/**
2930 * ice_vsi_rebuild - Rebuild VSI after reset
2931 * @vsi: VSI to be rebuild
2932 *
2933 * Returns 0 on success and negative value on failure
2934 */
2935int ice_vsi_rebuild(struct ice_vsi *vsi)
2936{
2937        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2938        struct ice_vf *vf = NULL;
2939        enum ice_status status;
2940        struct ice_pf *pf;
2941        int ret, i;
2942
2943        if (!vsi)
2944                return -EINVAL;
2945
2946        pf = vsi->back;
2947        if (vsi->type == ICE_VSI_VF)
2948                vf = &pf->vf[vsi->vf_id];
2949
2950        ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2951        ice_vsi_free_q_vectors(vsi);
2952
2953        /* SR-IOV determines needed MSIX resources all at once instead of per
2954         * VSI since when VFs are spawned we know how many VFs there are and how
2955         * many interrupts each VF needs. SR-IOV MSIX resources are also
2956         * cleared in the same manner.
2957         */
2958        if (vsi->type != ICE_VSI_VF) {
2959                /* reclaim SW interrupts back to the common pool */
2960                ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2961                pf->num_avail_sw_msix += vsi->num_q_vectors;
2962                vsi->base_vector = 0;
2963        }
2964
2965        ice_vsi_clear_rings(vsi);
2966        ice_vsi_free_arrays(vsi);
2967        ice_dev_onetime_setup(&pf->hw);
2968        if (vsi->type == ICE_VSI_VF)
2969                ice_vsi_set_num_qs(vsi, vf->vf_id);
2970        else
2971                ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2972        ice_vsi_set_tc_cfg(vsi);
2973
2974        /* Initialize VSI struct elements and create VSI in FW */
2975        ret = ice_vsi_init(vsi);
2976        if (ret < 0)
2977                goto err_vsi;
2978
2979        ret = ice_vsi_alloc_arrays(vsi);
2980        if (ret < 0)
2981                goto err_vsi;
2982
2983        switch (vsi->type) {
2984        case ICE_VSI_PF:
2985                ret = ice_vsi_alloc_q_vectors(vsi);
2986                if (ret)
2987                        goto err_rings;
2988
2989                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2990                if (ret)
2991                        goto err_vectors;
2992
2993                ret = ice_vsi_alloc_rings(vsi);
2994                if (ret)
2995                        goto err_vectors;
2996
2997                ice_vsi_map_rings_to_vectors(vsi);
2998                /* Do not exit if configuring RSS had an issue, at least
2999                 * receive traffic on first queue. Hence no need to capture
3000                 * return value
3001                 */
3002                if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3003                        ice_vsi_cfg_rss_lut_key(vsi);
3004                break;
3005        case ICE_VSI_VF:
3006                ret = ice_vsi_alloc_q_vectors(vsi);
3007                if (ret)
3008                        goto err_rings;
3009
3010                ret = ice_vsi_setup_vector_base(vsi);
3011                if (ret)
3012                        goto err_vectors;
3013
3014                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3015                if (ret)
3016                        goto err_vectors;
3017
3018                ret = ice_vsi_alloc_rings(vsi);
3019                if (ret)
3020                        goto err_vectors;
3021
3022                pf->q_left_tx -= vsi->alloc_txq;
3023                pf->q_left_rx -= vsi->alloc_rxq;
3024                break;
3025        default:
3026                break;
3027        }
3028
3029        /* configure VSI nodes based on number of queues and TC's */
3030        for (i = 0; i < vsi->tc_cfg.numtc; i++)
3031                max_txqs[i] = pf->num_lan_tx;
3032
3033        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3034                                 max_txqs);
3035        if (status) {
3036                dev_err(&pf->pdev->dev,
3037                        "VSI %d failed lan queue config, error %d\n",
3038                        vsi->vsi_num, status);
3039                goto err_vectors;
3040        }
3041        return 0;
3042
3043err_vectors:
3044        ice_vsi_free_q_vectors(vsi);
3045err_rings:
3046        if (vsi->netdev) {
3047                vsi->current_netdev_flags = 0;
3048                unregister_netdev(vsi->netdev);
3049                free_netdev(vsi->netdev);
3050                vsi->netdev = NULL;
3051        }
3052err_vsi:
3053        ice_vsi_clear(vsi);
3054        set_bit(__ICE_RESET_FAILED, pf->state);
3055        return ret;
3056}
3057
3058/**
3059 * ice_is_reset_in_progress - check for a reset in progress
3060 * @state: PF state field
3061 */
3062bool ice_is_reset_in_progress(unsigned long *state)
3063{
3064        return test_bit(__ICE_RESET_OICR_RECV, state) ||
3065               test_bit(__ICE_PFR_REQ, state) ||
3066               test_bit(__ICE_CORER_REQ, state) ||
3067               test_bit(__ICE_GLOBR_REQ, state);
3068}
3069
3070#ifdef CONFIG_DCB
3071/**
3072 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3073 * @vsi: VSI being configured
3074 * @ctx: the context buffer returned from AQ VSI update command
3075 */
3076static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3077{
3078        vsi->info.mapping_flags = ctx->info.mapping_flags;
3079        memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3080               sizeof(vsi->info.q_mapping));
3081        memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3082               sizeof(vsi->info.tc_mapping));
3083}
3084
3085/**
3086 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3087 * @vsi: the VSI being configured
3088 * @ena_tc: TC map to be enabled
3089 */
3090static void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3091{
3092        struct net_device *netdev = vsi->netdev;
3093        struct ice_pf *pf = vsi->back;
3094        struct ice_dcbx_cfg *dcbcfg;
3095        u8 netdev_tc;
3096        int i;
3097
3098        if (!netdev)
3099                return;
3100
3101        if (!ena_tc) {
3102                netdev_reset_tc(netdev);
3103                return;
3104        }
3105
3106        if (netdev_set_num_tc(netdev, vsi->tc_cfg.numtc))
3107                return;
3108
3109        dcbcfg = &pf->hw.port_info->local_dcbx_cfg;
3110
3111        ice_for_each_traffic_class(i)
3112                if (vsi->tc_cfg.ena_tc & BIT(i))
3113                        netdev_set_tc_queue(netdev,
3114                                            vsi->tc_cfg.tc_info[i].netdev_tc,
3115                                            vsi->tc_cfg.tc_info[i].qcount_tx,
3116                                            vsi->tc_cfg.tc_info[i].qoffset);
3117
3118        for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3119                u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3120
3121                /* Get the mapped netdev TC# for the UP */
3122                netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3123                netdev_set_prio_tc_map(netdev, i, netdev_tc);
3124        }
3125}
3126
3127/**
3128 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3129 * @vsi: VSI to be configured
3130 * @ena_tc: TC bitmap
3131 *
3132 * VSI queues expected to be quiesced before calling this function
3133 */
3134int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3135{
3136        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3137        struct ice_vsi_ctx *ctx;
3138        struct ice_pf *pf = vsi->back;
3139        enum ice_status status;
3140        int i, ret = 0;
3141        u8 num_tc = 0;
3142
3143        ice_for_each_traffic_class(i) {
3144                /* build bitmap of enabled TCs */
3145                if (ena_tc & BIT(i))
3146                        num_tc++;
3147                /* populate max_txqs per TC */
3148                max_txqs[i] = pf->num_lan_tx;
3149        }
3150
3151        vsi->tc_cfg.ena_tc = ena_tc;
3152        vsi->tc_cfg.numtc = num_tc;
3153
3154        ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3155        if (!ctx)
3156                return -ENOMEM;
3157
3158        ctx->vf_num = 0;
3159        ctx->info = vsi->info;
3160
3161        ice_vsi_setup_q_map(vsi, ctx);
3162
3163        /* must to indicate which section of VSI context are being modified */
3164        ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3165        status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3166        if (status) {
3167                dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3168                ret = -EIO;
3169                goto out;
3170        }
3171
3172        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3173                                 max_txqs);
3174
3175        if (status) {
3176                dev_err(&pf->pdev->dev,
3177                        "VSI %d failed TC config, error %d\n",
3178                        vsi->vsi_num, status);
3179                ret = -EIO;
3180                goto out;
3181        }
3182        ice_vsi_update_q_map(vsi, ctx);
3183        vsi->info.valid_sections = 0;
3184
3185        ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3186out:
3187        devm_kfree(&pf->pdev->dev, ctx);
3188        return ret;
3189}
3190#endif /* CONFIG_DCB */
3191