linux/drivers/net/ethernet/intel/igb/e1000_nvm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4#include <linux/if_ether.h>
   5#include <linux/delay.h>
   6
   7#include "e1000_mac.h"
   8#include "e1000_nvm.h"
   9
  10/**
  11 *  igb_raise_eec_clk - Raise EEPROM clock
  12 *  @hw: pointer to the HW structure
  13 *  @eecd: pointer to the EEPROM
  14 *
  15 *  Enable/Raise the EEPROM clock bit.
  16 **/
  17static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
  18{
  19        *eecd = *eecd | E1000_EECD_SK;
  20        wr32(E1000_EECD, *eecd);
  21        wrfl();
  22        udelay(hw->nvm.delay_usec);
  23}
  24
  25/**
  26 *  igb_lower_eec_clk - Lower EEPROM clock
  27 *  @hw: pointer to the HW structure
  28 *  @eecd: pointer to the EEPROM
  29 *
  30 *  Clear/Lower the EEPROM clock bit.
  31 **/
  32static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
  33{
  34        *eecd = *eecd & ~E1000_EECD_SK;
  35        wr32(E1000_EECD, *eecd);
  36        wrfl();
  37        udelay(hw->nvm.delay_usec);
  38}
  39
  40/**
  41 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
  42 *  @hw: pointer to the HW structure
  43 *  @data: data to send to the EEPROM
  44 *  @count: number of bits to shift out
  45 *
  46 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
  47 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
  48 *  In order to do this, "data" must be broken down into bits.
  49 **/
  50static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
  51{
  52        struct e1000_nvm_info *nvm = &hw->nvm;
  53        u32 eecd = rd32(E1000_EECD);
  54        u32 mask;
  55
  56        mask = 1u << (count - 1);
  57        if (nvm->type == e1000_nvm_eeprom_spi)
  58                eecd |= E1000_EECD_DO;
  59
  60        do {
  61                eecd &= ~E1000_EECD_DI;
  62
  63                if (data & mask)
  64                        eecd |= E1000_EECD_DI;
  65
  66                wr32(E1000_EECD, eecd);
  67                wrfl();
  68
  69                udelay(nvm->delay_usec);
  70
  71                igb_raise_eec_clk(hw, &eecd);
  72                igb_lower_eec_clk(hw, &eecd);
  73
  74                mask >>= 1;
  75        } while (mask);
  76
  77        eecd &= ~E1000_EECD_DI;
  78        wr32(E1000_EECD, eecd);
  79}
  80
  81/**
  82 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
  83 *  @hw: pointer to the HW structure
  84 *  @count: number of bits to shift in
  85 *
  86 *  In order to read a register from the EEPROM, we need to shift 'count' bits
  87 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
  88 *  the EEPROM (setting the SK bit), and then reading the value of the data out
  89 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
  90 *  always be clear.
  91 **/
  92static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
  93{
  94        u32 eecd;
  95        u32 i;
  96        u16 data;
  97
  98        eecd = rd32(E1000_EECD);
  99
 100        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 101        data = 0;
 102
 103        for (i = 0; i < count; i++) {
 104                data <<= 1;
 105                igb_raise_eec_clk(hw, &eecd);
 106
 107                eecd = rd32(E1000_EECD);
 108
 109                eecd &= ~E1000_EECD_DI;
 110                if (eecd & E1000_EECD_DO)
 111                        data |= 1;
 112
 113                igb_lower_eec_clk(hw, &eecd);
 114        }
 115
 116        return data;
 117}
 118
 119/**
 120 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 121 *  @hw: pointer to the HW structure
 122 *  @ee_reg: EEPROM flag for polling
 123 *
 124 *  Polls the EEPROM status bit for either read or write completion based
 125 *  upon the value of 'ee_reg'.
 126 **/
 127static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
 128{
 129        u32 attempts = 100000;
 130        u32 i, reg = 0;
 131        s32 ret_val = -E1000_ERR_NVM;
 132
 133        for (i = 0; i < attempts; i++) {
 134                if (ee_reg == E1000_NVM_POLL_READ)
 135                        reg = rd32(E1000_EERD);
 136                else
 137                        reg = rd32(E1000_EEWR);
 138
 139                if (reg & E1000_NVM_RW_REG_DONE) {
 140                        ret_val = 0;
 141                        break;
 142                }
 143
 144                udelay(5);
 145        }
 146
 147        return ret_val;
 148}
 149
 150/**
 151 *  igb_acquire_nvm - Generic request for access to EEPROM
 152 *  @hw: pointer to the HW structure
 153 *
 154 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 155 *  Return successful if access grant bit set, else clear the request for
 156 *  EEPROM access and return -E1000_ERR_NVM (-1).
 157 **/
 158s32 igb_acquire_nvm(struct e1000_hw *hw)
 159{
 160        u32 eecd = rd32(E1000_EECD);
 161        s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
 162        s32 ret_val = 0;
 163
 164
 165        wr32(E1000_EECD, eecd | E1000_EECD_REQ);
 166        eecd = rd32(E1000_EECD);
 167
 168        while (timeout) {
 169                if (eecd & E1000_EECD_GNT)
 170                        break;
 171                udelay(5);
 172                eecd = rd32(E1000_EECD);
 173                timeout--;
 174        }
 175
 176        if (!timeout) {
 177                eecd &= ~E1000_EECD_REQ;
 178                wr32(E1000_EECD, eecd);
 179                hw_dbg("Could not acquire NVM grant\n");
 180                ret_val = -E1000_ERR_NVM;
 181        }
 182
 183        return ret_val;
 184}
 185
 186/**
 187 *  igb_standby_nvm - Return EEPROM to standby state
 188 *  @hw: pointer to the HW structure
 189 *
 190 *  Return the EEPROM to a standby state.
 191 **/
 192static void igb_standby_nvm(struct e1000_hw *hw)
 193{
 194        struct e1000_nvm_info *nvm = &hw->nvm;
 195        u32 eecd = rd32(E1000_EECD);
 196
 197        if (nvm->type == e1000_nvm_eeprom_spi) {
 198                /* Toggle CS to flush commands */
 199                eecd |= E1000_EECD_CS;
 200                wr32(E1000_EECD, eecd);
 201                wrfl();
 202                udelay(nvm->delay_usec);
 203                eecd &= ~E1000_EECD_CS;
 204                wr32(E1000_EECD, eecd);
 205                wrfl();
 206                udelay(nvm->delay_usec);
 207        }
 208}
 209
 210/**
 211 *  e1000_stop_nvm - Terminate EEPROM command
 212 *  @hw: pointer to the HW structure
 213 *
 214 *  Terminates the current command by inverting the EEPROM's chip select pin.
 215 **/
 216static void e1000_stop_nvm(struct e1000_hw *hw)
 217{
 218        u32 eecd;
 219
 220        eecd = rd32(E1000_EECD);
 221        if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 222                /* Pull CS high */
 223                eecd |= E1000_EECD_CS;
 224                igb_lower_eec_clk(hw, &eecd);
 225        }
 226}
 227
 228/**
 229 *  igb_release_nvm - Release exclusive access to EEPROM
 230 *  @hw: pointer to the HW structure
 231 *
 232 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 233 **/
 234void igb_release_nvm(struct e1000_hw *hw)
 235{
 236        u32 eecd;
 237
 238        e1000_stop_nvm(hw);
 239
 240        eecd = rd32(E1000_EECD);
 241        eecd &= ~E1000_EECD_REQ;
 242        wr32(E1000_EECD, eecd);
 243}
 244
 245/**
 246 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
 247 *  @hw: pointer to the HW structure
 248 *
 249 *  Setups the EEPROM for reading and writing.
 250 **/
 251static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
 252{
 253        struct e1000_nvm_info *nvm = &hw->nvm;
 254        u32 eecd = rd32(E1000_EECD);
 255        s32 ret_val = 0;
 256        u16 timeout = 0;
 257        u8 spi_stat_reg;
 258
 259
 260        if (nvm->type == e1000_nvm_eeprom_spi) {
 261                /* Clear SK and CS */
 262                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 263                wr32(E1000_EECD, eecd);
 264                wrfl();
 265                udelay(1);
 266                timeout = NVM_MAX_RETRY_SPI;
 267
 268                /* Read "Status Register" repeatedly until the LSB is cleared.
 269                 * The EEPROM will signal that the command has been completed
 270                 * by clearing bit 0 of the internal status register.  If it's
 271                 * not cleared within 'timeout', then error out.
 272                 */
 273                while (timeout) {
 274                        igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
 275                                               hw->nvm.opcode_bits);
 276                        spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
 277                        if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
 278                                break;
 279
 280                        udelay(5);
 281                        igb_standby_nvm(hw);
 282                        timeout--;
 283                }
 284
 285                if (!timeout) {
 286                        hw_dbg("SPI NVM Status error\n");
 287                        ret_val = -E1000_ERR_NVM;
 288                        goto out;
 289                }
 290        }
 291
 292out:
 293        return ret_val;
 294}
 295
 296/**
 297 *  igb_read_nvm_spi - Read EEPROM's using SPI
 298 *  @hw: pointer to the HW structure
 299 *  @offset: offset of word in the EEPROM to read
 300 *  @words: number of words to read
 301 *  @data: word read from the EEPROM
 302 *
 303 *  Reads a 16 bit word from the EEPROM.
 304 **/
 305s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 306{
 307        struct e1000_nvm_info *nvm = &hw->nvm;
 308        u32 i = 0;
 309        s32 ret_val;
 310        u16 word_in;
 311        u8 read_opcode = NVM_READ_OPCODE_SPI;
 312
 313        /* A check for invalid values:  offset too large, too many words,
 314         * and not enough words.
 315         */
 316        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 317            (words == 0)) {
 318                hw_dbg("nvm parameter(s) out of bounds\n");
 319                ret_val = -E1000_ERR_NVM;
 320                goto out;
 321        }
 322
 323        ret_val = nvm->ops.acquire(hw);
 324        if (ret_val)
 325                goto out;
 326
 327        ret_val = igb_ready_nvm_eeprom(hw);
 328        if (ret_val)
 329                goto release;
 330
 331        igb_standby_nvm(hw);
 332
 333        if ((nvm->address_bits == 8) && (offset >= 128))
 334                read_opcode |= NVM_A8_OPCODE_SPI;
 335
 336        /* Send the READ command (opcode + addr) */
 337        igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
 338        igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
 339
 340        /* Read the data.  SPI NVMs increment the address with each byte
 341         * read and will roll over if reading beyond the end.  This allows
 342         * us to read the whole NVM from any offset
 343         */
 344        for (i = 0; i < words; i++) {
 345                word_in = igb_shift_in_eec_bits(hw, 16);
 346                data[i] = (word_in >> 8) | (word_in << 8);
 347        }
 348
 349release:
 350        nvm->ops.release(hw);
 351
 352out:
 353        return ret_val;
 354}
 355
 356/**
 357 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
 358 *  @hw: pointer to the HW structure
 359 *  @offset: offset of word in the EEPROM to read
 360 *  @words: number of words to read
 361 *  @data: word read from the EEPROM
 362 *
 363 *  Reads a 16 bit word from the EEPROM using the EERD register.
 364 **/
 365s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 366{
 367        struct e1000_nvm_info *nvm = &hw->nvm;
 368        u32 i, eerd = 0;
 369        s32 ret_val = 0;
 370
 371        /* A check for invalid values:  offset too large, too many words,
 372         * and not enough words.
 373         */
 374        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 375            (words == 0)) {
 376                hw_dbg("nvm parameter(s) out of bounds\n");
 377                ret_val = -E1000_ERR_NVM;
 378                goto out;
 379        }
 380
 381        for (i = 0; i < words; i++) {
 382                eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
 383                        E1000_NVM_RW_REG_START;
 384
 385                wr32(E1000_EERD, eerd);
 386                ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
 387                if (ret_val)
 388                        break;
 389
 390                data[i] = (rd32(E1000_EERD) >>
 391                        E1000_NVM_RW_REG_DATA);
 392        }
 393
 394out:
 395        return ret_val;
 396}
 397
 398/**
 399 *  igb_write_nvm_spi - Write to EEPROM using SPI
 400 *  @hw: pointer to the HW structure
 401 *  @offset: offset within the EEPROM to be written to
 402 *  @words: number of words to write
 403 *  @data: 16 bit word(s) to be written to the EEPROM
 404 *
 405 *  Writes data to EEPROM at offset using SPI interface.
 406 *
 407 *  If e1000_update_nvm_checksum is not called after this function , the
 408 *  EEPROM will most likley contain an invalid checksum.
 409 **/
 410s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 411{
 412        struct e1000_nvm_info *nvm = &hw->nvm;
 413        s32 ret_val = -E1000_ERR_NVM;
 414        u16 widx = 0;
 415
 416        /* A check for invalid values:  offset too large, too many words,
 417         * and not enough words.
 418         */
 419        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 420            (words == 0)) {
 421                hw_dbg("nvm parameter(s) out of bounds\n");
 422                return ret_val;
 423        }
 424
 425        while (widx < words) {
 426                u8 write_opcode = NVM_WRITE_OPCODE_SPI;
 427
 428                ret_val = nvm->ops.acquire(hw);
 429                if (ret_val)
 430                        return ret_val;
 431
 432                ret_val = igb_ready_nvm_eeprom(hw);
 433                if (ret_val) {
 434                        nvm->ops.release(hw);
 435                        return ret_val;
 436                }
 437
 438                igb_standby_nvm(hw);
 439
 440                /* Send the WRITE ENABLE command (8 bit opcode) */
 441                igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
 442                                         nvm->opcode_bits);
 443
 444                igb_standby_nvm(hw);
 445
 446                /* Some SPI eeproms use the 8th address bit embedded in the
 447                 * opcode
 448                 */
 449                if ((nvm->address_bits == 8) && (offset >= 128))
 450                        write_opcode |= NVM_A8_OPCODE_SPI;
 451
 452                /* Send the Write command (8-bit opcode + addr) */
 453                igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
 454                igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
 455                                         nvm->address_bits);
 456
 457                /* Loop to allow for up to whole page write of eeprom */
 458                while (widx < words) {
 459                        u16 word_out = data[widx];
 460
 461                        word_out = (word_out >> 8) | (word_out << 8);
 462                        igb_shift_out_eec_bits(hw, word_out, 16);
 463                        widx++;
 464
 465                        if ((((offset + widx) * 2) % nvm->page_size) == 0) {
 466                                igb_standby_nvm(hw);
 467                                break;
 468                        }
 469                }
 470                usleep_range(1000, 2000);
 471                nvm->ops.release(hw);
 472        }
 473
 474        return ret_val;
 475}
 476
 477/**
 478 *  igb_read_part_string - Read device part number
 479 *  @hw: pointer to the HW structure
 480 *  @part_num: pointer to device part number
 481 *  @part_num_size: size of part number buffer
 482 *
 483 *  Reads the product board assembly (PBA) number from the EEPROM and stores
 484 *  the value in part_num.
 485 **/
 486s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
 487{
 488        s32 ret_val;
 489        u16 nvm_data;
 490        u16 pointer;
 491        u16 offset;
 492        u16 length;
 493
 494        if (part_num == NULL) {
 495                hw_dbg("PBA string buffer was null\n");
 496                ret_val = E1000_ERR_INVALID_ARGUMENT;
 497                goto out;
 498        }
 499
 500        ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
 501        if (ret_val) {
 502                hw_dbg("NVM Read Error\n");
 503                goto out;
 504        }
 505
 506        ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
 507        if (ret_val) {
 508                hw_dbg("NVM Read Error\n");
 509                goto out;
 510        }
 511
 512        /* if nvm_data is not ptr guard the PBA must be in legacy format which
 513         * means pointer is actually our second data word for the PBA number
 514         * and we can decode it into an ascii string
 515         */
 516        if (nvm_data != NVM_PBA_PTR_GUARD) {
 517                hw_dbg("NVM PBA number is not stored as string\n");
 518
 519                /* we will need 11 characters to store the PBA */
 520                if (part_num_size < 11) {
 521                        hw_dbg("PBA string buffer too small\n");
 522                        return E1000_ERR_NO_SPACE;
 523                }
 524
 525                /* extract hex string from data and pointer */
 526                part_num[0] = (nvm_data >> 12) & 0xF;
 527                part_num[1] = (nvm_data >> 8) & 0xF;
 528                part_num[2] = (nvm_data >> 4) & 0xF;
 529                part_num[3] = nvm_data & 0xF;
 530                part_num[4] = (pointer >> 12) & 0xF;
 531                part_num[5] = (pointer >> 8) & 0xF;
 532                part_num[6] = '-';
 533                part_num[7] = 0;
 534                part_num[8] = (pointer >> 4) & 0xF;
 535                part_num[9] = pointer & 0xF;
 536
 537                /* put a null character on the end of our string */
 538                part_num[10] = '\0';
 539
 540                /* switch all the data but the '-' to hex char */
 541                for (offset = 0; offset < 10; offset++) {
 542                        if (part_num[offset] < 0xA)
 543                                part_num[offset] += '0';
 544                        else if (part_num[offset] < 0x10)
 545                                part_num[offset] += 'A' - 0xA;
 546                }
 547
 548                goto out;
 549        }
 550
 551        ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
 552        if (ret_val) {
 553                hw_dbg("NVM Read Error\n");
 554                goto out;
 555        }
 556
 557        if (length == 0xFFFF || length == 0) {
 558                hw_dbg("NVM PBA number section invalid length\n");
 559                ret_val = E1000_ERR_NVM_PBA_SECTION;
 560                goto out;
 561        }
 562        /* check if part_num buffer is big enough */
 563        if (part_num_size < (((u32)length * 2) - 1)) {
 564                hw_dbg("PBA string buffer too small\n");
 565                ret_val = E1000_ERR_NO_SPACE;
 566                goto out;
 567        }
 568
 569        /* trim pba length from start of string */
 570        pointer++;
 571        length--;
 572
 573        for (offset = 0; offset < length; offset++) {
 574                ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
 575                if (ret_val) {
 576                        hw_dbg("NVM Read Error\n");
 577                        goto out;
 578                }
 579                part_num[offset * 2] = (u8)(nvm_data >> 8);
 580                part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
 581        }
 582        part_num[offset * 2] = '\0';
 583
 584out:
 585        return ret_val;
 586}
 587
 588/**
 589 *  igb_read_mac_addr - Read device MAC address
 590 *  @hw: pointer to the HW structure
 591 *
 592 *  Reads the device MAC address from the EEPROM and stores the value.
 593 *  Since devices with two ports use the same EEPROM, we increment the
 594 *  last bit in the MAC address for the second port.
 595 **/
 596s32 igb_read_mac_addr(struct e1000_hw *hw)
 597{
 598        u32 rar_high;
 599        u32 rar_low;
 600        u16 i;
 601
 602        rar_high = rd32(E1000_RAH(0));
 603        rar_low = rd32(E1000_RAL(0));
 604
 605        for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
 606                hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
 607
 608        for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
 609                hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
 610
 611        for (i = 0; i < ETH_ALEN; i++)
 612                hw->mac.addr[i] = hw->mac.perm_addr[i];
 613
 614        return 0;
 615}
 616
 617/**
 618 *  igb_validate_nvm_checksum - Validate EEPROM checksum
 619 *  @hw: pointer to the HW structure
 620 *
 621 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 622 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 623 **/
 624s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
 625{
 626        s32 ret_val = 0;
 627        u16 checksum = 0;
 628        u16 i, nvm_data;
 629
 630        for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 631                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 632                if (ret_val) {
 633                        hw_dbg("NVM Read Error\n");
 634                        goto out;
 635                }
 636                checksum += nvm_data;
 637        }
 638
 639        if (checksum != (u16) NVM_SUM) {
 640                hw_dbg("NVM Checksum Invalid\n");
 641                ret_val = -E1000_ERR_NVM;
 642                goto out;
 643        }
 644
 645out:
 646        return ret_val;
 647}
 648
 649/**
 650 *  igb_update_nvm_checksum - Update EEPROM checksum
 651 *  @hw: pointer to the HW structure
 652 *
 653 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 654 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 655 *  value to the EEPROM.
 656 **/
 657s32 igb_update_nvm_checksum(struct e1000_hw *hw)
 658{
 659        s32  ret_val;
 660        u16 checksum = 0;
 661        u16 i, nvm_data;
 662
 663        for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 664                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 665                if (ret_val) {
 666                        hw_dbg("NVM Read Error while updating checksum.\n");
 667                        goto out;
 668                }
 669                checksum += nvm_data;
 670        }
 671        checksum = (u16) NVM_SUM - checksum;
 672        ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
 673        if (ret_val)
 674                hw_dbg("NVM Write Error while updating checksum.\n");
 675
 676out:
 677        return ret_val;
 678}
 679
 680/**
 681 *  igb_get_fw_version - Get firmware version information
 682 *  @hw: pointer to the HW structure
 683 *  @fw_vers: pointer to output structure
 684 *
 685 *  unsupported MAC types will return all 0 version structure
 686 **/
 687void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
 688{
 689        u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
 690        u8 q, hval, rem, result;
 691        u16 comb_verh, comb_verl, comb_offset;
 692
 693        memset(fw_vers, 0, sizeof(struct e1000_fw_version));
 694
 695        /* basic eeprom version numbers and bits used vary by part and by tool
 696         * used to create the nvm images. Check which data format we have.
 697         */
 698        hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
 699        switch (hw->mac.type) {
 700        case e1000_i211:
 701                igb_read_invm_version(hw, fw_vers);
 702                return;
 703        case e1000_82575:
 704        case e1000_82576:
 705        case e1000_82580:
 706                /* Use this format, unless EETRACK ID exists,
 707                 * then use alternate format
 708                 */
 709                if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
 710                        hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
 711                        fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
 712                                              >> NVM_MAJOR_SHIFT;
 713                        fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
 714                                              >> NVM_MINOR_SHIFT;
 715                        fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
 716                        goto etrack_id;
 717                }
 718                break;
 719        case e1000_i210:
 720                if (!(igb_get_flash_presence_i210(hw))) {
 721                        igb_read_invm_version(hw, fw_vers);
 722                        return;
 723                }
 724                /* fall through */
 725        case e1000_i350:
 726                /* find combo image version */
 727                hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
 728                if ((comb_offset != 0x0) &&
 729                    (comb_offset != NVM_VER_INVALID)) {
 730
 731                        hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
 732                                         + 1), 1, &comb_verh);
 733                        hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
 734                                         1, &comb_verl);
 735
 736                        /* get Option Rom version if it exists and is valid */
 737                        if ((comb_verh && comb_verl) &&
 738                            ((comb_verh != NVM_VER_INVALID) &&
 739                             (comb_verl != NVM_VER_INVALID))) {
 740
 741                                fw_vers->or_valid = true;
 742                                fw_vers->or_major =
 743                                        comb_verl >> NVM_COMB_VER_SHFT;
 744                                fw_vers->or_build =
 745                                        (comb_verl << NVM_COMB_VER_SHFT)
 746                                        | (comb_verh >> NVM_COMB_VER_SHFT);
 747                                fw_vers->or_patch =
 748                                        comb_verh & NVM_COMB_VER_MASK;
 749                        }
 750                }
 751                break;
 752        default:
 753                return;
 754        }
 755        hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
 756        fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
 757                              >> NVM_MAJOR_SHIFT;
 758
 759        /* check for old style version format in newer images*/
 760        if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
 761                eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
 762        } else {
 763                eeprom_verl = (fw_version & NVM_MINOR_MASK)
 764                                >> NVM_MINOR_SHIFT;
 765        }
 766        /* Convert minor value to hex before assigning to output struct
 767         * Val to be converted will not be higher than 99, per tool output
 768         */
 769        q = eeprom_verl / NVM_HEX_CONV;
 770        hval = q * NVM_HEX_TENS;
 771        rem = eeprom_verl % NVM_HEX_CONV;
 772        result = hval + rem;
 773        fw_vers->eep_minor = result;
 774
 775etrack_id:
 776        if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
 777                hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
 778                hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
 779                fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
 780                        | eeprom_verl;
 781        }
 782}
 783