linux/drivers/net/ethernet/marvell/mvneta.c
<<
>>
Prefs
   1/*
   2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
   3 *
   4 * Copyright (C) 2012 Marvell
   5 *
   6 * Rami Rosen <rosenr@marvell.com>
   7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
   8 *
   9 * This file is licensed under the terms of the GNU General Public
  10 * License version 2. This program is licensed "as is" without any
  11 * warranty of any kind, whether express or implied.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/cpu.h>
  16#include <linux/etherdevice.h>
  17#include <linux/if_vlan.h>
  18#include <linux/inetdevice.h>
  19#include <linux/interrupt.h>
  20#include <linux/io.h>
  21#include <linux/kernel.h>
  22#include <linux/mbus.h>
  23#include <linux/module.h>
  24#include <linux/netdevice.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_irq.h>
  28#include <linux/of_mdio.h>
  29#include <linux/of_net.h>
  30#include <linux/phy/phy.h>
  31#include <linux/phy.h>
  32#include <linux/phylink.h>
  33#include <linux/platform_device.h>
  34#include <linux/skbuff.h>
  35#include <net/hwbm.h>
  36#include "mvneta_bm.h"
  37#include <net/ip.h>
  38#include <net/ipv6.h>
  39#include <net/tso.h>
  40
  41/* Registers */
  42#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
  43#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
  44#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT     4
  45#define      MVNETA_RXQ_SHORT_POOL_ID_MASK      0x30
  46#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT      6
  47#define      MVNETA_RXQ_LONG_POOL_ID_MASK       0xc0
  48#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
  49#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
  50#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
  51#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
  52#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
  53#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
  54#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
  55#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
  56#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
  57#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
  58#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
  59#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
  60#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
  61#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)    (0x1700 + ((pool) << 2))
  62#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT   3
  63#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK    0xfff8
  64#define MVNETA_PORT_RX_RESET                    0x1cc0
  65#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
  66#define MVNETA_PHY_ADDR                         0x2000
  67#define      MVNETA_PHY_ADDR_MASK               0x1f
  68#define MVNETA_MBUS_RETRY                       0x2010
  69#define MVNETA_UNIT_INTR_CAUSE                  0x2080
  70#define MVNETA_UNIT_CONTROL                     0x20B0
  71#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
  72#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
  73#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
  74#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
  75#define MVNETA_BASE_ADDR_ENABLE                 0x2290
  76#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
  77#define MVNETA_PORT_CONFIG                      0x2400
  78#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
  79#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
  80#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
  81#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
  82#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
  83#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
  84#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
  85#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
  86#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
  87                                                 MVNETA_DEF_RXQ_ARP(q)   | \
  88                                                 MVNETA_DEF_RXQ_TCP(q)   | \
  89                                                 MVNETA_DEF_RXQ_UDP(q)   | \
  90                                                 MVNETA_DEF_RXQ_BPDU(q)  | \
  91                                                 MVNETA_TX_UNSET_ERR_SUM | \
  92                                                 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  93#define MVNETA_PORT_CONFIG_EXTEND                0x2404
  94#define MVNETA_MAC_ADDR_LOW                      0x2414
  95#define MVNETA_MAC_ADDR_HIGH                     0x2418
  96#define MVNETA_SDMA_CONFIG                       0x241c
  97#define      MVNETA_SDMA_BRST_SIZE_16            4
  98#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
  99#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
 100#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
 101#define      MVNETA_DESC_SWAP                    BIT(6)
 102#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
 103#define MVNETA_PORT_STATUS                       0x2444
 104#define      MVNETA_TX_IN_PRGRS                  BIT(1)
 105#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
 106#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
 107#define MVNETA_SERDES_CFG                        0x24A0
 108#define      MVNETA_SGMII_SERDES_PROTO           0x0cc7
 109#define      MVNETA_QSGMII_SERDES_PROTO          0x0667
 110#define MVNETA_TYPE_PRIO                         0x24bc
 111#define      MVNETA_FORCE_UNI                    BIT(21)
 112#define MVNETA_TXQ_CMD_1                         0x24e4
 113#define MVNETA_TXQ_CMD                           0x2448
 114#define      MVNETA_TXQ_DISABLE_SHIFT            8
 115#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
 116#define MVNETA_RX_DISCARD_FRAME_COUNT            0x2484
 117#define MVNETA_OVERRUN_FRAME_COUNT               0x2488
 118#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
 119#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
 120#define MVNETA_ACC_MODE                          0x2500
 121#define MVNETA_BM_ADDRESS                        0x2504
 122#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
 123#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
 124#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
 125#define      MVNETA_CPU_RXQ_ACCESS(rxq)          BIT(rxq)
 126#define      MVNETA_CPU_TXQ_ACCESS(txq)          BIT(txq + 8)
 127#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
 128
 129/* Exception Interrupt Port/Queue Cause register
 130 *
 131 * Their behavior depend of the mapping done using the PCPX2Q
 132 * registers. For a given CPU if the bit associated to a queue is not
 133 * set, then for the register a read from this CPU will always return
 134 * 0 and a write won't do anything
 135 */
 136
 137#define MVNETA_INTR_NEW_CAUSE                    0x25a0
 138#define MVNETA_INTR_NEW_MASK                     0x25a4
 139
 140/* bits  0..7  = TXQ SENT, one bit per queue.
 141 * bits  8..15 = RXQ OCCUP, one bit per queue.
 142 * bits 16..23 = RXQ FREE, one bit per queue.
 143 * bit  29 = OLD_REG_SUM, see old reg ?
 144 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 145 * bit  31 = MISC_SUM,   one bit for 4 ports
 146 */
 147#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
 148#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
 149#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
 150#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
 151#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
 152
 153#define MVNETA_INTR_OLD_CAUSE                    0x25a8
 154#define MVNETA_INTR_OLD_MASK                     0x25ac
 155
 156/* Data Path Port/Queue Cause Register */
 157#define MVNETA_INTR_MISC_CAUSE                   0x25b0
 158#define MVNETA_INTR_MISC_MASK                    0x25b4
 159
 160#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
 161#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
 162#define      MVNETA_CAUSE_PTP                    BIT(4)
 163
 164#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
 165#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
 166#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
 167#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
 168#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
 169#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
 170#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
 171#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
 172
 173#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
 174#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
 175#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
 176
 177#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
 178#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
 179#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
 180
 181#define MVNETA_INTR_ENABLE                       0x25b8
 182#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
 183#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
 184
 185#define MVNETA_RXQ_CMD                           0x2680
 186#define      MVNETA_RXQ_DISABLE_SHIFT            8
 187#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
 188#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
 189#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
 190#define MVNETA_GMAC_CTRL_0                       0x2c00
 191#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
 192#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
 193#define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
 194#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
 195#define MVNETA_GMAC_CTRL_2                       0x2c08
 196#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
 197#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
 198#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
 199#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
 200#define MVNETA_GMAC_STATUS                       0x2c10
 201#define      MVNETA_GMAC_LINK_UP                 BIT(0)
 202#define      MVNETA_GMAC_SPEED_1000              BIT(1)
 203#define      MVNETA_GMAC_SPEED_100               BIT(2)
 204#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
 205#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
 206#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
 207#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
 208#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
 209#define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
 210#define      MVNETA_GMAC_SYNC_OK                 BIT(14)
 211#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
 212#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
 213#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
 214#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
 215#define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
 216#define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
 217#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
 218#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
 219#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
 220#define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
 221#define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
 222#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
 223#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
 224#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
 225#define MVNETA_GMAC_CTRL_4                       0x2c90
 226#define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
 227#define MVNETA_MIB_COUNTERS_BASE                 0x3000
 228#define      MVNETA_MIB_LATE_COLLISION           0x7c
 229#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
 230#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
 231#define MVNETA_DA_FILT_UCAST_BASE                0x3600
 232#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
 233#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
 234#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
 235#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
 236#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
 237#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
 238#define      MVNETA_TXQ_DEC_SENT_MASK            0xff
 239#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
 240#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
 241#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
 242#define MVNETA_PORT_TX_RESET                     0x3cf0
 243#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
 244#define MVNETA_TX_MTU                            0x3e0c
 245#define MVNETA_TX_TOKEN_SIZE                     0x3e14
 246#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
 247#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
 248#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
 249
 250#define MVNETA_LPI_CTRL_0                        0x2cc0
 251#define MVNETA_LPI_CTRL_1                        0x2cc4
 252#define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
 253#define MVNETA_LPI_CTRL_2                        0x2cc8
 254#define MVNETA_LPI_STATUS                        0x2ccc
 255
 256#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK      0xff
 257
 258/* Descriptor ring Macros */
 259#define MVNETA_QUEUE_NEXT_DESC(q, index)        \
 260        (((index) < (q)->last_desc) ? ((index) + 1) : 0)
 261
 262/* Various constants */
 263
 264/* Coalescing */
 265#define MVNETA_TXDONE_COAL_PKTS         0       /* interrupt per packet */
 266#define MVNETA_RX_COAL_PKTS             32
 267#define MVNETA_RX_COAL_USEC             100
 268
 269/* The two bytes Marvell header. Either contains a special value used
 270 * by Marvell switches when a specific hardware mode is enabled (not
 271 * supported by this driver) or is filled automatically by zeroes on
 272 * the RX side. Those two bytes being at the front of the Ethernet
 273 * header, they allow to have the IP header aligned on a 4 bytes
 274 * boundary automatically: the hardware skips those two bytes on its
 275 * own.
 276 */
 277#define MVNETA_MH_SIZE                  2
 278
 279#define MVNETA_VLAN_TAG_LEN             4
 280
 281#define MVNETA_TX_CSUM_DEF_SIZE         1600
 282#define MVNETA_TX_CSUM_MAX_SIZE         9800
 283#define MVNETA_ACC_MODE_EXT1            1
 284#define MVNETA_ACC_MODE_EXT2            2
 285
 286#define MVNETA_MAX_DECODE_WIN           6
 287
 288/* Timeout constants */
 289#define MVNETA_TX_DISABLE_TIMEOUT_MSEC  1000
 290#define MVNETA_RX_DISABLE_TIMEOUT_MSEC  1000
 291#define MVNETA_TX_FIFO_EMPTY_TIMEOUT    10000
 292
 293#define MVNETA_TX_MTU_MAX               0x3ffff
 294
 295/* The RSS lookup table actually has 256 entries but we do not use
 296 * them yet
 297 */
 298#define MVNETA_RSS_LU_TABLE_SIZE        1
 299
 300/* Max number of Rx descriptors */
 301#define MVNETA_MAX_RXD 512
 302
 303/* Max number of Tx descriptors */
 304#define MVNETA_MAX_TXD 1024
 305
 306/* Max number of allowed TCP segments for software TSO */
 307#define MVNETA_MAX_TSO_SEGS 100
 308
 309#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 310
 311/* descriptor aligned size */
 312#define MVNETA_DESC_ALIGNED_SIZE        32
 313
 314/* Number of bytes to be taken into account by HW when putting incoming data
 315 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
 316 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
 317 */
 318#define MVNETA_RX_PKT_OFFSET_CORRECTION         64
 319
 320#define MVNETA_RX_PKT_SIZE(mtu) \
 321        ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
 322              ETH_HLEN + ETH_FCS_LEN,                        \
 323              cache_line_size())
 324
 325#define IS_TSO_HEADER(txq, addr) \
 326        ((addr >= txq->tso_hdrs_phys) && \
 327         (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
 328
 329#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
 330        (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
 331
 332enum {
 333        ETHTOOL_STAT_EEE_WAKEUP,
 334        ETHTOOL_STAT_SKB_ALLOC_ERR,
 335        ETHTOOL_STAT_REFILL_ERR,
 336        ETHTOOL_MAX_STATS,
 337};
 338
 339struct mvneta_statistic {
 340        unsigned short offset;
 341        unsigned short type;
 342        const char name[ETH_GSTRING_LEN];
 343};
 344
 345#define T_REG_32        32
 346#define T_REG_64        64
 347#define T_SW            1
 348
 349static const struct mvneta_statistic mvneta_statistics[] = {
 350        { 0x3000, T_REG_64, "good_octets_received", },
 351        { 0x3010, T_REG_32, "good_frames_received", },
 352        { 0x3008, T_REG_32, "bad_octets_received", },
 353        { 0x3014, T_REG_32, "bad_frames_received", },
 354        { 0x3018, T_REG_32, "broadcast_frames_received", },
 355        { 0x301c, T_REG_32, "multicast_frames_received", },
 356        { 0x3050, T_REG_32, "unrec_mac_control_received", },
 357        { 0x3058, T_REG_32, "good_fc_received", },
 358        { 0x305c, T_REG_32, "bad_fc_received", },
 359        { 0x3060, T_REG_32, "undersize_received", },
 360        { 0x3064, T_REG_32, "fragments_received", },
 361        { 0x3068, T_REG_32, "oversize_received", },
 362        { 0x306c, T_REG_32, "jabber_received", },
 363        { 0x3070, T_REG_32, "mac_receive_error", },
 364        { 0x3074, T_REG_32, "bad_crc_event", },
 365        { 0x3078, T_REG_32, "collision", },
 366        { 0x307c, T_REG_32, "late_collision", },
 367        { 0x2484, T_REG_32, "rx_discard", },
 368        { 0x2488, T_REG_32, "rx_overrun", },
 369        { 0x3020, T_REG_32, "frames_64_octets", },
 370        { 0x3024, T_REG_32, "frames_65_to_127_octets", },
 371        { 0x3028, T_REG_32, "frames_128_to_255_octets", },
 372        { 0x302c, T_REG_32, "frames_256_to_511_octets", },
 373        { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
 374        { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
 375        { 0x3038, T_REG_64, "good_octets_sent", },
 376        { 0x3040, T_REG_32, "good_frames_sent", },
 377        { 0x3044, T_REG_32, "excessive_collision", },
 378        { 0x3048, T_REG_32, "multicast_frames_sent", },
 379        { 0x304c, T_REG_32, "broadcast_frames_sent", },
 380        { 0x3054, T_REG_32, "fc_sent", },
 381        { 0x300c, T_REG_32, "internal_mac_transmit_err", },
 382        { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
 383        { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
 384        { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
 385};
 386
 387struct mvneta_pcpu_stats {
 388        struct  u64_stats_sync syncp;
 389        u64     rx_packets;
 390        u64     rx_bytes;
 391        u64     tx_packets;
 392        u64     tx_bytes;
 393};
 394
 395struct mvneta_pcpu_port {
 396        /* Pointer to the shared port */
 397        struct mvneta_port      *pp;
 398
 399        /* Pointer to the CPU-local NAPI struct */
 400        struct napi_struct      napi;
 401
 402        /* Cause of the previous interrupt */
 403        u32                     cause_rx_tx;
 404};
 405
 406struct mvneta_port {
 407        u8 id;
 408        struct mvneta_pcpu_port __percpu        *ports;
 409        struct mvneta_pcpu_stats __percpu       *stats;
 410
 411        int pkt_size;
 412        void __iomem *base;
 413        struct mvneta_rx_queue *rxqs;
 414        struct mvneta_tx_queue *txqs;
 415        struct net_device *dev;
 416        struct hlist_node node_online;
 417        struct hlist_node node_dead;
 418        int rxq_def;
 419        /* Protect the access to the percpu interrupt registers,
 420         * ensuring that the configuration remains coherent.
 421         */
 422        spinlock_t lock;
 423        bool is_stopped;
 424
 425        u32 cause_rx_tx;
 426        struct napi_struct napi;
 427
 428        /* Core clock */
 429        struct clk *clk;
 430        /* AXI clock */
 431        struct clk *clk_bus;
 432        u8 mcast_count[256];
 433        u16 tx_ring_size;
 434        u16 rx_ring_size;
 435
 436        phy_interface_t phy_interface;
 437        struct device_node *dn;
 438        unsigned int tx_csum_limit;
 439        struct phylink *phylink;
 440        struct phylink_config phylink_config;
 441        struct phy *comphy;
 442
 443        struct mvneta_bm *bm_priv;
 444        struct mvneta_bm_pool *pool_long;
 445        struct mvneta_bm_pool *pool_short;
 446        int bm_win_id;
 447
 448        bool eee_enabled;
 449        bool eee_active;
 450        bool tx_lpi_enabled;
 451
 452        u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
 453
 454        u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
 455
 456        /* Flags for special SoC configurations */
 457        bool neta_armada3700;
 458        u16 rx_offset_correction;
 459        const struct mbus_dram_target_info *dram_target_info;
 460};
 461
 462/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
 463 * layout of the transmit and reception DMA descriptors, and their
 464 * layout is therefore defined by the hardware design
 465 */
 466
 467#define MVNETA_TX_L3_OFF_SHIFT  0
 468#define MVNETA_TX_IP_HLEN_SHIFT 8
 469#define MVNETA_TX_L4_UDP        BIT(16)
 470#define MVNETA_TX_L3_IP6        BIT(17)
 471#define MVNETA_TXD_IP_CSUM      BIT(18)
 472#define MVNETA_TXD_Z_PAD        BIT(19)
 473#define MVNETA_TXD_L_DESC       BIT(20)
 474#define MVNETA_TXD_F_DESC       BIT(21)
 475#define MVNETA_TXD_FLZ_DESC     (MVNETA_TXD_Z_PAD  | \
 476                                 MVNETA_TXD_L_DESC | \
 477                                 MVNETA_TXD_F_DESC)
 478#define MVNETA_TX_L4_CSUM_FULL  BIT(30)
 479#define MVNETA_TX_L4_CSUM_NOT   BIT(31)
 480
 481#define MVNETA_RXD_ERR_CRC              0x0
 482#define MVNETA_RXD_BM_POOL_SHIFT        13
 483#define MVNETA_RXD_BM_POOL_MASK         (BIT(13) | BIT(14))
 484#define MVNETA_RXD_ERR_SUMMARY          BIT(16)
 485#define MVNETA_RXD_ERR_OVERRUN          BIT(17)
 486#define MVNETA_RXD_ERR_LEN              BIT(18)
 487#define MVNETA_RXD_ERR_RESOURCE         (BIT(17) | BIT(18))
 488#define MVNETA_RXD_ERR_CODE_MASK        (BIT(17) | BIT(18))
 489#define MVNETA_RXD_L3_IP4               BIT(25)
 490#define MVNETA_RXD_LAST_DESC            BIT(26)
 491#define MVNETA_RXD_FIRST_DESC           BIT(27)
 492#define MVNETA_RXD_FIRST_LAST_DESC      (MVNETA_RXD_FIRST_DESC | \
 493                                         MVNETA_RXD_LAST_DESC)
 494#define MVNETA_RXD_L4_CSUM_OK           BIT(30)
 495
 496#if defined(__LITTLE_ENDIAN)
 497struct mvneta_tx_desc {
 498        u32  command;           /* Options used by HW for packet transmitting.*/
 499        u16  reserved1;         /* csum_l4 (for future use)             */
 500        u16  data_size;         /* Data size of transmitted packet in bytes */
 501        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 502        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 503        u32  reserved3[4];      /* Reserved - (for future use)          */
 504};
 505
 506struct mvneta_rx_desc {
 507        u32  status;            /* Info about received packet           */
 508        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 509        u16  data_size;         /* Size of received packet in bytes     */
 510
 511        u32  buf_phys_addr;     /* Physical address of the buffer       */
 512        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 513
 514        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 515        u16  reserved3;         /* prefetch_cmd, for future use         */
 516        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 517
 518        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 519        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 520};
 521#else
 522struct mvneta_tx_desc {
 523        u16  data_size;         /* Data size of transmitted packet in bytes */
 524        u16  reserved1;         /* csum_l4 (for future use)             */
 525        u32  command;           /* Options used by HW for packet transmitting.*/
 526        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 527        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 528        u32  reserved3[4];      /* Reserved - (for future use)          */
 529};
 530
 531struct mvneta_rx_desc {
 532        u16  data_size;         /* Size of received packet in bytes     */
 533        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 534        u32  status;            /* Info about received packet           */
 535
 536        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 537        u32  buf_phys_addr;     /* Physical address of the buffer       */
 538
 539        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 540        u16  reserved3;         /* prefetch_cmd, for future use         */
 541        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 542
 543        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 544        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 545};
 546#endif
 547
 548struct mvneta_tx_queue {
 549        /* Number of this TX queue, in the range 0-7 */
 550        u8 id;
 551
 552        /* Number of TX DMA descriptors in the descriptor ring */
 553        int size;
 554
 555        /* Number of currently used TX DMA descriptor in the
 556         * descriptor ring
 557         */
 558        int count;
 559        int pending;
 560        int tx_stop_threshold;
 561        int tx_wake_threshold;
 562
 563        /* Array of transmitted skb */
 564        struct sk_buff **tx_skb;
 565
 566        /* Index of last TX DMA descriptor that was inserted */
 567        int txq_put_index;
 568
 569        /* Index of the TX DMA descriptor to be cleaned up */
 570        int txq_get_index;
 571
 572        u32 done_pkts_coal;
 573
 574        /* Virtual address of the TX DMA descriptors array */
 575        struct mvneta_tx_desc *descs;
 576
 577        /* DMA address of the TX DMA descriptors array */
 578        dma_addr_t descs_phys;
 579
 580        /* Index of the last TX DMA descriptor */
 581        int last_desc;
 582
 583        /* Index of the next TX DMA descriptor to process */
 584        int next_desc_to_proc;
 585
 586        /* DMA buffers for TSO headers */
 587        char *tso_hdrs;
 588
 589        /* DMA address of TSO headers */
 590        dma_addr_t tso_hdrs_phys;
 591
 592        /* Affinity mask for CPUs*/
 593        cpumask_t affinity_mask;
 594};
 595
 596struct mvneta_rx_queue {
 597        /* rx queue number, in the range 0-7 */
 598        u8 id;
 599
 600        /* num of rx descriptors in the rx descriptor ring */
 601        int size;
 602
 603        u32 pkts_coal;
 604        u32 time_coal;
 605
 606        /* Virtual address of the RX buffer */
 607        void  **buf_virt_addr;
 608
 609        /* Virtual address of the RX DMA descriptors array */
 610        struct mvneta_rx_desc *descs;
 611
 612        /* DMA address of the RX DMA descriptors array */
 613        dma_addr_t descs_phys;
 614
 615        /* Index of the last RX DMA descriptor */
 616        int last_desc;
 617
 618        /* Index of the next RX DMA descriptor to process */
 619        int next_desc_to_proc;
 620
 621        /* Index of first RX DMA descriptor to refill */
 622        int first_to_refill;
 623        u32 refill_num;
 624
 625        /* pointer to uncomplete skb buffer */
 626        struct sk_buff *skb;
 627        int left_size;
 628
 629        /* error counters */
 630        u32 skb_alloc_err;
 631        u32 refill_err;
 632};
 633
 634static enum cpuhp_state online_hpstate;
 635/* The hardware supports eight (8) rx queues, but we are only allowing
 636 * the first one to be used. Therefore, let's just allocate one queue.
 637 */
 638static int rxq_number = 8;
 639static int txq_number = 8;
 640
 641static int rxq_def;
 642
 643static int rx_copybreak __read_mostly = 256;
 644static int rx_header_size __read_mostly = 128;
 645
 646/* HW BM need that each port be identify by a unique ID */
 647static int global_port_id;
 648
 649#define MVNETA_DRIVER_NAME "mvneta"
 650#define MVNETA_DRIVER_VERSION "1.0"
 651
 652/* Utility/helper methods */
 653
 654/* Write helper method */
 655static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
 656{
 657        writel(data, pp->base + offset);
 658}
 659
 660/* Read helper method */
 661static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
 662{
 663        return readl(pp->base + offset);
 664}
 665
 666/* Increment txq get counter */
 667static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
 668{
 669        txq->txq_get_index++;
 670        if (txq->txq_get_index == txq->size)
 671                txq->txq_get_index = 0;
 672}
 673
 674/* Increment txq put counter */
 675static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
 676{
 677        txq->txq_put_index++;
 678        if (txq->txq_put_index == txq->size)
 679                txq->txq_put_index = 0;
 680}
 681
 682
 683/* Clear all MIB counters */
 684static void mvneta_mib_counters_clear(struct mvneta_port *pp)
 685{
 686        int i;
 687        u32 dummy;
 688
 689        /* Perform dummy reads from MIB counters */
 690        for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
 691                dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
 692        dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
 693        dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
 694}
 695
 696/* Get System Network Statistics */
 697static void
 698mvneta_get_stats64(struct net_device *dev,
 699                   struct rtnl_link_stats64 *stats)
 700{
 701        struct mvneta_port *pp = netdev_priv(dev);
 702        unsigned int start;
 703        int cpu;
 704
 705        for_each_possible_cpu(cpu) {
 706                struct mvneta_pcpu_stats *cpu_stats;
 707                u64 rx_packets;
 708                u64 rx_bytes;
 709                u64 tx_packets;
 710                u64 tx_bytes;
 711
 712                cpu_stats = per_cpu_ptr(pp->stats, cpu);
 713                do {
 714                        start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
 715                        rx_packets = cpu_stats->rx_packets;
 716                        rx_bytes   = cpu_stats->rx_bytes;
 717                        tx_packets = cpu_stats->tx_packets;
 718                        tx_bytes   = cpu_stats->tx_bytes;
 719                } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
 720
 721                stats->rx_packets += rx_packets;
 722                stats->rx_bytes   += rx_bytes;
 723                stats->tx_packets += tx_packets;
 724                stats->tx_bytes   += tx_bytes;
 725        }
 726
 727        stats->rx_errors        = dev->stats.rx_errors;
 728        stats->rx_dropped       = dev->stats.rx_dropped;
 729
 730        stats->tx_dropped       = dev->stats.tx_dropped;
 731}
 732
 733/* Rx descriptors helper methods */
 734
 735/* Checks whether the RX descriptor having this status is both the first
 736 * and the last descriptor for the RX packet. Each RX packet is currently
 737 * received through a single RX descriptor, so not having each RX
 738 * descriptor with its first and last bits set is an error
 739 */
 740static int mvneta_rxq_desc_is_first_last(u32 status)
 741{
 742        return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
 743                MVNETA_RXD_FIRST_LAST_DESC;
 744}
 745
 746/* Add number of descriptors ready to receive new packets */
 747static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
 748                                          struct mvneta_rx_queue *rxq,
 749                                          int ndescs)
 750{
 751        /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
 752         * be added at once
 753         */
 754        while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
 755                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 756                            (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
 757                             MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 758                ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
 759        }
 760
 761        mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 762                    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 763}
 764
 765/* Get number of RX descriptors occupied by received packets */
 766static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
 767                                        struct mvneta_rx_queue *rxq)
 768{
 769        u32 val;
 770
 771        val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
 772        return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
 773}
 774
 775/* Update num of rx desc called upon return from rx path or
 776 * from mvneta_rxq_drop_pkts().
 777 */
 778static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
 779                                       struct mvneta_rx_queue *rxq,
 780                                       int rx_done, int rx_filled)
 781{
 782        u32 val;
 783
 784        if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
 785                val = rx_done |
 786                  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
 787                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 788                return;
 789        }
 790
 791        /* Only 255 descriptors can be added at once */
 792        while ((rx_done > 0) || (rx_filled > 0)) {
 793                if (rx_done <= 0xff) {
 794                        val = rx_done;
 795                        rx_done = 0;
 796                } else {
 797                        val = 0xff;
 798                        rx_done -= 0xff;
 799                }
 800                if (rx_filled <= 0xff) {
 801                        val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 802                        rx_filled = 0;
 803                } else {
 804                        val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 805                        rx_filled -= 0xff;
 806                }
 807                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 808        }
 809}
 810
 811/* Get pointer to next RX descriptor to be processed by SW */
 812static struct mvneta_rx_desc *
 813mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
 814{
 815        int rx_desc = rxq->next_desc_to_proc;
 816
 817        rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
 818        prefetch(rxq->descs + rxq->next_desc_to_proc);
 819        return rxq->descs + rx_desc;
 820}
 821
 822/* Change maximum receive size of the port. */
 823static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
 824{
 825        u32 val;
 826
 827        val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 828        val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
 829        val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
 830                MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
 831        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 832}
 833
 834
 835/* Set rx queue offset */
 836static void mvneta_rxq_offset_set(struct mvneta_port *pp,
 837                                  struct mvneta_rx_queue *rxq,
 838                                  int offset)
 839{
 840        u32 val;
 841
 842        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 843        val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
 844
 845        /* Offset is in */
 846        val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
 847        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 848}
 849
 850
 851/* Tx descriptors helper methods */
 852
 853/* Update HW with number of TX descriptors to be sent */
 854static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
 855                                     struct mvneta_tx_queue *txq,
 856                                     int pend_desc)
 857{
 858        u32 val;
 859
 860        pend_desc += txq->pending;
 861
 862        /* Only 255 Tx descriptors can be added at once */
 863        do {
 864                val = min(pend_desc, 255);
 865                mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
 866                pend_desc -= val;
 867        } while (pend_desc > 0);
 868        txq->pending = 0;
 869}
 870
 871/* Get pointer to next TX descriptor to be processed (send) by HW */
 872static struct mvneta_tx_desc *
 873mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
 874{
 875        int tx_desc = txq->next_desc_to_proc;
 876
 877        txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
 878        return txq->descs + tx_desc;
 879}
 880
 881/* Release the last allocated TX descriptor. Useful to handle DMA
 882 * mapping failures in the TX path.
 883 */
 884static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
 885{
 886        if (txq->next_desc_to_proc == 0)
 887                txq->next_desc_to_proc = txq->last_desc - 1;
 888        else
 889                txq->next_desc_to_proc--;
 890}
 891
 892/* Set rxq buf size */
 893static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
 894                                    struct mvneta_rx_queue *rxq,
 895                                    int buf_size)
 896{
 897        u32 val;
 898
 899        val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
 900
 901        val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
 902        val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
 903
 904        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
 905}
 906
 907/* Disable buffer management (BM) */
 908static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
 909                                  struct mvneta_rx_queue *rxq)
 910{
 911        u32 val;
 912
 913        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 914        val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
 915        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 916}
 917
 918/* Enable buffer management (BM) */
 919static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
 920                                 struct mvneta_rx_queue *rxq)
 921{
 922        u32 val;
 923
 924        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 925        val |= MVNETA_RXQ_HW_BUF_ALLOC;
 926        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 927}
 928
 929/* Notify HW about port's assignment of pool for bigger packets */
 930static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
 931                                     struct mvneta_rx_queue *rxq)
 932{
 933        u32 val;
 934
 935        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 936        val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
 937        val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
 938
 939        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 940}
 941
 942/* Notify HW about port's assignment of pool for smaller packets */
 943static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
 944                                      struct mvneta_rx_queue *rxq)
 945{
 946        u32 val;
 947
 948        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 949        val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
 950        val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
 951
 952        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 953}
 954
 955/* Set port's receive buffer size for assigned BM pool */
 956static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
 957                                              int buf_size,
 958                                              u8 pool_id)
 959{
 960        u32 val;
 961
 962        if (!IS_ALIGNED(buf_size, 8)) {
 963                dev_warn(pp->dev->dev.parent,
 964                         "illegal buf_size value %d, round to %d\n",
 965                         buf_size, ALIGN(buf_size, 8));
 966                buf_size = ALIGN(buf_size, 8);
 967        }
 968
 969        val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
 970        val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
 971        mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
 972}
 973
 974/* Configure MBUS window in order to enable access BM internal SRAM */
 975static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
 976                                  u8 target, u8 attr)
 977{
 978        u32 win_enable, win_protect;
 979        int i;
 980
 981        win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
 982
 983        if (pp->bm_win_id < 0) {
 984                /* Find first not occupied window */
 985                for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
 986                        if (win_enable & (1 << i)) {
 987                                pp->bm_win_id = i;
 988                                break;
 989                        }
 990                }
 991                if (i == MVNETA_MAX_DECODE_WIN)
 992                        return -ENOMEM;
 993        } else {
 994                i = pp->bm_win_id;
 995        }
 996
 997        mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
 998        mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
 999
1000        if (i < 4)
1001                mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1002
1003        mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1004                    (attr << 8) | target);
1005
1006        mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1007
1008        win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1009        win_protect |= 3 << (2 * i);
1010        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1011
1012        win_enable &= ~(1 << i);
1013        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1014
1015        return 0;
1016}
1017
1018static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1019{
1020        u32 wsize;
1021        u8 target, attr;
1022        int err;
1023
1024        /* Get BM window information */
1025        err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1026                                         &target, &attr);
1027        if (err < 0)
1028                return err;
1029
1030        pp->bm_win_id = -1;
1031
1032        /* Open NETA -> BM window */
1033        err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1034                                     target, attr);
1035        if (err < 0) {
1036                netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1037                return err;
1038        }
1039        return 0;
1040}
1041
1042/* Assign and initialize pools for port. In case of fail
1043 * buffer manager will remain disabled for current port.
1044 */
1045static int mvneta_bm_port_init(struct platform_device *pdev,
1046                               struct mvneta_port *pp)
1047{
1048        struct device_node *dn = pdev->dev.of_node;
1049        u32 long_pool_id, short_pool_id;
1050
1051        if (!pp->neta_armada3700) {
1052                int ret;
1053
1054                ret = mvneta_bm_port_mbus_init(pp);
1055                if (ret)
1056                        return ret;
1057        }
1058
1059        if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1060                netdev_info(pp->dev, "missing long pool id\n");
1061                return -EINVAL;
1062        }
1063
1064        /* Create port's long pool depending on mtu */
1065        pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1066                                           MVNETA_BM_LONG, pp->id,
1067                                           MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1068        if (!pp->pool_long) {
1069                netdev_info(pp->dev, "fail to obtain long pool for port\n");
1070                return -ENOMEM;
1071        }
1072
1073        pp->pool_long->port_map |= 1 << pp->id;
1074
1075        mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1076                                   pp->pool_long->id);
1077
1078        /* If short pool id is not defined, assume using single pool */
1079        if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1080                short_pool_id = long_pool_id;
1081
1082        /* Create port's short pool */
1083        pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1084                                            MVNETA_BM_SHORT, pp->id,
1085                                            MVNETA_BM_SHORT_PKT_SIZE);
1086        if (!pp->pool_short) {
1087                netdev_info(pp->dev, "fail to obtain short pool for port\n");
1088                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1089                return -ENOMEM;
1090        }
1091
1092        if (short_pool_id != long_pool_id) {
1093                pp->pool_short->port_map |= 1 << pp->id;
1094                mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1095                                           pp->pool_short->id);
1096        }
1097
1098        return 0;
1099}
1100
1101/* Update settings of a pool for bigger packets */
1102static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1103{
1104        struct mvneta_bm_pool *bm_pool = pp->pool_long;
1105        struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1106        int num;
1107
1108        /* Release all buffers from long pool */
1109        mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1110        if (hwbm_pool->buf_num) {
1111                WARN(1, "cannot free all buffers in pool %d\n",
1112                     bm_pool->id);
1113                goto bm_mtu_err;
1114        }
1115
1116        bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1117        bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1118        hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1119                        SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1120
1121        /* Fill entire long pool */
1122        num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1123        if (num != hwbm_pool->size) {
1124                WARN(1, "pool %d: %d of %d allocated\n",
1125                     bm_pool->id, num, hwbm_pool->size);
1126                goto bm_mtu_err;
1127        }
1128        mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1129
1130        return;
1131
1132bm_mtu_err:
1133        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1134        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1135
1136        pp->bm_priv = NULL;
1137        mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1138        netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1139}
1140
1141/* Start the Ethernet port RX and TX activity */
1142static void mvneta_port_up(struct mvneta_port *pp)
1143{
1144        int queue;
1145        u32 q_map;
1146
1147        /* Enable all initialized TXs. */
1148        q_map = 0;
1149        for (queue = 0; queue < txq_number; queue++) {
1150                struct mvneta_tx_queue *txq = &pp->txqs[queue];
1151                if (txq->descs)
1152                        q_map |= (1 << queue);
1153        }
1154        mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1155
1156        q_map = 0;
1157        /* Enable all initialized RXQs. */
1158        for (queue = 0; queue < rxq_number; queue++) {
1159                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1160
1161                if (rxq->descs)
1162                        q_map |= (1 << queue);
1163        }
1164        mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1165}
1166
1167/* Stop the Ethernet port activity */
1168static void mvneta_port_down(struct mvneta_port *pp)
1169{
1170        u32 val;
1171        int count;
1172
1173        /* Stop Rx port activity. Check port Rx activity. */
1174        val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1175
1176        /* Issue stop command for active channels only */
1177        if (val != 0)
1178                mvreg_write(pp, MVNETA_RXQ_CMD,
1179                            val << MVNETA_RXQ_DISABLE_SHIFT);
1180
1181        /* Wait for all Rx activity to terminate. */
1182        count = 0;
1183        do {
1184                if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1185                        netdev_warn(pp->dev,
1186                                    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1187                                    val);
1188                        break;
1189                }
1190                mdelay(1);
1191
1192                val = mvreg_read(pp, MVNETA_RXQ_CMD);
1193        } while (val & MVNETA_RXQ_ENABLE_MASK);
1194
1195        /* Stop Tx port activity. Check port Tx activity. Issue stop
1196         * command for active channels only
1197         */
1198        val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1199
1200        if (val != 0)
1201                mvreg_write(pp, MVNETA_TXQ_CMD,
1202                            (val << MVNETA_TXQ_DISABLE_SHIFT));
1203
1204        /* Wait for all Tx activity to terminate. */
1205        count = 0;
1206        do {
1207                if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1208                        netdev_warn(pp->dev,
1209                                    "TIMEOUT for TX stopped status=0x%08x\n",
1210                                    val);
1211                        break;
1212                }
1213                mdelay(1);
1214
1215                /* Check TX Command reg that all Txqs are stopped */
1216                val = mvreg_read(pp, MVNETA_TXQ_CMD);
1217
1218        } while (val & MVNETA_TXQ_ENABLE_MASK);
1219
1220        /* Double check to verify that TX FIFO is empty */
1221        count = 0;
1222        do {
1223                if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1224                        netdev_warn(pp->dev,
1225                                    "TX FIFO empty timeout status=0x%08x\n",
1226                                    val);
1227                        break;
1228                }
1229                mdelay(1);
1230
1231                val = mvreg_read(pp, MVNETA_PORT_STATUS);
1232        } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1233                 (val & MVNETA_TX_IN_PRGRS));
1234
1235        udelay(200);
1236}
1237
1238/* Enable the port by setting the port enable bit of the MAC control register */
1239static void mvneta_port_enable(struct mvneta_port *pp)
1240{
1241        u32 val;
1242
1243        /* Enable port */
1244        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1245        val |= MVNETA_GMAC0_PORT_ENABLE;
1246        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1247}
1248
1249/* Disable the port and wait for about 200 usec before retuning */
1250static void mvneta_port_disable(struct mvneta_port *pp)
1251{
1252        u32 val;
1253
1254        /* Reset the Enable bit in the Serial Control Register */
1255        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1256        val &= ~MVNETA_GMAC0_PORT_ENABLE;
1257        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1258
1259        udelay(200);
1260}
1261
1262/* Multicast tables methods */
1263
1264/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1265static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1266{
1267        int offset;
1268        u32 val;
1269
1270        if (queue == -1) {
1271                val = 0;
1272        } else {
1273                val = 0x1 | (queue << 1);
1274                val |= (val << 24) | (val << 16) | (val << 8);
1275        }
1276
1277        for (offset = 0; offset <= 0xc; offset += 4)
1278                mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1279}
1280
1281/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1282static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1283{
1284        int offset;
1285        u32 val;
1286
1287        if (queue == -1) {
1288                val = 0;
1289        } else {
1290                val = 0x1 | (queue << 1);
1291                val |= (val << 24) | (val << 16) | (val << 8);
1292        }
1293
1294        for (offset = 0; offset <= 0xfc; offset += 4)
1295                mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1296
1297}
1298
1299/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1300static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1301{
1302        int offset;
1303        u32 val;
1304
1305        if (queue == -1) {
1306                memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1307                val = 0;
1308        } else {
1309                memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1310                val = 0x1 | (queue << 1);
1311                val |= (val << 24) | (val << 16) | (val << 8);
1312        }
1313
1314        for (offset = 0; offset <= 0xfc; offset += 4)
1315                mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1316}
1317
1318static void mvneta_percpu_unmask_interrupt(void *arg)
1319{
1320        struct mvneta_port *pp = arg;
1321
1322        /* All the queue are unmasked, but actually only the ones
1323         * mapped to this CPU will be unmasked
1324         */
1325        mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1326                    MVNETA_RX_INTR_MASK_ALL |
1327                    MVNETA_TX_INTR_MASK_ALL |
1328                    MVNETA_MISCINTR_INTR_MASK);
1329}
1330
1331static void mvneta_percpu_mask_interrupt(void *arg)
1332{
1333        struct mvneta_port *pp = arg;
1334
1335        /* All the queue are masked, but actually only the ones
1336         * mapped to this CPU will be masked
1337         */
1338        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1339        mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1340        mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1341}
1342
1343static void mvneta_percpu_clear_intr_cause(void *arg)
1344{
1345        struct mvneta_port *pp = arg;
1346
1347        /* All the queue are cleared, but actually only the ones
1348         * mapped to this CPU will be cleared
1349         */
1350        mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1351        mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1352        mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1353}
1354
1355/* This method sets defaults to the NETA port:
1356 *      Clears interrupt Cause and Mask registers.
1357 *      Clears all MAC tables.
1358 *      Sets defaults to all registers.
1359 *      Resets RX and TX descriptor rings.
1360 *      Resets PHY.
1361 * This method can be called after mvneta_port_down() to return the port
1362 *      settings to defaults.
1363 */
1364static void mvneta_defaults_set(struct mvneta_port *pp)
1365{
1366        int cpu;
1367        int queue;
1368        u32 val;
1369        int max_cpu = num_present_cpus();
1370
1371        /* Clear all Cause registers */
1372        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1373
1374        /* Mask all interrupts */
1375        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1376        mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1377
1378        /* Enable MBUS Retry bit16 */
1379        mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1380
1381        /* Set CPU queue access map. CPUs are assigned to the RX and
1382         * TX queues modulo their number. If there is only one TX
1383         * queue then it is assigned to the CPU associated to the
1384         * default RX queue.
1385         */
1386        for_each_present_cpu(cpu) {
1387                int rxq_map = 0, txq_map = 0;
1388                int rxq, txq;
1389                if (!pp->neta_armada3700) {
1390                        for (rxq = 0; rxq < rxq_number; rxq++)
1391                                if ((rxq % max_cpu) == cpu)
1392                                        rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1393
1394                        for (txq = 0; txq < txq_number; txq++)
1395                                if ((txq % max_cpu) == cpu)
1396                                        txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1397
1398                        /* With only one TX queue we configure a special case
1399                         * which will allow to get all the irq on a single
1400                         * CPU
1401                         */
1402                        if (txq_number == 1)
1403                                txq_map = (cpu == pp->rxq_def) ?
1404                                        MVNETA_CPU_TXQ_ACCESS(1) : 0;
1405
1406                } else {
1407                        txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1408                        rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1409                }
1410
1411                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1412        }
1413
1414        /* Reset RX and TX DMAs */
1415        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1416        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1417
1418        /* Disable Legacy WRR, Disable EJP, Release from reset */
1419        mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1420        for (queue = 0; queue < txq_number; queue++) {
1421                mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1422                mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1423        }
1424
1425        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1426        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1427
1428        /* Set Port Acceleration Mode */
1429        if (pp->bm_priv)
1430                /* HW buffer management + legacy parser */
1431                val = MVNETA_ACC_MODE_EXT2;
1432        else
1433                /* SW buffer management + legacy parser */
1434                val = MVNETA_ACC_MODE_EXT1;
1435        mvreg_write(pp, MVNETA_ACC_MODE, val);
1436
1437        if (pp->bm_priv)
1438                mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1439
1440        /* Update val of portCfg register accordingly with all RxQueue types */
1441        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1442        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1443
1444        val = 0;
1445        mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1446        mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1447
1448        /* Build PORT_SDMA_CONFIG_REG */
1449        val = 0;
1450
1451        /* Default burst size */
1452        val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1453        val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1454        val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1455
1456#if defined(__BIG_ENDIAN)
1457        val |= MVNETA_DESC_SWAP;
1458#endif
1459
1460        /* Assign port SDMA configuration */
1461        mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1462
1463        /* Disable PHY polling in hardware, since we're using the
1464         * kernel phylib to do this.
1465         */
1466        val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1467        val &= ~MVNETA_PHY_POLLING_ENABLE;
1468        mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1469
1470        mvneta_set_ucast_table(pp, -1);
1471        mvneta_set_special_mcast_table(pp, -1);
1472        mvneta_set_other_mcast_table(pp, -1);
1473
1474        /* Set port interrupt enable register - default enable all */
1475        mvreg_write(pp, MVNETA_INTR_ENABLE,
1476                    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1477                     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1478
1479        mvneta_mib_counters_clear(pp);
1480}
1481
1482/* Set max sizes for tx queues */
1483static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1484
1485{
1486        u32 val, size, mtu;
1487        int queue;
1488
1489        mtu = max_tx_size * 8;
1490        if (mtu > MVNETA_TX_MTU_MAX)
1491                mtu = MVNETA_TX_MTU_MAX;
1492
1493        /* Set MTU */
1494        val = mvreg_read(pp, MVNETA_TX_MTU);
1495        val &= ~MVNETA_TX_MTU_MAX;
1496        val |= mtu;
1497        mvreg_write(pp, MVNETA_TX_MTU, val);
1498
1499        /* TX token size and all TXQs token size must be larger that MTU */
1500        val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1501
1502        size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1503        if (size < mtu) {
1504                size = mtu;
1505                val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1506                val |= size;
1507                mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1508        }
1509        for (queue = 0; queue < txq_number; queue++) {
1510                val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1511
1512                size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1513                if (size < mtu) {
1514                        size = mtu;
1515                        val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1516                        val |= size;
1517                        mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1518                }
1519        }
1520}
1521
1522/* Set unicast address */
1523static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1524                                  int queue)
1525{
1526        unsigned int unicast_reg;
1527        unsigned int tbl_offset;
1528        unsigned int reg_offset;
1529
1530        /* Locate the Unicast table entry */
1531        last_nibble = (0xf & last_nibble);
1532
1533        /* offset from unicast tbl base */
1534        tbl_offset = (last_nibble / 4) * 4;
1535
1536        /* offset within the above reg  */
1537        reg_offset = last_nibble % 4;
1538
1539        unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1540
1541        if (queue == -1) {
1542                /* Clear accepts frame bit at specified unicast DA tbl entry */
1543                unicast_reg &= ~(0xff << (8 * reg_offset));
1544        } else {
1545                unicast_reg &= ~(0xff << (8 * reg_offset));
1546                unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1547        }
1548
1549        mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1550}
1551
1552/* Set mac address */
1553static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1554                                int queue)
1555{
1556        unsigned int mac_h;
1557        unsigned int mac_l;
1558
1559        if (queue != -1) {
1560                mac_l = (addr[4] << 8) | (addr[5]);
1561                mac_h = (addr[0] << 24) | (addr[1] << 16) |
1562                        (addr[2] << 8) | (addr[3] << 0);
1563
1564                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1565                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1566        }
1567
1568        /* Accept frames of this address */
1569        mvneta_set_ucast_addr(pp, addr[5], queue);
1570}
1571
1572/* Set the number of packets that will be received before RX interrupt
1573 * will be generated by HW.
1574 */
1575static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1576                                    struct mvneta_rx_queue *rxq, u32 value)
1577{
1578        mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1579                    value | MVNETA_RXQ_NON_OCCUPIED(0));
1580}
1581
1582/* Set the time delay in usec before RX interrupt will be generated by
1583 * HW.
1584 */
1585static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1586                                    struct mvneta_rx_queue *rxq, u32 value)
1587{
1588        u32 val;
1589        unsigned long clk_rate;
1590
1591        clk_rate = clk_get_rate(pp->clk);
1592        val = (clk_rate / 1000000) * value;
1593
1594        mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1595}
1596
1597/* Set threshold for TX_DONE pkts coalescing */
1598static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1599                                         struct mvneta_tx_queue *txq, u32 value)
1600{
1601        u32 val;
1602
1603        val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1604
1605        val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1606        val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1607
1608        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1609}
1610
1611/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1612static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1613                                u32 phys_addr, void *virt_addr,
1614                                struct mvneta_rx_queue *rxq)
1615{
1616        int i;
1617
1618        rx_desc->buf_phys_addr = phys_addr;
1619        i = rx_desc - rxq->descs;
1620        rxq->buf_virt_addr[i] = virt_addr;
1621}
1622
1623/* Decrement sent descriptors counter */
1624static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1625                                     struct mvneta_tx_queue *txq,
1626                                     int sent_desc)
1627{
1628        u32 val;
1629
1630        /* Only 255 TX descriptors can be updated at once */
1631        while (sent_desc > 0xff) {
1632                val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1633                mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1634                sent_desc = sent_desc - 0xff;
1635        }
1636
1637        val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1638        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1639}
1640
1641/* Get number of TX descriptors already sent by HW */
1642static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1643                                        struct mvneta_tx_queue *txq)
1644{
1645        u32 val;
1646        int sent_desc;
1647
1648        val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1649        sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1650                MVNETA_TXQ_SENT_DESC_SHIFT;
1651
1652        return sent_desc;
1653}
1654
1655/* Get number of sent descriptors and decrement counter.
1656 *  The number of sent descriptors is returned.
1657 */
1658static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1659                                     struct mvneta_tx_queue *txq)
1660{
1661        int sent_desc;
1662
1663        /* Get number of sent descriptors */
1664        sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1665
1666        /* Decrement sent descriptors counter */
1667        if (sent_desc)
1668                mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1669
1670        return sent_desc;
1671}
1672
1673/* Set TXQ descriptors fields relevant for CSUM calculation */
1674static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1675                                int ip_hdr_len, int l4_proto)
1676{
1677        u32 command;
1678
1679        /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1680         * G_L4_chk, L4_type; required only for checksum
1681         * calculation
1682         */
1683        command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1684        command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1685
1686        if (l3_proto == htons(ETH_P_IP))
1687                command |= MVNETA_TXD_IP_CSUM;
1688        else
1689                command |= MVNETA_TX_L3_IP6;
1690
1691        if (l4_proto == IPPROTO_TCP)
1692                command |=  MVNETA_TX_L4_CSUM_FULL;
1693        else if (l4_proto == IPPROTO_UDP)
1694                command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1695        else
1696                command |= MVNETA_TX_L4_CSUM_NOT;
1697
1698        return command;
1699}
1700
1701
1702/* Display more error info */
1703static void mvneta_rx_error(struct mvneta_port *pp,
1704                            struct mvneta_rx_desc *rx_desc)
1705{
1706        u32 status = rx_desc->status;
1707
1708        switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1709        case MVNETA_RXD_ERR_CRC:
1710                netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1711                           status, rx_desc->data_size);
1712                break;
1713        case MVNETA_RXD_ERR_OVERRUN:
1714                netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1715                           status, rx_desc->data_size);
1716                break;
1717        case MVNETA_RXD_ERR_LEN:
1718                netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1719                           status, rx_desc->data_size);
1720                break;
1721        case MVNETA_RXD_ERR_RESOURCE:
1722                netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1723                           status, rx_desc->data_size);
1724                break;
1725        }
1726}
1727
1728/* Handle RX checksum offload based on the descriptor's status */
1729static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1730                           struct sk_buff *skb)
1731{
1732        if ((pp->dev->features & NETIF_F_RXCSUM) &&
1733            (status & MVNETA_RXD_L3_IP4) &&
1734            (status & MVNETA_RXD_L4_CSUM_OK)) {
1735                skb->csum = 0;
1736                skb->ip_summed = CHECKSUM_UNNECESSARY;
1737                return;
1738        }
1739
1740        skb->ip_summed = CHECKSUM_NONE;
1741}
1742
1743/* Return tx queue pointer (find last set bit) according to <cause> returned
1744 * form tx_done reg. <cause> must not be null. The return value is always a
1745 * valid queue for matching the first one found in <cause>.
1746 */
1747static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1748                                                     u32 cause)
1749{
1750        int queue = fls(cause) - 1;
1751
1752        return &pp->txqs[queue];
1753}
1754
1755/* Free tx queue skbuffs */
1756static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1757                                 struct mvneta_tx_queue *txq, int num,
1758                                 struct netdev_queue *nq)
1759{
1760        unsigned int bytes_compl = 0, pkts_compl = 0;
1761        int i;
1762
1763        for (i = 0; i < num; i++) {
1764                struct mvneta_tx_desc *tx_desc = txq->descs +
1765                        txq->txq_get_index;
1766                struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1767
1768                if (skb) {
1769                        bytes_compl += skb->len;
1770                        pkts_compl++;
1771                }
1772
1773                mvneta_txq_inc_get(txq);
1774
1775                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1776                        dma_unmap_single(pp->dev->dev.parent,
1777                                         tx_desc->buf_phys_addr,
1778                                         tx_desc->data_size, DMA_TO_DEVICE);
1779                if (!skb)
1780                        continue;
1781                dev_kfree_skb_any(skb);
1782        }
1783
1784        netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1785}
1786
1787/* Handle end of transmission */
1788static void mvneta_txq_done(struct mvneta_port *pp,
1789                           struct mvneta_tx_queue *txq)
1790{
1791        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1792        int tx_done;
1793
1794        tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1795        if (!tx_done)
1796                return;
1797
1798        mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1799
1800        txq->count -= tx_done;
1801
1802        if (netif_tx_queue_stopped(nq)) {
1803                if (txq->count <= txq->tx_wake_threshold)
1804                        netif_tx_wake_queue(nq);
1805        }
1806}
1807
1808/* Refill processing for SW buffer management */
1809/* Allocate page per descriptor */
1810static int mvneta_rx_refill(struct mvneta_port *pp,
1811                            struct mvneta_rx_desc *rx_desc,
1812                            struct mvneta_rx_queue *rxq,
1813                            gfp_t gfp_mask)
1814{
1815        dma_addr_t phys_addr;
1816        struct page *page;
1817
1818        page = __dev_alloc_page(gfp_mask);
1819        if (!page)
1820                return -ENOMEM;
1821
1822        /* map page for use */
1823        phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
1824                                 DMA_FROM_DEVICE);
1825        if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1826                __free_page(page);
1827                return -ENOMEM;
1828        }
1829
1830        phys_addr += pp->rx_offset_correction;
1831        mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1832        return 0;
1833}
1834
1835/* Handle tx checksum */
1836static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1837{
1838        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1839                int ip_hdr_len = 0;
1840                __be16 l3_proto = vlan_get_protocol(skb);
1841                u8 l4_proto;
1842
1843                if (l3_proto == htons(ETH_P_IP)) {
1844                        struct iphdr *ip4h = ip_hdr(skb);
1845
1846                        /* Calculate IPv4 checksum and L4 checksum */
1847                        ip_hdr_len = ip4h->ihl;
1848                        l4_proto = ip4h->protocol;
1849                } else if (l3_proto == htons(ETH_P_IPV6)) {
1850                        struct ipv6hdr *ip6h = ipv6_hdr(skb);
1851
1852                        /* Read l4_protocol from one of IPv6 extra headers */
1853                        if (skb_network_header_len(skb) > 0)
1854                                ip_hdr_len = (skb_network_header_len(skb) >> 2);
1855                        l4_proto = ip6h->nexthdr;
1856                } else
1857                        return MVNETA_TX_L4_CSUM_NOT;
1858
1859                return mvneta_txq_desc_csum(skb_network_offset(skb),
1860                                            l3_proto, ip_hdr_len, l4_proto);
1861        }
1862
1863        return MVNETA_TX_L4_CSUM_NOT;
1864}
1865
1866/* Drop packets received by the RXQ and free buffers */
1867static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1868                                 struct mvneta_rx_queue *rxq)
1869{
1870        int rx_done, i;
1871
1872        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1873        if (rx_done)
1874                mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1875
1876        if (pp->bm_priv) {
1877                for (i = 0; i < rx_done; i++) {
1878                        struct mvneta_rx_desc *rx_desc =
1879                                                  mvneta_rxq_next_desc_get(rxq);
1880                        u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1881                        struct mvneta_bm_pool *bm_pool;
1882
1883                        bm_pool = &pp->bm_priv->bm_pools[pool_id];
1884                        /* Return dropped buffer to the pool */
1885                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1886                                              rx_desc->buf_phys_addr);
1887                }
1888                return;
1889        }
1890
1891        for (i = 0; i < rxq->size; i++) {
1892                struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1893                void *data = rxq->buf_virt_addr[i];
1894                if (!data || !(rx_desc->buf_phys_addr))
1895                        continue;
1896
1897                dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1898                               PAGE_SIZE, DMA_FROM_DEVICE);
1899                __free_page(data);
1900        }
1901}
1902
1903static inline
1904int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1905{
1906        struct mvneta_rx_desc *rx_desc;
1907        int curr_desc = rxq->first_to_refill;
1908        int i;
1909
1910        for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1911                rx_desc = rxq->descs + curr_desc;
1912                if (!(rx_desc->buf_phys_addr)) {
1913                        if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1914                                pr_err("Can't refill queue %d. Done %d from %d\n",
1915                                       rxq->id, i, rxq->refill_num);
1916                                rxq->refill_err++;
1917                                break;
1918                        }
1919                }
1920                curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1921        }
1922        rxq->refill_num -= i;
1923        rxq->first_to_refill = curr_desc;
1924
1925        return i;
1926}
1927
1928/* Main rx processing when using software buffer management */
1929static int mvneta_rx_swbm(struct napi_struct *napi,
1930                          struct mvneta_port *pp, int budget,
1931                          struct mvneta_rx_queue *rxq)
1932{
1933        struct net_device *dev = pp->dev;
1934        int rx_todo, rx_proc;
1935        int refill = 0;
1936        u32 rcvd_pkts = 0;
1937        u32 rcvd_bytes = 0;
1938
1939        /* Get number of received packets */
1940        rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
1941        rx_proc = 0;
1942
1943        /* Fairness NAPI loop */
1944        while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
1945                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1946                unsigned char *data;
1947                struct page *page;
1948                dma_addr_t phys_addr;
1949                u32 rx_status, index;
1950                int rx_bytes, skb_size, copy_size;
1951                int frag_num, frag_size, frag_offset;
1952
1953                index = rx_desc - rxq->descs;
1954                page = (struct page *)rxq->buf_virt_addr[index];
1955                data = page_address(page);
1956                /* Prefetch header */
1957                prefetch(data);
1958
1959                phys_addr = rx_desc->buf_phys_addr;
1960                rx_status = rx_desc->status;
1961                rx_proc++;
1962                rxq->refill_num++;
1963
1964                if (rx_status & MVNETA_RXD_FIRST_DESC) {
1965                        /* Check errors only for FIRST descriptor */
1966                        if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
1967                                mvneta_rx_error(pp, rx_desc);
1968                                dev->stats.rx_errors++;
1969                                /* leave the descriptor untouched */
1970                                continue;
1971                        }
1972                        rx_bytes = rx_desc->data_size -
1973                                   (ETH_FCS_LEN + MVNETA_MH_SIZE);
1974
1975                        /* Allocate small skb for each new packet */
1976                        skb_size = max(rx_copybreak, rx_header_size);
1977                        rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
1978                        if (unlikely(!rxq->skb)) {
1979                                netdev_err(dev,
1980                                           "Can't allocate skb on queue %d\n",
1981                                           rxq->id);
1982                                dev->stats.rx_dropped++;
1983                                rxq->skb_alloc_err++;
1984                                continue;
1985                        }
1986                        copy_size = min(skb_size, rx_bytes);
1987
1988                        /* Copy data from buffer to SKB, skip Marvell header */
1989                        memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
1990                               copy_size);
1991                        skb_put(rxq->skb, copy_size);
1992                        rxq->left_size = rx_bytes - copy_size;
1993
1994                        mvneta_rx_csum(pp, rx_status, rxq->skb);
1995                        if (rxq->left_size == 0) {
1996                                int size = copy_size + MVNETA_MH_SIZE;
1997
1998                                dma_sync_single_range_for_cpu(dev->dev.parent,
1999                                                              phys_addr, 0,
2000                                                              size,
2001                                                              DMA_FROM_DEVICE);
2002
2003                                /* leave the descriptor and buffer untouched */
2004                        } else {
2005                                /* refill descriptor with new buffer later */
2006                                rx_desc->buf_phys_addr = 0;
2007
2008                                frag_num = 0;
2009                                frag_offset = copy_size + MVNETA_MH_SIZE;
2010                                frag_size = min(rxq->left_size,
2011                                                (int)(PAGE_SIZE - frag_offset));
2012                                skb_add_rx_frag(rxq->skb, frag_num, page,
2013                                                frag_offset, frag_size,
2014                                                PAGE_SIZE);
2015                                dma_unmap_page(dev->dev.parent, phys_addr,
2016                                               PAGE_SIZE, DMA_FROM_DEVICE);
2017                                rxq->left_size -= frag_size;
2018                        }
2019                } else {
2020                        /* Middle or Last descriptor */
2021                        if (unlikely(!rxq->skb)) {
2022                                pr_debug("no skb for rx_status 0x%x\n",
2023                                         rx_status);
2024                                continue;
2025                        }
2026                        if (!rxq->left_size) {
2027                                /* last descriptor has only FCS */
2028                                /* and can be discarded */
2029                                dma_sync_single_range_for_cpu(dev->dev.parent,
2030                                                              phys_addr, 0,
2031                                                              ETH_FCS_LEN,
2032                                                              DMA_FROM_DEVICE);
2033                                /* leave the descriptor and buffer untouched */
2034                        } else {
2035                                /* refill descriptor with new buffer later */
2036                                rx_desc->buf_phys_addr = 0;
2037
2038                                frag_num = skb_shinfo(rxq->skb)->nr_frags;
2039                                frag_offset = 0;
2040                                frag_size = min(rxq->left_size,
2041                                                (int)(PAGE_SIZE - frag_offset));
2042                                skb_add_rx_frag(rxq->skb, frag_num, page,
2043                                                frag_offset, frag_size,
2044                                                PAGE_SIZE);
2045
2046                                dma_unmap_page(dev->dev.parent, phys_addr,
2047                                               PAGE_SIZE, DMA_FROM_DEVICE);
2048
2049                                rxq->left_size -= frag_size;
2050                        }
2051                } /* Middle or Last descriptor */
2052
2053                if (!(rx_status & MVNETA_RXD_LAST_DESC))
2054                        /* no last descriptor this time */
2055                        continue;
2056
2057                if (rxq->left_size) {
2058                        pr_err("get last desc, but left_size (%d) != 0\n",
2059                               rxq->left_size);
2060                        dev_kfree_skb_any(rxq->skb);
2061                        rxq->left_size = 0;
2062                        rxq->skb = NULL;
2063                        continue;
2064                }
2065                rcvd_pkts++;
2066                rcvd_bytes += rxq->skb->len;
2067
2068                /* Linux processing */
2069                rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2070
2071                napi_gro_receive(napi, rxq->skb);
2072
2073                /* clean uncomplete skb pointer in queue */
2074                rxq->skb = NULL;
2075                rxq->left_size = 0;
2076        }
2077
2078        if (rcvd_pkts) {
2079                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2080
2081                u64_stats_update_begin(&stats->syncp);
2082                stats->rx_packets += rcvd_pkts;
2083                stats->rx_bytes   += rcvd_bytes;
2084                u64_stats_update_end(&stats->syncp);
2085        }
2086
2087        /* return some buffers to hardware queue, one at a time is too slow */
2088        refill = mvneta_rx_refill_queue(pp, rxq);
2089
2090        /* Update rxq management counters */
2091        mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2092
2093        return rcvd_pkts;
2094}
2095
2096/* Main rx processing when using hardware buffer management */
2097static int mvneta_rx_hwbm(struct napi_struct *napi,
2098                          struct mvneta_port *pp, int rx_todo,
2099                          struct mvneta_rx_queue *rxq)
2100{
2101        struct net_device *dev = pp->dev;
2102        int rx_done;
2103        u32 rcvd_pkts = 0;
2104        u32 rcvd_bytes = 0;
2105
2106        /* Get number of received packets */
2107        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2108
2109        if (rx_todo > rx_done)
2110                rx_todo = rx_done;
2111
2112        rx_done = 0;
2113
2114        /* Fairness NAPI loop */
2115        while (rx_done < rx_todo) {
2116                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2117                struct mvneta_bm_pool *bm_pool = NULL;
2118                struct sk_buff *skb;
2119                unsigned char *data;
2120                dma_addr_t phys_addr;
2121                u32 rx_status, frag_size;
2122                int rx_bytes, err;
2123                u8 pool_id;
2124
2125                rx_done++;
2126                rx_status = rx_desc->status;
2127                rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2128                data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2129                phys_addr = rx_desc->buf_phys_addr;
2130                pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2131                bm_pool = &pp->bm_priv->bm_pools[pool_id];
2132
2133                if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2134                    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2135err_drop_frame_ret_pool:
2136                        /* Return the buffer to the pool */
2137                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2138                                              rx_desc->buf_phys_addr);
2139err_drop_frame:
2140                        dev->stats.rx_errors++;
2141                        mvneta_rx_error(pp, rx_desc);
2142                        /* leave the descriptor untouched */
2143                        continue;
2144                }
2145
2146                if (rx_bytes <= rx_copybreak) {
2147                        /* better copy a small frame and not unmap the DMA region */
2148                        skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2149                        if (unlikely(!skb))
2150                                goto err_drop_frame_ret_pool;
2151
2152                        dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2153                                                      rx_desc->buf_phys_addr,
2154                                                      MVNETA_MH_SIZE + NET_SKB_PAD,
2155                                                      rx_bytes,
2156                                                      DMA_FROM_DEVICE);
2157                        skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2158                                     rx_bytes);
2159
2160                        skb->protocol = eth_type_trans(skb, dev);
2161                        mvneta_rx_csum(pp, rx_status, skb);
2162                        napi_gro_receive(napi, skb);
2163
2164                        rcvd_pkts++;
2165                        rcvd_bytes += rx_bytes;
2166
2167                        /* Return the buffer to the pool */
2168                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2169                                              rx_desc->buf_phys_addr);
2170
2171                        /* leave the descriptor and buffer untouched */
2172                        continue;
2173                }
2174
2175                /* Refill processing */
2176                err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2177                if (err) {
2178                        netdev_err(dev, "Linux processing - Can't refill\n");
2179                        rxq->refill_err++;
2180                        goto err_drop_frame_ret_pool;
2181                }
2182
2183                frag_size = bm_pool->hwbm_pool.frag_size;
2184
2185                skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2186
2187                /* After refill old buffer has to be unmapped regardless
2188                 * the skb is successfully built or not.
2189                 */
2190                dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2191                                 bm_pool->buf_size, DMA_FROM_DEVICE);
2192                if (!skb)
2193                        goto err_drop_frame;
2194
2195                rcvd_pkts++;
2196                rcvd_bytes += rx_bytes;
2197
2198                /* Linux processing */
2199                skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2200                skb_put(skb, rx_bytes);
2201
2202                skb->protocol = eth_type_trans(skb, dev);
2203
2204                mvneta_rx_csum(pp, rx_status, skb);
2205
2206                napi_gro_receive(napi, skb);
2207        }
2208
2209        if (rcvd_pkts) {
2210                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2211
2212                u64_stats_update_begin(&stats->syncp);
2213                stats->rx_packets += rcvd_pkts;
2214                stats->rx_bytes   += rcvd_bytes;
2215                u64_stats_update_end(&stats->syncp);
2216        }
2217
2218        /* Update rxq management counters */
2219        mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2220
2221        return rx_done;
2222}
2223
2224static inline void
2225mvneta_tso_put_hdr(struct sk_buff *skb,
2226                   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2227{
2228        struct mvneta_tx_desc *tx_desc;
2229        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2230
2231        txq->tx_skb[txq->txq_put_index] = NULL;
2232        tx_desc = mvneta_txq_next_desc_get(txq);
2233        tx_desc->data_size = hdr_len;
2234        tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2235        tx_desc->command |= MVNETA_TXD_F_DESC;
2236        tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2237                                 txq->txq_put_index * TSO_HEADER_SIZE;
2238        mvneta_txq_inc_put(txq);
2239}
2240
2241static inline int
2242mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2243                    struct sk_buff *skb, char *data, int size,
2244                    bool last_tcp, bool is_last)
2245{
2246        struct mvneta_tx_desc *tx_desc;
2247
2248        tx_desc = mvneta_txq_next_desc_get(txq);
2249        tx_desc->data_size = size;
2250        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2251                                                size, DMA_TO_DEVICE);
2252        if (unlikely(dma_mapping_error(dev->dev.parent,
2253                     tx_desc->buf_phys_addr))) {
2254                mvneta_txq_desc_put(txq);
2255                return -ENOMEM;
2256        }
2257
2258        tx_desc->command = 0;
2259        txq->tx_skb[txq->txq_put_index] = NULL;
2260
2261        if (last_tcp) {
2262                /* last descriptor in the TCP packet */
2263                tx_desc->command = MVNETA_TXD_L_DESC;
2264
2265                /* last descriptor in SKB */
2266                if (is_last)
2267                        txq->tx_skb[txq->txq_put_index] = skb;
2268        }
2269        mvneta_txq_inc_put(txq);
2270        return 0;
2271}
2272
2273static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2274                         struct mvneta_tx_queue *txq)
2275{
2276        int total_len, data_left;
2277        int desc_count = 0;
2278        struct mvneta_port *pp = netdev_priv(dev);
2279        struct tso_t tso;
2280        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2281        int i;
2282
2283        /* Count needed descriptors */
2284        if ((txq->count + tso_count_descs(skb)) >= txq->size)
2285                return 0;
2286
2287        if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2288                pr_info("*** Is this even  possible???!?!?\n");
2289                return 0;
2290        }
2291
2292        /* Initialize the TSO handler, and prepare the first payload */
2293        tso_start(skb, &tso);
2294
2295        total_len = skb->len - hdr_len;
2296        while (total_len > 0) {
2297                char *hdr;
2298
2299                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2300                total_len -= data_left;
2301                desc_count++;
2302
2303                /* prepare packet headers: MAC + IP + TCP */
2304                hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2305                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2306
2307                mvneta_tso_put_hdr(skb, pp, txq);
2308
2309                while (data_left > 0) {
2310                        int size;
2311                        desc_count++;
2312
2313                        size = min_t(int, tso.size, data_left);
2314
2315                        if (mvneta_tso_put_data(dev, txq, skb,
2316                                                 tso.data, size,
2317                                                 size == data_left,
2318                                                 total_len == 0))
2319                                goto err_release;
2320                        data_left -= size;
2321
2322                        tso_build_data(skb, &tso, size);
2323                }
2324        }
2325
2326        return desc_count;
2327
2328err_release:
2329        /* Release all used data descriptors; header descriptors must not
2330         * be DMA-unmapped.
2331         */
2332        for (i = desc_count - 1; i >= 0; i--) {
2333                struct mvneta_tx_desc *tx_desc = txq->descs + i;
2334                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2335                        dma_unmap_single(pp->dev->dev.parent,
2336                                         tx_desc->buf_phys_addr,
2337                                         tx_desc->data_size,
2338                                         DMA_TO_DEVICE);
2339                mvneta_txq_desc_put(txq);
2340        }
2341        return 0;
2342}
2343
2344/* Handle tx fragmentation processing */
2345static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2346                                  struct mvneta_tx_queue *txq)
2347{
2348        struct mvneta_tx_desc *tx_desc;
2349        int i, nr_frags = skb_shinfo(skb)->nr_frags;
2350
2351        for (i = 0; i < nr_frags; i++) {
2352                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2353                void *addr = page_address(frag->page.p) + frag->page_offset;
2354
2355                tx_desc = mvneta_txq_next_desc_get(txq);
2356                tx_desc->data_size = frag->size;
2357
2358                tx_desc->buf_phys_addr =
2359                        dma_map_single(pp->dev->dev.parent, addr,
2360                                       tx_desc->data_size, DMA_TO_DEVICE);
2361
2362                if (dma_mapping_error(pp->dev->dev.parent,
2363                                      tx_desc->buf_phys_addr)) {
2364                        mvneta_txq_desc_put(txq);
2365                        goto error;
2366                }
2367
2368                if (i == nr_frags - 1) {
2369                        /* Last descriptor */
2370                        tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2371                        txq->tx_skb[txq->txq_put_index] = skb;
2372                } else {
2373                        /* Descriptor in the middle: Not First, Not Last */
2374                        tx_desc->command = 0;
2375                        txq->tx_skb[txq->txq_put_index] = NULL;
2376                }
2377                mvneta_txq_inc_put(txq);
2378        }
2379
2380        return 0;
2381
2382error:
2383        /* Release all descriptors that were used to map fragments of
2384         * this packet, as well as the corresponding DMA mappings
2385         */
2386        for (i = i - 1; i >= 0; i--) {
2387                tx_desc = txq->descs + i;
2388                dma_unmap_single(pp->dev->dev.parent,
2389                                 tx_desc->buf_phys_addr,
2390                                 tx_desc->data_size,
2391                                 DMA_TO_DEVICE);
2392                mvneta_txq_desc_put(txq);
2393        }
2394
2395        return -ENOMEM;
2396}
2397
2398/* Main tx processing */
2399static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2400{
2401        struct mvneta_port *pp = netdev_priv(dev);
2402        u16 txq_id = skb_get_queue_mapping(skb);
2403        struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2404        struct mvneta_tx_desc *tx_desc;
2405        int len = skb->len;
2406        int frags = 0;
2407        u32 tx_cmd;
2408
2409        if (!netif_running(dev))
2410                goto out;
2411
2412        if (skb_is_gso(skb)) {
2413                frags = mvneta_tx_tso(skb, dev, txq);
2414                goto out;
2415        }
2416
2417        frags = skb_shinfo(skb)->nr_frags + 1;
2418
2419        /* Get a descriptor for the first part of the packet */
2420        tx_desc = mvneta_txq_next_desc_get(txq);
2421
2422        tx_cmd = mvneta_skb_tx_csum(pp, skb);
2423
2424        tx_desc->data_size = skb_headlen(skb);
2425
2426        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2427                                                tx_desc->data_size,
2428                                                DMA_TO_DEVICE);
2429        if (unlikely(dma_mapping_error(dev->dev.parent,
2430                                       tx_desc->buf_phys_addr))) {
2431                mvneta_txq_desc_put(txq);
2432                frags = 0;
2433                goto out;
2434        }
2435
2436        if (frags == 1) {
2437                /* First and Last descriptor */
2438                tx_cmd |= MVNETA_TXD_FLZ_DESC;
2439                tx_desc->command = tx_cmd;
2440                txq->tx_skb[txq->txq_put_index] = skb;
2441                mvneta_txq_inc_put(txq);
2442        } else {
2443                /* First but not Last */
2444                tx_cmd |= MVNETA_TXD_F_DESC;
2445                txq->tx_skb[txq->txq_put_index] = NULL;
2446                mvneta_txq_inc_put(txq);
2447                tx_desc->command = tx_cmd;
2448                /* Continue with other skb fragments */
2449                if (mvneta_tx_frag_process(pp, skb, txq)) {
2450                        dma_unmap_single(dev->dev.parent,
2451                                         tx_desc->buf_phys_addr,
2452                                         tx_desc->data_size,
2453                                         DMA_TO_DEVICE);
2454                        mvneta_txq_desc_put(txq);
2455                        frags = 0;
2456                        goto out;
2457                }
2458        }
2459
2460out:
2461        if (frags > 0) {
2462                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2463                struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2464
2465                netdev_tx_sent_queue(nq, len);
2466
2467                txq->count += frags;
2468                if (txq->count >= txq->tx_stop_threshold)
2469                        netif_tx_stop_queue(nq);
2470
2471                if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2472                    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2473                        mvneta_txq_pend_desc_add(pp, txq, frags);
2474                else
2475                        txq->pending += frags;
2476
2477                u64_stats_update_begin(&stats->syncp);
2478                stats->tx_packets++;
2479                stats->tx_bytes  += len;
2480                u64_stats_update_end(&stats->syncp);
2481        } else {
2482                dev->stats.tx_dropped++;
2483                dev_kfree_skb_any(skb);
2484        }
2485
2486        return NETDEV_TX_OK;
2487}
2488
2489
2490/* Free tx resources, when resetting a port */
2491static void mvneta_txq_done_force(struct mvneta_port *pp,
2492                                  struct mvneta_tx_queue *txq)
2493
2494{
2495        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2496        int tx_done = txq->count;
2497
2498        mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2499
2500        /* reset txq */
2501        txq->count = 0;
2502        txq->txq_put_index = 0;
2503        txq->txq_get_index = 0;
2504}
2505
2506/* Handle tx done - called in softirq context. The <cause_tx_done> argument
2507 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2508 */
2509static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2510{
2511        struct mvneta_tx_queue *txq;
2512        struct netdev_queue *nq;
2513        int cpu = smp_processor_id();
2514
2515        while (cause_tx_done) {
2516                txq = mvneta_tx_done_policy(pp, cause_tx_done);
2517
2518                nq = netdev_get_tx_queue(pp->dev, txq->id);
2519                __netif_tx_lock(nq, cpu);
2520
2521                if (txq->count)
2522                        mvneta_txq_done(pp, txq);
2523
2524                __netif_tx_unlock(nq);
2525                cause_tx_done &= ~((1 << txq->id));
2526        }
2527}
2528
2529/* Compute crc8 of the specified address, using a unique algorithm ,
2530 * according to hw spec, different than generic crc8 algorithm
2531 */
2532static int mvneta_addr_crc(unsigned char *addr)
2533{
2534        int crc = 0;
2535        int i;
2536
2537        for (i = 0; i < ETH_ALEN; i++) {
2538                int j;
2539
2540                crc = (crc ^ addr[i]) << 8;
2541                for (j = 7; j >= 0; j--) {
2542                        if (crc & (0x100 << j))
2543                                crc ^= 0x107 << j;
2544                }
2545        }
2546
2547        return crc;
2548}
2549
2550/* This method controls the net device special MAC multicast support.
2551 * The Special Multicast Table for MAC addresses supports MAC of the form
2552 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2553 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2554 * Table entries in the DA-Filter table. This method set the Special
2555 * Multicast Table appropriate entry.
2556 */
2557static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2558                                          unsigned char last_byte,
2559                                          int queue)
2560{
2561        unsigned int smc_table_reg;
2562        unsigned int tbl_offset;
2563        unsigned int reg_offset;
2564
2565        /* Register offset from SMC table base    */
2566        tbl_offset = (last_byte / 4);
2567        /* Entry offset within the above reg */
2568        reg_offset = last_byte % 4;
2569
2570        smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2571                                        + tbl_offset * 4));
2572
2573        if (queue == -1)
2574                smc_table_reg &= ~(0xff << (8 * reg_offset));
2575        else {
2576                smc_table_reg &= ~(0xff << (8 * reg_offset));
2577                smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2578        }
2579
2580        mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2581                    smc_table_reg);
2582}
2583
2584/* This method controls the network device Other MAC multicast support.
2585 * The Other Multicast Table is used for multicast of another type.
2586 * A CRC-8 is used as an index to the Other Multicast Table entries
2587 * in the DA-Filter table.
2588 * The method gets the CRC-8 value from the calling routine and
2589 * sets the Other Multicast Table appropriate entry according to the
2590 * specified CRC-8 .
2591 */
2592static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2593                                        unsigned char crc8,
2594                                        int queue)
2595{
2596        unsigned int omc_table_reg;
2597        unsigned int tbl_offset;
2598        unsigned int reg_offset;
2599
2600        tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2601        reg_offset = crc8 % 4;       /* Entry offset within the above reg   */
2602
2603        omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2604
2605        if (queue == -1) {
2606                /* Clear accepts frame bit at specified Other DA table entry */
2607                omc_table_reg &= ~(0xff << (8 * reg_offset));
2608        } else {
2609                omc_table_reg &= ~(0xff << (8 * reg_offset));
2610                omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2611        }
2612
2613        mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2614}
2615
2616/* The network device supports multicast using two tables:
2617 *    1) Special Multicast Table for MAC addresses of the form
2618 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2619 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2620 *       Table entries in the DA-Filter table.
2621 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2622 *       is used as an index to the Other Multicast Table entries in the
2623 *       DA-Filter table.
2624 */
2625static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2626                                 int queue)
2627{
2628        unsigned char crc_result = 0;
2629
2630        if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2631                mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2632                return 0;
2633        }
2634
2635        crc_result = mvneta_addr_crc(p_addr);
2636        if (queue == -1) {
2637                if (pp->mcast_count[crc_result] == 0) {
2638                        netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2639                                    crc_result);
2640                        return -EINVAL;
2641                }
2642
2643                pp->mcast_count[crc_result]--;
2644                if (pp->mcast_count[crc_result] != 0) {
2645                        netdev_info(pp->dev,
2646                                    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2647                                    pp->mcast_count[crc_result], crc_result);
2648                        return -EINVAL;
2649                }
2650        } else
2651                pp->mcast_count[crc_result]++;
2652
2653        mvneta_set_other_mcast_addr(pp, crc_result, queue);
2654
2655        return 0;
2656}
2657
2658/* Configure Fitering mode of Ethernet port */
2659static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2660                                          int is_promisc)
2661{
2662        u32 port_cfg_reg, val;
2663
2664        port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2665
2666        val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2667
2668        /* Set / Clear UPM bit in port configuration register */
2669        if (is_promisc) {
2670                /* Accept all Unicast addresses */
2671                port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2672                val |= MVNETA_FORCE_UNI;
2673                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2674                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2675        } else {
2676                /* Reject all Unicast addresses */
2677                port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2678                val &= ~MVNETA_FORCE_UNI;
2679        }
2680
2681        mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2682        mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2683}
2684
2685/* register unicast and multicast addresses */
2686static void mvneta_set_rx_mode(struct net_device *dev)
2687{
2688        struct mvneta_port *pp = netdev_priv(dev);
2689        struct netdev_hw_addr *ha;
2690
2691        if (dev->flags & IFF_PROMISC) {
2692                /* Accept all: Multicast + Unicast */
2693                mvneta_rx_unicast_promisc_set(pp, 1);
2694                mvneta_set_ucast_table(pp, pp->rxq_def);
2695                mvneta_set_special_mcast_table(pp, pp->rxq_def);
2696                mvneta_set_other_mcast_table(pp, pp->rxq_def);
2697        } else {
2698                /* Accept single Unicast */
2699                mvneta_rx_unicast_promisc_set(pp, 0);
2700                mvneta_set_ucast_table(pp, -1);
2701                mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2702
2703                if (dev->flags & IFF_ALLMULTI) {
2704                        /* Accept all multicast */
2705                        mvneta_set_special_mcast_table(pp, pp->rxq_def);
2706                        mvneta_set_other_mcast_table(pp, pp->rxq_def);
2707                } else {
2708                        /* Accept only initialized multicast */
2709                        mvneta_set_special_mcast_table(pp, -1);
2710                        mvneta_set_other_mcast_table(pp, -1);
2711
2712                        if (!netdev_mc_empty(dev)) {
2713                                netdev_for_each_mc_addr(ha, dev) {
2714                                        mvneta_mcast_addr_set(pp, ha->addr,
2715                                                              pp->rxq_def);
2716                                }
2717                        }
2718                }
2719        }
2720}
2721
2722/* Interrupt handling - the callback for request_irq() */
2723static irqreturn_t mvneta_isr(int irq, void *dev_id)
2724{
2725        struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2726
2727        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2728        napi_schedule(&pp->napi);
2729
2730        return IRQ_HANDLED;
2731}
2732
2733/* Interrupt handling - the callback for request_percpu_irq() */
2734static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2735{
2736        struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2737
2738        disable_percpu_irq(port->pp->dev->irq);
2739        napi_schedule(&port->napi);
2740
2741        return IRQ_HANDLED;
2742}
2743
2744static void mvneta_link_change(struct mvneta_port *pp)
2745{
2746        u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2747
2748        phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2749}
2750
2751/* NAPI handler
2752 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2753 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2754 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2755 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2756 * Each CPU has its own causeRxTx register
2757 */
2758static int mvneta_poll(struct napi_struct *napi, int budget)
2759{
2760        int rx_done = 0;
2761        u32 cause_rx_tx;
2762        int rx_queue;
2763        struct mvneta_port *pp = netdev_priv(napi->dev);
2764        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2765
2766        if (!netif_running(pp->dev)) {
2767                napi_complete(napi);
2768                return rx_done;
2769        }
2770
2771        /* Read cause register */
2772        cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2773        if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2774                u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2775
2776                mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2777
2778                if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2779                                  MVNETA_CAUSE_LINK_CHANGE))
2780                        mvneta_link_change(pp);
2781        }
2782
2783        /* Release Tx descriptors */
2784        if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2785                mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2786                cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2787        }
2788
2789        /* For the case where the last mvneta_poll did not process all
2790         * RX packets
2791         */
2792        rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2793
2794        cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2795                port->cause_rx_tx;
2796
2797        if (rx_queue) {
2798                rx_queue = rx_queue - 1;
2799                if (pp->bm_priv)
2800                        rx_done = mvneta_rx_hwbm(napi, pp, budget,
2801                                                 &pp->rxqs[rx_queue]);
2802                else
2803                        rx_done = mvneta_rx_swbm(napi, pp, budget,
2804                                                 &pp->rxqs[rx_queue]);
2805        }
2806
2807        if (rx_done < budget) {
2808                cause_rx_tx = 0;
2809                napi_complete_done(napi, rx_done);
2810
2811                if (pp->neta_armada3700) {
2812                        unsigned long flags;
2813
2814                        local_irq_save(flags);
2815                        mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2816                                    MVNETA_RX_INTR_MASK(rxq_number) |
2817                                    MVNETA_TX_INTR_MASK(txq_number) |
2818                                    MVNETA_MISCINTR_INTR_MASK);
2819                        local_irq_restore(flags);
2820                } else {
2821                        enable_percpu_irq(pp->dev->irq, 0);
2822                }
2823        }
2824
2825        if (pp->neta_armada3700)
2826                pp->cause_rx_tx = cause_rx_tx;
2827        else
2828                port->cause_rx_tx = cause_rx_tx;
2829
2830        return rx_done;
2831}
2832
2833/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2834static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2835                           int num)
2836{
2837        int i;
2838
2839        for (i = 0; i < num; i++) {
2840                memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2841                if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
2842                                     GFP_KERNEL) != 0) {
2843                        netdev_err(pp->dev,
2844                                   "%s:rxq %d, %d of %d buffs  filled\n",
2845                                   __func__, rxq->id, i, num);
2846                        break;
2847                }
2848        }
2849
2850        /* Add this number of RX descriptors as non occupied (ready to
2851         * get packets)
2852         */
2853        mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2854
2855        return i;
2856}
2857
2858/* Free all packets pending transmit from all TXQs and reset TX port */
2859static void mvneta_tx_reset(struct mvneta_port *pp)
2860{
2861        int queue;
2862
2863        /* free the skb's in the tx ring */
2864        for (queue = 0; queue < txq_number; queue++)
2865                mvneta_txq_done_force(pp, &pp->txqs[queue]);
2866
2867        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2868        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2869}
2870
2871static void mvneta_rx_reset(struct mvneta_port *pp)
2872{
2873        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2874        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2875}
2876
2877/* Rx/Tx queue initialization/cleanup methods */
2878
2879static int mvneta_rxq_sw_init(struct mvneta_port *pp,
2880                              struct mvneta_rx_queue *rxq)
2881{
2882        rxq->size = pp->rx_ring_size;
2883
2884        /* Allocate memory for RX descriptors */
2885        rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2886                                        rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2887                                        &rxq->descs_phys, GFP_KERNEL);
2888        if (!rxq->descs)
2889                return -ENOMEM;
2890
2891        rxq->last_desc = rxq->size - 1;
2892
2893        return 0;
2894}
2895
2896static void mvneta_rxq_hw_init(struct mvneta_port *pp,
2897                               struct mvneta_rx_queue *rxq)
2898{
2899        /* Set Rx descriptors queue starting address */
2900        mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2901        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2902
2903        /* Set coalescing pkts and time */
2904        mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2905        mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2906
2907        if (!pp->bm_priv) {
2908                /* Set Offset */
2909                mvneta_rxq_offset_set(pp, rxq, 0);
2910                mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
2911                                        PAGE_SIZE :
2912                                        MVNETA_RX_BUF_SIZE(pp->pkt_size));
2913                mvneta_rxq_bm_disable(pp, rxq);
2914                mvneta_rxq_fill(pp, rxq, rxq->size);
2915        } else {
2916                /* Set Offset */
2917                mvneta_rxq_offset_set(pp, rxq,
2918                                      NET_SKB_PAD - pp->rx_offset_correction);
2919
2920                mvneta_rxq_bm_enable(pp, rxq);
2921                /* Fill RXQ with buffers from RX pool */
2922                mvneta_rxq_long_pool_set(pp, rxq);
2923                mvneta_rxq_short_pool_set(pp, rxq);
2924                mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2925        }
2926}
2927
2928/* Create a specified RX queue */
2929static int mvneta_rxq_init(struct mvneta_port *pp,
2930                           struct mvneta_rx_queue *rxq)
2931
2932{
2933        int ret;
2934
2935        ret = mvneta_rxq_sw_init(pp, rxq);
2936        if (ret < 0)
2937                return ret;
2938
2939        mvneta_rxq_hw_init(pp, rxq);
2940
2941        return 0;
2942}
2943
2944/* Cleanup Rx queue */
2945static void mvneta_rxq_deinit(struct mvneta_port *pp,
2946                              struct mvneta_rx_queue *rxq)
2947{
2948        mvneta_rxq_drop_pkts(pp, rxq);
2949
2950        if (rxq->skb)
2951                dev_kfree_skb_any(rxq->skb);
2952
2953        if (rxq->descs)
2954                dma_free_coherent(pp->dev->dev.parent,
2955                                  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2956                                  rxq->descs,
2957                                  rxq->descs_phys);
2958
2959        rxq->descs             = NULL;
2960        rxq->last_desc         = 0;
2961        rxq->next_desc_to_proc = 0;
2962        rxq->descs_phys        = 0;
2963        rxq->first_to_refill   = 0;
2964        rxq->refill_num        = 0;
2965        rxq->skb               = NULL;
2966        rxq->left_size         = 0;
2967}
2968
2969static int mvneta_txq_sw_init(struct mvneta_port *pp,
2970                              struct mvneta_tx_queue *txq)
2971{
2972        int cpu;
2973
2974        txq->size = pp->tx_ring_size;
2975
2976        /* A queue must always have room for at least one skb.
2977         * Therefore, stop the queue when the free entries reaches
2978         * the maximum number of descriptors per skb.
2979         */
2980        txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2981        txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2982
2983        /* Allocate memory for TX descriptors */
2984        txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2985                                        txq->size * MVNETA_DESC_ALIGNED_SIZE,
2986                                        &txq->descs_phys, GFP_KERNEL);
2987        if (!txq->descs)
2988                return -ENOMEM;
2989
2990        txq->last_desc = txq->size - 1;
2991
2992        txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2993                                    GFP_KERNEL);
2994        if (!txq->tx_skb) {
2995                dma_free_coherent(pp->dev->dev.parent,
2996                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2997                                  txq->descs, txq->descs_phys);
2998                return -ENOMEM;
2999        }
3000
3001        /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3002        txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3003                                           txq->size * TSO_HEADER_SIZE,
3004                                           &txq->tso_hdrs_phys, GFP_KERNEL);
3005        if (!txq->tso_hdrs) {
3006                kfree(txq->tx_skb);
3007                dma_free_coherent(pp->dev->dev.parent,
3008                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3009                                  txq->descs, txq->descs_phys);
3010                return -ENOMEM;
3011        }
3012
3013        /* Setup XPS mapping */
3014        if (txq_number > 1)
3015                cpu = txq->id % num_present_cpus();
3016        else
3017                cpu = pp->rxq_def % num_present_cpus();
3018        cpumask_set_cpu(cpu, &txq->affinity_mask);
3019        netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3020
3021        return 0;
3022}
3023
3024static void mvneta_txq_hw_init(struct mvneta_port *pp,
3025                               struct mvneta_tx_queue *txq)
3026{
3027        /* Set maximum bandwidth for enabled TXQs */
3028        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3029        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3030
3031        /* Set Tx descriptors queue starting address */
3032        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3033        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3034
3035        mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3036}
3037
3038/* Create and initialize a tx queue */
3039static int mvneta_txq_init(struct mvneta_port *pp,
3040                           struct mvneta_tx_queue *txq)
3041{
3042        int ret;
3043
3044        ret = mvneta_txq_sw_init(pp, txq);
3045        if (ret < 0)
3046                return ret;
3047
3048        mvneta_txq_hw_init(pp, txq);
3049
3050        return 0;
3051}
3052
3053/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3054static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3055                                 struct mvneta_tx_queue *txq)
3056{
3057        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3058
3059        kfree(txq->tx_skb);
3060
3061        if (txq->tso_hdrs)
3062                dma_free_coherent(pp->dev->dev.parent,
3063                                  txq->size * TSO_HEADER_SIZE,
3064                                  txq->tso_hdrs, txq->tso_hdrs_phys);
3065        if (txq->descs)
3066                dma_free_coherent(pp->dev->dev.parent,
3067                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3068                                  txq->descs, txq->descs_phys);
3069
3070        netdev_tx_reset_queue(nq);
3071
3072        txq->descs             = NULL;
3073        txq->last_desc         = 0;
3074        txq->next_desc_to_proc = 0;
3075        txq->descs_phys        = 0;
3076}
3077
3078static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3079                                 struct mvneta_tx_queue *txq)
3080{
3081        /* Set minimum bandwidth for disabled TXQs */
3082        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3083        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3084
3085        /* Set Tx descriptors queue starting address and size */
3086        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3087        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3088}
3089
3090static void mvneta_txq_deinit(struct mvneta_port *pp,
3091                              struct mvneta_tx_queue *txq)
3092{
3093        mvneta_txq_sw_deinit(pp, txq);
3094        mvneta_txq_hw_deinit(pp, txq);
3095}
3096
3097/* Cleanup all Tx queues */
3098static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3099{
3100        int queue;
3101
3102        for (queue = 0; queue < txq_number; queue++)
3103                mvneta_txq_deinit(pp, &pp->txqs[queue]);
3104}
3105
3106/* Cleanup all Rx queues */
3107static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3108{
3109        int queue;
3110
3111        for (queue = 0; queue < rxq_number; queue++)
3112                mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3113}
3114
3115
3116/* Init all Rx queues */
3117static int mvneta_setup_rxqs(struct mvneta_port *pp)
3118{
3119        int queue;
3120
3121        for (queue = 0; queue < rxq_number; queue++) {
3122                int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3123
3124                if (err) {
3125                        netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3126                                   __func__, queue);
3127                        mvneta_cleanup_rxqs(pp);
3128                        return err;
3129                }
3130        }
3131
3132        return 0;
3133}
3134
3135/* Init all tx queues */
3136static int mvneta_setup_txqs(struct mvneta_port *pp)
3137{
3138        int queue;
3139
3140        for (queue = 0; queue < txq_number; queue++) {
3141                int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3142                if (err) {
3143                        netdev_err(pp->dev, "%s: can't create txq=%d\n",
3144                                   __func__, queue);
3145                        mvneta_cleanup_txqs(pp);
3146                        return err;
3147                }
3148        }
3149
3150        return 0;
3151}
3152
3153static int mvneta_comphy_init(struct mvneta_port *pp)
3154{
3155        int ret;
3156
3157        if (!pp->comphy)
3158                return 0;
3159
3160        ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET,
3161                               pp->phy_interface);
3162        if (ret)
3163                return ret;
3164
3165        return phy_power_on(pp->comphy);
3166}
3167
3168static void mvneta_start_dev(struct mvneta_port *pp)
3169{
3170        int cpu;
3171
3172        WARN_ON(mvneta_comphy_init(pp));
3173
3174        mvneta_max_rx_size_set(pp, pp->pkt_size);
3175        mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3176
3177        /* start the Rx/Tx activity */
3178        mvneta_port_enable(pp);
3179
3180        if (!pp->neta_armada3700) {
3181                /* Enable polling on the port */
3182                for_each_online_cpu(cpu) {
3183                        struct mvneta_pcpu_port *port =
3184                                per_cpu_ptr(pp->ports, cpu);
3185
3186                        napi_enable(&port->napi);
3187                }
3188        } else {
3189                napi_enable(&pp->napi);
3190        }
3191
3192        /* Unmask interrupts. It has to be done from each CPU */
3193        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3194
3195        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3196                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3197                    MVNETA_CAUSE_LINK_CHANGE);
3198
3199        phylink_start(pp->phylink);
3200        netif_tx_start_all_queues(pp->dev);
3201}
3202
3203static void mvneta_stop_dev(struct mvneta_port *pp)
3204{
3205        unsigned int cpu;
3206
3207        phylink_stop(pp->phylink);
3208
3209        if (!pp->neta_armada3700) {
3210                for_each_online_cpu(cpu) {
3211                        struct mvneta_pcpu_port *port =
3212                                per_cpu_ptr(pp->ports, cpu);
3213
3214                        napi_disable(&port->napi);
3215                }
3216        } else {
3217                napi_disable(&pp->napi);
3218        }
3219
3220        netif_carrier_off(pp->dev);
3221
3222        mvneta_port_down(pp);
3223        netif_tx_stop_all_queues(pp->dev);
3224
3225        /* Stop the port activity */
3226        mvneta_port_disable(pp);
3227
3228        /* Clear all ethernet port interrupts */
3229        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3230
3231        /* Mask all ethernet port interrupts */
3232        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3233
3234        mvneta_tx_reset(pp);
3235        mvneta_rx_reset(pp);
3236
3237        WARN_ON(phy_power_off(pp->comphy));
3238}
3239
3240static void mvneta_percpu_enable(void *arg)
3241{
3242        struct mvneta_port *pp = arg;
3243
3244        enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3245}
3246
3247static void mvneta_percpu_disable(void *arg)
3248{
3249        struct mvneta_port *pp = arg;
3250
3251        disable_percpu_irq(pp->dev->irq);
3252}
3253
3254/* Change the device mtu */
3255static int mvneta_change_mtu(struct net_device *dev, int mtu)
3256{
3257        struct mvneta_port *pp = netdev_priv(dev);
3258        int ret;
3259
3260        if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3261                netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3262                            mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3263                mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3264        }
3265
3266        dev->mtu = mtu;
3267
3268        if (!netif_running(dev)) {
3269                if (pp->bm_priv)
3270                        mvneta_bm_update_mtu(pp, mtu);
3271
3272                netdev_update_features(dev);
3273                return 0;
3274        }
3275
3276        /* The interface is running, so we have to force a
3277         * reallocation of the queues
3278         */
3279        mvneta_stop_dev(pp);
3280        on_each_cpu(mvneta_percpu_disable, pp, true);
3281
3282        mvneta_cleanup_txqs(pp);
3283        mvneta_cleanup_rxqs(pp);
3284
3285        if (pp->bm_priv)
3286                mvneta_bm_update_mtu(pp, mtu);
3287
3288        pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3289
3290        ret = mvneta_setup_rxqs(pp);
3291        if (ret) {
3292                netdev_err(dev, "unable to setup rxqs after MTU change\n");
3293                return ret;
3294        }
3295
3296        ret = mvneta_setup_txqs(pp);
3297        if (ret) {
3298                netdev_err(dev, "unable to setup txqs after MTU change\n");
3299                return ret;
3300        }
3301
3302        on_each_cpu(mvneta_percpu_enable, pp, true);
3303        mvneta_start_dev(pp);
3304
3305        netdev_update_features(dev);
3306
3307        return 0;
3308}
3309
3310static netdev_features_t mvneta_fix_features(struct net_device *dev,
3311                                             netdev_features_t features)
3312{
3313        struct mvneta_port *pp = netdev_priv(dev);
3314
3315        if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3316                features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3317                netdev_info(dev,
3318                            "Disable IP checksum for MTU greater than %dB\n",
3319                            pp->tx_csum_limit);
3320        }
3321
3322        return features;
3323}
3324
3325/* Get mac address */
3326static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3327{
3328        u32 mac_addr_l, mac_addr_h;
3329
3330        mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3331        mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3332        addr[0] = (mac_addr_h >> 24) & 0xFF;
3333        addr[1] = (mac_addr_h >> 16) & 0xFF;
3334        addr[2] = (mac_addr_h >> 8) & 0xFF;
3335        addr[3] = mac_addr_h & 0xFF;
3336        addr[4] = (mac_addr_l >> 8) & 0xFF;
3337        addr[5] = mac_addr_l & 0xFF;
3338}
3339
3340/* Handle setting mac address */
3341static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3342{
3343        struct mvneta_port *pp = netdev_priv(dev);
3344        struct sockaddr *sockaddr = addr;
3345        int ret;
3346
3347        ret = eth_prepare_mac_addr_change(dev, addr);
3348        if (ret < 0)
3349                return ret;
3350        /* Remove previous address table entry */
3351        mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3352
3353        /* Set new addr in hw */
3354        mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3355
3356        eth_commit_mac_addr_change(dev, addr);
3357        return 0;
3358}
3359
3360static void mvneta_validate(struct phylink_config *config,
3361                            unsigned long *supported,
3362                            struct phylink_link_state *state)
3363{
3364        struct net_device *ndev = to_net_dev(config->dev);
3365        struct mvneta_port *pp = netdev_priv(ndev);
3366        __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3367
3368        /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3369        if (state->interface != PHY_INTERFACE_MODE_NA &&
3370            state->interface != PHY_INTERFACE_MODE_QSGMII &&
3371            state->interface != PHY_INTERFACE_MODE_SGMII &&
3372            !phy_interface_mode_is_8023z(state->interface) &&
3373            !phy_interface_mode_is_rgmii(state->interface)) {
3374                bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3375                return;
3376        }
3377
3378        /* Allow all the expected bits */
3379        phylink_set(mask, Autoneg);
3380        phylink_set_port_modes(mask);
3381
3382        /* Asymmetric pause is unsupported */
3383        phylink_set(mask, Pause);
3384
3385        /* Half-duplex at speeds higher than 100Mbit is unsupported */
3386        if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3387                phylink_set(mask, 1000baseT_Full);
3388                phylink_set(mask, 1000baseX_Full);
3389        }
3390        if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3391                phylink_set(mask, 2500baseT_Full);
3392                phylink_set(mask, 2500baseX_Full);
3393        }
3394
3395        if (!phy_interface_mode_is_8023z(state->interface)) {
3396                /* 10M and 100M are only supported in non-802.3z mode */
3397                phylink_set(mask, 10baseT_Half);
3398                phylink_set(mask, 10baseT_Full);
3399                phylink_set(mask, 100baseT_Half);
3400                phylink_set(mask, 100baseT_Full);
3401        }
3402
3403        bitmap_and(supported, supported, mask,
3404                   __ETHTOOL_LINK_MODE_MASK_NBITS);
3405        bitmap_and(state->advertising, state->advertising, mask,
3406                   __ETHTOOL_LINK_MODE_MASK_NBITS);
3407
3408        /* We can only operate at 2500BaseX or 1000BaseX.  If requested
3409         * to advertise both, only report advertising at 2500BaseX.
3410         */
3411        phylink_helper_basex_speed(state);
3412}
3413
3414static int mvneta_mac_link_state(struct phylink_config *config,
3415                                 struct phylink_link_state *state)
3416{
3417        struct net_device *ndev = to_net_dev(config->dev);
3418        struct mvneta_port *pp = netdev_priv(ndev);
3419        u32 gmac_stat;
3420
3421        gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3422
3423        if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3424                state->speed =
3425                        state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3426                        SPEED_2500 : SPEED_1000;
3427        else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3428                state->speed = SPEED_100;
3429        else
3430                state->speed = SPEED_10;
3431
3432        state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3433        state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3434        state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3435
3436        state->pause = 0;
3437        if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3438                state->pause |= MLO_PAUSE_RX;
3439        if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3440                state->pause |= MLO_PAUSE_TX;
3441
3442        return 1;
3443}
3444
3445static void mvneta_mac_an_restart(struct phylink_config *config)
3446{
3447        struct net_device *ndev = to_net_dev(config->dev);
3448        struct mvneta_port *pp = netdev_priv(ndev);
3449        u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3450
3451        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3452                    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3453        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3454                    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3455}
3456
3457static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3458                              const struct phylink_link_state *state)
3459{
3460        struct net_device *ndev = to_net_dev(config->dev);
3461        struct mvneta_port *pp = netdev_priv(ndev);
3462        u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3463        u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3464        u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3465        u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3466        u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3467
3468        new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3469        new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3470                                   MVNETA_GMAC2_PORT_RESET);
3471        new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3472        new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3473        new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3474                             MVNETA_GMAC_INBAND_RESTART_AN |
3475                             MVNETA_GMAC_CONFIG_MII_SPEED |
3476                             MVNETA_GMAC_CONFIG_GMII_SPEED |
3477                             MVNETA_GMAC_AN_SPEED_EN |
3478                             MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3479                             MVNETA_GMAC_CONFIG_FLOW_CTRL |
3480                             MVNETA_GMAC_AN_FLOW_CTRL_EN |
3481                             MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3482                             MVNETA_GMAC_AN_DUPLEX_EN);
3483
3484        /* Even though it might look weird, when we're configured in
3485         * SGMII or QSGMII mode, the RGMII bit needs to be set.
3486         */
3487        new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3488
3489        if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3490            state->interface == PHY_INTERFACE_MODE_SGMII ||
3491            phy_interface_mode_is_8023z(state->interface))
3492                new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3493
3494        if (phylink_test(state->advertising, Pause))
3495                new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3496        if (state->pause & MLO_PAUSE_TXRX_MASK)
3497                new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3498
3499        if (!phylink_autoneg_inband(mode)) {
3500                /* Phy or fixed speed */
3501                if (state->duplex)
3502                        new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3503
3504                if (state->speed == SPEED_1000 || state->speed == SPEED_2500)
3505                        new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3506                else if (state->speed == SPEED_100)
3507                        new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3508        } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3509                /* SGMII mode receives the state from the PHY */
3510                new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3511                new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3512                new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3513                                     MVNETA_GMAC_FORCE_LINK_PASS)) |
3514                         MVNETA_GMAC_INBAND_AN_ENABLE |
3515                         MVNETA_GMAC_AN_SPEED_EN |
3516                         MVNETA_GMAC_AN_DUPLEX_EN;
3517        } else {
3518                /* 802.3z negotiation - only 1000base-X */
3519                new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3520                new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3521                new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3522                                     MVNETA_GMAC_FORCE_LINK_PASS)) |
3523                         MVNETA_GMAC_INBAND_AN_ENABLE |
3524                         MVNETA_GMAC_CONFIG_GMII_SPEED |
3525                         /* The MAC only supports FD mode */
3526                         MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3527
3528                if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3529                        new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3530        }
3531
3532        /* Armada 370 documentation says we can only change the port mode
3533         * and in-band enable when the link is down, so force it down
3534         * while making these changes. We also do this for GMAC_CTRL2 */
3535        if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3536            (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3537            (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3538                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3539                            (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3540                            MVNETA_GMAC_FORCE_LINK_DOWN);
3541        }
3542
3543
3544        /* When at 2.5G, the link partner can send frames with shortened
3545         * preambles.
3546         */
3547        if (state->speed == SPEED_2500)
3548                new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3549
3550        if (pp->comphy && pp->phy_interface != state->interface &&
3551            (state->interface == PHY_INTERFACE_MODE_SGMII ||
3552             state->interface == PHY_INTERFACE_MODE_1000BASEX ||
3553             state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3554                pp->phy_interface = state->interface;
3555
3556                WARN_ON(phy_power_off(pp->comphy));
3557                WARN_ON(mvneta_comphy_init(pp));
3558        }
3559
3560        if (new_ctrl0 != gmac_ctrl0)
3561                mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3562        if (new_ctrl2 != gmac_ctrl2)
3563                mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3564        if (new_ctrl4 != gmac_ctrl4)
3565                mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3566        if (new_clk != gmac_clk)
3567                mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3568        if (new_an != gmac_an)
3569                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3570
3571        if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3572                while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3573                        MVNETA_GMAC2_PORT_RESET) != 0)
3574                        continue;
3575        }
3576}
3577
3578static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3579{
3580        u32 lpi_ctl1;
3581
3582        lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3583        if (enable)
3584                lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3585        else
3586                lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3587        mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3588}
3589
3590static void mvneta_mac_link_down(struct phylink_config *config,
3591                                 unsigned int mode, phy_interface_t interface)
3592{
3593        struct net_device *ndev = to_net_dev(config->dev);
3594        struct mvneta_port *pp = netdev_priv(ndev);
3595        u32 val;
3596
3597        mvneta_port_down(pp);
3598
3599        if (!phylink_autoneg_inband(mode)) {
3600                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3601                val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3602                val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3603                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3604        }
3605
3606        pp->eee_active = false;
3607        mvneta_set_eee(pp, false);
3608}
3609
3610static void mvneta_mac_link_up(struct phylink_config *config, unsigned int mode,
3611                               phy_interface_t interface,
3612                               struct phy_device *phy)
3613{
3614        struct net_device *ndev = to_net_dev(config->dev);
3615        struct mvneta_port *pp = netdev_priv(ndev);
3616        u32 val;
3617
3618        if (!phylink_autoneg_inband(mode)) {
3619                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3620                val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3621                val |= MVNETA_GMAC_FORCE_LINK_PASS;
3622                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3623        }
3624
3625        mvneta_port_up(pp);
3626
3627        if (phy && pp->eee_enabled) {
3628                pp->eee_active = phy_init_eee(phy, 0) >= 0;
3629                mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3630        }
3631}
3632
3633static const struct phylink_mac_ops mvneta_phylink_ops = {
3634        .validate = mvneta_validate,
3635        .mac_link_state = mvneta_mac_link_state,
3636        .mac_an_restart = mvneta_mac_an_restart,
3637        .mac_config = mvneta_mac_config,
3638        .mac_link_down = mvneta_mac_link_down,
3639        .mac_link_up = mvneta_mac_link_up,
3640};
3641
3642static int mvneta_mdio_probe(struct mvneta_port *pp)
3643{
3644        struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3645        int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3646
3647        if (err)
3648                netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3649
3650        phylink_ethtool_get_wol(pp->phylink, &wol);
3651        device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3652
3653        return err;
3654}
3655
3656static void mvneta_mdio_remove(struct mvneta_port *pp)
3657{
3658        phylink_disconnect_phy(pp->phylink);
3659}
3660
3661/* Electing a CPU must be done in an atomic way: it should be done
3662 * after or before the removal/insertion of a CPU and this function is
3663 * not reentrant.
3664 */
3665static void mvneta_percpu_elect(struct mvneta_port *pp)
3666{
3667        int elected_cpu = 0, max_cpu, cpu, i = 0;
3668
3669        /* Use the cpu associated to the rxq when it is online, in all
3670         * the other cases, use the cpu 0 which can't be offline.
3671         */
3672        if (cpu_online(pp->rxq_def))
3673                elected_cpu = pp->rxq_def;
3674
3675        max_cpu = num_present_cpus();
3676
3677        for_each_online_cpu(cpu) {
3678                int rxq_map = 0, txq_map = 0;
3679                int rxq;
3680
3681                for (rxq = 0; rxq < rxq_number; rxq++)
3682                        if ((rxq % max_cpu) == cpu)
3683                                rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3684
3685                if (cpu == elected_cpu)
3686                        /* Map the default receive queue queue to the
3687                         * elected CPU
3688                         */
3689                        rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3690
3691                /* We update the TX queue map only if we have one
3692                 * queue. In this case we associate the TX queue to
3693                 * the CPU bound to the default RX queue
3694                 */
3695                if (txq_number == 1)
3696                        txq_map = (cpu == elected_cpu) ?
3697                                MVNETA_CPU_TXQ_ACCESS(1) : 0;
3698                else
3699                        txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3700                                MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3701
3702                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3703
3704                /* Update the interrupt mask on each CPU according the
3705                 * new mapping
3706                 */
3707                smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3708                                         pp, true);
3709                i++;
3710
3711        }
3712};
3713
3714static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3715{
3716        int other_cpu;
3717        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3718                                                  node_online);
3719        struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3720
3721
3722        spin_lock(&pp->lock);
3723        /*
3724         * Configuring the driver for a new CPU while the driver is
3725         * stopping is racy, so just avoid it.
3726         */
3727        if (pp->is_stopped) {
3728                spin_unlock(&pp->lock);
3729                return 0;
3730        }
3731        netif_tx_stop_all_queues(pp->dev);
3732
3733        /*
3734         * We have to synchronise on tha napi of each CPU except the one
3735         * just being woken up
3736         */
3737        for_each_online_cpu(other_cpu) {
3738                if (other_cpu != cpu) {
3739                        struct mvneta_pcpu_port *other_port =
3740                                per_cpu_ptr(pp->ports, other_cpu);
3741
3742                        napi_synchronize(&other_port->napi);
3743                }
3744        }
3745
3746        /* Mask all ethernet port interrupts */
3747        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3748        napi_enable(&port->napi);
3749
3750        /*
3751         * Enable per-CPU interrupts on the CPU that is
3752         * brought up.
3753         */
3754        mvneta_percpu_enable(pp);
3755
3756        /*
3757         * Enable per-CPU interrupt on the one CPU we care
3758         * about.
3759         */
3760        mvneta_percpu_elect(pp);
3761
3762        /* Unmask all ethernet port interrupts */
3763        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3764        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3765                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3766                    MVNETA_CAUSE_LINK_CHANGE);
3767        netif_tx_start_all_queues(pp->dev);
3768        spin_unlock(&pp->lock);
3769        return 0;
3770}
3771
3772static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3773{
3774        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3775                                                  node_online);
3776        struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3777
3778        /*
3779         * Thanks to this lock we are sure that any pending cpu election is
3780         * done.
3781         */
3782        spin_lock(&pp->lock);
3783        /* Mask all ethernet port interrupts */
3784        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3785        spin_unlock(&pp->lock);
3786
3787        napi_synchronize(&port->napi);
3788        napi_disable(&port->napi);
3789        /* Disable per-CPU interrupts on the CPU that is brought down. */
3790        mvneta_percpu_disable(pp);
3791        return 0;
3792}
3793
3794static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3795{
3796        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3797                                                  node_dead);
3798
3799        /* Check if a new CPU must be elected now this on is down */
3800        spin_lock(&pp->lock);
3801        mvneta_percpu_elect(pp);
3802        spin_unlock(&pp->lock);
3803        /* Unmask all ethernet port interrupts */
3804        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3805        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3806                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3807                    MVNETA_CAUSE_LINK_CHANGE);
3808        netif_tx_start_all_queues(pp->dev);
3809        return 0;
3810}
3811
3812static int mvneta_open(struct net_device *dev)
3813{
3814        struct mvneta_port *pp = netdev_priv(dev);
3815        int ret;
3816
3817        pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3818
3819        ret = mvneta_setup_rxqs(pp);
3820        if (ret)
3821                return ret;
3822
3823        ret = mvneta_setup_txqs(pp);
3824        if (ret)
3825                goto err_cleanup_rxqs;
3826
3827        /* Connect to port interrupt line */
3828        if (pp->neta_armada3700)
3829                ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3830                                  dev->name, pp);
3831        else
3832                ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3833                                         dev->name, pp->ports);
3834        if (ret) {
3835                netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3836                goto err_cleanup_txqs;
3837        }
3838
3839        if (!pp->neta_armada3700) {
3840                /* Enable per-CPU interrupt on all the CPU to handle our RX
3841                 * queue interrupts
3842                 */
3843                on_each_cpu(mvneta_percpu_enable, pp, true);
3844
3845                pp->is_stopped = false;
3846                /* Register a CPU notifier to handle the case where our CPU
3847                 * might be taken offline.
3848                 */
3849                ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3850                                                       &pp->node_online);
3851                if (ret)
3852                        goto err_free_irq;
3853
3854                ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3855                                                       &pp->node_dead);
3856                if (ret)
3857                        goto err_free_online_hp;
3858        }
3859
3860        ret = mvneta_mdio_probe(pp);
3861        if (ret < 0) {
3862                netdev_err(dev, "cannot probe MDIO bus\n");
3863                goto err_free_dead_hp;
3864        }
3865
3866        mvneta_start_dev(pp);
3867
3868        return 0;
3869
3870err_free_dead_hp:
3871        if (!pp->neta_armada3700)
3872                cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3873                                                    &pp->node_dead);
3874err_free_online_hp:
3875        if (!pp->neta_armada3700)
3876                cpuhp_state_remove_instance_nocalls(online_hpstate,
3877                                                    &pp->node_online);
3878err_free_irq:
3879        if (pp->neta_armada3700) {
3880                free_irq(pp->dev->irq, pp);
3881        } else {
3882                on_each_cpu(mvneta_percpu_disable, pp, true);
3883                free_percpu_irq(pp->dev->irq, pp->ports);
3884        }
3885err_cleanup_txqs:
3886        mvneta_cleanup_txqs(pp);
3887err_cleanup_rxqs:
3888        mvneta_cleanup_rxqs(pp);
3889        return ret;
3890}
3891
3892/* Stop the port, free port interrupt line */
3893static int mvneta_stop(struct net_device *dev)
3894{
3895        struct mvneta_port *pp = netdev_priv(dev);
3896
3897        if (!pp->neta_armada3700) {
3898                /* Inform that we are stopping so we don't want to setup the
3899                 * driver for new CPUs in the notifiers. The code of the
3900                 * notifier for CPU online is protected by the same spinlock,
3901                 * so when we get the lock, the notifer work is done.
3902                 */
3903                spin_lock(&pp->lock);
3904                pp->is_stopped = true;
3905                spin_unlock(&pp->lock);
3906
3907                mvneta_stop_dev(pp);
3908                mvneta_mdio_remove(pp);
3909
3910                cpuhp_state_remove_instance_nocalls(online_hpstate,
3911                                                    &pp->node_online);
3912                cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3913                                                    &pp->node_dead);
3914                on_each_cpu(mvneta_percpu_disable, pp, true);
3915                free_percpu_irq(dev->irq, pp->ports);
3916        } else {
3917                mvneta_stop_dev(pp);
3918                mvneta_mdio_remove(pp);
3919                free_irq(dev->irq, pp);
3920        }
3921
3922        mvneta_cleanup_rxqs(pp);
3923        mvneta_cleanup_txqs(pp);
3924
3925        return 0;
3926}
3927
3928static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3929{
3930        struct mvneta_port *pp = netdev_priv(dev);
3931
3932        return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3933}
3934
3935/* Ethtool methods */
3936
3937/* Set link ksettings (phy address, speed) for ethtools */
3938static int
3939mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3940                                  const struct ethtool_link_ksettings *cmd)
3941{
3942        struct mvneta_port *pp = netdev_priv(ndev);
3943
3944        return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3945}
3946
3947/* Get link ksettings for ethtools */
3948static int
3949mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3950                                  struct ethtool_link_ksettings *cmd)
3951{
3952        struct mvneta_port *pp = netdev_priv(ndev);
3953
3954        return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3955}
3956
3957static int mvneta_ethtool_nway_reset(struct net_device *dev)
3958{
3959        struct mvneta_port *pp = netdev_priv(dev);
3960
3961        return phylink_ethtool_nway_reset(pp->phylink);
3962}
3963
3964/* Set interrupt coalescing for ethtools */
3965static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3966                                       struct ethtool_coalesce *c)
3967{
3968        struct mvneta_port *pp = netdev_priv(dev);
3969        int queue;
3970
3971        for (queue = 0; queue < rxq_number; queue++) {
3972                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3973                rxq->time_coal = c->rx_coalesce_usecs;
3974                rxq->pkts_coal = c->rx_max_coalesced_frames;
3975                mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3976                mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3977        }
3978
3979        for (queue = 0; queue < txq_number; queue++) {
3980                struct mvneta_tx_queue *txq = &pp->txqs[queue];
3981                txq->done_pkts_coal = c->tx_max_coalesced_frames;
3982                mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3983        }
3984
3985        return 0;
3986}
3987
3988/* get coalescing for ethtools */
3989static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3990                                       struct ethtool_coalesce *c)
3991{
3992        struct mvneta_port *pp = netdev_priv(dev);
3993
3994        c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3995        c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3996
3997        c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3998        return 0;
3999}
4000
4001
4002static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4003                                    struct ethtool_drvinfo *drvinfo)
4004{
4005        strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4006                sizeof(drvinfo->driver));
4007        strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4008                sizeof(drvinfo->version));
4009        strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4010                sizeof(drvinfo->bus_info));
4011}
4012
4013
4014static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4015                                         struct ethtool_ringparam *ring)
4016{
4017        struct mvneta_port *pp = netdev_priv(netdev);
4018
4019        ring->rx_max_pending = MVNETA_MAX_RXD;
4020        ring->tx_max_pending = MVNETA_MAX_TXD;
4021        ring->rx_pending = pp->rx_ring_size;
4022        ring->tx_pending = pp->tx_ring_size;
4023}
4024
4025static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4026                                        struct ethtool_ringparam *ring)
4027{
4028        struct mvneta_port *pp = netdev_priv(dev);
4029
4030        if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4031                return -EINVAL;
4032        pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4033                ring->rx_pending : MVNETA_MAX_RXD;
4034
4035        pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4036                                   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4037        if (pp->tx_ring_size != ring->tx_pending)
4038                netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4039                            pp->tx_ring_size, ring->tx_pending);
4040
4041        if (netif_running(dev)) {
4042                mvneta_stop(dev);
4043                if (mvneta_open(dev)) {
4044                        netdev_err(dev,
4045                                   "error on opening device after ring param change\n");
4046                        return -ENOMEM;
4047                }
4048        }
4049
4050        return 0;
4051}
4052
4053static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4054                                          struct ethtool_pauseparam *pause)
4055{
4056        struct mvneta_port *pp = netdev_priv(dev);
4057
4058        phylink_ethtool_get_pauseparam(pp->phylink, pause);
4059}
4060
4061static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4062                                         struct ethtool_pauseparam *pause)
4063{
4064        struct mvneta_port *pp = netdev_priv(dev);
4065
4066        return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4067}
4068
4069static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4070                                       u8 *data)
4071{
4072        if (sset == ETH_SS_STATS) {
4073                int i;
4074
4075                for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4076                        memcpy(data + i * ETH_GSTRING_LEN,
4077                               mvneta_statistics[i].name, ETH_GSTRING_LEN);
4078        }
4079}
4080
4081static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4082{
4083        const struct mvneta_statistic *s;
4084        void __iomem *base = pp->base;
4085        u32 high, low;
4086        u64 val;
4087        int i;
4088
4089        for (i = 0, s = mvneta_statistics;
4090             s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4091             s++, i++) {
4092                val = 0;
4093
4094                switch (s->type) {
4095                case T_REG_32:
4096                        val = readl_relaxed(base + s->offset);
4097                        break;
4098                case T_REG_64:
4099                        /* Docs say to read low 32-bit then high */
4100                        low = readl_relaxed(base + s->offset);
4101                        high = readl_relaxed(base + s->offset + 4);
4102                        val = (u64)high << 32 | low;
4103                        break;
4104                case T_SW:
4105                        switch (s->offset) {
4106                        case ETHTOOL_STAT_EEE_WAKEUP:
4107                                val = phylink_get_eee_err(pp->phylink);
4108                                break;
4109                        case ETHTOOL_STAT_SKB_ALLOC_ERR:
4110                                val = pp->rxqs[0].skb_alloc_err;
4111                                break;
4112                        case ETHTOOL_STAT_REFILL_ERR:
4113                                val = pp->rxqs[0].refill_err;
4114                                break;
4115                        }
4116                        break;
4117                }
4118
4119                pp->ethtool_stats[i] += val;
4120        }
4121}
4122
4123static void mvneta_ethtool_get_stats(struct net_device *dev,
4124                                     struct ethtool_stats *stats, u64 *data)
4125{
4126        struct mvneta_port *pp = netdev_priv(dev);
4127        int i;
4128
4129        mvneta_ethtool_update_stats(pp);
4130
4131        for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4132                *data++ = pp->ethtool_stats[i];
4133}
4134
4135static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4136{
4137        if (sset == ETH_SS_STATS)
4138                return ARRAY_SIZE(mvneta_statistics);
4139        return -EOPNOTSUPP;
4140}
4141
4142static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4143{
4144        return MVNETA_RSS_LU_TABLE_SIZE;
4145}
4146
4147static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4148                                    struct ethtool_rxnfc *info,
4149                                    u32 *rules __always_unused)
4150{
4151        switch (info->cmd) {
4152        case ETHTOOL_GRXRINGS:
4153                info->data =  rxq_number;
4154                return 0;
4155        case ETHTOOL_GRXFH:
4156                return -EOPNOTSUPP;
4157        default:
4158                return -EOPNOTSUPP;
4159        }
4160}
4161
4162static int  mvneta_config_rss(struct mvneta_port *pp)
4163{
4164        int cpu;
4165        u32 val;
4166
4167        netif_tx_stop_all_queues(pp->dev);
4168
4169        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4170
4171        if (!pp->neta_armada3700) {
4172                /* We have to synchronise on the napi of each CPU */
4173                for_each_online_cpu(cpu) {
4174                        struct mvneta_pcpu_port *pcpu_port =
4175                                per_cpu_ptr(pp->ports, cpu);
4176
4177                        napi_synchronize(&pcpu_port->napi);
4178                        napi_disable(&pcpu_port->napi);
4179                }
4180        } else {
4181                napi_synchronize(&pp->napi);
4182                napi_disable(&pp->napi);
4183        }
4184
4185        pp->rxq_def = pp->indir[0];
4186
4187        /* Update unicast mapping */
4188        mvneta_set_rx_mode(pp->dev);
4189
4190        /* Update val of portCfg register accordingly with all RxQueue types */
4191        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4192        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4193
4194        /* Update the elected CPU matching the new rxq_def */
4195        spin_lock(&pp->lock);
4196        mvneta_percpu_elect(pp);
4197        spin_unlock(&pp->lock);
4198
4199        if (!pp->neta_armada3700) {
4200                /* We have to synchronise on the napi of each CPU */
4201                for_each_online_cpu(cpu) {
4202                        struct mvneta_pcpu_port *pcpu_port =
4203                                per_cpu_ptr(pp->ports, cpu);
4204
4205                        napi_enable(&pcpu_port->napi);
4206                }
4207        } else {
4208                napi_enable(&pp->napi);
4209        }
4210
4211        netif_tx_start_all_queues(pp->dev);
4212
4213        return 0;
4214}
4215
4216static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4217                                   const u8 *key, const u8 hfunc)
4218{
4219        struct mvneta_port *pp = netdev_priv(dev);
4220
4221        /* Current code for Armada 3700 doesn't support RSS features yet */
4222        if (pp->neta_armada3700)
4223                return -EOPNOTSUPP;
4224
4225        /* We require at least one supported parameter to be changed
4226         * and no change in any of the unsupported parameters
4227         */
4228        if (key ||
4229            (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4230                return -EOPNOTSUPP;
4231
4232        if (!indir)
4233                return 0;
4234
4235        memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4236
4237        return mvneta_config_rss(pp);
4238}
4239
4240static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4241                                   u8 *hfunc)
4242{
4243        struct mvneta_port *pp = netdev_priv(dev);
4244
4245        /* Current code for Armada 3700 doesn't support RSS features yet */
4246        if (pp->neta_armada3700)
4247                return -EOPNOTSUPP;
4248
4249        if (hfunc)
4250                *hfunc = ETH_RSS_HASH_TOP;
4251
4252        if (!indir)
4253                return 0;
4254
4255        memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4256
4257        return 0;
4258}
4259
4260static void mvneta_ethtool_get_wol(struct net_device *dev,
4261                                   struct ethtool_wolinfo *wol)
4262{
4263        struct mvneta_port *pp = netdev_priv(dev);
4264
4265        phylink_ethtool_get_wol(pp->phylink, wol);
4266}
4267
4268static int mvneta_ethtool_set_wol(struct net_device *dev,
4269                                  struct ethtool_wolinfo *wol)
4270{
4271        struct mvneta_port *pp = netdev_priv(dev);
4272        int ret;
4273
4274        ret = phylink_ethtool_set_wol(pp->phylink, wol);
4275        if (!ret)
4276                device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4277
4278        return ret;
4279}
4280
4281static int mvneta_ethtool_get_eee(struct net_device *dev,
4282                                  struct ethtool_eee *eee)
4283{
4284        struct mvneta_port *pp = netdev_priv(dev);
4285        u32 lpi_ctl0;
4286
4287        lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4288
4289        eee->eee_enabled = pp->eee_enabled;
4290        eee->eee_active = pp->eee_active;
4291        eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4292        eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4293
4294        return phylink_ethtool_get_eee(pp->phylink, eee);
4295}
4296
4297static int mvneta_ethtool_set_eee(struct net_device *dev,
4298                                  struct ethtool_eee *eee)
4299{
4300        struct mvneta_port *pp = netdev_priv(dev);
4301        u32 lpi_ctl0;
4302
4303        /* The Armada 37x documents do not give limits for this other than
4304         * it being an 8-bit register. */
4305        if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4306                return -EINVAL;
4307
4308        lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4309        lpi_ctl0 &= ~(0xff << 8);
4310        lpi_ctl0 |= eee->tx_lpi_timer << 8;
4311        mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4312
4313        pp->eee_enabled = eee->eee_enabled;
4314        pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4315
4316        mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4317
4318        return phylink_ethtool_set_eee(pp->phylink, eee);
4319}
4320
4321static const struct net_device_ops mvneta_netdev_ops = {
4322        .ndo_open            = mvneta_open,
4323        .ndo_stop            = mvneta_stop,
4324        .ndo_start_xmit      = mvneta_tx,
4325        .ndo_set_rx_mode     = mvneta_set_rx_mode,
4326        .ndo_set_mac_address = mvneta_set_mac_addr,
4327        .ndo_change_mtu      = mvneta_change_mtu,
4328        .ndo_fix_features    = mvneta_fix_features,
4329        .ndo_get_stats64     = mvneta_get_stats64,
4330        .ndo_do_ioctl        = mvneta_ioctl,
4331};
4332
4333static const struct ethtool_ops mvneta_eth_tool_ops = {
4334        .nway_reset     = mvneta_ethtool_nway_reset,
4335        .get_link       = ethtool_op_get_link,
4336        .set_coalesce   = mvneta_ethtool_set_coalesce,
4337        .get_coalesce   = mvneta_ethtool_get_coalesce,
4338        .get_drvinfo    = mvneta_ethtool_get_drvinfo,
4339        .get_ringparam  = mvneta_ethtool_get_ringparam,
4340        .set_ringparam  = mvneta_ethtool_set_ringparam,
4341        .get_pauseparam = mvneta_ethtool_get_pauseparam,
4342        .set_pauseparam = mvneta_ethtool_set_pauseparam,
4343        .get_strings    = mvneta_ethtool_get_strings,
4344        .get_ethtool_stats = mvneta_ethtool_get_stats,
4345        .get_sset_count = mvneta_ethtool_get_sset_count,
4346        .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4347        .get_rxnfc      = mvneta_ethtool_get_rxnfc,
4348        .get_rxfh       = mvneta_ethtool_get_rxfh,
4349        .set_rxfh       = mvneta_ethtool_set_rxfh,
4350        .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4351        .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4352        .get_wol        = mvneta_ethtool_get_wol,
4353        .set_wol        = mvneta_ethtool_set_wol,
4354        .get_eee        = mvneta_ethtool_get_eee,
4355        .set_eee        = mvneta_ethtool_set_eee,
4356};
4357
4358/* Initialize hw */
4359static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4360{
4361        int queue;
4362
4363        /* Disable port */
4364        mvneta_port_disable(pp);
4365
4366        /* Set port default values */
4367        mvneta_defaults_set(pp);
4368
4369        pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4370        if (!pp->txqs)
4371                return -ENOMEM;
4372
4373        /* Initialize TX descriptor rings */
4374        for (queue = 0; queue < txq_number; queue++) {
4375                struct mvneta_tx_queue *txq = &pp->txqs[queue];
4376                txq->id = queue;
4377                txq->size = pp->tx_ring_size;
4378                txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4379        }
4380
4381        pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4382        if (!pp->rxqs)
4383                return -ENOMEM;
4384
4385        /* Create Rx descriptor rings */
4386        for (queue = 0; queue < rxq_number; queue++) {
4387                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4388                rxq->id = queue;
4389                rxq->size = pp->rx_ring_size;
4390                rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4391                rxq->time_coal = MVNETA_RX_COAL_USEC;
4392                rxq->buf_virt_addr
4393                        = devm_kmalloc_array(pp->dev->dev.parent,
4394                                             rxq->size,
4395                                             sizeof(*rxq->buf_virt_addr),
4396                                             GFP_KERNEL);
4397                if (!rxq->buf_virt_addr)
4398                        return -ENOMEM;
4399        }
4400
4401        return 0;
4402}
4403
4404/* platform glue : initialize decoding windows */
4405static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4406                                     const struct mbus_dram_target_info *dram)
4407{
4408        u32 win_enable;
4409        u32 win_protect;
4410        int i;
4411
4412        for (i = 0; i < 6; i++) {
4413                mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4414                mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4415
4416                if (i < 4)
4417                        mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4418        }
4419
4420        win_enable = 0x3f;
4421        win_protect = 0;
4422
4423        if (dram) {
4424                for (i = 0; i < dram->num_cs; i++) {
4425                        const struct mbus_dram_window *cs = dram->cs + i;
4426
4427                        mvreg_write(pp, MVNETA_WIN_BASE(i),
4428                                    (cs->base & 0xffff0000) |
4429                                    (cs->mbus_attr << 8) |
4430                                    dram->mbus_dram_target_id);
4431
4432                        mvreg_write(pp, MVNETA_WIN_SIZE(i),
4433                                    (cs->size - 1) & 0xffff0000);
4434
4435                        win_enable &= ~(1 << i);
4436                        win_protect |= 3 << (2 * i);
4437                }
4438        } else {
4439                /* For Armada3700 open default 4GB Mbus window, leaving
4440                 * arbitration of target/attribute to a different layer
4441                 * of configuration.
4442                 */
4443                mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4444                win_enable &= ~BIT(0);
4445                win_protect = 3;
4446        }
4447
4448        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4449        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4450}
4451
4452/* Power up the port */
4453static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4454{
4455        /* MAC Cause register should be cleared */
4456        mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4457
4458        if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4459                mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4460        else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4461                 phy_interface_mode_is_8023z(phy_mode))
4462                mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4463        else if (!phy_interface_mode_is_rgmii(phy_mode))
4464                return -EINVAL;
4465
4466        return 0;
4467}
4468
4469/* Device initialization routine */
4470static int mvneta_probe(struct platform_device *pdev)
4471{
4472        struct resource *res;
4473        struct device_node *dn = pdev->dev.of_node;
4474        struct device_node *bm_node;
4475        struct mvneta_port *pp;
4476        struct net_device *dev;
4477        struct phylink *phylink;
4478        struct phy *comphy;
4479        const char *dt_mac_addr;
4480        char hw_mac_addr[ETH_ALEN];
4481        const char *mac_from;
4482        int tx_csum_limit;
4483        int phy_mode;
4484        int err;
4485        int cpu;
4486
4487        dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
4488                                      txq_number, rxq_number);
4489        if (!dev)
4490                return -ENOMEM;
4491
4492        dev->irq = irq_of_parse_and_map(dn, 0);
4493        if (dev->irq == 0)
4494                return -EINVAL;
4495
4496        phy_mode = of_get_phy_mode(dn);
4497        if (phy_mode < 0) {
4498                dev_err(&pdev->dev, "incorrect phy-mode\n");
4499                err = -EINVAL;
4500                goto err_free_irq;
4501        }
4502
4503        comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
4504        if (comphy == ERR_PTR(-EPROBE_DEFER)) {
4505                err = -EPROBE_DEFER;
4506                goto err_free_irq;
4507        } else if (IS_ERR(comphy)) {
4508                comphy = NULL;
4509        }
4510
4511        pp = netdev_priv(dev);
4512        spin_lock_init(&pp->lock);
4513
4514        pp->phylink_config.dev = &dev->dev;
4515        pp->phylink_config.type = PHYLINK_NETDEV;
4516
4517        phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
4518                                 phy_mode, &mvneta_phylink_ops);
4519        if (IS_ERR(phylink)) {
4520                err = PTR_ERR(phylink);
4521                goto err_free_irq;
4522        }
4523
4524        dev->tx_queue_len = MVNETA_MAX_TXD;
4525        dev->watchdog_timeo = 5 * HZ;
4526        dev->netdev_ops = &mvneta_netdev_ops;
4527
4528        dev->ethtool_ops = &mvneta_eth_tool_ops;
4529
4530        pp->phylink = phylink;
4531        pp->comphy = comphy;
4532        pp->phy_interface = phy_mode;
4533        pp->dn = dn;
4534
4535        pp->rxq_def = rxq_def;
4536        pp->indir[0] = rxq_def;
4537
4538        /* Get special SoC configurations */
4539        if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4540                pp->neta_armada3700 = true;
4541
4542        pp->clk = devm_clk_get(&pdev->dev, "core");
4543        if (IS_ERR(pp->clk))
4544                pp->clk = devm_clk_get(&pdev->dev, NULL);
4545        if (IS_ERR(pp->clk)) {
4546                err = PTR_ERR(pp->clk);
4547                goto err_free_phylink;
4548        }
4549
4550        clk_prepare_enable(pp->clk);
4551
4552        pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4553        if (!IS_ERR(pp->clk_bus))
4554                clk_prepare_enable(pp->clk_bus);
4555
4556        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4557        pp->base = devm_ioremap_resource(&pdev->dev, res);
4558        if (IS_ERR(pp->base)) {
4559                err = PTR_ERR(pp->base);
4560                goto err_clk;
4561        }
4562
4563        /* Alloc per-cpu port structure */
4564        pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4565        if (!pp->ports) {
4566                err = -ENOMEM;
4567                goto err_clk;
4568        }
4569
4570        /* Alloc per-cpu stats */
4571        pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4572        if (!pp->stats) {
4573                err = -ENOMEM;
4574                goto err_free_ports;
4575        }
4576
4577        dt_mac_addr = of_get_mac_address(dn);
4578        if (!IS_ERR(dt_mac_addr)) {
4579                mac_from = "device tree";
4580                ether_addr_copy(dev->dev_addr, dt_mac_addr);
4581        } else {
4582                mvneta_get_mac_addr(pp, hw_mac_addr);
4583                if (is_valid_ether_addr(hw_mac_addr)) {
4584                        mac_from = "hardware";
4585                        memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4586                } else {
4587                        mac_from = "random";
4588                        eth_hw_addr_random(dev);
4589                }
4590        }
4591
4592        if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4593                if (tx_csum_limit < 0 ||
4594                    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4595                        tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4596                        dev_info(&pdev->dev,
4597                                 "Wrong TX csum limit in DT, set to %dB\n",
4598                                 MVNETA_TX_CSUM_DEF_SIZE);
4599                }
4600        } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4601                tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4602        } else {
4603                tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4604        }
4605
4606        pp->tx_csum_limit = tx_csum_limit;
4607
4608        pp->dram_target_info = mv_mbus_dram_info();
4609        /* Armada3700 requires setting default configuration of Mbus
4610         * windows, however without using filled mbus_dram_target_info
4611         * structure.
4612         */
4613        if (pp->dram_target_info || pp->neta_armada3700)
4614                mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4615
4616        pp->tx_ring_size = MVNETA_MAX_TXD;
4617        pp->rx_ring_size = MVNETA_MAX_RXD;
4618
4619        pp->dev = dev;
4620        SET_NETDEV_DEV(dev, &pdev->dev);
4621
4622        pp->id = global_port_id++;
4623        pp->rx_offset_correction = 0; /* not relevant for SW BM */
4624
4625        /* Obtain access to BM resources if enabled and already initialized */
4626        bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4627        if (bm_node) {
4628                pp->bm_priv = mvneta_bm_get(bm_node);
4629                if (pp->bm_priv) {
4630                        err = mvneta_bm_port_init(pdev, pp);
4631                        if (err < 0) {
4632                                dev_info(&pdev->dev,
4633                                         "use SW buffer management\n");
4634                                mvneta_bm_put(pp->bm_priv);
4635                                pp->bm_priv = NULL;
4636                        }
4637                }
4638                /* Set RX packet offset correction for platforms, whose
4639                 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4640                 * platforms and 0B for 32-bit ones.
4641                 */
4642                pp->rx_offset_correction = max(0,
4643                                               NET_SKB_PAD -
4644                                               MVNETA_RX_PKT_OFFSET_CORRECTION);
4645        }
4646        of_node_put(bm_node);
4647
4648        err = mvneta_init(&pdev->dev, pp);
4649        if (err < 0)
4650                goto err_netdev;
4651
4652        err = mvneta_port_power_up(pp, phy_mode);
4653        if (err < 0) {
4654                dev_err(&pdev->dev, "can't power up port\n");
4655                goto err_netdev;
4656        }
4657
4658        /* Armada3700 network controller does not support per-cpu
4659         * operation, so only single NAPI should be initialized.
4660         */
4661        if (pp->neta_armada3700) {
4662                netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4663        } else {
4664                for_each_present_cpu(cpu) {
4665                        struct mvneta_pcpu_port *port =
4666                                per_cpu_ptr(pp->ports, cpu);
4667
4668                        netif_napi_add(dev, &port->napi, mvneta_poll,
4669                                       NAPI_POLL_WEIGHT);
4670                        port->pp = pp;
4671                }
4672        }
4673
4674        dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4675                        NETIF_F_TSO | NETIF_F_RXCSUM;
4676        dev->hw_features |= dev->features;
4677        dev->vlan_features |= dev->features;
4678        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4679        dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4680
4681        /* MTU range: 68 - 9676 */
4682        dev->min_mtu = ETH_MIN_MTU;
4683        /* 9676 == 9700 - 20 and rounding to 8 */
4684        dev->max_mtu = 9676;
4685
4686        err = register_netdev(dev);
4687        if (err < 0) {
4688                dev_err(&pdev->dev, "failed to register\n");
4689                goto err_netdev;
4690        }
4691
4692        netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4693                    dev->dev_addr);
4694
4695        platform_set_drvdata(pdev, pp->dev);
4696
4697        return 0;
4698
4699err_netdev:
4700        if (pp->bm_priv) {
4701                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4702                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4703                                       1 << pp->id);
4704                mvneta_bm_put(pp->bm_priv);
4705        }
4706        free_percpu(pp->stats);
4707err_free_ports:
4708        free_percpu(pp->ports);
4709err_clk:
4710        clk_disable_unprepare(pp->clk_bus);
4711        clk_disable_unprepare(pp->clk);
4712err_free_phylink:
4713        if (pp->phylink)
4714                phylink_destroy(pp->phylink);
4715err_free_irq:
4716        irq_dispose_mapping(dev->irq);
4717        return err;
4718}
4719
4720/* Device removal routine */
4721static int mvneta_remove(struct platform_device *pdev)
4722{
4723        struct net_device  *dev = platform_get_drvdata(pdev);
4724        struct mvneta_port *pp = netdev_priv(dev);
4725
4726        unregister_netdev(dev);
4727        clk_disable_unprepare(pp->clk_bus);
4728        clk_disable_unprepare(pp->clk);
4729        free_percpu(pp->ports);
4730        free_percpu(pp->stats);
4731        irq_dispose_mapping(dev->irq);
4732        phylink_destroy(pp->phylink);
4733
4734        if (pp->bm_priv) {
4735                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4736                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4737                                       1 << pp->id);
4738                mvneta_bm_put(pp->bm_priv);
4739        }
4740
4741        return 0;
4742}
4743
4744#ifdef CONFIG_PM_SLEEP
4745static int mvneta_suspend(struct device *device)
4746{
4747        int queue;
4748        struct net_device *dev = dev_get_drvdata(device);
4749        struct mvneta_port *pp = netdev_priv(dev);
4750
4751        if (!netif_running(dev))
4752                goto clean_exit;
4753
4754        if (!pp->neta_armada3700) {
4755                spin_lock(&pp->lock);
4756                pp->is_stopped = true;
4757                spin_unlock(&pp->lock);
4758
4759                cpuhp_state_remove_instance_nocalls(online_hpstate,
4760                                                    &pp->node_online);
4761                cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4762                                                    &pp->node_dead);
4763        }
4764
4765        rtnl_lock();
4766        mvneta_stop_dev(pp);
4767        rtnl_unlock();
4768
4769        for (queue = 0; queue < rxq_number; queue++) {
4770                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4771
4772                mvneta_rxq_drop_pkts(pp, rxq);
4773        }
4774
4775        for (queue = 0; queue < txq_number; queue++) {
4776                struct mvneta_tx_queue *txq = &pp->txqs[queue];
4777
4778                mvneta_txq_hw_deinit(pp, txq);
4779        }
4780
4781clean_exit:
4782        netif_device_detach(dev);
4783        clk_disable_unprepare(pp->clk_bus);
4784        clk_disable_unprepare(pp->clk);
4785
4786        return 0;
4787}
4788
4789static int mvneta_resume(struct device *device)
4790{
4791        struct platform_device *pdev = to_platform_device(device);
4792        struct net_device *dev = dev_get_drvdata(device);
4793        struct mvneta_port *pp = netdev_priv(dev);
4794        int err, queue;
4795
4796        clk_prepare_enable(pp->clk);
4797        if (!IS_ERR(pp->clk_bus))
4798                clk_prepare_enable(pp->clk_bus);
4799        if (pp->dram_target_info || pp->neta_armada3700)
4800                mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4801        if (pp->bm_priv) {
4802                err = mvneta_bm_port_init(pdev, pp);
4803                if (err < 0) {
4804                        dev_info(&pdev->dev, "use SW buffer management\n");
4805                        pp->bm_priv = NULL;
4806                }
4807        }
4808        mvneta_defaults_set(pp);
4809        err = mvneta_port_power_up(pp, pp->phy_interface);
4810        if (err < 0) {
4811                dev_err(device, "can't power up port\n");
4812                return err;
4813        }
4814
4815        netif_device_attach(dev);
4816
4817        if (!netif_running(dev))
4818                return 0;
4819
4820        for (queue = 0; queue < rxq_number; queue++) {
4821                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4822
4823                rxq->next_desc_to_proc = 0;
4824                mvneta_rxq_hw_init(pp, rxq);
4825        }
4826
4827        for (queue = 0; queue < txq_number; queue++) {
4828                struct mvneta_tx_queue *txq = &pp->txqs[queue];
4829
4830                txq->next_desc_to_proc = 0;
4831                mvneta_txq_hw_init(pp, txq);
4832        }
4833
4834        if (!pp->neta_armada3700) {
4835                spin_lock(&pp->lock);
4836                pp->is_stopped = false;
4837                spin_unlock(&pp->lock);
4838                cpuhp_state_add_instance_nocalls(online_hpstate,
4839                                                 &pp->node_online);
4840                cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4841                                                 &pp->node_dead);
4842        }
4843
4844        rtnl_lock();
4845        mvneta_start_dev(pp);
4846        rtnl_unlock();
4847        mvneta_set_rx_mode(dev);
4848
4849        return 0;
4850}
4851#endif
4852
4853static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4854
4855static const struct of_device_id mvneta_match[] = {
4856        { .compatible = "marvell,armada-370-neta" },
4857        { .compatible = "marvell,armada-xp-neta" },
4858        { .compatible = "marvell,armada-3700-neta" },
4859        { }
4860};
4861MODULE_DEVICE_TABLE(of, mvneta_match);
4862
4863static struct platform_driver mvneta_driver = {
4864        .probe = mvneta_probe,
4865        .remove = mvneta_remove,
4866        .driver = {
4867                .name = MVNETA_DRIVER_NAME,
4868                .of_match_table = mvneta_match,
4869                .pm = &mvneta_pm_ops,
4870        },
4871};
4872
4873static int __init mvneta_driver_init(void)
4874{
4875        int ret;
4876
4877        ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4878                                      mvneta_cpu_online,
4879                                      mvneta_cpu_down_prepare);
4880        if (ret < 0)
4881                goto out;
4882        online_hpstate = ret;
4883        ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4884                                      NULL, mvneta_cpu_dead);
4885        if (ret)
4886                goto err_dead;
4887
4888        ret = platform_driver_register(&mvneta_driver);
4889        if (ret)
4890                goto err;
4891        return 0;
4892
4893err:
4894        cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4895err_dead:
4896        cpuhp_remove_multi_state(online_hpstate);
4897out:
4898        return ret;
4899}
4900module_init(mvneta_driver_init);
4901
4902static void __exit mvneta_driver_exit(void)
4903{
4904        platform_driver_unregister(&mvneta_driver);
4905        cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4906        cpuhp_remove_multi_state(online_hpstate);
4907}
4908module_exit(mvneta_driver_exit);
4909
4910MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4911MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4912MODULE_LICENSE("GPL");
4913
4914module_param(rxq_number, int, 0444);
4915module_param(txq_number, int, 0444);
4916
4917module_param(rxq_def, int, 0444);
4918module_param(rx_copybreak, int, 0644);
4919