linux/drivers/net/ethernet/micrel/ks8851_mll.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/**
   3 * drivers/net/ethernet/micrel/ks8851_mll.c
   4 * Copyright (c) 2009 Micrel Inc.
   5 */
   6
   7/* Supports:
   8 * KS8851 16bit MLL chip from Micrel Inc.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/interrupt.h>
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/cache.h>
  20#include <linux/crc32.h>
  21#include <linux/crc32poly.h>
  22#include <linux/mii.h>
  23#include <linux/platform_device.h>
  24#include <linux/delay.h>
  25#include <linux/slab.h>
  26#include <linux/ks8851_mll.h>
  27#include <linux/of.h>
  28#include <linux/of_device.h>
  29#include <linux/of_net.h>
  30
  31#include "ks8851.h"
  32
  33#define DRV_NAME        "ks8851_mll"
  34
  35static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
  36#define MAX_RECV_FRAMES                 255
  37#define MAX_BUF_SIZE                    2048
  38#define TX_BUF_SIZE                     2000
  39#define RX_BUF_SIZE                     2000
  40
  41#define RXCR1_FILTER_MASK               (RXCR1_RXINVF | RXCR1_RXAE | \
  42                                         RXCR1_RXMAFMA | RXCR1_RXPAFMA)
  43#define RXQCR_CMD_CNTL                  (RXQCR_RXFCTE|RXQCR_ADRFE)
  44
  45#define ENUM_BUS_NONE                   0
  46#define ENUM_BUS_8BIT                   1
  47#define ENUM_BUS_16BIT                  2
  48#define ENUM_BUS_32BIT                  3
  49
  50#define MAX_MCAST_LST                   32
  51#define HW_MCAST_SIZE                   8
  52
  53/**
  54 * union ks_tx_hdr - tx header data
  55 * @txb: The header as bytes
  56 * @txw: The header as 16bit, little-endian words
  57 *
  58 * A dual representation of the tx header data to allow
  59 * access to individual bytes, and to allow 16bit accesses
  60 * with 16bit alignment.
  61 */
  62union ks_tx_hdr {
  63        u8      txb[4];
  64        __le16  txw[2];
  65};
  66
  67/**
  68 * struct ks_net - KS8851 driver private data
  69 * @net_device  : The network device we're bound to
  70 * @hw_addr     : start address of data register.
  71 * @hw_addr_cmd : start address of command register.
  72 * @txh         : temporaly buffer to save status/length.
  73 * @lock        : Lock to ensure that the device is not accessed when busy.
  74 * @pdev        : Pointer to platform device.
  75 * @mii         : The MII state information for the mii calls.
  76 * @frame_head_info     : frame header information for multi-pkt rx.
  77 * @statelock   : Lock on this structure for tx list.
  78 * @msg_enable  : The message flags controlling driver output (see ethtool).
  79 * @frame_cnt   : number of frames received.
  80 * @bus_width   : i/o bus width.
  81 * @rc_rxqcr    : Cached copy of KS_RXQCR.
  82 * @rc_txcr     : Cached copy of KS_TXCR.
  83 * @rc_ier      : Cached copy of KS_IER.
  84 * @sharedbus   : Multipex(addr and data bus) mode indicator.
  85 * @cmd_reg_cache       : command register cached.
  86 * @cmd_reg_cache_int   : command register cached. Used in the irq handler.
  87 * @promiscuous : promiscuous mode indicator.
  88 * @all_mcast   : mutlicast indicator.
  89 * @mcast_lst_size      : size of multicast list.
  90 * @mcast_lst           : multicast list.
  91 * @mcast_bits          : multicast enabed.
  92 * @mac_addr            : MAC address assigned to this device.
  93 * @fid                 : frame id.
  94 * @extra_byte          : number of extra byte prepended rx pkt.
  95 * @enabled             : indicator this device works.
  96 *
  97 * The @lock ensures that the chip is protected when certain operations are
  98 * in progress. When the read or write packet transfer is in progress, most
  99 * of the chip registers are not accessible until the transfer is finished and
 100 * the DMA has been de-asserted.
 101 *
 102 * The @statelock is used to protect information in the structure which may
 103 * need to be accessed via several sources, such as the network driver layer
 104 * or one of the work queues.
 105 *
 106 */
 107
 108/* Receive multiplex framer header info */
 109struct type_frame_head {
 110        u16     sts;         /* Frame status */
 111        u16     len;         /* Byte count */
 112};
 113
 114struct ks_net {
 115        struct net_device       *netdev;
 116        void __iomem            *hw_addr;
 117        void __iomem            *hw_addr_cmd;
 118        union ks_tx_hdr         txh ____cacheline_aligned;
 119        struct mutex            lock; /* spinlock to be interrupt safe */
 120        struct platform_device *pdev;
 121        struct mii_if_info      mii;
 122        struct type_frame_head  *frame_head_info;
 123        spinlock_t              statelock;
 124        u32                     msg_enable;
 125        u32                     frame_cnt;
 126        int                     bus_width;
 127
 128        u16                     rc_rxqcr;
 129        u16                     rc_txcr;
 130        u16                     rc_ier;
 131        u16                     sharedbus;
 132        u16                     cmd_reg_cache;
 133        u16                     cmd_reg_cache_int;
 134        u16                     promiscuous;
 135        u16                     all_mcast;
 136        u16                     mcast_lst_size;
 137        u8                      mcast_lst[MAX_MCAST_LST][ETH_ALEN];
 138        u8                      mcast_bits[HW_MCAST_SIZE];
 139        u8                      mac_addr[6];
 140        u8                      fid;
 141        u8                      extra_byte;
 142        u8                      enabled;
 143};
 144
 145static int msg_enable;
 146
 147#define BE3             0x8000      /* Byte Enable 3 */
 148#define BE2             0x4000      /* Byte Enable 2 */
 149#define BE1             0x2000      /* Byte Enable 1 */
 150#define BE0             0x1000      /* Byte Enable 0 */
 151
 152/* register read/write calls.
 153 *
 154 * All these calls issue transactions to access the chip's registers. They
 155 * all require that the necessary lock is held to prevent accesses when the
 156 * chip is busy transferring packet data (RX/TX FIFO accesses).
 157 */
 158
 159/**
 160 * ks_rdreg8 - read 8 bit register from device
 161 * @ks    : The chip information
 162 * @offset: The register address
 163 *
 164 * Read a 8bit register from the chip, returning the result
 165 */
 166static u8 ks_rdreg8(struct ks_net *ks, int offset)
 167{
 168        u16 data;
 169        u8 shift_bit = offset & 0x03;
 170        u8 shift_data = (offset & 1) << 3;
 171        ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
 172        iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 173        data  = ioread16(ks->hw_addr);
 174        return (u8)(data >> shift_data);
 175}
 176
 177/**
 178 * ks_rdreg16 - read 16 bit register from device
 179 * @ks    : The chip information
 180 * @offset: The register address
 181 *
 182 * Read a 16bit register from the chip, returning the result
 183 */
 184
 185static u16 ks_rdreg16(struct ks_net *ks, int offset)
 186{
 187        ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
 188        iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 189        return ioread16(ks->hw_addr);
 190}
 191
 192/**
 193 * ks_wrreg8 - write 8bit register value to chip
 194 * @ks: The chip information
 195 * @offset: The register address
 196 * @value: The value to write
 197 *
 198 */
 199static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
 200{
 201        u8  shift_bit = (offset & 0x03);
 202        u16 value_write = (u16)(value << ((offset & 1) << 3));
 203        ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
 204        iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 205        iowrite16(value_write, ks->hw_addr);
 206}
 207
 208/**
 209 * ks_wrreg16 - write 16bit register value to chip
 210 * @ks: The chip information
 211 * @offset: The register address
 212 * @value: The value to write
 213 *
 214 */
 215
 216static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
 217{
 218        ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
 219        iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 220        iowrite16(value, ks->hw_addr);
 221}
 222
 223/**
 224 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
 225 * @ks: The chip state
 226 * @wptr: buffer address to save data
 227 * @len: length in byte to read
 228 *
 229 */
 230static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
 231{
 232        len >>= 1;
 233        while (len--)
 234                *wptr++ = (u16)ioread16(ks->hw_addr);
 235}
 236
 237/**
 238 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
 239 * @ks: The chip information
 240 * @wptr: buffer address
 241 * @len: length in byte to write
 242 *
 243 */
 244static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
 245{
 246        len >>= 1;
 247        while (len--)
 248                iowrite16(*wptr++, ks->hw_addr);
 249}
 250
 251static void ks_disable_int(struct ks_net *ks)
 252{
 253        ks_wrreg16(ks, KS_IER, 0x0000);
 254}  /* ks_disable_int */
 255
 256static void ks_enable_int(struct ks_net *ks)
 257{
 258        ks_wrreg16(ks, KS_IER, ks->rc_ier);
 259}  /* ks_enable_int */
 260
 261/**
 262 * ks_tx_fifo_space - return the available hardware buffer size.
 263 * @ks: The chip information
 264 *
 265 */
 266static inline u16 ks_tx_fifo_space(struct ks_net *ks)
 267{
 268        return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
 269}
 270
 271/**
 272 * ks_save_cmd_reg - save the command register from the cache.
 273 * @ks: The chip information
 274 *
 275 */
 276static inline void ks_save_cmd_reg(struct ks_net *ks)
 277{
 278        /*ks8851 MLL has a bug to read back the command register.
 279        * So rely on software to save the content of command register.
 280        */
 281        ks->cmd_reg_cache_int = ks->cmd_reg_cache;
 282}
 283
 284/**
 285 * ks_restore_cmd_reg - restore the command register from the cache and
 286 *      write to hardware register.
 287 * @ks: The chip information
 288 *
 289 */
 290static inline void ks_restore_cmd_reg(struct ks_net *ks)
 291{
 292        ks->cmd_reg_cache = ks->cmd_reg_cache_int;
 293        iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 294}
 295
 296/**
 297 * ks_set_powermode - set power mode of the device
 298 * @ks: The chip information
 299 * @pwrmode: The power mode value to write to KS_PMECR.
 300 *
 301 * Change the power mode of the chip.
 302 */
 303static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
 304{
 305        unsigned pmecr;
 306
 307        netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 308
 309        ks_rdreg16(ks, KS_GRR);
 310        pmecr = ks_rdreg16(ks, KS_PMECR);
 311        pmecr &= ~PMECR_PM_MASK;
 312        pmecr |= pwrmode;
 313
 314        ks_wrreg16(ks, KS_PMECR, pmecr);
 315}
 316
 317/**
 318 * ks_read_config - read chip configuration of bus width.
 319 * @ks: The chip information
 320 *
 321 */
 322static void ks_read_config(struct ks_net *ks)
 323{
 324        u16 reg_data = 0;
 325
 326        /* Regardless of bus width, 8 bit read should always work.*/
 327        reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
 328        reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
 329
 330        /* addr/data bus are multiplexed */
 331        ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
 332
 333        /* There are garbage data when reading data from QMU,
 334        depending on bus-width.
 335        */
 336
 337        if (reg_data & CCR_8BIT) {
 338                ks->bus_width = ENUM_BUS_8BIT;
 339                ks->extra_byte = 1;
 340        } else if (reg_data & CCR_16BIT) {
 341                ks->bus_width = ENUM_BUS_16BIT;
 342                ks->extra_byte = 2;
 343        } else {
 344                ks->bus_width = ENUM_BUS_32BIT;
 345                ks->extra_byte = 4;
 346        }
 347}
 348
 349/**
 350 * ks_soft_reset - issue one of the soft reset to the device
 351 * @ks: The device state.
 352 * @op: The bit(s) to set in the GRR
 353 *
 354 * Issue the relevant soft-reset command to the device's GRR register
 355 * specified by @op.
 356 *
 357 * Note, the delays are in there as a caution to ensure that the reset
 358 * has time to take effect and then complete. Since the datasheet does
 359 * not currently specify the exact sequence, we have chosen something
 360 * that seems to work with our device.
 361 */
 362static void ks_soft_reset(struct ks_net *ks, unsigned op)
 363{
 364        /* Disable interrupt first */
 365        ks_wrreg16(ks, KS_IER, 0x0000);
 366        ks_wrreg16(ks, KS_GRR, op);
 367        mdelay(10);     /* wait a short time to effect reset */
 368        ks_wrreg16(ks, KS_GRR, 0);
 369        mdelay(1);      /* wait for condition to clear */
 370}
 371
 372
 373static void ks_enable_qmu(struct ks_net *ks)
 374{
 375        u16 w;
 376
 377        w = ks_rdreg16(ks, KS_TXCR);
 378        /* Enables QMU Transmit (TXCR). */
 379        ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
 380
 381        /*
 382         * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
 383         * Enable
 384         */
 385
 386        w = ks_rdreg16(ks, KS_RXQCR);
 387        ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
 388
 389        /* Enables QMU Receive (RXCR1). */
 390        w = ks_rdreg16(ks, KS_RXCR1);
 391        ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
 392        ks->enabled = true;
 393}  /* ks_enable_qmu */
 394
 395static void ks_disable_qmu(struct ks_net *ks)
 396{
 397        u16     w;
 398
 399        w = ks_rdreg16(ks, KS_TXCR);
 400
 401        /* Disables QMU Transmit (TXCR). */
 402        w  &= ~TXCR_TXE;
 403        ks_wrreg16(ks, KS_TXCR, w);
 404
 405        /* Disables QMU Receive (RXCR1). */
 406        w = ks_rdreg16(ks, KS_RXCR1);
 407        w &= ~RXCR1_RXE ;
 408        ks_wrreg16(ks, KS_RXCR1, w);
 409
 410        ks->enabled = false;
 411
 412}  /* ks_disable_qmu */
 413
 414/**
 415 * ks_read_qmu - read 1 pkt data from the QMU.
 416 * @ks: The chip information
 417 * @buf: buffer address to save 1 pkt
 418 * @len: Pkt length
 419 * Here is the sequence to read 1 pkt:
 420 *      1. set sudo DMA mode
 421 *      2. read prepend data
 422 *      3. read pkt data
 423 *      4. reset sudo DMA Mode
 424 */
 425static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
 426{
 427        u32 r =  ks->extra_byte & 0x1 ;
 428        u32 w = ks->extra_byte - r;
 429
 430        /* 1. set sudo DMA mode */
 431        ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
 432        ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
 433
 434        /* 2. read prepend data */
 435        /**
 436         * read 4 + extra bytes and discard them.
 437         * extra bytes for dummy, 2 for status, 2 for len
 438         */
 439
 440        /* use likely(r) for 8 bit access for performance */
 441        if (unlikely(r))
 442                ioread8(ks->hw_addr);
 443        ks_inblk(ks, buf, w + 2 + 2);
 444
 445        /* 3. read pkt data */
 446        ks_inblk(ks, buf, ALIGN(len, 4));
 447
 448        /* 4. reset sudo DMA Mode */
 449        ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
 450}
 451
 452/**
 453 * ks_rcv - read multiple pkts data from the QMU.
 454 * @ks: The chip information
 455 * @netdev: The network device being opened.
 456 *
 457 * Read all of header information before reading pkt content.
 458 * It is not allowed only port of pkts in QMU after issuing
 459 * interrupt ack.
 460 */
 461static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
 462{
 463        u32     i;
 464        struct type_frame_head *frame_hdr = ks->frame_head_info;
 465        struct sk_buff *skb;
 466
 467        ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
 468
 469        /* read all header information */
 470        for (i = 0; i < ks->frame_cnt; i++) {
 471                /* Checking Received packet status */
 472                frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
 473                /* Get packet len from hardware */
 474                frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
 475                frame_hdr++;
 476        }
 477
 478        frame_hdr = ks->frame_head_info;
 479        while (ks->frame_cnt--) {
 480                if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
 481                             frame_hdr->len >= RX_BUF_SIZE ||
 482                             frame_hdr->len <= 0)) {
 483
 484                        /* discard an invalid packet */
 485                        ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
 486                        netdev->stats.rx_dropped++;
 487                        if (!(frame_hdr->sts & RXFSHR_RXFV))
 488                                netdev->stats.rx_frame_errors++;
 489                        else
 490                                netdev->stats.rx_length_errors++;
 491                        frame_hdr++;
 492                        continue;
 493                }
 494
 495                skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
 496                if (likely(skb)) {
 497                        skb_reserve(skb, 2);
 498                        /* read data block including CRC 4 bytes */
 499                        ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
 500                        skb_put(skb, frame_hdr->len - 4);
 501                        skb->protocol = eth_type_trans(skb, netdev);
 502                        netif_rx(skb);
 503                        /* exclude CRC size */
 504                        netdev->stats.rx_bytes += frame_hdr->len - 4;
 505                        netdev->stats.rx_packets++;
 506                } else {
 507                        ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
 508                        netdev->stats.rx_dropped++;
 509                }
 510                frame_hdr++;
 511        }
 512}
 513
 514/**
 515 * ks_update_link_status - link status update.
 516 * @netdev: The network device being opened.
 517 * @ks: The chip information
 518 *
 519 */
 520
 521static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
 522{
 523        /* check the status of the link */
 524        u32 link_up_status;
 525        if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
 526                netif_carrier_on(netdev);
 527                link_up_status = true;
 528        } else {
 529                netif_carrier_off(netdev);
 530                link_up_status = false;
 531        }
 532        netif_dbg(ks, link, ks->netdev,
 533                  "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
 534}
 535
 536/**
 537 * ks_irq - device interrupt handler
 538 * @irq: Interrupt number passed from the IRQ handler.
 539 * @pw: The private word passed to register_irq(), our struct ks_net.
 540 *
 541 * This is the handler invoked to find out what happened
 542 *
 543 * Read the interrupt status, work out what needs to be done and then clear
 544 * any of the interrupts that are not needed.
 545 */
 546
 547static irqreturn_t ks_irq(int irq, void *pw)
 548{
 549        struct net_device *netdev = pw;
 550        struct ks_net *ks = netdev_priv(netdev);
 551        u16 status;
 552
 553        /*this should be the first in IRQ handler */
 554        ks_save_cmd_reg(ks);
 555
 556        status = ks_rdreg16(ks, KS_ISR);
 557        if (unlikely(!status)) {
 558                ks_restore_cmd_reg(ks);
 559                return IRQ_NONE;
 560        }
 561
 562        ks_wrreg16(ks, KS_ISR, status);
 563
 564        if (likely(status & IRQ_RXI))
 565                ks_rcv(ks, netdev);
 566
 567        if (unlikely(status & IRQ_LCI))
 568                ks_update_link_status(netdev, ks);
 569
 570        if (unlikely(status & IRQ_TXI))
 571                netif_wake_queue(netdev);
 572
 573        if (unlikely(status & IRQ_LDI)) {
 574
 575                u16 pmecr = ks_rdreg16(ks, KS_PMECR);
 576                pmecr &= ~PMECR_WKEVT_MASK;
 577                ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 578        }
 579
 580        if (unlikely(status & IRQ_RXOI))
 581                ks->netdev->stats.rx_over_errors++;
 582        /* this should be the last in IRQ handler*/
 583        ks_restore_cmd_reg(ks);
 584        return IRQ_HANDLED;
 585}
 586
 587
 588/**
 589 * ks_net_open - open network device
 590 * @netdev: The network device being opened.
 591 *
 592 * Called when the network device is marked active, such as a user executing
 593 * 'ifconfig up' on the device.
 594 */
 595static int ks_net_open(struct net_device *netdev)
 596{
 597        struct ks_net *ks = netdev_priv(netdev);
 598        int err;
 599
 600#define KS_INT_FLAGS    IRQF_TRIGGER_LOW
 601        /* lock the card, even if we may not actually do anything
 602         * else at the moment.
 603         */
 604
 605        netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
 606
 607        /* reset the HW */
 608        err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
 609
 610        if (err) {
 611                pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
 612                return err;
 613        }
 614
 615        /* wake up powermode to normal mode */
 616        ks_set_powermode(ks, PMECR_PM_NORMAL);
 617        mdelay(1);      /* wait for normal mode to take effect */
 618
 619        ks_wrreg16(ks, KS_ISR, 0xffff);
 620        ks_enable_int(ks);
 621        ks_enable_qmu(ks);
 622        netif_start_queue(ks->netdev);
 623
 624        netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 625
 626        return 0;
 627}
 628
 629/**
 630 * ks_net_stop - close network device
 631 * @netdev: The device being closed.
 632 *
 633 * Called to close down a network device which has been active. Cancell any
 634 * work, shutdown the RX and TX process and then place the chip into a low
 635 * power state whilst it is not being used.
 636 */
 637static int ks_net_stop(struct net_device *netdev)
 638{
 639        struct ks_net *ks = netdev_priv(netdev);
 640
 641        netif_info(ks, ifdown, netdev, "shutting down\n");
 642
 643        netif_stop_queue(netdev);
 644
 645        mutex_lock(&ks->lock);
 646
 647        /* turn off the IRQs and ack any outstanding */
 648        ks_wrreg16(ks, KS_IER, 0x0000);
 649        ks_wrreg16(ks, KS_ISR, 0xffff);
 650
 651        /* shutdown RX/TX QMU */
 652        ks_disable_qmu(ks);
 653
 654        /* set powermode to soft power down to save power */
 655        ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
 656        free_irq(netdev->irq, netdev);
 657        mutex_unlock(&ks->lock);
 658        return 0;
 659}
 660
 661
 662/**
 663 * ks_write_qmu - write 1 pkt data to the QMU.
 664 * @ks: The chip information
 665 * @pdata: buffer address to save 1 pkt
 666 * @len: Pkt length in byte
 667 * Here is the sequence to write 1 pkt:
 668 *      1. set sudo DMA mode
 669 *      2. write status/length
 670 *      3. write pkt data
 671 *      4. reset sudo DMA Mode
 672 *      5. reset sudo DMA mode
 673 *      6. Wait until pkt is out
 674 */
 675static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
 676{
 677        /* start header at txb[0] to align txw entries */
 678        ks->txh.txw[0] = 0;
 679        ks->txh.txw[1] = cpu_to_le16(len);
 680
 681        /* 1. set sudo-DMA mode */
 682        ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
 683        /* 2. write status/lenth info */
 684        ks_outblk(ks, ks->txh.txw, 4);
 685        /* 3. write pkt data */
 686        ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
 687        /* 4. reset sudo-DMA mode */
 688        ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
 689        /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
 690        ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 691        /* 6. wait until TXQCR_METFE is auto-cleared */
 692        while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
 693                ;
 694}
 695
 696/**
 697 * ks_start_xmit - transmit packet
 698 * @skb         : The buffer to transmit
 699 * @netdev      : The device used to transmit the packet.
 700 *
 701 * Called by the network layer to transmit the @skb.
 702 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
 703 * So while tx is in-progress, prevent IRQ interrupt from happenning.
 704 */
 705static netdev_tx_t ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
 706{
 707        netdev_tx_t retv = NETDEV_TX_OK;
 708        struct ks_net *ks = netdev_priv(netdev);
 709
 710        disable_irq(netdev->irq);
 711        ks_disable_int(ks);
 712        spin_lock(&ks->statelock);
 713
 714        /* Extra space are required:
 715        *  4 byte for alignment, 4 for status/length, 4 for CRC
 716        */
 717
 718        if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
 719                ks_write_qmu(ks, skb->data, skb->len);
 720                /* add tx statistics */
 721                netdev->stats.tx_bytes += skb->len;
 722                netdev->stats.tx_packets++;
 723                dev_kfree_skb(skb);
 724        } else
 725                retv = NETDEV_TX_BUSY;
 726        spin_unlock(&ks->statelock);
 727        ks_enable_int(ks);
 728        enable_irq(netdev->irq);
 729        return retv;
 730}
 731
 732/**
 733 * ks_start_rx - ready to serve pkts
 734 * @ks          : The chip information
 735 *
 736 */
 737static void ks_start_rx(struct ks_net *ks)
 738{
 739        u16 cntl;
 740
 741        /* Enables QMU Receive (RXCR1). */
 742        cntl = ks_rdreg16(ks, KS_RXCR1);
 743        cntl |= RXCR1_RXE ;
 744        ks_wrreg16(ks, KS_RXCR1, cntl);
 745}  /* ks_start_rx */
 746
 747/**
 748 * ks_stop_rx - stop to serve pkts
 749 * @ks          : The chip information
 750 *
 751 */
 752static void ks_stop_rx(struct ks_net *ks)
 753{
 754        u16 cntl;
 755
 756        /* Disables QMU Receive (RXCR1). */
 757        cntl = ks_rdreg16(ks, KS_RXCR1);
 758        cntl &= ~RXCR1_RXE ;
 759        ks_wrreg16(ks, KS_RXCR1, cntl);
 760
 761}  /* ks_stop_rx */
 762
 763static unsigned long const ethernet_polynomial = CRC32_POLY_BE;
 764
 765static unsigned long ether_gen_crc(int length, u8 *data)
 766{
 767        long crc = -1;
 768        while (--length >= 0) {
 769                u8 current_octet = *data++;
 770                int bit;
 771
 772                for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
 773                        crc = (crc << 1) ^
 774                                ((crc < 0) ^ (current_octet & 1) ?
 775                        ethernet_polynomial : 0);
 776                }
 777        }
 778        return (unsigned long)crc;
 779}  /* ether_gen_crc */
 780
 781/**
 782* ks_set_grpaddr - set multicast information
 783* @ks : The chip information
 784*/
 785
 786static void ks_set_grpaddr(struct ks_net *ks)
 787{
 788        u8      i;
 789        u32     index, position, value;
 790
 791        memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
 792
 793        for (i = 0; i < ks->mcast_lst_size; i++) {
 794                position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
 795                index = position >> 3;
 796                value = 1 << (position & 7);
 797                ks->mcast_bits[index] |= (u8)value;
 798        }
 799
 800        for (i  = 0; i < HW_MCAST_SIZE; i++) {
 801                if (i & 1) {
 802                        ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
 803                                (ks->mcast_bits[i] << 8) |
 804                                ks->mcast_bits[i - 1]);
 805                }
 806        }
 807}  /* ks_set_grpaddr */
 808
 809/**
 810* ks_clear_mcast - clear multicast information
 811*
 812* @ks : The chip information
 813* This routine removes all mcast addresses set in the hardware.
 814*/
 815
 816static void ks_clear_mcast(struct ks_net *ks)
 817{
 818        u16     i, mcast_size;
 819        for (i = 0; i < HW_MCAST_SIZE; i++)
 820                ks->mcast_bits[i] = 0;
 821
 822        mcast_size = HW_MCAST_SIZE >> 2;
 823        for (i = 0; i < mcast_size; i++)
 824                ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
 825}
 826
 827static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
 828{
 829        u16             cntl;
 830        ks->promiscuous = promiscuous_mode;
 831        ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
 832        cntl = ks_rdreg16(ks, KS_RXCR1);
 833
 834        cntl &= ~RXCR1_FILTER_MASK;
 835        if (promiscuous_mode)
 836                /* Enable Promiscuous mode */
 837                cntl |= RXCR1_RXAE | RXCR1_RXINVF;
 838        else
 839                /* Disable Promiscuous mode (default normal mode) */
 840                cntl |= RXCR1_RXPAFMA;
 841
 842        ks_wrreg16(ks, KS_RXCR1, cntl);
 843
 844        if (ks->enabled)
 845                ks_start_rx(ks);
 846
 847}  /* ks_set_promis */
 848
 849static void ks_set_mcast(struct ks_net *ks, u16 mcast)
 850{
 851        u16     cntl;
 852
 853        ks->all_mcast = mcast;
 854        ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
 855        cntl = ks_rdreg16(ks, KS_RXCR1);
 856        cntl &= ~RXCR1_FILTER_MASK;
 857        if (mcast)
 858                /* Enable "Perfect with Multicast address passed mode" */
 859                cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
 860        else
 861                /**
 862                 * Disable "Perfect with Multicast address passed
 863                 * mode" (normal mode).
 864                 */
 865                cntl |= RXCR1_RXPAFMA;
 866
 867        ks_wrreg16(ks, KS_RXCR1, cntl);
 868
 869        if (ks->enabled)
 870                ks_start_rx(ks);
 871}  /* ks_set_mcast */
 872
 873static void ks_set_rx_mode(struct net_device *netdev)
 874{
 875        struct ks_net *ks = netdev_priv(netdev);
 876        struct netdev_hw_addr *ha;
 877
 878        /* Turn on/off promiscuous mode. */
 879        if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
 880                ks_set_promis(ks,
 881                        (u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
 882        /* Turn on/off all mcast mode. */
 883        else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
 884                ks_set_mcast(ks,
 885                        (u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
 886        else
 887                ks_set_promis(ks, false);
 888
 889        if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
 890                if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
 891                        int i = 0;
 892
 893                        netdev_for_each_mc_addr(ha, netdev) {
 894                                if (i >= MAX_MCAST_LST)
 895                                        break;
 896                                memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
 897                        }
 898                        ks->mcast_lst_size = (u8)i;
 899                        ks_set_grpaddr(ks);
 900                } else {
 901                        /**
 902                         * List too big to support so
 903                         * turn on all mcast mode.
 904                         */
 905                        ks->mcast_lst_size = MAX_MCAST_LST;
 906                        ks_set_mcast(ks, true);
 907                }
 908        } else {
 909                ks->mcast_lst_size = 0;
 910                ks_clear_mcast(ks);
 911        }
 912} /* ks_set_rx_mode */
 913
 914static void ks_set_mac(struct ks_net *ks, u8 *data)
 915{
 916        u16 *pw = (u16 *)data;
 917        u16 w, u;
 918
 919        ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
 920
 921        u = *pw++;
 922        w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
 923        ks_wrreg16(ks, KS_MARH, w);
 924
 925        u = *pw++;
 926        w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
 927        ks_wrreg16(ks, KS_MARM, w);
 928
 929        u = *pw;
 930        w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
 931        ks_wrreg16(ks, KS_MARL, w);
 932
 933        memcpy(ks->mac_addr, data, ETH_ALEN);
 934
 935        if (ks->enabled)
 936                ks_start_rx(ks);
 937}
 938
 939static int ks_set_mac_address(struct net_device *netdev, void *paddr)
 940{
 941        struct ks_net *ks = netdev_priv(netdev);
 942        struct sockaddr *addr = paddr;
 943        u8 *da;
 944
 945        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 946
 947        da = (u8 *)netdev->dev_addr;
 948
 949        ks_set_mac(ks, da);
 950        return 0;
 951}
 952
 953static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
 954{
 955        struct ks_net *ks = netdev_priv(netdev);
 956
 957        if (!netif_running(netdev))
 958                return -EINVAL;
 959
 960        return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
 961}
 962
 963static const struct net_device_ops ks_netdev_ops = {
 964        .ndo_open               = ks_net_open,
 965        .ndo_stop               = ks_net_stop,
 966        .ndo_do_ioctl           = ks_net_ioctl,
 967        .ndo_start_xmit         = ks_start_xmit,
 968        .ndo_set_mac_address    = ks_set_mac_address,
 969        .ndo_set_rx_mode        = ks_set_rx_mode,
 970        .ndo_validate_addr      = eth_validate_addr,
 971};
 972
 973/* ethtool support */
 974
 975static void ks_get_drvinfo(struct net_device *netdev,
 976                               struct ethtool_drvinfo *di)
 977{
 978        strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
 979        strlcpy(di->version, "1.00", sizeof(di->version));
 980        strlcpy(di->bus_info, dev_name(netdev->dev.parent),
 981                sizeof(di->bus_info));
 982}
 983
 984static u32 ks_get_msglevel(struct net_device *netdev)
 985{
 986        struct ks_net *ks = netdev_priv(netdev);
 987        return ks->msg_enable;
 988}
 989
 990static void ks_set_msglevel(struct net_device *netdev, u32 to)
 991{
 992        struct ks_net *ks = netdev_priv(netdev);
 993        ks->msg_enable = to;
 994}
 995
 996static int ks_get_link_ksettings(struct net_device *netdev,
 997                                 struct ethtool_link_ksettings *cmd)
 998{
 999        struct ks_net *ks = netdev_priv(netdev);
1000
1001        mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1002
1003        return 0;
1004}
1005
1006static int ks_set_link_ksettings(struct net_device *netdev,
1007                                 const struct ethtool_link_ksettings *cmd)
1008{
1009        struct ks_net *ks = netdev_priv(netdev);
1010        return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1011}
1012
1013static u32 ks_get_link(struct net_device *netdev)
1014{
1015        struct ks_net *ks = netdev_priv(netdev);
1016        return mii_link_ok(&ks->mii);
1017}
1018
1019static int ks_nway_reset(struct net_device *netdev)
1020{
1021        struct ks_net *ks = netdev_priv(netdev);
1022        return mii_nway_restart(&ks->mii);
1023}
1024
1025static const struct ethtool_ops ks_ethtool_ops = {
1026        .get_drvinfo    = ks_get_drvinfo,
1027        .get_msglevel   = ks_get_msglevel,
1028        .set_msglevel   = ks_set_msglevel,
1029        .get_link       = ks_get_link,
1030        .nway_reset     = ks_nway_reset,
1031        .get_link_ksettings = ks_get_link_ksettings,
1032        .set_link_ksettings = ks_set_link_ksettings,
1033};
1034
1035/* MII interface controls */
1036
1037/**
1038 * ks_phy_reg - convert MII register into a KS8851 register
1039 * @reg: MII register number.
1040 *
1041 * Return the KS8851 register number for the corresponding MII PHY register
1042 * if possible. Return zero if the MII register has no direct mapping to the
1043 * KS8851 register set.
1044 */
1045static int ks_phy_reg(int reg)
1046{
1047        switch (reg) {
1048        case MII_BMCR:
1049                return KS_P1MBCR;
1050        case MII_BMSR:
1051                return KS_P1MBSR;
1052        case MII_PHYSID1:
1053                return KS_PHY1ILR;
1054        case MII_PHYSID2:
1055                return KS_PHY1IHR;
1056        case MII_ADVERTISE:
1057                return KS_P1ANAR;
1058        case MII_LPA:
1059                return KS_P1ANLPR;
1060        }
1061
1062        return 0x0;
1063}
1064
1065/**
1066 * ks_phy_read - MII interface PHY register read.
1067 * @netdev: The network device the PHY is on.
1068 * @phy_addr: Address of PHY (ignored as we only have one)
1069 * @reg: The register to read.
1070 *
1071 * This call reads data from the PHY register specified in @reg. Since the
1072 * device does not support all the MII registers, the non-existent values
1073 * are always returned as zero.
1074 *
1075 * We return zero for unsupported registers as the MII code does not check
1076 * the value returned for any error status, and simply returns it to the
1077 * caller. The mii-tool that the driver was tested with takes any -ve error
1078 * as real PHY capabilities, thus displaying incorrect data to the user.
1079 */
1080static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1081{
1082        struct ks_net *ks = netdev_priv(netdev);
1083        int ksreg;
1084        int result;
1085
1086        ksreg = ks_phy_reg(reg);
1087        if (!ksreg)
1088                return 0x0;     /* no error return allowed, so use zero */
1089
1090        mutex_lock(&ks->lock);
1091        result = ks_rdreg16(ks, ksreg);
1092        mutex_unlock(&ks->lock);
1093
1094        return result;
1095}
1096
1097static void ks_phy_write(struct net_device *netdev,
1098                             int phy, int reg, int value)
1099{
1100        struct ks_net *ks = netdev_priv(netdev);
1101        int ksreg;
1102
1103        ksreg = ks_phy_reg(reg);
1104        if (ksreg) {
1105                mutex_lock(&ks->lock);
1106                ks_wrreg16(ks, ksreg, value);
1107                mutex_unlock(&ks->lock);
1108        }
1109}
1110
1111/**
1112 * ks_read_selftest - read the selftest memory info.
1113 * @ks: The device state
1114 *
1115 * Read and check the TX/RX memory selftest information.
1116 */
1117static int ks_read_selftest(struct ks_net *ks)
1118{
1119        unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1120        int ret = 0;
1121        unsigned rd;
1122
1123        rd = ks_rdreg16(ks, KS_MBIR);
1124
1125        if ((rd & both_done) != both_done) {
1126                netdev_warn(ks->netdev, "Memory selftest not finished\n");
1127                return 0;
1128        }
1129
1130        if (rd & MBIR_TXMBFA) {
1131                netdev_err(ks->netdev, "TX memory selftest fails\n");
1132                ret |= 1;
1133        }
1134
1135        if (rd & MBIR_RXMBFA) {
1136                netdev_err(ks->netdev, "RX memory selftest fails\n");
1137                ret |= 2;
1138        }
1139
1140        netdev_info(ks->netdev, "the selftest passes\n");
1141        return ret;
1142}
1143
1144static void ks_setup(struct ks_net *ks)
1145{
1146        u16     w;
1147
1148        /**
1149         * Configure QMU Transmit
1150         */
1151
1152        /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1153        ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1154
1155        /* Setup Receive Frame Data Pointer Auto-Increment */
1156        ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1157
1158        /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1159        ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_RXFCT_MASK);
1160
1161        /* Setup RxQ Command Control (RXQCR) */
1162        ks->rc_rxqcr = RXQCR_CMD_CNTL;
1163        ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1164
1165        /**
1166         * set the force mode to half duplex, default is full duplex
1167         *  because if the auto-negotiation fails, most switch uses
1168         *  half-duplex.
1169         */
1170
1171        w = ks_rdreg16(ks, KS_P1MBCR);
1172        w &= ~BMCR_FULLDPLX;
1173        ks_wrreg16(ks, KS_P1MBCR, w);
1174
1175        w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1176        ks_wrreg16(ks, KS_TXCR, w);
1177
1178        w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1179
1180        if (ks->promiscuous)         /* bPromiscuous */
1181                w |= (RXCR1_RXAE | RXCR1_RXINVF);
1182        else if (ks->all_mcast) /* Multicast address passed mode */
1183                w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1184        else                                   /* Normal mode */
1185                w |= RXCR1_RXPAFMA;
1186
1187        ks_wrreg16(ks, KS_RXCR1, w);
1188}  /*ks_setup */
1189
1190
1191static void ks_setup_int(struct ks_net *ks)
1192{
1193        ks->rc_ier = 0x00;
1194        /* Clear the interrupts status of the hardware. */
1195        ks_wrreg16(ks, KS_ISR, 0xffff);
1196
1197        /* Enables the interrupts of the hardware. */
1198        ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1199}  /* ks_setup_int */
1200
1201static int ks_hw_init(struct ks_net *ks)
1202{
1203#define MHEADER_SIZE    (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1204        ks->promiscuous = 0;
1205        ks->all_mcast = 0;
1206        ks->mcast_lst_size = 0;
1207
1208        ks->frame_head_info = devm_kmalloc(&ks->pdev->dev, MHEADER_SIZE,
1209                                           GFP_KERNEL);
1210        if (!ks->frame_head_info)
1211                return false;
1212
1213        ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1214        return true;
1215}
1216
1217#if defined(CONFIG_OF)
1218static const struct of_device_id ks8851_ml_dt_ids[] = {
1219        { .compatible = "micrel,ks8851-mll" },
1220        { /* sentinel */ }
1221};
1222MODULE_DEVICE_TABLE(of, ks8851_ml_dt_ids);
1223#endif
1224
1225static int ks8851_probe(struct platform_device *pdev)
1226{
1227        int err;
1228        struct resource *io_d, *io_c;
1229        struct net_device *netdev;
1230        struct ks_net *ks;
1231        u16 id, data;
1232        const char *mac;
1233
1234        netdev = alloc_etherdev(sizeof(struct ks_net));
1235        if (!netdev)
1236                return -ENOMEM;
1237
1238        SET_NETDEV_DEV(netdev, &pdev->dev);
1239
1240        ks = netdev_priv(netdev);
1241        ks->netdev = netdev;
1242
1243        io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1244        ks->hw_addr = devm_ioremap_resource(&pdev->dev, io_d);
1245        if (IS_ERR(ks->hw_addr)) {
1246                err = PTR_ERR(ks->hw_addr);
1247                goto err_free;
1248        }
1249
1250        io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1251        ks->hw_addr_cmd = devm_ioremap_resource(&pdev->dev, io_c);
1252        if (IS_ERR(ks->hw_addr_cmd)) {
1253                err = PTR_ERR(ks->hw_addr_cmd);
1254                goto err_free;
1255        }
1256
1257        netdev->irq = platform_get_irq(pdev, 0);
1258
1259        if ((int)netdev->irq < 0) {
1260                err = netdev->irq;
1261                goto err_free;
1262        }
1263
1264        ks->pdev = pdev;
1265
1266        mutex_init(&ks->lock);
1267        spin_lock_init(&ks->statelock);
1268
1269        netdev->netdev_ops = &ks_netdev_ops;
1270        netdev->ethtool_ops = &ks_ethtool_ops;
1271
1272        /* setup mii state */
1273        ks->mii.dev             = netdev;
1274        ks->mii.phy_id          = 1,
1275        ks->mii.phy_id_mask     = 1;
1276        ks->mii.reg_num_mask    = 0xf;
1277        ks->mii.mdio_read       = ks_phy_read;
1278        ks->mii.mdio_write      = ks_phy_write;
1279
1280        netdev_info(netdev, "message enable is %d\n", msg_enable);
1281        /* set the default message enable */
1282        ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1283                                                     NETIF_MSG_PROBE |
1284                                                     NETIF_MSG_LINK));
1285        ks_read_config(ks);
1286
1287        /* simple check for a valid chip being connected to the bus */
1288        if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1289                netdev_err(netdev, "failed to read device ID\n");
1290                err = -ENODEV;
1291                goto err_free;
1292        }
1293
1294        if (ks_read_selftest(ks)) {
1295                netdev_err(netdev, "failed to read device ID\n");
1296                err = -ENODEV;
1297                goto err_free;
1298        }
1299
1300        err = register_netdev(netdev);
1301        if (err)
1302                goto err_free;
1303
1304        platform_set_drvdata(pdev, netdev);
1305
1306        ks_soft_reset(ks, GRR_GSR);
1307        ks_hw_init(ks);
1308        ks_disable_qmu(ks);
1309        ks_setup(ks);
1310        ks_setup_int(ks);
1311
1312        data = ks_rdreg16(ks, KS_OBCR);
1313        ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16mA);
1314
1315        /* overwriting the default MAC address */
1316        if (pdev->dev.of_node) {
1317                mac = of_get_mac_address(pdev->dev.of_node);
1318                if (!IS_ERR(mac))
1319                        ether_addr_copy(ks->mac_addr, mac);
1320        } else {
1321                struct ks8851_mll_platform_data *pdata;
1322
1323                pdata = dev_get_platdata(&pdev->dev);
1324                if (!pdata) {
1325                        netdev_err(netdev, "No platform data\n");
1326                        err = -ENODEV;
1327                        goto err_pdata;
1328                }
1329                memcpy(ks->mac_addr, pdata->mac_addr, ETH_ALEN);
1330        }
1331        if (!is_valid_ether_addr(ks->mac_addr)) {
1332                /* Use random MAC address if none passed */
1333                eth_random_addr(ks->mac_addr);
1334                netdev_info(netdev, "Using random mac address\n");
1335        }
1336        netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
1337
1338        memcpy(netdev->dev_addr, ks->mac_addr, ETH_ALEN);
1339
1340        ks_set_mac(ks, netdev->dev_addr);
1341
1342        id = ks_rdreg16(ks, KS_CIDER);
1343
1344        netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1345                    (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1346        return 0;
1347
1348err_pdata:
1349        unregister_netdev(netdev);
1350err_free:
1351        free_netdev(netdev);
1352        return err;
1353}
1354
1355static int ks8851_remove(struct platform_device *pdev)
1356{
1357        struct net_device *netdev = platform_get_drvdata(pdev);
1358
1359        unregister_netdev(netdev);
1360        free_netdev(netdev);
1361        return 0;
1362
1363}
1364
1365static struct platform_driver ks8851_platform_driver = {
1366        .driver = {
1367                .name = DRV_NAME,
1368                .of_match_table = of_match_ptr(ks8851_ml_dt_ids),
1369        },
1370        .probe = ks8851_probe,
1371        .remove = ks8851_remove,
1372};
1373
1374module_platform_driver(ks8851_platform_driver);
1375
1376MODULE_DESCRIPTION("KS8851 MLL Network driver");
1377MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1378MODULE_LICENSE("GPL");
1379module_param_named(message, msg_enable, int, 0);
1380MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1381
1382