linux/drivers/net/ethernet/qlogic/qed/qed_int.c
<<
>>
Prefs
   1/* QLogic qed NIC Driver
   2 * Copyright (c) 2015-2017  QLogic Corporation
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and /or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32
  33#include <linux/types.h>
  34#include <asm/byteorder.h>
  35#include <linux/io.h>
  36#include <linux/bitops.h>
  37#include <linux/delay.h>
  38#include <linux/dma-mapping.h>
  39#include <linux/errno.h>
  40#include <linux/interrupt.h>
  41#include <linux/kernel.h>
  42#include <linux/pci.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include "qed.h"
  46#include "qed_hsi.h"
  47#include "qed_hw.h"
  48#include "qed_init_ops.h"
  49#include "qed_int.h"
  50#include "qed_mcp.h"
  51#include "qed_reg_addr.h"
  52#include "qed_sp.h"
  53#include "qed_sriov.h"
  54#include "qed_vf.h"
  55
  56struct qed_pi_info {
  57        qed_int_comp_cb_t       comp_cb;
  58        void                    *cookie;
  59};
  60
  61struct qed_sb_sp_info {
  62        struct qed_sb_info sb_info;
  63
  64        /* per protocol index data */
  65        struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
  66};
  67
  68enum qed_attention_type {
  69        QED_ATTN_TYPE_ATTN,
  70        QED_ATTN_TYPE_PARITY,
  71};
  72
  73#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
  74        ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
  75
  76struct aeu_invert_reg_bit {
  77        char bit_name[30];
  78
  79#define ATTENTION_PARITY                (1 << 0)
  80
  81#define ATTENTION_LENGTH_MASK           (0x00000ff0)
  82#define ATTENTION_LENGTH_SHIFT          (4)
  83#define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
  84                                         ATTENTION_LENGTH_SHIFT)
  85#define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
  86#define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
  87#define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
  88                                         ATTENTION_PARITY)
  89
  90/* Multiple bits start with this offset */
  91#define ATTENTION_OFFSET_MASK           (0x000ff000)
  92#define ATTENTION_OFFSET_SHIFT          (12)
  93
  94#define ATTENTION_BB_MASK               (0x00700000)
  95#define ATTENTION_BB_SHIFT              (20)
  96#define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
  97#define ATTENTION_BB_DIFFERENT          BIT(23)
  98
  99        unsigned int flags;
 100
 101        /* Callback to call if attention will be triggered */
 102        int (*cb)(struct qed_hwfn *p_hwfn);
 103
 104        enum block_id block_index;
 105};
 106
 107struct aeu_invert_reg {
 108        struct aeu_invert_reg_bit bits[32];
 109};
 110
 111#define MAX_ATTN_GRPS           (8)
 112#define NUM_ATTN_REGS           (9)
 113
 114/* Specific HW attention callbacks */
 115static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
 116{
 117        u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
 118
 119        /* This might occur on certain instances; Log it once then mask it */
 120        DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
 121                tmp);
 122        qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
 123               0xffffffff);
 124
 125        return 0;
 126}
 127
 128#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS           (0x1)
 129#define ATTENTION_INCORRECT_ACCESS_WR_MASK              (0x1)
 130#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT             (0)
 131#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK          (0xf)
 132#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT         (1)
 133#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK        (0x1)
 134#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT       (5)
 135#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK           (0xff)
 136#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT          (6)
 137#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK           (0xf)
 138#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT          (14)
 139#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK         (0xff)
 140#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT        (18)
 141static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
 142{
 143        u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 144                         PSWHST_REG_INCORRECT_ACCESS_VALID);
 145
 146        if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
 147                u32 addr, data, length;
 148
 149                addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 150                              PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
 151                data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 152                              PSWHST_REG_INCORRECT_ACCESS_DATA);
 153                length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 154                                PSWHST_REG_INCORRECT_ACCESS_LENGTH);
 155
 156                DP_INFO(p_hwfn->cdev,
 157                        "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
 158                        addr, length,
 159                        (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
 160                        (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
 161                        (u8) GET_FIELD(data,
 162                                       ATTENTION_INCORRECT_ACCESS_VF_VALID),
 163                        (u8) GET_FIELD(data,
 164                                       ATTENTION_INCORRECT_ACCESS_CLIENT),
 165                        (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
 166                        (u8) GET_FIELD(data,
 167                                       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
 168                        data);
 169        }
 170
 171        return 0;
 172}
 173
 174#define QED_GRC_ATTENTION_VALID_BIT     (1 << 0)
 175#define QED_GRC_ATTENTION_ADDRESS_MASK  (0x7fffff)
 176#define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
 177#define QED_GRC_ATTENTION_RDWR_BIT      (1 << 23)
 178#define QED_GRC_ATTENTION_MASTER_MASK   (0xf)
 179#define QED_GRC_ATTENTION_MASTER_SHIFT  (24)
 180#define QED_GRC_ATTENTION_PF_MASK       (0xf)
 181#define QED_GRC_ATTENTION_PF_SHIFT      (0)
 182#define QED_GRC_ATTENTION_VF_MASK       (0xff)
 183#define QED_GRC_ATTENTION_VF_SHIFT      (4)
 184#define QED_GRC_ATTENTION_PRIV_MASK     (0x3)
 185#define QED_GRC_ATTENTION_PRIV_SHIFT    (14)
 186#define QED_GRC_ATTENTION_PRIV_VF       (0)
 187static const char *attn_master_to_str(u8 master)
 188{
 189        switch (master) {
 190        case 1: return "PXP";
 191        case 2: return "MCP";
 192        case 3: return "MSDM";
 193        case 4: return "PSDM";
 194        case 5: return "YSDM";
 195        case 6: return "USDM";
 196        case 7: return "TSDM";
 197        case 8: return "XSDM";
 198        case 9: return "DBU";
 199        case 10: return "DMAE";
 200        default:
 201                return "Unknown";
 202        }
 203}
 204
 205static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
 206{
 207        u32 tmp, tmp2;
 208
 209        /* We've already cleared the timeout interrupt register, so we learn
 210         * of interrupts via the validity register
 211         */
 212        tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 213                     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
 214        if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
 215                goto out;
 216
 217        /* Read the GRC timeout information */
 218        tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 219                     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
 220        tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 221                      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
 222
 223        DP_INFO(p_hwfn->cdev,
 224                "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
 225                tmp2, tmp,
 226                (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
 227                GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
 228                attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
 229                GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
 230                (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
 231                 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
 232                GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
 233
 234out:
 235        /* Regardles of anything else, clean the validity bit */
 236        qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
 237               GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
 238        return 0;
 239}
 240
 241#define PGLUE_ATTENTION_VALID                   (1 << 29)
 242#define PGLUE_ATTENTION_RD_VALID                (1 << 26)
 243#define PGLUE_ATTENTION_DETAILS_PFID_MASK       (0xf)
 244#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT      (20)
 245#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK   (0x1)
 246#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT  (19)
 247#define PGLUE_ATTENTION_DETAILS_VFID_MASK       (0xff)
 248#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT      (24)
 249#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK   (0x1)
 250#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT  (21)
 251#define PGLUE_ATTENTION_DETAILS2_BME_MASK       (0x1)
 252#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT      (22)
 253#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK    (0x1)
 254#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT   (23)
 255#define PGLUE_ATTENTION_ICPL_VALID              (1 << 23)
 256#define PGLUE_ATTENTION_ZLR_VALID               (1 << 25)
 257#define PGLUE_ATTENTION_ILT_VALID               (1 << 23)
 258
 259int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn,
 260                                struct qed_ptt *p_ptt)
 261{
 262        u32 tmp;
 263
 264        tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
 265        if (tmp & PGLUE_ATTENTION_VALID) {
 266                u32 addr_lo, addr_hi, details;
 267
 268                addr_lo = qed_rd(p_hwfn, p_ptt,
 269                                 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
 270                addr_hi = qed_rd(p_hwfn, p_ptt,
 271                                 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
 272                details = qed_rd(p_hwfn, p_ptt,
 273                                 PGLUE_B_REG_TX_ERR_WR_DETAILS);
 274
 275                DP_NOTICE(p_hwfn,
 276                          "Illegal write by chip to [%08x:%08x] blocked.\n"
 277                          "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
 278                          "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
 279                          addr_hi, addr_lo, details,
 280                          (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
 281                          (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
 282                          GET_FIELD(details,
 283                                    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
 284                          tmp,
 285                          GET_FIELD(tmp,
 286                                    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
 287                          GET_FIELD(tmp,
 288                                    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
 289                          GET_FIELD(tmp,
 290                                    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
 291        }
 292
 293        tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
 294        if (tmp & PGLUE_ATTENTION_RD_VALID) {
 295                u32 addr_lo, addr_hi, details;
 296
 297                addr_lo = qed_rd(p_hwfn, p_ptt,
 298                                 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
 299                addr_hi = qed_rd(p_hwfn, p_ptt,
 300                                 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
 301                details = qed_rd(p_hwfn, p_ptt,
 302                                 PGLUE_B_REG_TX_ERR_RD_DETAILS);
 303
 304                DP_NOTICE(p_hwfn,
 305                          "Illegal read by chip from [%08x:%08x] blocked.\n"
 306                          "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
 307                          "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
 308                          addr_hi, addr_lo, details,
 309                          (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
 310                          (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
 311                          GET_FIELD(details,
 312                                    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
 313                          tmp,
 314                          GET_FIELD(tmp,
 315                                    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
 316                          GET_FIELD(tmp,
 317                                    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
 318                          GET_FIELD(tmp,
 319                                    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
 320        }
 321
 322        tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
 323        if (tmp & PGLUE_ATTENTION_ICPL_VALID)
 324                DP_NOTICE(p_hwfn, "ICPL error - %08x\n", tmp);
 325
 326        tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
 327        if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
 328                u32 addr_hi, addr_lo;
 329
 330                addr_lo = qed_rd(p_hwfn, p_ptt,
 331                                 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
 332                addr_hi = qed_rd(p_hwfn, p_ptt,
 333                                 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
 334
 335                DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
 336                          tmp, addr_hi, addr_lo);
 337        }
 338
 339        tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
 340        if (tmp & PGLUE_ATTENTION_ILT_VALID) {
 341                u32 addr_hi, addr_lo, details;
 342
 343                addr_lo = qed_rd(p_hwfn, p_ptt,
 344                                 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
 345                addr_hi = qed_rd(p_hwfn, p_ptt,
 346                                 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
 347                details = qed_rd(p_hwfn, p_ptt,
 348                                 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
 349
 350                DP_NOTICE(p_hwfn,
 351                          "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
 352                          details, tmp, addr_hi, addr_lo);
 353        }
 354
 355        /* Clear the indications */
 356        qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
 357
 358        return 0;
 359}
 360
 361static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
 362{
 363        return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
 364}
 365
 366#define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
 367#define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
 368#define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
 369#define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
 370#define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
 371
 372#define QED_DB_REC_COUNT                        1000
 373#define QED_DB_REC_INTERVAL                     100
 374
 375static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
 376                                  struct qed_ptt *p_ptt)
 377{
 378        u32 count = QED_DB_REC_COUNT;
 379        u32 usage = 1;
 380
 381        /* Flush any pending (e)dpms as they may never arrive */
 382        qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
 383
 384        /* wait for usage to zero or count to run out. This is necessary since
 385         * EDPM doorbell transactions can take multiple 64b cycles, and as such
 386         * can "split" over the pci. Possibly, the doorbell drop can happen with
 387         * half an EDPM in the queue and other half dropped. Another EDPM
 388         * doorbell to the same address (from doorbell recovery mechanism or
 389         * from the doorbelling entity) could have first half dropped and second
 390         * half interpreted as continuation of the first. To prevent such
 391         * malformed doorbells from reaching the device, flush the queue before
 392         * releasing the overflow sticky indication.
 393         */
 394        while (count-- && usage) {
 395                usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
 396                udelay(QED_DB_REC_INTERVAL);
 397        }
 398
 399        /* should have been depleted by now */
 400        if (usage) {
 401                DP_NOTICE(p_hwfn->cdev,
 402                          "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
 403                          QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
 404                return -EBUSY;
 405        }
 406
 407        return 0;
 408}
 409
 410int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 411{
 412        u32 attn_ovfl, cur_ovfl;
 413        int rc;
 414
 415        attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
 416                                       &p_hwfn->db_recovery_info.overflow);
 417        cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
 418        if (!cur_ovfl && !attn_ovfl)
 419                return 0;
 420
 421        DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
 422                  attn_ovfl, cur_ovfl);
 423
 424        if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
 425                rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
 426                if (rc)
 427                        return rc;
 428        }
 429
 430        /* Release overflow sticky indication (stop silently dropping everything) */
 431        qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
 432
 433        /* Repeat all last doorbells (doorbell drop recovery) */
 434        qed_db_recovery_execute(p_hwfn);
 435
 436        return 0;
 437}
 438
 439static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
 440{
 441        struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
 442        u32 overflow;
 443        int rc;
 444
 445        overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
 446        if (!overflow)
 447                goto out;
 448
 449        /* Run PF doorbell recovery in next periodic handler */
 450        set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
 451
 452        if (!p_hwfn->db_bar_no_edpm) {
 453                rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
 454                if (rc)
 455                        goto out;
 456        }
 457
 458        qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
 459out:
 460        /* Schedule the handler even if overflow was not detected */
 461        qed_periodic_db_rec_start(p_hwfn);
 462}
 463
 464static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
 465{
 466        u32 int_sts, first_drop_reason, details, address, all_drops_reason;
 467        struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
 468
 469        /* int_sts may be zero since all PFs were interrupted for doorbell
 470         * overflow but another one already handled it. Can abort here. If
 471         * This PF also requires overflow recovery we will be interrupted again.
 472         * The masked almost full indication may also be set. Ignoring.
 473         */
 474        int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
 475        if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
 476                return 0;
 477
 478        DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
 479
 480        /* check if db_drop or overflow happened */
 481        if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
 482                       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
 483                /* Obtain data about db drop/overflow */
 484                first_drop_reason = qed_rd(p_hwfn, p_ptt,
 485                                           DORQ_REG_DB_DROP_REASON) &
 486                    QED_DORQ_ATTENTION_REASON_MASK;
 487                details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
 488                address = qed_rd(p_hwfn, p_ptt,
 489                                 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
 490                all_drops_reason = qed_rd(p_hwfn, p_ptt,
 491                                          DORQ_REG_DB_DROP_DETAILS_REASON);
 492
 493                /* Log info */
 494                DP_NOTICE(p_hwfn->cdev,
 495                          "Doorbell drop occurred\n"
 496                          "Address\t\t0x%08x\t(second BAR address)\n"
 497                          "FID\t\t0x%04x\t\t(Opaque FID)\n"
 498                          "Size\t\t0x%04x\t\t(in bytes)\n"
 499                          "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
 500                          "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
 501                          address,
 502                          GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
 503                          GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
 504                          first_drop_reason, all_drops_reason);
 505
 506                /* Clear the doorbell drop details and prepare for next drop */
 507                qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
 508
 509                /* Mark interrupt as handled (note: even if drop was due to a different
 510                 * reason than overflow we mark as handled)
 511                 */
 512                qed_wr(p_hwfn,
 513                       p_ptt,
 514                       DORQ_REG_INT_STS_WR,
 515                       DORQ_REG_INT_STS_DB_DROP |
 516                       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
 517
 518                /* If there are no indications other than drop indications, success */
 519                if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
 520                                 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
 521                                 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
 522                        return 0;
 523        }
 524
 525        /* Some other indication was present - non recoverable */
 526        DP_INFO(p_hwfn, "DORQ fatal attention\n");
 527
 528        return -EINVAL;
 529}
 530
 531static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
 532{
 533        p_hwfn->db_recovery_info.dorq_attn = true;
 534        qed_dorq_attn_overflow(p_hwfn);
 535
 536        return qed_dorq_attn_int_sts(p_hwfn);
 537}
 538
 539static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
 540{
 541        if (p_hwfn->db_recovery_info.dorq_attn)
 542                goto out;
 543
 544        /* Call DORQ callback if the attention was missed */
 545        qed_dorq_attn_cb(p_hwfn);
 546out:
 547        p_hwfn->db_recovery_info.dorq_attn = false;
 548}
 549
 550/* Instead of major changes to the data-structure, we have a some 'special'
 551 * identifiers for sources that changed meaning between adapters.
 552 */
 553enum aeu_invert_reg_special_type {
 554        AEU_INVERT_REG_SPECIAL_CNIG_0,
 555        AEU_INVERT_REG_SPECIAL_CNIG_1,
 556        AEU_INVERT_REG_SPECIAL_CNIG_2,
 557        AEU_INVERT_REG_SPECIAL_CNIG_3,
 558        AEU_INVERT_REG_SPECIAL_MAX,
 559};
 560
 561static struct aeu_invert_reg_bit
 562aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
 563        {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 564        {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 565        {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 566        {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 567};
 568
 569/* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
 570static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
 571        {
 572                {       /* After Invert 1 */
 573                        {"GPIO0 function%d",
 574                         (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
 575                }
 576        },
 577
 578        {
 579                {       /* After Invert 2 */
 580                        {"PGLUE config_space", ATTENTION_SINGLE,
 581                         NULL, MAX_BLOCK_ID},
 582                        {"PGLUE misc_flr", ATTENTION_SINGLE,
 583                         NULL, MAX_BLOCK_ID},
 584                        {"PGLUE B RBC", ATTENTION_PAR_INT,
 585                         qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
 586                        {"PGLUE misc_mctp", ATTENTION_SINGLE,
 587                         NULL, MAX_BLOCK_ID},
 588                        {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 589                        {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 590                        {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 591                        {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
 592                                          (1 << ATTENTION_OFFSET_SHIFT),
 593                         NULL, MAX_BLOCK_ID},
 594                        {"PCIE glue/PXP VPD %d",
 595                         (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
 596                }
 597        },
 598
 599        {
 600                {       /* After Invert 3 */
 601                        {"General Attention %d",
 602                         (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
 603                }
 604        },
 605
 606        {
 607                {       /* After Invert 4 */
 608                        {"General Attention 32", ATTENTION_SINGLE,
 609                         NULL, MAX_BLOCK_ID},
 610                        {"General Attention %d",
 611                         (2 << ATTENTION_LENGTH_SHIFT) |
 612                         (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
 613                        {"General Attention 35", ATTENTION_SINGLE,
 614                         NULL, MAX_BLOCK_ID},
 615                        {"NWS Parity",
 616                         ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
 617                         ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
 618                         NULL, BLOCK_NWS},
 619                        {"NWS Interrupt",
 620                         ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
 621                         ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
 622                         NULL, BLOCK_NWS},
 623                        {"NWM Parity",
 624                         ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
 625                         ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
 626                         NULL, BLOCK_NWM},
 627                        {"NWM Interrupt",
 628                         ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
 629                         ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
 630                         NULL, BLOCK_NWM},
 631                        {"MCP CPU", ATTENTION_SINGLE,
 632                         qed_mcp_attn_cb, MAX_BLOCK_ID},
 633                        {"MCP Watchdog timer", ATTENTION_SINGLE,
 634                         NULL, MAX_BLOCK_ID},
 635                        {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 636                        {"AVS stop status ready", ATTENTION_SINGLE,
 637                         NULL, MAX_BLOCK_ID},
 638                        {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
 639                        {"MSTAT per-path", ATTENTION_PAR_INT,
 640                         NULL, MAX_BLOCK_ID},
 641                        {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
 642                         NULL, MAX_BLOCK_ID},
 643                        {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
 644                        {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
 645                        {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
 646                        {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
 647                        {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
 648                }
 649        },
 650
 651        {
 652                {       /* After Invert 5 */
 653                        {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
 654                        {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
 655                        {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
 656                        {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
 657                        {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
 658                        {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
 659                        {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
 660                        {"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
 661                        {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
 662                        {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
 663                        {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
 664                        {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
 665                        {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
 666                        {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
 667                        {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
 668                        {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
 669                }
 670        },
 671
 672        {
 673                {       /* After Invert 6 */
 674                        {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
 675                        {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
 676                        {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
 677                        {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
 678                        {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
 679                        {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
 680                        {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
 681                        {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
 682                        {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
 683                        {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
 684                        {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
 685                        {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
 686                        {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
 687                        {"DORQ", ATTENTION_PAR_INT,
 688                         qed_dorq_attn_cb, BLOCK_DORQ},
 689                        {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
 690                        {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
 691                }
 692        },
 693
 694        {
 695                {       /* After Invert 7 */
 696                        {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
 697                        {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
 698                        {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
 699                        {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
 700                        {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
 701                        {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
 702                        {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
 703                        {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
 704                        {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
 705                        {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
 706                        {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
 707                        {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
 708                        {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
 709                        {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
 710                        {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
 711                        {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
 712                        {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
 713                }
 714        },
 715
 716        {
 717                {       /* After Invert 8 */
 718                        {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
 719                         NULL, BLOCK_PSWRQ2},
 720                        {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
 721                        {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
 722                         NULL, BLOCK_PSWWR2},
 723                        {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
 724                        {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
 725                         NULL, BLOCK_PSWRD2},
 726                        {"PSWHST", ATTENTION_PAR_INT,
 727                         qed_pswhst_attn_cb, BLOCK_PSWHST},
 728                        {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
 729                         NULL, BLOCK_PSWHST2},
 730                        {"GRC", ATTENTION_PAR_INT,
 731                         qed_grc_attn_cb, BLOCK_GRC},
 732                        {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
 733                        {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
 734                        {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 735                        {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 736                        {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 737                        {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 738                        {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 739                        {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 740                        {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
 741                        {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
 742                         NULL, BLOCK_PGLCS},
 743                        {"PERST_B assertion", ATTENTION_SINGLE,
 744                         NULL, MAX_BLOCK_ID},
 745                        {"PERST_B deassertion", ATTENTION_SINGLE,
 746                         NULL, MAX_BLOCK_ID},
 747                        {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
 748                         NULL, MAX_BLOCK_ID},
 749                }
 750        },
 751
 752        {
 753                {       /* After Invert 9 */
 754                        {"MCP Latched memory", ATTENTION_PAR,
 755                         NULL, MAX_BLOCK_ID},
 756                        {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
 757                         NULL, MAX_BLOCK_ID},
 758                        {"MCP Latched ump_tx", ATTENTION_PAR,
 759                         NULL, MAX_BLOCK_ID},
 760                        {"MCP Latched scratchpad", ATTENTION_PAR,
 761                         NULL, MAX_BLOCK_ID},
 762                        {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
 763                         NULL, MAX_BLOCK_ID},
 764                }
 765        },
 766};
 767
 768static struct aeu_invert_reg_bit *
 769qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
 770                      struct aeu_invert_reg_bit *p_bit)
 771{
 772        if (!QED_IS_BB(p_hwfn->cdev))
 773                return p_bit;
 774
 775        if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
 776                return p_bit;
 777
 778        return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
 779                                  ATTENTION_BB_SHIFT];
 780}
 781
 782static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
 783                                   struct aeu_invert_reg_bit *p_bit)
 784{
 785        return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
 786                   ATTENTION_PARITY);
 787}
 788
 789#define ATTN_STATE_BITS         (0xfff)
 790#define ATTN_BITS_MASKABLE      (0x3ff)
 791struct qed_sb_attn_info {
 792        /* Virtual & Physical address of the SB */
 793        struct atten_status_block       *sb_attn;
 794        dma_addr_t                      sb_phys;
 795
 796        /* Last seen running index */
 797        u16                             index;
 798
 799        /* A mask of the AEU bits resulting in a parity error */
 800        u32                             parity_mask[NUM_ATTN_REGS];
 801
 802        /* A pointer to the attention description structure */
 803        struct aeu_invert_reg           *p_aeu_desc;
 804
 805        /* Previously asserted attentions, which are still unasserted */
 806        u16                             known_attn;
 807
 808        /* Cleanup address for the link's general hw attention */
 809        u32                             mfw_attn_addr;
 810};
 811
 812static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
 813                                      struct qed_sb_attn_info *p_sb_desc)
 814{
 815        u16 rc = 0, index;
 816
 817        index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
 818        if (p_sb_desc->index != index) {
 819                p_sb_desc->index        = index;
 820                rc                    = QED_SB_ATT_IDX;
 821        }
 822
 823        return rc;
 824}
 825
 826/**
 827 *  @brief qed_int_assertion - handles asserted attention bits
 828 *
 829 *  @param p_hwfn
 830 *  @param asserted_bits newly asserted bits
 831 *  @return int
 832 */
 833static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
 834{
 835        struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
 836        u32 igu_mask;
 837
 838        /* Mask the source of the attention in the IGU */
 839        igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
 840        DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
 841                   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
 842        igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
 843        qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
 844
 845        DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
 846                   "inner known ATTN state: 0x%04x --> 0x%04x\n",
 847                   sb_attn_sw->known_attn,
 848                   sb_attn_sw->known_attn | asserted_bits);
 849        sb_attn_sw->known_attn |= asserted_bits;
 850
 851        /* Handle MCP events */
 852        if (asserted_bits & 0x100) {
 853                qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
 854                /* Clean the MCP attention */
 855                qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
 856                       sb_attn_sw->mfw_attn_addr, 0);
 857        }
 858
 859        DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
 860                      GTT_BAR0_MAP_REG_IGU_CMD +
 861                      ((IGU_CMD_ATTN_BIT_SET_UPPER -
 862                        IGU_CMD_INT_ACK_BASE) << 3),
 863                      (u32)asserted_bits);
 864
 865        DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
 866                   asserted_bits);
 867
 868        return 0;
 869}
 870
 871static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
 872                               enum block_id id,
 873                               enum dbg_attn_type type, bool b_clear)
 874{
 875        struct dbg_attn_block_result attn_results;
 876        enum dbg_status status;
 877
 878        memset(&attn_results, 0, sizeof(attn_results));
 879
 880        status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
 881                                   b_clear, &attn_results);
 882        if (status != DBG_STATUS_OK)
 883                DP_NOTICE(p_hwfn,
 884                          "Failed to parse attention information [status: %s]\n",
 885                          qed_dbg_get_status_str(status));
 886        else
 887                qed_dbg_parse_attn(p_hwfn, &attn_results);
 888}
 889
 890/**
 891 * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
 892 * cause of the attention
 893 *
 894 * @param p_hwfn
 895 * @param p_aeu - descriptor of an AEU bit which caused the attention
 896 * @param aeu_en_reg - register offset of the AEU enable reg. which configured
 897 *  this bit to this group.
 898 * @param bit_index - index of this bit in the aeu_en_reg
 899 *
 900 * @return int
 901 */
 902static int
 903qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
 904                            struct aeu_invert_reg_bit *p_aeu,
 905                            u32 aeu_en_reg,
 906                            const char *p_bit_name, u32 bitmask)
 907{
 908        bool b_fatal = false;
 909        int rc = -EINVAL;
 910        u32 val;
 911
 912        DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
 913                p_bit_name, bitmask);
 914
 915        /* Call callback before clearing the interrupt status */
 916        if (p_aeu->cb) {
 917                DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
 918                        p_bit_name);
 919                rc = p_aeu->cb(p_hwfn);
 920        }
 921
 922        if (rc)
 923                b_fatal = true;
 924
 925        /* Print HW block interrupt registers */
 926        if (p_aeu->block_index != MAX_BLOCK_ID)
 927                qed_int_attn_print(p_hwfn, p_aeu->block_index,
 928                                   ATTN_TYPE_INTERRUPT, !b_fatal);
 929
 930
 931        /* If the attention is benign, no need to prevent it */
 932        if (!rc)
 933                goto out;
 934
 935        /* Prevent this Attention from being asserted in the future */
 936        val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
 937        qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
 938        DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
 939                p_bit_name);
 940
 941out:
 942        return rc;
 943}
 944
 945/**
 946 * @brief qed_int_deassertion_parity - handle a single parity AEU source
 947 *
 948 * @param p_hwfn
 949 * @param p_aeu - descriptor of an AEU bit which caused the parity
 950 * @param aeu_en_reg - address of the AEU enable register
 951 * @param bit_index
 952 */
 953static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
 954                                       struct aeu_invert_reg_bit *p_aeu,
 955                                       u32 aeu_en_reg, u8 bit_index)
 956{
 957        u32 block_id = p_aeu->block_index, mask, val;
 958
 959        DP_NOTICE(p_hwfn->cdev,
 960                  "%s parity attention is set [address 0x%08x, bit %d]\n",
 961                  p_aeu->bit_name, aeu_en_reg, bit_index);
 962
 963        if (block_id != MAX_BLOCK_ID) {
 964                qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
 965
 966                /* In BB, there's a single parity bit for several blocks */
 967                if (block_id == BLOCK_BTB) {
 968                        qed_int_attn_print(p_hwfn, BLOCK_OPTE,
 969                                           ATTN_TYPE_PARITY, false);
 970                        qed_int_attn_print(p_hwfn, BLOCK_MCP,
 971                                           ATTN_TYPE_PARITY, false);
 972                }
 973        }
 974
 975        /* Prevent this parity error from being re-asserted */
 976        mask = ~BIT(bit_index);
 977        val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
 978        qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
 979        DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
 980                p_aeu->bit_name);
 981}
 982
 983/**
 984 * @brief - handles deassertion of previously asserted attentions.
 985 *
 986 * @param p_hwfn
 987 * @param deasserted_bits - newly deasserted bits
 988 * @return int
 989 *
 990 */
 991static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
 992                               u16 deasserted_bits)
 993{
 994        struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
 995        u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
 996        u8 i, j, k, bit_idx;
 997        int rc = 0;
 998
 999        /* Read the attention registers in the AEU */
1000        for (i = 0; i < NUM_ATTN_REGS; i++) {
1001                aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1002                                        MISC_REG_AEU_AFTER_INVERT_1_IGU +
1003                                        i * 0x4);
1004                DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1005                           "Deasserted bits [%d]: %08x\n",
1006                           i, aeu_inv_arr[i]);
1007        }
1008
1009        /* Find parity attentions first */
1010        for (i = 0; i < NUM_ATTN_REGS; i++) {
1011                struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1012                u32 parities;
1013
1014                aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1015                en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1016
1017                /* Skip register in which no parity bit is currently set */
1018                parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1019                if (!parities)
1020                        continue;
1021
1022                for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1023                        struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1024
1025                        if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1026                            !!(parities & BIT(bit_idx)))
1027                                qed_int_deassertion_parity(p_hwfn, p_bit,
1028                                                           aeu_en, bit_idx);
1029
1030                        bit_idx += ATTENTION_LENGTH(p_bit->flags);
1031                }
1032        }
1033
1034        /* Find non-parity cause for attention and act */
1035        for (k = 0; k < MAX_ATTN_GRPS; k++) {
1036                struct aeu_invert_reg_bit *p_aeu;
1037
1038                /* Handle only groups whose attention is currently deasserted */
1039                if (!(deasserted_bits & (1 << k)))
1040                        continue;
1041
1042                for (i = 0; i < NUM_ATTN_REGS; i++) {
1043                        u32 bits;
1044
1045                        aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1046                                 i * sizeof(u32) +
1047                                 k * sizeof(u32) * NUM_ATTN_REGS;
1048
1049                        en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1050                        bits = aeu_inv_arr[i] & en;
1051
1052                        /* Skip if no bit from this group is currently set */
1053                        if (!bits)
1054                                continue;
1055
1056                        /* Find all set bits from current register which belong
1057                         * to current group, making them responsible for the
1058                         * previous assertion.
1059                         */
1060                        for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1061                                long unsigned int bitmask;
1062                                u8 bit, bit_len;
1063
1064                                p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1065                                p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1066
1067                                bit = bit_idx;
1068                                bit_len = ATTENTION_LENGTH(p_aeu->flags);
1069                                if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1070                                        /* Skip Parity */
1071                                        bit++;
1072                                        bit_len--;
1073                                }
1074
1075                                bitmask = bits & (((1 << bit_len) - 1) << bit);
1076                                bitmask >>= bit;
1077
1078                                if (bitmask) {
1079                                        u32 flags = p_aeu->flags;
1080                                        char bit_name[30];
1081                                        u8 num;
1082
1083                                        num = (u8)find_first_bit(&bitmask,
1084                                                                 bit_len);
1085
1086                                        /* Some bits represent more than a
1087                                         * a single interrupt. Correctly print
1088                                         * their name.
1089                                         */
1090                                        if (ATTENTION_LENGTH(flags) > 2 ||
1091                                            ((flags & ATTENTION_PAR_INT) &&
1092                                             ATTENTION_LENGTH(flags) > 1))
1093                                                snprintf(bit_name, 30,
1094                                                         p_aeu->bit_name, num);
1095                                        else
1096                                                strlcpy(bit_name,
1097                                                        p_aeu->bit_name, 30);
1098
1099                                        /* We now need to pass bitmask in its
1100                                         * correct position.
1101                                         */
1102                                        bitmask <<= bit;
1103
1104                                        /* Handle source of the attention */
1105                                        qed_int_deassertion_aeu_bit(p_hwfn,
1106                                                                    p_aeu,
1107                                                                    aeu_en,
1108                                                                    bit_name,
1109                                                                    bitmask);
1110                                }
1111
1112                                bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1113                        }
1114                }
1115        }
1116
1117        /* Handle missed DORQ attention */
1118        qed_dorq_attn_handler(p_hwfn);
1119
1120        /* Clear IGU indication for the deasserted bits */
1121        DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1122                                    GTT_BAR0_MAP_REG_IGU_CMD +
1123                                    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1124                                      IGU_CMD_INT_ACK_BASE) << 3),
1125                                    ~((u32)deasserted_bits));
1126
1127        /* Unmask deasserted attentions in IGU */
1128        aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1129        aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1130        qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1131
1132        /* Clear deassertion from inner state */
1133        sb_attn_sw->known_attn &= ~deasserted_bits;
1134
1135        return rc;
1136}
1137
1138static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1139{
1140        struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1141        struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1142        u32 attn_bits = 0, attn_acks = 0;
1143        u16 asserted_bits, deasserted_bits;
1144        __le16 index;
1145        int rc = 0;
1146
1147        /* Read current attention bits/acks - safeguard against attentions
1148         * by guaranting work on a synchronized timeframe
1149         */
1150        do {
1151                index = p_sb_attn->sb_index;
1152                /* finish reading index before the loop condition */
1153                dma_rmb();
1154                attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1155                attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1156        } while (index != p_sb_attn->sb_index);
1157        p_sb_attn->sb_index = index;
1158
1159        /* Attention / Deassertion are meaningful (and in correct state)
1160         * only when they differ and consistent with known state - deassertion
1161         * when previous attention & current ack, and assertion when current
1162         * attention with no previous attention
1163         */
1164        asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1165                ~p_sb_attn_sw->known_attn;
1166        deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1167                p_sb_attn_sw->known_attn;
1168
1169        if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1170                DP_INFO(p_hwfn,
1171                        "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1172                        index, attn_bits, attn_acks, asserted_bits,
1173                        deasserted_bits, p_sb_attn_sw->known_attn);
1174        } else if (asserted_bits == 0x100) {
1175                DP_INFO(p_hwfn, "MFW indication via attention\n");
1176        } else {
1177                DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1178                           "MFW indication [deassertion]\n");
1179        }
1180
1181        if (asserted_bits) {
1182                rc = qed_int_assertion(p_hwfn, asserted_bits);
1183                if (rc)
1184                        return rc;
1185        }
1186
1187        if (deasserted_bits)
1188                rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1189
1190        return rc;
1191}
1192
1193static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1194                            void __iomem *igu_addr, u32 ack_cons)
1195{
1196        struct igu_prod_cons_update igu_ack = { 0 };
1197
1198        igu_ack.sb_id_and_flags =
1199                ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1200                 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1201                 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1202                 (IGU_SEG_ACCESS_ATTN <<
1203                  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1204
1205        DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1206
1207        /* Both segments (interrupts & acks) are written to same place address;
1208         * Need to guarantee all commands will be received (in-order) by HW.
1209         */
1210        barrier();
1211}
1212
1213void qed_int_sp_dpc(unsigned long hwfn_cookie)
1214{
1215        struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1216        struct qed_pi_info *pi_info = NULL;
1217        struct qed_sb_attn_info *sb_attn;
1218        struct qed_sb_info *sb_info;
1219        int arr_size;
1220        u16 rc = 0;
1221
1222        if (!p_hwfn->p_sp_sb) {
1223                DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1224                return;
1225        }
1226
1227        sb_info = &p_hwfn->p_sp_sb->sb_info;
1228        arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1229        if (!sb_info) {
1230                DP_ERR(p_hwfn->cdev,
1231                       "Status block is NULL - cannot ack interrupts\n");
1232                return;
1233        }
1234
1235        if (!p_hwfn->p_sb_attn) {
1236                DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1237                return;
1238        }
1239        sb_attn = p_hwfn->p_sb_attn;
1240
1241        DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1242                   p_hwfn, p_hwfn->my_id);
1243
1244        /* Disable ack for def status block. Required both for msix +
1245         * inta in non-mask mode, in inta does no harm.
1246         */
1247        qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1248
1249        /* Gather Interrupts/Attentions information */
1250        if (!sb_info->sb_virt) {
1251                DP_ERR(p_hwfn->cdev,
1252                       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1253        } else {
1254                u32 tmp_index = sb_info->sb_ack;
1255
1256                rc = qed_sb_update_sb_idx(sb_info);
1257                DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1258                           "Interrupt indices: 0x%08x --> 0x%08x\n",
1259                           tmp_index, sb_info->sb_ack);
1260        }
1261
1262        if (!sb_attn || !sb_attn->sb_attn) {
1263                DP_ERR(p_hwfn->cdev,
1264                       "Attentions Status block is NULL - cannot check for new attentions!\n");
1265        } else {
1266                u16 tmp_index = sb_attn->index;
1267
1268                rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1269                DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1270                           "Attention indices: 0x%08x --> 0x%08x\n",
1271                           tmp_index, sb_attn->index);
1272        }
1273
1274        /* Check if we expect interrupts at this time. if not just ack them */
1275        if (!(rc & QED_SB_EVENT_MASK)) {
1276                qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1277                return;
1278        }
1279
1280        /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1281        if (!p_hwfn->p_dpc_ptt) {
1282                DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1283                qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1284                return;
1285        }
1286
1287        if (rc & QED_SB_ATT_IDX)
1288                qed_int_attentions(p_hwfn);
1289
1290        if (rc & QED_SB_IDX) {
1291                int pi;
1292
1293                /* Look for a free index */
1294                for (pi = 0; pi < arr_size; pi++) {
1295                        pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1296                        if (pi_info->comp_cb)
1297                                pi_info->comp_cb(p_hwfn, pi_info->cookie);
1298                }
1299        }
1300
1301        if (sb_attn && (rc & QED_SB_ATT_IDX))
1302                /* This should be done before the interrupts are enabled,
1303                 * since otherwise a new attention will be generated.
1304                 */
1305                qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1306
1307        qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1308}
1309
1310static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1311{
1312        struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1313
1314        if (!p_sb)
1315                return;
1316
1317        if (p_sb->sb_attn)
1318                dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1319                                  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1320                                  p_sb->sb_attn, p_sb->sb_phys);
1321        kfree(p_sb);
1322        p_hwfn->p_sb_attn = NULL;
1323}
1324
1325static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1326                                  struct qed_ptt *p_ptt)
1327{
1328        struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1329
1330        memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1331
1332        sb_info->index = 0;
1333        sb_info->known_attn = 0;
1334
1335        /* Configure Attention Status Block in IGU */
1336        qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1337               lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1338        qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1339               upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1340}
1341
1342static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1343                                 struct qed_ptt *p_ptt,
1344                                 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1345{
1346        struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1347        int i, j, k;
1348
1349        sb_info->sb_attn = sb_virt_addr;
1350        sb_info->sb_phys = sb_phy_addr;
1351
1352        /* Set the pointer to the AEU descriptors */
1353        sb_info->p_aeu_desc = aeu_descs;
1354
1355        /* Calculate Parity Masks */
1356        memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1357        for (i = 0; i < NUM_ATTN_REGS; i++) {
1358                /* j is array index, k is bit index */
1359                for (j = 0, k = 0; k < 32; j++) {
1360                        struct aeu_invert_reg_bit *p_aeu;
1361
1362                        p_aeu = &aeu_descs[i].bits[j];
1363                        if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1364                                sb_info->parity_mask[i] |= 1 << k;
1365
1366                        k += ATTENTION_LENGTH(p_aeu->flags);
1367                }
1368                DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1369                           "Attn Mask [Reg %d]: 0x%08x\n",
1370                           i, sb_info->parity_mask[i]);
1371        }
1372
1373        /* Set the address of cleanup for the mcp attention */
1374        sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1375                                 MISC_REG_AEU_GENERAL_ATTN_0;
1376
1377        qed_int_sb_attn_setup(p_hwfn, p_ptt);
1378}
1379
1380static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1381                                 struct qed_ptt *p_ptt)
1382{
1383        struct qed_dev *cdev = p_hwfn->cdev;
1384        struct qed_sb_attn_info *p_sb;
1385        dma_addr_t p_phys = 0;
1386        void *p_virt;
1387
1388        /* SB struct */
1389        p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1390        if (!p_sb)
1391                return -ENOMEM;
1392
1393        /* SB ring  */
1394        p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1395                                    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1396                                    &p_phys, GFP_KERNEL);
1397
1398        if (!p_virt) {
1399                kfree(p_sb);
1400                return -ENOMEM;
1401        }
1402
1403        /* Attention setup */
1404        p_hwfn->p_sb_attn = p_sb;
1405        qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1406
1407        return 0;
1408}
1409
1410/* coalescing timeout = timeset << (timer_res + 1) */
1411#define QED_CAU_DEF_RX_USECS 24
1412#define QED_CAU_DEF_TX_USECS 48
1413
1414void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1415                           struct cau_sb_entry *p_sb_entry,
1416                           u8 pf_id, u16 vf_number, u8 vf_valid)
1417{
1418        struct qed_dev *cdev = p_hwfn->cdev;
1419        u32 cau_state;
1420        u8 timer_res;
1421
1422        memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1423
1424        SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1425        SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1426        SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1427        SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1428        SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1429
1430        cau_state = CAU_HC_DISABLE_STATE;
1431
1432        if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1433                cau_state = CAU_HC_ENABLE_STATE;
1434                if (!cdev->rx_coalesce_usecs)
1435                        cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1436                if (!cdev->tx_coalesce_usecs)
1437                        cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1438        }
1439
1440        /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1441        if (cdev->rx_coalesce_usecs <= 0x7F)
1442                timer_res = 0;
1443        else if (cdev->rx_coalesce_usecs <= 0xFF)
1444                timer_res = 1;
1445        else
1446                timer_res = 2;
1447        SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1448
1449        if (cdev->tx_coalesce_usecs <= 0x7F)
1450                timer_res = 0;
1451        else if (cdev->tx_coalesce_usecs <= 0xFF)
1452                timer_res = 1;
1453        else
1454                timer_res = 2;
1455        SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1456
1457        SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1458        SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1459}
1460
1461static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1462                                struct qed_ptt *p_ptt,
1463                                u16 igu_sb_id,
1464                                u32 pi_index,
1465                                enum qed_coalescing_fsm coalescing_fsm,
1466                                u8 timeset)
1467{
1468        struct cau_pi_entry pi_entry;
1469        u32 sb_offset, pi_offset;
1470
1471        if (IS_VF(p_hwfn->cdev))
1472                return;
1473
1474        sb_offset = igu_sb_id * PIS_PER_SB_E4;
1475        memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1476
1477        SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1478        if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1479                SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1480        else
1481                SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1482
1483        pi_offset = sb_offset + pi_index;
1484        if (p_hwfn->hw_init_done) {
1485                qed_wr(p_hwfn, p_ptt,
1486                       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1487                       *((u32 *)&(pi_entry)));
1488        } else {
1489                STORE_RT_REG(p_hwfn,
1490                             CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1491                             *((u32 *)&(pi_entry)));
1492        }
1493}
1494
1495void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1496                         struct qed_ptt *p_ptt,
1497                         dma_addr_t sb_phys,
1498                         u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1499{
1500        struct cau_sb_entry sb_entry;
1501
1502        qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1503                              vf_number, vf_valid);
1504
1505        if (p_hwfn->hw_init_done) {
1506                /* Wide-bus, initialize via DMAE */
1507                u64 phys_addr = (u64)sb_phys;
1508
1509                qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1510                                  CAU_REG_SB_ADDR_MEMORY +
1511                                  igu_sb_id * sizeof(u64), 2, NULL);
1512                qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1513                                  CAU_REG_SB_VAR_MEMORY +
1514                                  igu_sb_id * sizeof(u64), 2, NULL);
1515        } else {
1516                /* Initialize Status Block Address */
1517                STORE_RT_REG_AGG(p_hwfn,
1518                                 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1519                                 igu_sb_id * 2,
1520                                 sb_phys);
1521
1522                STORE_RT_REG_AGG(p_hwfn,
1523                                 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1524                                 igu_sb_id * 2,
1525                                 sb_entry);
1526        }
1527
1528        /* Configure pi coalescing if set */
1529        if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1530                u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1531                u8 timeset, timer_res;
1532                u8 i;
1533
1534                /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1535                if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1536                        timer_res = 0;
1537                else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1538                        timer_res = 1;
1539                else
1540                        timer_res = 2;
1541                timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1542                qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1543                                    QED_COAL_RX_STATE_MACHINE, timeset);
1544
1545                if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1546                        timer_res = 0;
1547                else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1548                        timer_res = 1;
1549                else
1550                        timer_res = 2;
1551                timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1552                for (i = 0; i < num_tc; i++) {
1553                        qed_int_cau_conf_pi(p_hwfn, p_ptt,
1554                                            igu_sb_id, TX_PI(i),
1555                                            QED_COAL_TX_STATE_MACHINE,
1556                                            timeset);
1557                }
1558        }
1559}
1560
1561void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1562                      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1563{
1564        /* zero status block and ack counter */
1565        sb_info->sb_ack = 0;
1566        memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1567
1568        if (IS_PF(p_hwfn->cdev))
1569                qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1570                                    sb_info->igu_sb_id, 0, 0);
1571}
1572
1573struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1574{
1575        struct qed_igu_block *p_block;
1576        u16 igu_id;
1577
1578        for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1579             igu_id++) {
1580                p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1581
1582                if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1583                    !(p_block->status & QED_IGU_STATUS_FREE))
1584                        continue;
1585
1586                if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1587                        return p_block;
1588        }
1589
1590        return NULL;
1591}
1592
1593static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1594{
1595        struct qed_igu_block *p_block;
1596        u16 igu_id;
1597
1598        for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1599             igu_id++) {
1600                p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1601
1602                if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1603                    !p_block->is_pf ||
1604                    p_block->vector_number != vector_id)
1605                        continue;
1606
1607                return igu_id;
1608        }
1609
1610        return QED_SB_INVALID_IDX;
1611}
1612
1613u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1614{
1615        u16 igu_sb_id;
1616
1617        /* Assuming continuous set of IGU SBs dedicated for given PF */
1618        if (sb_id == QED_SP_SB_ID)
1619                igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1620        else if (IS_PF(p_hwfn->cdev))
1621                igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1622        else
1623                igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1624
1625        if (sb_id == QED_SP_SB_ID)
1626                DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1627                           "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1628        else
1629                DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1630                           "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1631
1632        return igu_sb_id;
1633}
1634
1635int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1636                    struct qed_ptt *p_ptt,
1637                    struct qed_sb_info *sb_info,
1638                    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1639{
1640        sb_info->sb_virt = sb_virt_addr;
1641        sb_info->sb_phys = sb_phy_addr;
1642
1643        sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1644
1645        if (sb_id != QED_SP_SB_ID) {
1646                if (IS_PF(p_hwfn->cdev)) {
1647                        struct qed_igu_info *p_info;
1648                        struct qed_igu_block *p_block;
1649
1650                        p_info = p_hwfn->hw_info.p_igu_info;
1651                        p_block = &p_info->entry[sb_info->igu_sb_id];
1652
1653                        p_block->sb_info = sb_info;
1654                        p_block->status &= ~QED_IGU_STATUS_FREE;
1655                        p_info->usage.free_cnt--;
1656                } else {
1657                        qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1658                }
1659        }
1660
1661        sb_info->cdev = p_hwfn->cdev;
1662
1663        /* The igu address will hold the absolute address that needs to be
1664         * written to for a specific status block
1665         */
1666        if (IS_PF(p_hwfn->cdev)) {
1667                sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1668                                                  GTT_BAR0_MAP_REG_IGU_CMD +
1669                                                  (sb_info->igu_sb_id << 3);
1670        } else {
1671                sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1672                                                  PXP_VF_BAR0_START_IGU +
1673                                                  ((IGU_CMD_INT_ACK_BASE +
1674                                                    sb_info->igu_sb_id) << 3);
1675        }
1676
1677        sb_info->flags |= QED_SB_INFO_INIT;
1678
1679        qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1680
1681        return 0;
1682}
1683
1684int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1685                       struct qed_sb_info *sb_info, u16 sb_id)
1686{
1687        struct qed_igu_block *p_block;
1688        struct qed_igu_info *p_info;
1689
1690        if (!sb_info)
1691                return 0;
1692
1693        /* zero status block and ack counter */
1694        sb_info->sb_ack = 0;
1695        memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1696
1697        if (IS_VF(p_hwfn->cdev)) {
1698                qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1699                return 0;
1700        }
1701
1702        p_info = p_hwfn->hw_info.p_igu_info;
1703        p_block = &p_info->entry[sb_info->igu_sb_id];
1704
1705        /* Vector 0 is reserved to Default SB */
1706        if (!p_block->vector_number) {
1707                DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1708                return -EINVAL;
1709        }
1710
1711        /* Lose reference to client's SB info, and fix counters */
1712        p_block->sb_info = NULL;
1713        p_block->status |= QED_IGU_STATUS_FREE;
1714        p_info->usage.free_cnt++;
1715
1716        return 0;
1717}
1718
1719static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1720{
1721        struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1722
1723        if (!p_sb)
1724                return;
1725
1726        if (p_sb->sb_info.sb_virt)
1727                dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1728                                  SB_ALIGNED_SIZE(p_hwfn),
1729                                  p_sb->sb_info.sb_virt,
1730                                  p_sb->sb_info.sb_phys);
1731        kfree(p_sb);
1732        p_hwfn->p_sp_sb = NULL;
1733}
1734
1735static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1736{
1737        struct qed_sb_sp_info *p_sb;
1738        dma_addr_t p_phys = 0;
1739        void *p_virt;
1740
1741        /* SB struct */
1742        p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1743        if (!p_sb)
1744                return -ENOMEM;
1745
1746        /* SB ring  */
1747        p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1748                                    SB_ALIGNED_SIZE(p_hwfn),
1749                                    &p_phys, GFP_KERNEL);
1750        if (!p_virt) {
1751                kfree(p_sb);
1752                return -ENOMEM;
1753        }
1754
1755        /* Status Block setup */
1756        p_hwfn->p_sp_sb = p_sb;
1757        qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1758                        p_phys, QED_SP_SB_ID);
1759
1760        memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1761
1762        return 0;
1763}
1764
1765int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1766                        qed_int_comp_cb_t comp_cb,
1767                        void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1768{
1769        struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1770        int rc = -ENOMEM;
1771        u8 pi;
1772
1773        /* Look for a free index */
1774        for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1775                if (p_sp_sb->pi_info_arr[pi].comp_cb)
1776                        continue;
1777
1778                p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1779                p_sp_sb->pi_info_arr[pi].cookie = cookie;
1780                *sb_idx = pi;
1781                *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1782                rc = 0;
1783                break;
1784        }
1785
1786        return rc;
1787}
1788
1789int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1790{
1791        struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1792
1793        if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1794                return -ENOMEM;
1795
1796        p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1797        p_sp_sb->pi_info_arr[pi].cookie = NULL;
1798
1799        return 0;
1800}
1801
1802u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1803{
1804        return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1805}
1806
1807void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1808                            struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1809{
1810        u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1811
1812        p_hwfn->cdev->int_mode = int_mode;
1813        switch (p_hwfn->cdev->int_mode) {
1814        case QED_INT_MODE_INTA:
1815                igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1816                igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1817                break;
1818
1819        case QED_INT_MODE_MSI:
1820                igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1821                igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1822                break;
1823
1824        case QED_INT_MODE_MSIX:
1825                igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1826                break;
1827        case QED_INT_MODE_POLL:
1828                break;
1829        }
1830
1831        qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1832}
1833
1834static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1835                                    struct qed_ptt *p_ptt)
1836{
1837
1838        /* Configure AEU signal change to produce attentions */
1839        qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1840        qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1841        qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1842        qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1843
1844        /* Unmask AEU signals toward IGU */
1845        qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1846}
1847
1848int
1849qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1850                   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1851{
1852        int rc = 0;
1853
1854        qed_int_igu_enable_attn(p_hwfn, p_ptt);
1855
1856        if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1857                rc = qed_slowpath_irq_req(p_hwfn);
1858                if (rc) {
1859                        DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1860                        return -EINVAL;
1861                }
1862                p_hwfn->b_int_requested = true;
1863        }
1864        /* Enable interrupt Generation */
1865        qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1866        p_hwfn->b_int_enabled = 1;
1867
1868        return rc;
1869}
1870
1871void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1872{
1873        p_hwfn->b_int_enabled = 0;
1874
1875        if (IS_VF(p_hwfn->cdev))
1876                return;
1877
1878        qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1879}
1880
1881#define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1882static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1883                                   struct qed_ptt *p_ptt,
1884                                   u16 igu_sb_id,
1885                                   bool cleanup_set, u16 opaque_fid)
1886{
1887        u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1888        u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1889        u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1890
1891        /* Set the data field */
1892        SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1893        SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1894        SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1895
1896        /* Set the control register */
1897        SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1898        SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1899        SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1900
1901        qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1902
1903        barrier();
1904
1905        qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1906
1907        /* calculate where to read the status bit from */
1908        sb_bit = 1 << (igu_sb_id % 32);
1909        sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1910
1911        sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1912
1913        /* Now wait for the command to complete */
1914        do {
1915                val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1916
1917                if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1918                        break;
1919
1920                usleep_range(5000, 10000);
1921        } while (--sleep_cnt);
1922
1923        if (!sleep_cnt)
1924                DP_NOTICE(p_hwfn,
1925                          "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1926                          val, igu_sb_id);
1927}
1928
1929void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1930                                     struct qed_ptt *p_ptt,
1931                                     u16 igu_sb_id, u16 opaque, bool b_set)
1932{
1933        struct qed_igu_block *p_block;
1934        int pi, i;
1935
1936        p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1937        DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1938                   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1939                   igu_sb_id,
1940                   p_block->function_id,
1941                   p_block->is_pf, p_block->vector_number);
1942
1943        /* Set */
1944        if (b_set)
1945                qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1946
1947        /* Clear */
1948        qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1949
1950        /* Wait for the IGU SB to cleanup */
1951        for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1952                u32 val;
1953
1954                val = qed_rd(p_hwfn, p_ptt,
1955                             IGU_REG_WRITE_DONE_PENDING +
1956                             ((igu_sb_id / 32) * 4));
1957                if (val & BIT((igu_sb_id % 32)))
1958                        usleep_range(10, 20);
1959                else
1960                        break;
1961        }
1962        if (i == IGU_CLEANUP_SLEEP_LENGTH)
1963                DP_NOTICE(p_hwfn,
1964                          "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1965                          igu_sb_id);
1966
1967        /* Clear the CAU for the SB */
1968        for (pi = 0; pi < 12; pi++)
1969                qed_wr(p_hwfn, p_ptt,
1970                       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1971}
1972
1973void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1974                              struct qed_ptt *p_ptt,
1975                              bool b_set, bool b_slowpath)
1976{
1977        struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1978        struct qed_igu_block *p_block;
1979        u16 igu_sb_id = 0;
1980        u32 val = 0;
1981
1982        val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1983        val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1984        val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1985        qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1986
1987        for (igu_sb_id = 0;
1988             igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1989                p_block = &p_info->entry[igu_sb_id];
1990
1991                if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1992                    !p_block->is_pf ||
1993                    (p_block->status & QED_IGU_STATUS_DSB))
1994                        continue;
1995
1996                qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1997                                                p_hwfn->hw_info.opaque_fid,
1998                                                b_set);
1999        }
2000
2001        if (b_slowpath)
2002                qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2003                                                p_info->igu_dsb_id,
2004                                                p_hwfn->hw_info.opaque_fid,
2005                                                b_set);
2006}
2007
2008int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2009{
2010        struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2011        struct qed_igu_block *p_block;
2012        int pf_sbs, vf_sbs;
2013        u16 igu_sb_id;
2014        u32 val, rval;
2015
2016        if (!RESC_NUM(p_hwfn, QED_SB)) {
2017                p_info->b_allow_pf_vf_change = false;
2018        } else {
2019                /* Use the numbers the MFW have provided -
2020                 * don't forget MFW accounts for the default SB as well.
2021                 */
2022                p_info->b_allow_pf_vf_change = true;
2023
2024                if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2025                        DP_INFO(p_hwfn,
2026                                "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2027                                RESC_NUM(p_hwfn, QED_SB) - 1,
2028                                p_info->usage.cnt);
2029                        p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2030                }
2031
2032                if (IS_PF_SRIOV(p_hwfn)) {
2033                        u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2034
2035                        if (vfs != p_info->usage.iov_cnt)
2036                                DP_VERBOSE(p_hwfn,
2037                                           NETIF_MSG_INTR,
2038                                           "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2039                                           p_info->usage.iov_cnt, vfs);
2040
2041                        /* At this point we know how many SBs we have totally
2042                         * in IGU + number of PF SBs. So we can validate that
2043                         * we'd have sufficient for VF.
2044                         */
2045                        if (vfs > p_info->usage.free_cnt +
2046                            p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2047                                DP_NOTICE(p_hwfn,
2048                                          "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2049                                          p_info->usage.free_cnt +
2050                                          p_info->usage.free_cnt_iov,
2051                                          p_info->usage.cnt, vfs);
2052                                return -EINVAL;
2053                        }
2054
2055                        /* Currently cap the number of VFs SBs by the
2056                         * number of VFs.
2057                         */
2058                        p_info->usage.iov_cnt = vfs;
2059                }
2060        }
2061
2062        /* Mark all SBs as free, now in the right PF/VFs division */
2063        p_info->usage.free_cnt = p_info->usage.cnt;
2064        p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2065        p_info->usage.orig = p_info->usage.cnt;
2066        p_info->usage.iov_orig = p_info->usage.iov_cnt;
2067
2068        /* We now proceed to re-configure the IGU cam to reflect the initial
2069         * configuration. We can start with the Default SB.
2070         */
2071        pf_sbs = p_info->usage.cnt;
2072        vf_sbs = p_info->usage.iov_cnt;
2073
2074        for (igu_sb_id = p_info->igu_dsb_id;
2075             igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2076                p_block = &p_info->entry[igu_sb_id];
2077                val = 0;
2078
2079                if (!(p_block->status & QED_IGU_STATUS_VALID))
2080                        continue;
2081
2082                if (p_block->status & QED_IGU_STATUS_DSB) {
2083                        p_block->function_id = p_hwfn->rel_pf_id;
2084                        p_block->is_pf = 1;
2085                        p_block->vector_number = 0;
2086                        p_block->status = QED_IGU_STATUS_VALID |
2087                                          QED_IGU_STATUS_PF |
2088                                          QED_IGU_STATUS_DSB;
2089                } else if (pf_sbs) {
2090                        pf_sbs--;
2091                        p_block->function_id = p_hwfn->rel_pf_id;
2092                        p_block->is_pf = 1;
2093                        p_block->vector_number = p_info->usage.cnt - pf_sbs;
2094                        p_block->status = QED_IGU_STATUS_VALID |
2095                                          QED_IGU_STATUS_PF |
2096                                          QED_IGU_STATUS_FREE;
2097                } else if (vf_sbs) {
2098                        p_block->function_id =
2099                            p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2100                            p_info->usage.iov_cnt - vf_sbs;
2101                        p_block->is_pf = 0;
2102                        p_block->vector_number = 0;
2103                        p_block->status = QED_IGU_STATUS_VALID |
2104                                          QED_IGU_STATUS_FREE;
2105                        vf_sbs--;
2106                } else {
2107                        p_block->function_id = 0;
2108                        p_block->is_pf = 0;
2109                        p_block->vector_number = 0;
2110                }
2111
2112                SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2113                          p_block->function_id);
2114                SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2115                SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2116                          p_block->vector_number);
2117
2118                /* VF entries would be enabled when VF is initializaed */
2119                SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2120
2121                rval = qed_rd(p_hwfn, p_ptt,
2122                              IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2123
2124                if (rval != val) {
2125                        qed_wr(p_hwfn, p_ptt,
2126                               IGU_REG_MAPPING_MEMORY +
2127                               sizeof(u32) * igu_sb_id, val);
2128
2129                        DP_VERBOSE(p_hwfn,
2130                                   NETIF_MSG_INTR,
2131                                   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2132                                   igu_sb_id,
2133                                   p_block->function_id,
2134                                   p_block->is_pf,
2135                                   p_block->vector_number, rval, val);
2136                }
2137        }
2138
2139        return 0;
2140}
2141
2142static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2143                                       struct qed_ptt *p_ptt, u16 igu_sb_id)
2144{
2145        u32 val = qed_rd(p_hwfn, p_ptt,
2146                         IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2147        struct qed_igu_block *p_block;
2148
2149        p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2150
2151        /* Fill the block information */
2152        p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2153        p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2154        p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2155        p_block->igu_sb_id = igu_sb_id;
2156}
2157
2158int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2159{
2160        struct qed_igu_info *p_igu_info;
2161        struct qed_igu_block *p_block;
2162        u32 min_vf = 0, max_vf = 0;
2163        u16 igu_sb_id;
2164
2165        p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2166        if (!p_hwfn->hw_info.p_igu_info)
2167                return -ENOMEM;
2168
2169        p_igu_info = p_hwfn->hw_info.p_igu_info;
2170
2171        /* Distinguish between existent and non-existent default SB */
2172        p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2173
2174        /* Find the range of VF ids whose SB belong to this PF */
2175        if (p_hwfn->cdev->p_iov_info) {
2176                struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2177
2178                min_vf  = p_iov->first_vf_in_pf;
2179                max_vf  = p_iov->first_vf_in_pf + p_iov->total_vfs;
2180        }
2181
2182        for (igu_sb_id = 0;
2183             igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2184                /* Read current entry; Notice it might not belong to this PF */
2185                qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2186                p_block = &p_igu_info->entry[igu_sb_id];
2187
2188                if ((p_block->is_pf) &&
2189                    (p_block->function_id == p_hwfn->rel_pf_id)) {
2190                        p_block->status = QED_IGU_STATUS_PF |
2191                                          QED_IGU_STATUS_VALID |
2192                                          QED_IGU_STATUS_FREE;
2193
2194                        if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2195                                p_igu_info->usage.cnt++;
2196                } else if (!(p_block->is_pf) &&
2197                           (p_block->function_id >= min_vf) &&
2198                           (p_block->function_id < max_vf)) {
2199                        /* Available for VFs of this PF */
2200                        p_block->status = QED_IGU_STATUS_VALID |
2201                                          QED_IGU_STATUS_FREE;
2202
2203                        if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2204                                p_igu_info->usage.iov_cnt++;
2205                }
2206
2207                /* Mark the First entry belonging to the PF or its VFs
2208                 * as the default SB [we'll reset IGU prior to first usage].
2209                 */
2210                if ((p_block->status & QED_IGU_STATUS_VALID) &&
2211                    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2212                        p_igu_info->igu_dsb_id = igu_sb_id;
2213                        p_block->status |= QED_IGU_STATUS_DSB;
2214                }
2215
2216                /* limit number of prints by having each PF print only its
2217                 * entries with the exception of PF0 which would print
2218                 * everything.
2219                 */
2220                if ((p_block->status & QED_IGU_STATUS_VALID) ||
2221                    (p_hwfn->abs_pf_id == 0)) {
2222                        DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2223                                   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2224                                   igu_sb_id, p_block->function_id,
2225                                   p_block->is_pf, p_block->vector_number);
2226                }
2227        }
2228
2229        if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2230                DP_NOTICE(p_hwfn,
2231                          "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2232                          p_igu_info->igu_dsb_id);
2233                return -EINVAL;
2234        }
2235
2236        /* All non default SB are considered free at this point */
2237        p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2238        p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2239
2240        DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2241                   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2242                   p_igu_info->igu_dsb_id,
2243                   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2244
2245        return 0;
2246}
2247
2248/**
2249 * @brief Initialize igu runtime registers
2250 *
2251 * @param p_hwfn
2252 */
2253void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2254{
2255        u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2256
2257        STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2258}
2259
2260u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2261{
2262        u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2263                               IGU_CMD_INT_ACK_BASE;
2264        u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2265                               IGU_CMD_INT_ACK_BASE;
2266        u32 intr_status_hi = 0, intr_status_lo = 0;
2267        u64 intr_status = 0;
2268
2269        intr_status_lo = REG_RD(p_hwfn,
2270                                GTT_BAR0_MAP_REG_IGU_CMD +
2271                                lsb_igu_cmd_addr * 8);
2272        intr_status_hi = REG_RD(p_hwfn,
2273                                GTT_BAR0_MAP_REG_IGU_CMD +
2274                                msb_igu_cmd_addr * 8);
2275        intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2276
2277        return intr_status;
2278}
2279
2280static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2281{
2282        tasklet_init(p_hwfn->sp_dpc,
2283                     qed_int_sp_dpc, (unsigned long)p_hwfn);
2284        p_hwfn->b_sp_dpc_enabled = true;
2285}
2286
2287static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
2288{
2289        p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
2290        if (!p_hwfn->sp_dpc)
2291                return -ENOMEM;
2292
2293        return 0;
2294}
2295
2296static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
2297{
2298        kfree(p_hwfn->sp_dpc);
2299        p_hwfn->sp_dpc = NULL;
2300}
2301
2302int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2303{
2304        int rc = 0;
2305
2306        rc = qed_int_sp_dpc_alloc(p_hwfn);
2307        if (rc)
2308                return rc;
2309
2310        rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2311        if (rc)
2312                return rc;
2313
2314        rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2315
2316        return rc;
2317}
2318
2319void qed_int_free(struct qed_hwfn *p_hwfn)
2320{
2321        qed_int_sp_sb_free(p_hwfn);
2322        qed_int_sb_attn_free(p_hwfn);
2323        qed_int_sp_dpc_free(p_hwfn);
2324}
2325
2326void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2327{
2328        qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2329        qed_int_sb_attn_setup(p_hwfn, p_ptt);
2330        qed_int_sp_dpc_setup(p_hwfn);
2331}
2332
2333void qed_int_get_num_sbs(struct qed_hwfn        *p_hwfn,
2334                         struct qed_sb_cnt_info *p_sb_cnt_info)
2335{
2336        struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2337
2338        if (!info || !p_sb_cnt_info)
2339                return;
2340
2341        memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2342}
2343
2344void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2345{
2346        int i;
2347
2348        for_each_hwfn(cdev, i)
2349                cdev->hwfns[i].b_int_requested = false;
2350}
2351
2352int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2353                          u8 timer_res, u16 sb_id, bool tx)
2354{
2355        struct cau_sb_entry sb_entry;
2356        int rc;
2357
2358        if (!p_hwfn->hw_init_done) {
2359                DP_ERR(p_hwfn, "hardware not initialized yet\n");
2360                return -EINVAL;
2361        }
2362
2363        rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2364                               sb_id * sizeof(u64),
2365                               (u64)(uintptr_t)&sb_entry, 2, NULL);
2366        if (rc) {
2367                DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2368                return rc;
2369        }
2370
2371        if (tx)
2372                SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2373        else
2374                SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2375
2376        rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2377                               (u64)(uintptr_t)&sb_entry,
2378                               CAU_REG_SB_VAR_MEMORY +
2379                               sb_id * sizeof(u64), 2, NULL);
2380        if (rc) {
2381                DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2382                return rc;
2383        }
2384
2385        return rc;
2386}
2387