linux/drivers/net/ethernet/sfc/ptp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2011-2013 Solarflare Communications Inc.
   5 */
   6
   7/* Theory of operation:
   8 *
   9 * PTP support is assisted by firmware running on the MC, which provides
  10 * the hardware timestamping capabilities.  Both transmitted and received
  11 * PTP event packets are queued onto internal queues for subsequent processing;
  12 * this is because the MC operations are relatively long and would block
  13 * block NAPI/interrupt operation.
  14 *
  15 * Receive event processing:
  16 *      The event contains the packet's UUID and sequence number, together
  17 *      with the hardware timestamp.  The PTP receive packet queue is searched
  18 *      for this UUID/sequence number and, if found, put on a pending queue.
  19 *      Packets not matching are delivered without timestamps (MCDI events will
  20 *      always arrive after the actual packet).
  21 *      It is important for the operation of the PTP protocol that the ordering
  22 *      of packets between the event and general port is maintained.
  23 *
  24 * Work queue processing:
  25 *      If work waiting, synchronise host/hardware time
  26 *
  27 *      Transmit: send packet through MC, which returns the transmission time
  28 *      that is converted to an appropriate timestamp.
  29 *
  30 *      Receive: the packet's reception time is converted to an appropriate
  31 *      timestamp.
  32 */
  33#include <linux/ip.h>
  34#include <linux/udp.h>
  35#include <linux/time.h>
  36#include <linux/ktime.h>
  37#include <linux/module.h>
  38#include <linux/net_tstamp.h>
  39#include <linux/pps_kernel.h>
  40#include <linux/ptp_clock_kernel.h>
  41#include "net_driver.h"
  42#include "efx.h"
  43#include "mcdi.h"
  44#include "mcdi_pcol.h"
  45#include "io.h"
  46#include "farch_regs.h"
  47#include "nic.h"
  48
  49/* Maximum number of events expected to make up a PTP event */
  50#define MAX_EVENT_FRAGS                 3
  51
  52/* Maximum delay, ms, to begin synchronisation */
  53#define MAX_SYNCHRONISE_WAIT_MS         2
  54
  55/* How long, at most, to spend synchronising */
  56#define SYNCHRONISE_PERIOD_NS           250000
  57
  58/* How often to update the shared memory time */
  59#define SYNCHRONISATION_GRANULARITY_NS  200
  60
  61/* Minimum permitted length of a (corrected) synchronisation time */
  62#define DEFAULT_MIN_SYNCHRONISATION_NS  120
  63
  64/* Maximum permitted length of a (corrected) synchronisation time */
  65#define MAX_SYNCHRONISATION_NS          1000
  66
  67/* How many (MC) receive events that can be queued */
  68#define MAX_RECEIVE_EVENTS              8
  69
  70/* Length of (modified) moving average. */
  71#define AVERAGE_LENGTH                  16
  72
  73/* How long an unmatched event or packet can be held */
  74#define PKT_EVENT_LIFETIME_MS           10
  75
  76/* Offsets into PTP packet for identification.  These offsets are from the
  77 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  78 * PTP V2 permit the use of IPV4 options.
  79 */
  80#define PTP_DPORT_OFFSET        22
  81
  82#define PTP_V1_VERSION_LENGTH   2
  83#define PTP_V1_VERSION_OFFSET   28
  84
  85#define PTP_V1_UUID_LENGTH      6
  86#define PTP_V1_UUID_OFFSET      50
  87
  88#define PTP_V1_SEQUENCE_LENGTH  2
  89#define PTP_V1_SEQUENCE_OFFSET  58
  90
  91/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  92 * includes IP header.
  93 */
  94#define PTP_V1_MIN_LENGTH       64
  95
  96#define PTP_V2_VERSION_LENGTH   1
  97#define PTP_V2_VERSION_OFFSET   29
  98
  99#define PTP_V2_UUID_LENGTH      8
 100#define PTP_V2_UUID_OFFSET      48
 101
 102/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 103 * the MC only captures the last six bytes of the clock identity. These values
 104 * reflect those, not the ones used in the standard.  The standard permits
 105 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 106 */
 107#define PTP_V2_MC_UUID_LENGTH   6
 108#define PTP_V2_MC_UUID_OFFSET   50
 109
 110#define PTP_V2_SEQUENCE_LENGTH  2
 111#define PTP_V2_SEQUENCE_OFFSET  58
 112
 113/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 114 * includes IP header.
 115 */
 116#define PTP_V2_MIN_LENGTH       63
 117
 118#define PTP_MIN_LENGTH          63
 119
 120#define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 121#define PTP_EVENT_PORT          319
 122#define PTP_GENERAL_PORT        320
 123
 124/* Annoyingly the format of the version numbers are different between
 125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 126 */
 127#define PTP_VERSION_V1          1
 128
 129#define PTP_VERSION_V2          2
 130#define PTP_VERSION_V2_MASK     0x0f
 131
 132enum ptp_packet_state {
 133        PTP_PACKET_STATE_UNMATCHED = 0,
 134        PTP_PACKET_STATE_MATCHED,
 135        PTP_PACKET_STATE_TIMED_OUT,
 136        PTP_PACKET_STATE_MATCH_UNWANTED
 137};
 138
 139/* NIC synchronised with single word of time only comprising
 140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 141 */
 142#define MC_NANOSECOND_BITS      30
 143#define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 144#define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 145
 146/* Maximum parts-per-billion adjustment that is acceptable */
 147#define MAX_PPB                 1000000
 148
 149/* Precalculate scale word to avoid long long division at runtime */
 150/* This is equivalent to 2^66 / 10^9. */
 151#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
 152
 153/* How much to shift down after scaling to convert to FP40 */
 154#define PPB_SHIFT_FP40          26
 155/* ... and FP44. */
 156#define PPB_SHIFT_FP44          22
 157
 158#define PTP_SYNC_ATTEMPTS       4
 159
 160/**
 161 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 162 * @words: UUID and (partial) sequence number
 163 * @expiry: Time after which the packet should be delivered irrespective of
 164 *            event arrival.
 165 * @state: The state of the packet - whether it is ready for processing or
 166 *         whether that is of no interest.
 167 */
 168struct efx_ptp_match {
 169        u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 170        unsigned long expiry;
 171        enum ptp_packet_state state;
 172};
 173
 174/**
 175 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 176 * @seq0: First part of (PTP) UUID
 177 * @seq1: Second part of (PTP) UUID and sequence number
 178 * @hwtimestamp: Event timestamp
 179 */
 180struct efx_ptp_event_rx {
 181        struct list_head link;
 182        u32 seq0;
 183        u32 seq1;
 184        ktime_t hwtimestamp;
 185        unsigned long expiry;
 186};
 187
 188/**
 189 * struct efx_ptp_timeset - Synchronisation between host and MC
 190 * @host_start: Host time immediately before hardware timestamp taken
 191 * @major: Hardware timestamp, major
 192 * @minor: Hardware timestamp, minor
 193 * @host_end: Host time immediately after hardware timestamp taken
 194 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 195 *          host end time being seen
 196 * @window: Difference of host_end and host_start
 197 * @valid: Whether this timeset is valid
 198 */
 199struct efx_ptp_timeset {
 200        u32 host_start;
 201        u32 major;
 202        u32 minor;
 203        u32 host_end;
 204        u32 wait;
 205        u32 window;     /* Derived: end - start, allowing for wrap */
 206};
 207
 208/**
 209 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 210 * @efx: The NIC context
 211 * @channel: The PTP channel (Siena only)
 212 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 213 *      separate events)
 214 * @rxq: Receive SKB queue (awaiting timestamps)
 215 * @txq: Transmit SKB queue
 216 * @evt_list: List of MC receive events awaiting packets
 217 * @evt_free_list: List of free events
 218 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 219 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 220 * @workwq: Work queue for processing pending PTP operations
 221 * @work: Work task
 222 * @reset_required: A serious error has occurred and the PTP task needs to be
 223 *                  reset (disable, enable).
 224 * @rxfilter_event: Receive filter when operating
 225 * @rxfilter_general: Receive filter when operating
 226 * @config: Current timestamp configuration
 227 * @enabled: PTP operation enabled
 228 * @mode: Mode in which PTP operating (PTP version)
 229 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 230 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 231 * @nic_time.minor_max: Wrap point for NIC minor times
 232 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 233 * in packet prefix and last MCDI time sync event i.e. how much earlier than
 234 * the last sync event time a packet timestamp can be.
 235 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 236 * in packet prefix and last MCDI time sync event i.e. how much later than
 237 * the last sync event time a packet timestamp can be.
 238 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 239 * field in MCDI time sync event.
 240 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 241 * @capabilities: Capabilities flags from the NIC
 242 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 243 *                         timestamps
 244 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 245 *                         timestamps
 246 * @ts_corrections.pps_out: PPS output error (information only)
 247 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 248 * @ts_corrections.general_tx: Required driver correction of general packet
 249 *                             transmit timestamps
 250 * @ts_corrections.general_rx: Required driver correction of general packet
 251 *                             receive timestamps
 252 * @evt_frags: Partly assembled PTP events
 253 * @evt_frag_idx: Current fragment number
 254 * @evt_code: Last event code
 255 * @start: Address at which MC indicates ready for synchronisation
 256 * @host_time_pps: Host time at last PPS
 257 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 258 * frequency adjustment into a fixed point fractional nanosecond format.
 259 * @current_adjfreq: Current ppb adjustment.
 260 * @phc_clock: Pointer to registered phc device (if primary function)
 261 * @phc_clock_info: Registration structure for phc device
 262 * @pps_work: pps work task for handling pps events
 263 * @pps_workwq: pps work queue
 264 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 265 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 266 *         allocations in main data path).
 267 * @good_syncs: Number of successful synchronisations.
 268 * @fast_syncs: Number of synchronisations requiring short delay
 269 * @bad_syncs: Number of failed synchronisations.
 270 * @sync_timeouts: Number of synchronisation timeouts
 271 * @no_time_syncs: Number of synchronisations with no good times.
 272 * @invalid_sync_windows: Number of sync windows with bad durations.
 273 * @undersize_sync_windows: Number of corrected sync windows that are too small
 274 * @oversize_sync_windows: Number of corrected sync windows that are too large
 275 * @rx_no_timestamp: Number of packets received without a timestamp.
 276 * @timeset: Last set of synchronisation statistics.
 277 * @xmit_skb: Transmit SKB function.
 278 */
 279struct efx_ptp_data {
 280        struct efx_nic *efx;
 281        struct efx_channel *channel;
 282        bool rx_ts_inline;
 283        struct sk_buff_head rxq;
 284        struct sk_buff_head txq;
 285        struct list_head evt_list;
 286        struct list_head evt_free_list;
 287        spinlock_t evt_lock;
 288        struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 289        struct workqueue_struct *workwq;
 290        struct work_struct work;
 291        bool reset_required;
 292        u32 rxfilter_event;
 293        u32 rxfilter_general;
 294        bool rxfilter_installed;
 295        struct hwtstamp_config config;
 296        bool enabled;
 297        unsigned int mode;
 298        void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 299        ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 300                                      s32 correction);
 301        struct {
 302                u32 minor_max;
 303                u32 sync_event_diff_min;
 304                u32 sync_event_diff_max;
 305                unsigned int sync_event_minor_shift;
 306        } nic_time;
 307        unsigned int min_synchronisation_ns;
 308        unsigned int capabilities;
 309        struct {
 310                s32 ptp_tx;
 311                s32 ptp_rx;
 312                s32 pps_out;
 313                s32 pps_in;
 314                s32 general_tx;
 315                s32 general_rx;
 316        } ts_corrections;
 317        efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 318        int evt_frag_idx;
 319        int evt_code;
 320        struct efx_buffer start;
 321        struct pps_event_time host_time_pps;
 322        unsigned int adjfreq_ppb_shift;
 323        s64 current_adjfreq;
 324        struct ptp_clock *phc_clock;
 325        struct ptp_clock_info phc_clock_info;
 326        struct work_struct pps_work;
 327        struct workqueue_struct *pps_workwq;
 328        bool nic_ts_enabled;
 329        _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
 330
 331        unsigned int good_syncs;
 332        unsigned int fast_syncs;
 333        unsigned int bad_syncs;
 334        unsigned int sync_timeouts;
 335        unsigned int no_time_syncs;
 336        unsigned int invalid_sync_windows;
 337        unsigned int undersize_sync_windows;
 338        unsigned int oversize_sync_windows;
 339        unsigned int rx_no_timestamp;
 340        struct efx_ptp_timeset
 341        timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 342        void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
 343};
 344
 345static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 346static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 347static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 348static int efx_phc_settime(struct ptp_clock_info *ptp,
 349                           const struct timespec64 *e_ts);
 350static int efx_phc_enable(struct ptp_clock_info *ptp,
 351                          struct ptp_clock_request *request, int on);
 352
 353bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
 354{
 355        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 356
 357        return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
 358                (nic_data->datapath_caps2 &
 359                 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
 360                ));
 361}
 362
 363/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 364 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 365 */
 366static bool efx_ptp_want_txqs(struct efx_channel *channel)
 367{
 368        return efx_ptp_use_mac_tx_timestamps(channel->efx);
 369}
 370
 371#define PTP_SW_STAT(ext_name, field_name)                               \
 372        { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 373#define PTP_MC_STAT(ext_name, mcdi_name)                                \
 374        { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 375static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 376        PTP_SW_STAT(ptp_good_syncs, good_syncs),
 377        PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 378        PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 379        PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 380        PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 381        PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 382        PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 383        PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 384        PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 385        PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 386        PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 387        PTP_MC_STAT(ptp_timestamp_packets, TS),
 388        PTP_MC_STAT(ptp_filter_matches, FM),
 389        PTP_MC_STAT(ptp_non_filter_matches, NFM),
 390};
 391#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 392static const unsigned long efx_ptp_stat_mask[] = {
 393        [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 394};
 395
 396size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 397{
 398        if (!efx->ptp_data)
 399                return 0;
 400
 401        return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 402                                      efx_ptp_stat_mask, strings);
 403}
 404
 405size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 406{
 407        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 408        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 409        size_t i;
 410        int rc;
 411
 412        if (!efx->ptp_data)
 413                return 0;
 414
 415        /* Copy software statistics */
 416        for (i = 0; i < PTP_STAT_COUNT; i++) {
 417                if (efx_ptp_stat_desc[i].dma_width)
 418                        continue;
 419                stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 420                                             efx_ptp_stat_desc[i].offset);
 421        }
 422
 423        /* Fetch MC statistics.  We *must* fill in all statistics or
 424         * risk leaking kernel memory to userland, so if the MCDI
 425         * request fails we pretend we got zeroes.
 426         */
 427        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 428        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 429        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 430                          outbuf, sizeof(outbuf), NULL);
 431        if (rc)
 432                memset(outbuf, 0, sizeof(outbuf));
 433        efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 434                             efx_ptp_stat_mask,
 435                             stats, _MCDI_PTR(outbuf, 0), false);
 436
 437        return PTP_STAT_COUNT;
 438}
 439
 440/* For Siena platforms NIC time is s and ns */
 441static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 442{
 443        struct timespec64 ts = ns_to_timespec64(ns);
 444        *nic_major = (u32)ts.tv_sec;
 445        *nic_minor = ts.tv_nsec;
 446}
 447
 448static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 449                                                s32 correction)
 450{
 451        ktime_t kt = ktime_set(nic_major, nic_minor);
 452        if (correction >= 0)
 453                kt = ktime_add_ns(kt, (u64)correction);
 454        else
 455                kt = ktime_sub_ns(kt, (u64)-correction);
 456        return kt;
 457}
 458
 459/* To convert from s27 format to ns we multiply then divide by a power of 2.
 460 * For the conversion from ns to s27, the operation is also converted to a
 461 * multiply and shift.
 462 */
 463#define S27_TO_NS_SHIFT (27)
 464#define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 465#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
 466#define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
 467
 468/* For Huntington platforms NIC time is in seconds and fractions of a second
 469 * where the minor register only uses 27 bits in units of 2^-27s.
 470 */
 471static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 472{
 473        struct timespec64 ts = ns_to_timespec64(ns);
 474        u32 maj = (u32)ts.tv_sec;
 475        u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 476                         (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 477
 478        /* The conversion can result in the minor value exceeding the maximum.
 479         * In this case, round up to the next second.
 480         */
 481        if (min >= S27_MINOR_MAX) {
 482                min -= S27_MINOR_MAX;
 483                maj++;
 484        }
 485
 486        *nic_major = maj;
 487        *nic_minor = min;
 488}
 489
 490static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 491{
 492        u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 493                        (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 494        return ktime_set(nic_major, ns);
 495}
 496
 497static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 498                                               s32 correction)
 499{
 500        /* Apply the correction and deal with carry */
 501        nic_minor += correction;
 502        if ((s32)nic_minor < 0) {
 503                nic_minor += S27_MINOR_MAX;
 504                nic_major--;
 505        } else if (nic_minor >= S27_MINOR_MAX) {
 506                nic_minor -= S27_MINOR_MAX;
 507                nic_major++;
 508        }
 509
 510        return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 511}
 512
 513/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
 514static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
 515{
 516        struct timespec64 ts = ns_to_timespec64(ns);
 517
 518        *nic_major = (u32)ts.tv_sec;
 519        *nic_minor = ts.tv_nsec * 4;
 520}
 521
 522static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 523                                                 s32 correction)
 524{
 525        ktime_t kt;
 526
 527        nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
 528        correction = DIV_ROUND_CLOSEST(correction, 4);
 529
 530        kt = ktime_set(nic_major, nic_minor);
 531
 532        if (correction >= 0)
 533                kt = ktime_add_ns(kt, (u64)correction);
 534        else
 535                kt = ktime_sub_ns(kt, (u64)-correction);
 536        return kt;
 537}
 538
 539struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
 540{
 541        return efx->ptp_data ? efx->ptp_data->channel : NULL;
 542}
 543
 544static u32 last_sync_timestamp_major(struct efx_nic *efx)
 545{
 546        struct efx_channel *channel = efx_ptp_channel(efx);
 547        u32 major = 0;
 548
 549        if (channel)
 550                major = channel->sync_timestamp_major;
 551        return major;
 552}
 553
 554/* The 8000 series and later can provide the time from the MAC, which is only
 555 * 48 bits long and provides meta-information in the top 2 bits.
 556 */
 557static ktime_t
 558efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
 559                                    struct efx_ptp_data *ptp,
 560                                    u32 nic_major, u32 nic_minor,
 561                                    s32 correction)
 562{
 563        ktime_t kt = { 0 };
 564
 565        if (!(nic_major & 0x80000000)) {
 566                WARN_ON_ONCE(nic_major >> 16);
 567                /* Use the top bits from the latest sync event. */
 568                nic_major &= 0xffff;
 569                nic_major |= (last_sync_timestamp_major(efx) & 0xffff0000);
 570
 571                kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
 572                                             correction);
 573        }
 574        return kt;
 575}
 576
 577ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
 578{
 579        struct efx_nic *efx = tx_queue->efx;
 580        struct efx_ptp_data *ptp = efx->ptp_data;
 581        ktime_t kt;
 582
 583        if (efx_ptp_use_mac_tx_timestamps(efx))
 584                kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
 585                                tx_queue->completed_timestamp_major,
 586                                tx_queue->completed_timestamp_minor,
 587                                ptp->ts_corrections.general_tx);
 588        else
 589                kt = ptp->nic_to_kernel_time(
 590                                tx_queue->completed_timestamp_major,
 591                                tx_queue->completed_timestamp_minor,
 592                                ptp->ts_corrections.general_tx);
 593        return kt;
 594}
 595
 596/* Get PTP attributes and set up time conversions */
 597static int efx_ptp_get_attributes(struct efx_nic *efx)
 598{
 599        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 600        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 601        struct efx_ptp_data *ptp = efx->ptp_data;
 602        int rc;
 603        u32 fmt;
 604        size_t out_len;
 605
 606        /* Get the PTP attributes. If the NIC doesn't support the operation we
 607         * use the default format for compatibility with older NICs i.e.
 608         * seconds and nanoseconds.
 609         */
 610        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 611        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 612        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 613                                outbuf, sizeof(outbuf), &out_len);
 614        if (rc == 0) {
 615                fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 616        } else if (rc == -EINVAL) {
 617                fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 618        } else if (rc == -EPERM) {
 619                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 620                return rc;
 621        } else {
 622                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 623                                       outbuf, sizeof(outbuf), rc);
 624                return rc;
 625        }
 626
 627        switch (fmt) {
 628        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
 629                ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 630                ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 631                ptp->nic_time.minor_max = 1 << 27;
 632                ptp->nic_time.sync_event_minor_shift = 19;
 633                break;
 634        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
 635                ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 636                ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 637                ptp->nic_time.minor_max = 1000000000;
 638                ptp->nic_time.sync_event_minor_shift = 22;
 639                break;
 640        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
 641                ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
 642                ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
 643                ptp->nic_time.minor_max = 4000000000UL;
 644                ptp->nic_time.sync_event_minor_shift = 24;
 645                break;
 646        default:
 647                return -ERANGE;
 648        }
 649
 650        /* Precalculate acceptable difference between the minor time in the
 651         * packet prefix and the last MCDI time sync event. We expect the
 652         * packet prefix timestamp to be after of sync event by up to one
 653         * sync event interval (0.25s) but we allow it to exceed this by a
 654         * fuzz factor of (0.1s)
 655         */
 656        ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
 657                - (ptp->nic_time.minor_max / 10);
 658        ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
 659                + (ptp->nic_time.minor_max / 10);
 660
 661        /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
 662         * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
 663         * a value to use for the minimum acceptable corrected synchronization
 664         * window and may return further capabilities.
 665         * If we have the extra information store it. For older firmware that
 666         * does not implement the extended command use the default value.
 667         */
 668        if (rc == 0 &&
 669            out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
 670                ptp->min_synchronisation_ns =
 671                        MCDI_DWORD(outbuf,
 672                                   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 673        else
 674                ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 675
 676        if (rc == 0 &&
 677            out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 678                ptp->capabilities = MCDI_DWORD(outbuf,
 679                                        PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
 680        else
 681                ptp->capabilities = 0;
 682
 683        /* Set up the shift for conversion between frequency
 684         * adjustments in parts-per-billion and the fixed-point
 685         * fractional ns format that the adapter uses.
 686         */
 687        if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
 688                ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
 689        else
 690                ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
 691
 692        return 0;
 693}
 694
 695/* Get PTP timestamp corrections */
 696static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 697{
 698        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 699        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
 700        int rc;
 701        size_t out_len;
 702
 703        /* Get the timestamp corrections from the NIC. If this operation is
 704         * not supported (older NICs) then no correction is required.
 705         */
 706        MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 707                       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 708        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 709
 710        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 711                                outbuf, sizeof(outbuf), &out_len);
 712        if (rc == 0) {
 713                efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
 714                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 715                efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
 716                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 717                efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 718                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 719                efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 720                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 721
 722                if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
 723                        efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
 724                                outbuf,
 725                                PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
 726                        efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
 727                                outbuf,
 728                                PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
 729                } else {
 730                        efx->ptp_data->ts_corrections.general_tx =
 731                                efx->ptp_data->ts_corrections.ptp_tx;
 732                        efx->ptp_data->ts_corrections.general_rx =
 733                                efx->ptp_data->ts_corrections.ptp_rx;
 734                }
 735        } else if (rc == -EINVAL) {
 736                efx->ptp_data->ts_corrections.ptp_tx = 0;
 737                efx->ptp_data->ts_corrections.ptp_rx = 0;
 738                efx->ptp_data->ts_corrections.pps_out = 0;
 739                efx->ptp_data->ts_corrections.pps_in = 0;
 740                efx->ptp_data->ts_corrections.general_tx = 0;
 741                efx->ptp_data->ts_corrections.general_rx = 0;
 742        } else {
 743                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 744                                       sizeof(outbuf), rc);
 745                return rc;
 746        }
 747
 748        return 0;
 749}
 750
 751/* Enable MCDI PTP support. */
 752static int efx_ptp_enable(struct efx_nic *efx)
 753{
 754        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 755        MCDI_DECLARE_BUF_ERR(outbuf);
 756        int rc;
 757
 758        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 759        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 760        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 761                       efx->ptp_data->channel ?
 762                       efx->ptp_data->channel->channel : 0);
 763        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 764
 765        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 766                                outbuf, sizeof(outbuf), NULL);
 767        rc = (rc == -EALREADY) ? 0 : rc;
 768        if (rc)
 769                efx_mcdi_display_error(efx, MC_CMD_PTP,
 770                                       MC_CMD_PTP_IN_ENABLE_LEN,
 771                                       outbuf, sizeof(outbuf), rc);
 772        return rc;
 773}
 774
 775/* Disable MCDI PTP support.
 776 *
 777 * Note that this function should never rely on the presence of ptp_data -
 778 * may be called before that exists.
 779 */
 780static int efx_ptp_disable(struct efx_nic *efx)
 781{
 782        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 783        MCDI_DECLARE_BUF_ERR(outbuf);
 784        int rc;
 785
 786        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 787        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 788        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 789                                outbuf, sizeof(outbuf), NULL);
 790        rc = (rc == -EALREADY) ? 0 : rc;
 791        /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 792         * should only have been called during probe.
 793         */
 794        if (rc == -ENOSYS || rc == -EPERM)
 795                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 796        else if (rc)
 797                efx_mcdi_display_error(efx, MC_CMD_PTP,
 798                                       MC_CMD_PTP_IN_DISABLE_LEN,
 799                                       outbuf, sizeof(outbuf), rc);
 800        return rc;
 801}
 802
 803static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 804{
 805        struct sk_buff *skb;
 806
 807        while ((skb = skb_dequeue(q))) {
 808                local_bh_disable();
 809                netif_receive_skb(skb);
 810                local_bh_enable();
 811        }
 812}
 813
 814static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 815{
 816        netif_err(efx, drv, efx->net_dev,
 817                  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 818                  "vector. PTP disabled\n");
 819}
 820
 821/* Repeatedly send the host time to the MC which will capture the hardware
 822 * time.
 823 */
 824static void efx_ptp_send_times(struct efx_nic *efx,
 825                               struct pps_event_time *last_time)
 826{
 827        struct pps_event_time now;
 828        struct timespec64 limit;
 829        struct efx_ptp_data *ptp = efx->ptp_data;
 830        int *mc_running = ptp->start.addr;
 831
 832        pps_get_ts(&now);
 833        limit = now.ts_real;
 834        timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 835
 836        /* Write host time for specified period or until MC is done */
 837        while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 838               READ_ONCE(*mc_running)) {
 839                struct timespec64 update_time;
 840                unsigned int host_time;
 841
 842                /* Don't update continuously to avoid saturating the PCIe bus */
 843                update_time = now.ts_real;
 844                timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 845                do {
 846                        pps_get_ts(&now);
 847                } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 848                         READ_ONCE(*mc_running));
 849
 850                /* Synchronise NIC with single word of time only */
 851                host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 852                             now.ts_real.tv_nsec);
 853                /* Update host time in NIC memory */
 854                efx->type->ptp_write_host_time(efx, host_time);
 855        }
 856        *last_time = now;
 857}
 858
 859/* Read a timeset from the MC's results and partial process. */
 860static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 861                                 struct efx_ptp_timeset *timeset)
 862{
 863        unsigned start_ns, end_ns;
 864
 865        timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 866        timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 867        timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 868        timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 869        timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 870
 871        /* Ignore seconds */
 872        start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 873        end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 874        /* Allow for rollover */
 875        if (end_ns < start_ns)
 876                end_ns += NSEC_PER_SEC;
 877        /* Determine duration of operation */
 878        timeset->window = end_ns - start_ns;
 879}
 880
 881/* Process times received from MC.
 882 *
 883 * Extract times from returned results, and establish the minimum value
 884 * seen.  The minimum value represents the "best" possible time and events
 885 * too much greater than this are rejected - the machine is, perhaps, too
 886 * busy. A number of readings are taken so that, hopefully, at least one good
 887 * synchronisation will be seen in the results.
 888 */
 889static int
 890efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 891                      size_t response_length,
 892                      const struct pps_event_time *last_time)
 893{
 894        unsigned number_readings =
 895                MCDI_VAR_ARRAY_LEN(response_length,
 896                                   PTP_OUT_SYNCHRONIZE_TIMESET);
 897        unsigned i;
 898        unsigned ngood = 0;
 899        unsigned last_good = 0;
 900        struct efx_ptp_data *ptp = efx->ptp_data;
 901        u32 last_sec;
 902        u32 start_sec;
 903        struct timespec64 delta;
 904        ktime_t mc_time;
 905
 906        if (number_readings == 0)
 907                return -EAGAIN;
 908
 909        /* Read the set of results and find the last good host-MC
 910         * synchronization result. The MC times when it finishes reading the
 911         * host time so the corrected window time should be fairly constant
 912         * for a given platform. Increment stats for any results that appear
 913         * to be erroneous.
 914         */
 915        for (i = 0; i < number_readings; i++) {
 916                s32 window, corrected;
 917                struct timespec64 wait;
 918
 919                efx_ptp_read_timeset(
 920                        MCDI_ARRAY_STRUCT_PTR(synch_buf,
 921                                              PTP_OUT_SYNCHRONIZE_TIMESET, i),
 922                        &ptp->timeset[i]);
 923
 924                wait = ktime_to_timespec64(
 925                        ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 926                window = ptp->timeset[i].window;
 927                corrected = window - wait.tv_nsec;
 928
 929                /* We expect the uncorrected synchronization window to be at
 930                 * least as large as the interval between host start and end
 931                 * times. If it is smaller than this then this is mostly likely
 932                 * to be a consequence of the host's time being adjusted.
 933                 * Check that the corrected sync window is in a reasonable
 934                 * range. If it is out of range it is likely to be because an
 935                 * interrupt or other delay occurred between reading the system
 936                 * time and writing it to MC memory.
 937                 */
 938                if (window < SYNCHRONISATION_GRANULARITY_NS) {
 939                        ++ptp->invalid_sync_windows;
 940                } else if (corrected >= MAX_SYNCHRONISATION_NS) {
 941                        ++ptp->oversize_sync_windows;
 942                } else if (corrected < ptp->min_synchronisation_ns) {
 943                        ++ptp->undersize_sync_windows;
 944                } else {
 945                        ngood++;
 946                        last_good = i;
 947                }
 948        }
 949
 950        if (ngood == 0) {
 951                netif_warn(efx, drv, efx->net_dev,
 952                           "PTP no suitable synchronisations\n");
 953                return -EAGAIN;
 954        }
 955
 956        /* Calculate delay from last good sync (host time) to last_time.
 957         * It is possible that the seconds rolled over between taking
 958         * the start reading and the last value written by the host.  The
 959         * timescales are such that a gap of more than one second is never
 960         * expected.  delta is *not* normalised.
 961         */
 962        start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 963        last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 964        if (start_sec != last_sec &&
 965            ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 966                netif_warn(efx, hw, efx->net_dev,
 967                           "PTP bad synchronisation seconds\n");
 968                return -EAGAIN;
 969        }
 970        delta.tv_sec = (last_sec - start_sec) & 1;
 971        delta.tv_nsec =
 972                last_time->ts_real.tv_nsec -
 973                (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 974
 975        /* Convert the NIC time at last good sync into kernel time.
 976         * No correction is required - this time is the output of a
 977         * firmware process.
 978         */
 979        mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
 980                                          ptp->timeset[last_good].minor, 0);
 981
 982        /* Calculate delay from NIC top of second to last_time */
 983        delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
 984
 985        /* Set PPS timestamp to match NIC top of second */
 986        ptp->host_time_pps = *last_time;
 987        pps_sub_ts(&ptp->host_time_pps, delta);
 988
 989        return 0;
 990}
 991
 992/* Synchronize times between the host and the MC */
 993static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
 994{
 995        struct efx_ptp_data *ptp = efx->ptp_data;
 996        MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
 997        size_t response_length;
 998        int rc;
 999        unsigned long timeout;
1000        struct pps_event_time last_time = {};
1001        unsigned int loops = 0;
1002        int *start = ptp->start.addr;
1003
1004        MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1005        MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1006        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1007                       num_readings);
1008        MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1009                       ptp->start.dma_addr);
1010
1011        /* Clear flag that signals MC ready */
1012        WRITE_ONCE(*start, 0);
1013        rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1014                                MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1015        EFX_WARN_ON_ONCE_PARANOID(rc);
1016
1017        /* Wait for start from MCDI (or timeout) */
1018        timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1019        while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1020                udelay(20);     /* Usually start MCDI execution quickly */
1021                loops++;
1022        }
1023
1024        if (loops <= 1)
1025                ++ptp->fast_syncs;
1026        if (!time_before(jiffies, timeout))
1027                ++ptp->sync_timeouts;
1028
1029        if (READ_ONCE(*start))
1030                efx_ptp_send_times(efx, &last_time);
1031
1032        /* Collect results */
1033        rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1034                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1035                                 synch_buf, sizeof(synch_buf),
1036                                 &response_length);
1037        if (rc == 0) {
1038                rc = efx_ptp_process_times(efx, synch_buf, response_length,
1039                                           &last_time);
1040                if (rc == 0)
1041                        ++ptp->good_syncs;
1042                else
1043                        ++ptp->no_time_syncs;
1044        }
1045
1046        /* Increment the bad syncs counter if the synchronize fails, whatever
1047         * the reason.
1048         */
1049        if (rc != 0)
1050                ++ptp->bad_syncs;
1051
1052        return rc;
1053}
1054
1055/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1056static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1057{
1058        struct efx_ptp_data *ptp_data = efx->ptp_data;
1059        struct efx_tx_queue *tx_queue;
1060        u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
1061
1062        tx_queue = &ptp_data->channel->tx_queue[type];
1063        if (tx_queue && tx_queue->timestamping) {
1064                efx_enqueue_skb(tx_queue, skb);
1065        } else {
1066                WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1067                dev_kfree_skb_any(skb);
1068        }
1069}
1070
1071/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1072static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1073{
1074        struct efx_ptp_data *ptp_data = efx->ptp_data;
1075        struct skb_shared_hwtstamps timestamps;
1076        int rc = -EIO;
1077        MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1078        size_t len;
1079
1080        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1081        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1082        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1083        if (skb_shinfo(skb)->nr_frags != 0) {
1084                rc = skb_linearize(skb);
1085                if (rc != 0)
1086                        goto fail;
1087        }
1088
1089        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1090                rc = skb_checksum_help(skb);
1091                if (rc != 0)
1092                        goto fail;
1093        }
1094        skb_copy_from_linear_data(skb,
1095                                  MCDI_PTR(ptp_data->txbuf,
1096                                           PTP_IN_TRANSMIT_PACKET),
1097                                  skb->len);
1098        rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1099                          ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1100                          txtime, sizeof(txtime), &len);
1101        if (rc != 0)
1102                goto fail;
1103
1104        memset(&timestamps, 0, sizeof(timestamps));
1105        timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1106                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1107                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1108                ptp_data->ts_corrections.ptp_tx);
1109
1110        skb_tstamp_tx(skb, &timestamps);
1111
1112        rc = 0;
1113
1114fail:
1115        dev_kfree_skb_any(skb);
1116
1117        return;
1118}
1119
1120static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1121{
1122        struct efx_ptp_data *ptp = efx->ptp_data;
1123        struct list_head *cursor;
1124        struct list_head *next;
1125
1126        if (ptp->rx_ts_inline)
1127                return;
1128
1129        /* Drop time-expired events */
1130        spin_lock_bh(&ptp->evt_lock);
1131        if (!list_empty(&ptp->evt_list)) {
1132                list_for_each_safe(cursor, next, &ptp->evt_list) {
1133                        struct efx_ptp_event_rx *evt;
1134
1135                        evt = list_entry(cursor, struct efx_ptp_event_rx,
1136                                         link);
1137                        if (time_after(jiffies, evt->expiry)) {
1138                                list_move(&evt->link, &ptp->evt_free_list);
1139                                netif_warn(efx, hw, efx->net_dev,
1140                                           "PTP rx event dropped\n");
1141                        }
1142                }
1143        }
1144        spin_unlock_bh(&ptp->evt_lock);
1145}
1146
1147static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1148                                              struct sk_buff *skb)
1149{
1150        struct efx_ptp_data *ptp = efx->ptp_data;
1151        bool evts_waiting;
1152        struct list_head *cursor;
1153        struct list_head *next;
1154        struct efx_ptp_match *match;
1155        enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1156
1157        WARN_ON_ONCE(ptp->rx_ts_inline);
1158
1159        spin_lock_bh(&ptp->evt_lock);
1160        evts_waiting = !list_empty(&ptp->evt_list);
1161        spin_unlock_bh(&ptp->evt_lock);
1162
1163        if (!evts_waiting)
1164                return PTP_PACKET_STATE_UNMATCHED;
1165
1166        match = (struct efx_ptp_match *)skb->cb;
1167        /* Look for a matching timestamp in the event queue */
1168        spin_lock_bh(&ptp->evt_lock);
1169        list_for_each_safe(cursor, next, &ptp->evt_list) {
1170                struct efx_ptp_event_rx *evt;
1171
1172                evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1173                if ((evt->seq0 == match->words[0]) &&
1174                    (evt->seq1 == match->words[1])) {
1175                        struct skb_shared_hwtstamps *timestamps;
1176
1177                        /* Match - add in hardware timestamp */
1178                        timestamps = skb_hwtstamps(skb);
1179                        timestamps->hwtstamp = evt->hwtimestamp;
1180
1181                        match->state = PTP_PACKET_STATE_MATCHED;
1182                        rc = PTP_PACKET_STATE_MATCHED;
1183                        list_move(&evt->link, &ptp->evt_free_list);
1184                        break;
1185                }
1186        }
1187        spin_unlock_bh(&ptp->evt_lock);
1188
1189        return rc;
1190}
1191
1192/* Process any queued receive events and corresponding packets
1193 *
1194 * q is returned with all the packets that are ready for delivery.
1195 */
1196static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1197{
1198        struct efx_ptp_data *ptp = efx->ptp_data;
1199        struct sk_buff *skb;
1200
1201        while ((skb = skb_dequeue(&ptp->rxq))) {
1202                struct efx_ptp_match *match;
1203
1204                match = (struct efx_ptp_match *)skb->cb;
1205                if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1206                        __skb_queue_tail(q, skb);
1207                } else if (efx_ptp_match_rx(efx, skb) ==
1208                           PTP_PACKET_STATE_MATCHED) {
1209                        __skb_queue_tail(q, skb);
1210                } else if (time_after(jiffies, match->expiry)) {
1211                        match->state = PTP_PACKET_STATE_TIMED_OUT;
1212                        ++ptp->rx_no_timestamp;
1213                        __skb_queue_tail(q, skb);
1214                } else {
1215                        /* Replace unprocessed entry and stop */
1216                        skb_queue_head(&ptp->rxq, skb);
1217                        break;
1218                }
1219        }
1220}
1221
1222/* Complete processing of a received packet */
1223static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1224{
1225        local_bh_disable();
1226        netif_receive_skb(skb);
1227        local_bh_enable();
1228}
1229
1230static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1231{
1232        struct efx_ptp_data *ptp = efx->ptp_data;
1233
1234        if (ptp->rxfilter_installed) {
1235                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1236                                          ptp->rxfilter_general);
1237                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1238                                          ptp->rxfilter_event);
1239                ptp->rxfilter_installed = false;
1240        }
1241}
1242
1243static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1244{
1245        struct efx_ptp_data *ptp = efx->ptp_data;
1246        struct efx_filter_spec rxfilter;
1247        int rc;
1248
1249        if (!ptp->channel || ptp->rxfilter_installed)
1250                return 0;
1251
1252        /* Must filter on both event and general ports to ensure
1253         * that there is no packet re-ordering.
1254         */
1255        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1256                           efx_rx_queue_index(
1257                                   efx_channel_get_rx_queue(ptp->channel)));
1258        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1259                                       htonl(PTP_ADDRESS),
1260                                       htons(PTP_EVENT_PORT));
1261        if (rc != 0)
1262                return rc;
1263
1264        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1265        if (rc < 0)
1266                return rc;
1267        ptp->rxfilter_event = rc;
1268
1269        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1270                           efx_rx_queue_index(
1271                                   efx_channel_get_rx_queue(ptp->channel)));
1272        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1273                                       htonl(PTP_ADDRESS),
1274                                       htons(PTP_GENERAL_PORT));
1275        if (rc != 0)
1276                goto fail;
1277
1278        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1279        if (rc < 0)
1280                goto fail;
1281        ptp->rxfilter_general = rc;
1282
1283        ptp->rxfilter_installed = true;
1284        return 0;
1285
1286fail:
1287        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1288                                  ptp->rxfilter_event);
1289        return rc;
1290}
1291
1292static int efx_ptp_start(struct efx_nic *efx)
1293{
1294        struct efx_ptp_data *ptp = efx->ptp_data;
1295        int rc;
1296
1297        ptp->reset_required = false;
1298
1299        rc = efx_ptp_insert_multicast_filters(efx);
1300        if (rc)
1301                return rc;
1302
1303        rc = efx_ptp_enable(efx);
1304        if (rc != 0)
1305                goto fail;
1306
1307        ptp->evt_frag_idx = 0;
1308        ptp->current_adjfreq = 0;
1309
1310        return 0;
1311
1312fail:
1313        efx_ptp_remove_multicast_filters(efx);
1314        return rc;
1315}
1316
1317static int efx_ptp_stop(struct efx_nic *efx)
1318{
1319        struct efx_ptp_data *ptp = efx->ptp_data;
1320        struct list_head *cursor;
1321        struct list_head *next;
1322        int rc;
1323
1324        if (ptp == NULL)
1325                return 0;
1326
1327        rc = efx_ptp_disable(efx);
1328
1329        efx_ptp_remove_multicast_filters(efx);
1330
1331        /* Make sure RX packets are really delivered */
1332        efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1333        skb_queue_purge(&efx->ptp_data->txq);
1334
1335        /* Drop any pending receive events */
1336        spin_lock_bh(&efx->ptp_data->evt_lock);
1337        list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1338                list_move(cursor, &efx->ptp_data->evt_free_list);
1339        }
1340        spin_unlock_bh(&efx->ptp_data->evt_lock);
1341
1342        return rc;
1343}
1344
1345static int efx_ptp_restart(struct efx_nic *efx)
1346{
1347        if (efx->ptp_data && efx->ptp_data->enabled)
1348                return efx_ptp_start(efx);
1349        return 0;
1350}
1351
1352static void efx_ptp_pps_worker(struct work_struct *work)
1353{
1354        struct efx_ptp_data *ptp =
1355                container_of(work, struct efx_ptp_data, pps_work);
1356        struct efx_nic *efx = ptp->efx;
1357        struct ptp_clock_event ptp_evt;
1358
1359        if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1360                return;
1361
1362        ptp_evt.type = PTP_CLOCK_PPSUSR;
1363        ptp_evt.pps_times = ptp->host_time_pps;
1364        ptp_clock_event(ptp->phc_clock, &ptp_evt);
1365}
1366
1367static void efx_ptp_worker(struct work_struct *work)
1368{
1369        struct efx_ptp_data *ptp_data =
1370                container_of(work, struct efx_ptp_data, work);
1371        struct efx_nic *efx = ptp_data->efx;
1372        struct sk_buff *skb;
1373        struct sk_buff_head tempq;
1374
1375        if (ptp_data->reset_required) {
1376                efx_ptp_stop(efx);
1377                efx_ptp_start(efx);
1378                return;
1379        }
1380
1381        efx_ptp_drop_time_expired_events(efx);
1382
1383        __skb_queue_head_init(&tempq);
1384        efx_ptp_process_events(efx, &tempq);
1385
1386        while ((skb = skb_dequeue(&ptp_data->txq)))
1387                ptp_data->xmit_skb(efx, skb);
1388
1389        while ((skb = __skb_dequeue(&tempq)))
1390                efx_ptp_process_rx(efx, skb);
1391}
1392
1393static const struct ptp_clock_info efx_phc_clock_info = {
1394        .owner          = THIS_MODULE,
1395        .name           = "sfc",
1396        .max_adj        = MAX_PPB,
1397        .n_alarm        = 0,
1398        .n_ext_ts       = 0,
1399        .n_per_out      = 0,
1400        .n_pins         = 0,
1401        .pps            = 1,
1402        .adjfreq        = efx_phc_adjfreq,
1403        .adjtime        = efx_phc_adjtime,
1404        .gettime64      = efx_phc_gettime,
1405        .settime64      = efx_phc_settime,
1406        .enable         = efx_phc_enable,
1407};
1408
1409/* Initialise PTP state. */
1410int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1411{
1412        struct efx_ptp_data *ptp;
1413        int rc = 0;
1414        unsigned int pos;
1415
1416        ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1417        efx->ptp_data = ptp;
1418        if (!efx->ptp_data)
1419                return -ENOMEM;
1420
1421        ptp->efx = efx;
1422        ptp->channel = channel;
1423        ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1424
1425        rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1426        if (rc != 0)
1427                goto fail1;
1428
1429        skb_queue_head_init(&ptp->rxq);
1430        skb_queue_head_init(&ptp->txq);
1431        ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1432        if (!ptp->workwq) {
1433                rc = -ENOMEM;
1434                goto fail2;
1435        }
1436
1437        if (efx_ptp_use_mac_tx_timestamps(efx)) {
1438                ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1439                /* Request sync events on this channel. */
1440                channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1441        } else {
1442                ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1443        }
1444
1445        INIT_WORK(&ptp->work, efx_ptp_worker);
1446        ptp->config.flags = 0;
1447        ptp->config.tx_type = HWTSTAMP_TX_OFF;
1448        ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1449        INIT_LIST_HEAD(&ptp->evt_list);
1450        INIT_LIST_HEAD(&ptp->evt_free_list);
1451        spin_lock_init(&ptp->evt_lock);
1452        for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1453                list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1454
1455        /* Get the NIC PTP attributes and set up time conversions */
1456        rc = efx_ptp_get_attributes(efx);
1457        if (rc < 0)
1458                goto fail3;
1459
1460        /* Get the timestamp corrections */
1461        rc = efx_ptp_get_timestamp_corrections(efx);
1462        if (rc < 0)
1463                goto fail3;
1464
1465        if (efx->mcdi->fn_flags &
1466            (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1467                ptp->phc_clock_info = efx_phc_clock_info;
1468                ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1469                                                    &efx->pci_dev->dev);
1470                if (IS_ERR(ptp->phc_clock)) {
1471                        rc = PTR_ERR(ptp->phc_clock);
1472                        goto fail3;
1473                } else if (ptp->phc_clock) {
1474                        INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1475                        ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1476                        if (!ptp->pps_workwq) {
1477                                rc = -ENOMEM;
1478                                goto fail4;
1479                        }
1480                }
1481        }
1482        ptp->nic_ts_enabled = false;
1483
1484        return 0;
1485fail4:
1486        ptp_clock_unregister(efx->ptp_data->phc_clock);
1487
1488fail3:
1489        destroy_workqueue(efx->ptp_data->workwq);
1490
1491fail2:
1492        efx_nic_free_buffer(efx, &ptp->start);
1493
1494fail1:
1495        kfree(efx->ptp_data);
1496        efx->ptp_data = NULL;
1497
1498        return rc;
1499}
1500
1501/* Initialise PTP channel.
1502 *
1503 * Setting core_index to zero causes the queue to be initialised and doesn't
1504 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1505 */
1506static int efx_ptp_probe_channel(struct efx_channel *channel)
1507{
1508        struct efx_nic *efx = channel->efx;
1509        int rc;
1510
1511        channel->irq_moderation_us = 0;
1512        channel->rx_queue.core_index = 0;
1513
1514        rc = efx_ptp_probe(efx, channel);
1515        /* Failure to probe PTP is not fatal; this channel will just not be
1516         * used for anything.
1517         * In the case of EPERM, efx_ptp_probe will print its own message (in
1518         * efx_ptp_get_attributes()), so we don't need to.
1519         */
1520        if (rc && rc != -EPERM)
1521                netif_warn(efx, drv, efx->net_dev,
1522                           "Failed to probe PTP, rc=%d\n", rc);
1523        return 0;
1524}
1525
1526void efx_ptp_remove(struct efx_nic *efx)
1527{
1528        if (!efx->ptp_data)
1529                return;
1530
1531        (void)efx_ptp_disable(efx);
1532
1533        cancel_work_sync(&efx->ptp_data->work);
1534        cancel_work_sync(&efx->ptp_data->pps_work);
1535
1536        skb_queue_purge(&efx->ptp_data->rxq);
1537        skb_queue_purge(&efx->ptp_data->txq);
1538
1539        if (efx->ptp_data->phc_clock) {
1540                destroy_workqueue(efx->ptp_data->pps_workwq);
1541                ptp_clock_unregister(efx->ptp_data->phc_clock);
1542        }
1543
1544        destroy_workqueue(efx->ptp_data->workwq);
1545
1546        efx_nic_free_buffer(efx, &efx->ptp_data->start);
1547        kfree(efx->ptp_data);
1548        efx->ptp_data = NULL;
1549}
1550
1551static void efx_ptp_remove_channel(struct efx_channel *channel)
1552{
1553        efx_ptp_remove(channel->efx);
1554}
1555
1556static void efx_ptp_get_channel_name(struct efx_channel *channel,
1557                                     char *buf, size_t len)
1558{
1559        snprintf(buf, len, "%s-ptp", channel->efx->name);
1560}
1561
1562/* Determine whether this packet should be processed by the PTP module
1563 * or transmitted conventionally.
1564 */
1565bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1566{
1567        return efx->ptp_data &&
1568                efx->ptp_data->enabled &&
1569                skb->len >= PTP_MIN_LENGTH &&
1570                skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1571                likely(skb->protocol == htons(ETH_P_IP)) &&
1572                skb_transport_header_was_set(skb) &&
1573                skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1574                ip_hdr(skb)->protocol == IPPROTO_UDP &&
1575                skb_headlen(skb) >=
1576                skb_transport_offset(skb) + sizeof(struct udphdr) &&
1577                udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1578}
1579
1580/* Receive a PTP packet.  Packets are queued until the arrival of
1581 * the receive timestamp from the MC - this will probably occur after the
1582 * packet arrival because of the processing in the MC.
1583 */
1584static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1585{
1586        struct efx_nic *efx = channel->efx;
1587        struct efx_ptp_data *ptp = efx->ptp_data;
1588        struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1589        u8 *match_data_012, *match_data_345;
1590        unsigned int version;
1591        u8 *data;
1592
1593        match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1594
1595        /* Correct version? */
1596        if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1597                if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1598                        return false;
1599                }
1600                data = skb->data;
1601                version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1602                if (version != PTP_VERSION_V1) {
1603                        return false;
1604                }
1605
1606                /* PTP V1 uses all six bytes of the UUID to match the packet
1607                 * to the timestamp
1608                 */
1609                match_data_012 = data + PTP_V1_UUID_OFFSET;
1610                match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1611        } else {
1612                if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1613                        return false;
1614                }
1615                data = skb->data;
1616                version = data[PTP_V2_VERSION_OFFSET];
1617                if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1618                        return false;
1619                }
1620
1621                /* The original V2 implementation uses bytes 2-7 of
1622                 * the UUID to match the packet to the timestamp. This
1623                 * discards two of the bytes of the MAC address used
1624                 * to create the UUID (SF bug 33070).  The PTP V2
1625                 * enhanced mode fixes this issue and uses bytes 0-2
1626                 * and byte 5-7 of the UUID.
1627                 */
1628                match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1629                if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1630                        match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1631                } else {
1632                        match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1633                        BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1634                }
1635        }
1636
1637        /* Does this packet require timestamping? */
1638        if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1639                match->state = PTP_PACKET_STATE_UNMATCHED;
1640
1641                /* We expect the sequence number to be in the same position in
1642                 * the packet for PTP V1 and V2
1643                 */
1644                BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1645                BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1646
1647                /* Extract UUID/Sequence information */
1648                match->words[0] = (match_data_012[0]         |
1649                                   (match_data_012[1] << 8)  |
1650                                   (match_data_012[2] << 16) |
1651                                   (match_data_345[0] << 24));
1652                match->words[1] = (match_data_345[1]         |
1653                                   (match_data_345[2] << 8)  |
1654                                   (data[PTP_V1_SEQUENCE_OFFSET +
1655                                         PTP_V1_SEQUENCE_LENGTH - 1] <<
1656                                    16));
1657        } else {
1658                match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1659        }
1660
1661        skb_queue_tail(&ptp->rxq, skb);
1662        queue_work(ptp->workwq, &ptp->work);
1663
1664        return true;
1665}
1666
1667/* Transmit a PTP packet.  This has to be transmitted by the MC
1668 * itself, through an MCDI call.  MCDI calls aren't permitted
1669 * in the transmit path so defer the actual transmission to a suitable worker.
1670 */
1671int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1672{
1673        struct efx_ptp_data *ptp = efx->ptp_data;
1674
1675        skb_queue_tail(&ptp->txq, skb);
1676
1677        if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1678            (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1679                efx_xmit_hwtstamp_pending(skb);
1680        queue_work(ptp->workwq, &ptp->work);
1681
1682        return NETDEV_TX_OK;
1683}
1684
1685int efx_ptp_get_mode(struct efx_nic *efx)
1686{
1687        return efx->ptp_data->mode;
1688}
1689
1690int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1691                        unsigned int new_mode)
1692{
1693        if ((enable_wanted != efx->ptp_data->enabled) ||
1694            (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1695                int rc = 0;
1696
1697                if (enable_wanted) {
1698                        /* Change of mode requires disable */
1699                        if (efx->ptp_data->enabled &&
1700                            (efx->ptp_data->mode != new_mode)) {
1701                                efx->ptp_data->enabled = false;
1702                                rc = efx_ptp_stop(efx);
1703                                if (rc != 0)
1704                                        return rc;
1705                        }
1706
1707                        /* Set new operating mode and establish
1708                         * baseline synchronisation, which must
1709                         * succeed.
1710                         */
1711                        efx->ptp_data->mode = new_mode;
1712                        if (netif_running(efx->net_dev))
1713                                rc = efx_ptp_start(efx);
1714                        if (rc == 0) {
1715                                rc = efx_ptp_synchronize(efx,
1716                                                         PTP_SYNC_ATTEMPTS * 2);
1717                                if (rc != 0)
1718                                        efx_ptp_stop(efx);
1719                        }
1720                } else {
1721                        rc = efx_ptp_stop(efx);
1722                }
1723
1724                if (rc != 0)
1725                        return rc;
1726
1727                efx->ptp_data->enabled = enable_wanted;
1728        }
1729
1730        return 0;
1731}
1732
1733static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1734{
1735        int rc;
1736
1737        if (init->flags)
1738                return -EINVAL;
1739
1740        if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1741            (init->tx_type != HWTSTAMP_TX_ON))
1742                return -ERANGE;
1743
1744        rc = efx->type->ptp_set_ts_config(efx, init);
1745        if (rc)
1746                return rc;
1747
1748        efx->ptp_data->config = *init;
1749        return 0;
1750}
1751
1752void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1753{
1754        struct efx_ptp_data *ptp = efx->ptp_data;
1755        struct efx_nic *primary = efx->primary;
1756
1757        ASSERT_RTNL();
1758
1759        if (!ptp)
1760                return;
1761
1762        ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1763                                     SOF_TIMESTAMPING_RX_HARDWARE |
1764                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1765        /* Check licensed features.  If we don't have the license for TX
1766         * timestamps, the NIC will not support them.
1767         */
1768        if (efx_ptp_use_mac_tx_timestamps(efx)) {
1769                struct efx_ef10_nic_data *nic_data = efx->nic_data;
1770
1771                if (!(nic_data->licensed_features &
1772                      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1773                        ts_info->so_timestamping &=
1774                                ~SOF_TIMESTAMPING_TX_HARDWARE;
1775        }
1776        if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1777                ts_info->phc_index =
1778                        ptp_clock_index(primary->ptp_data->phc_clock);
1779        ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1780        ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1781}
1782
1783int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1784{
1785        struct hwtstamp_config config;
1786        int rc;
1787
1788        /* Not a PTP enabled port */
1789        if (!efx->ptp_data)
1790                return -EOPNOTSUPP;
1791
1792        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1793                return -EFAULT;
1794
1795        rc = efx_ptp_ts_init(efx, &config);
1796        if (rc != 0)
1797                return rc;
1798
1799        return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1800                ? -EFAULT : 0;
1801}
1802
1803int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1804{
1805        if (!efx->ptp_data)
1806                return -EOPNOTSUPP;
1807
1808        return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1809                            sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1810}
1811
1812static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1813{
1814        struct efx_ptp_data *ptp = efx->ptp_data;
1815
1816        netif_err(efx, hw, efx->net_dev,
1817                "PTP unexpected event length: got %d expected %d\n",
1818                ptp->evt_frag_idx, expected_frag_len);
1819        ptp->reset_required = true;
1820        queue_work(ptp->workwq, &ptp->work);
1821}
1822
1823/* Process a completed receive event.  Put it on the event queue and
1824 * start worker thread.  This is required because event and their
1825 * correspoding packets may come in either order.
1826 */
1827static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1828{
1829        struct efx_ptp_event_rx *evt = NULL;
1830
1831        if (WARN_ON_ONCE(ptp->rx_ts_inline))
1832                return;
1833
1834        if (ptp->evt_frag_idx != 3) {
1835                ptp_event_failure(efx, 3);
1836                return;
1837        }
1838
1839        spin_lock_bh(&ptp->evt_lock);
1840        if (!list_empty(&ptp->evt_free_list)) {
1841                evt = list_first_entry(&ptp->evt_free_list,
1842                                       struct efx_ptp_event_rx, link);
1843                list_del(&evt->link);
1844
1845                evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1846                evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1847                                             MCDI_EVENT_SRC)        |
1848                             (EFX_QWORD_FIELD(ptp->evt_frags[1],
1849                                              MCDI_EVENT_SRC) << 8) |
1850                             (EFX_QWORD_FIELD(ptp->evt_frags[0],
1851                                              MCDI_EVENT_SRC) << 16));
1852                evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1853                        EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1854                        EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1855                        ptp->ts_corrections.ptp_rx);
1856                evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1857                list_add_tail(&evt->link, &ptp->evt_list);
1858
1859                queue_work(ptp->workwq, &ptp->work);
1860        } else if (net_ratelimit()) {
1861                /* Log a rate-limited warning message. */
1862                netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1863        }
1864        spin_unlock_bh(&ptp->evt_lock);
1865}
1866
1867static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1868{
1869        int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1870        if (ptp->evt_frag_idx != 1) {
1871                ptp_event_failure(efx, 1);
1872                return;
1873        }
1874
1875        netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1876}
1877
1878static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1879{
1880        if (ptp->nic_ts_enabled)
1881                queue_work(ptp->pps_workwq, &ptp->pps_work);
1882}
1883
1884void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1885{
1886        struct efx_ptp_data *ptp = efx->ptp_data;
1887        int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1888
1889        if (!ptp) {
1890                if (!efx->ptp_warned) {
1891                        netif_warn(efx, drv, efx->net_dev,
1892                                   "Received PTP event but PTP not set up\n");
1893                        efx->ptp_warned = true;
1894                }
1895                return;
1896        }
1897
1898        if (!ptp->enabled)
1899                return;
1900
1901        if (ptp->evt_frag_idx == 0) {
1902                ptp->evt_code = code;
1903        } else if (ptp->evt_code != code) {
1904                netif_err(efx, hw, efx->net_dev,
1905                          "PTP out of sequence event %d\n", code);
1906                ptp->evt_frag_idx = 0;
1907        }
1908
1909        ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1910        if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1911                /* Process resulting event */
1912                switch (code) {
1913                case MCDI_EVENT_CODE_PTP_RX:
1914                        ptp_event_rx(efx, ptp);
1915                        break;
1916                case MCDI_EVENT_CODE_PTP_FAULT:
1917                        ptp_event_fault(efx, ptp);
1918                        break;
1919                case MCDI_EVENT_CODE_PTP_PPS:
1920                        ptp_event_pps(efx, ptp);
1921                        break;
1922                default:
1923                        netif_err(efx, hw, efx->net_dev,
1924                                  "PTP unknown event %d\n", code);
1925                        break;
1926                }
1927                ptp->evt_frag_idx = 0;
1928        } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1929                netif_err(efx, hw, efx->net_dev,
1930                          "PTP too many event fragments\n");
1931                ptp->evt_frag_idx = 0;
1932        }
1933}
1934
1935void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1936{
1937        struct efx_nic *efx = channel->efx;
1938        struct efx_ptp_data *ptp = efx->ptp_data;
1939
1940        /* When extracting the sync timestamp minor value, we should discard
1941         * the least significant two bits. These are not required in order
1942         * to reconstruct full-range timestamps and they are optionally used
1943         * to report status depending on the options supplied when subscribing
1944         * for sync events.
1945         */
1946        channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1947        channel->sync_timestamp_minor =
1948                (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1949                        << ptp->nic_time.sync_event_minor_shift;
1950
1951        /* if sync events have been disabled then we want to silently ignore
1952         * this event, so throw away result.
1953         */
1954        (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1955                       SYNC_EVENTS_VALID);
1956}
1957
1958static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1959{
1960#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1961        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1962#else
1963        const u8 *data = eh + efx->rx_packet_ts_offset;
1964        return (u32)data[0]       |
1965               (u32)data[1] << 8  |
1966               (u32)data[2] << 16 |
1967               (u32)data[3] << 24;
1968#endif
1969}
1970
1971void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1972                                   struct sk_buff *skb)
1973{
1974        struct efx_nic *efx = channel->efx;
1975        struct efx_ptp_data *ptp = efx->ptp_data;
1976        u32 pkt_timestamp_major, pkt_timestamp_minor;
1977        u32 diff, carry;
1978        struct skb_shared_hwtstamps *timestamps;
1979
1980        if (channel->sync_events_state != SYNC_EVENTS_VALID)
1981                return;
1982
1983        pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
1984
1985        /* get the difference between the packet and sync timestamps,
1986         * modulo one second
1987         */
1988        diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
1989        if (pkt_timestamp_minor < channel->sync_timestamp_minor)
1990                diff += ptp->nic_time.minor_max;
1991
1992        /* do we roll over a second boundary and need to carry the one? */
1993        carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
1994                1 : 0;
1995
1996        if (diff <= ptp->nic_time.sync_event_diff_max) {
1997                /* packet is ahead of the sync event by a quarter of a second or
1998                 * less (allowing for fuzz)
1999                 */
2000                pkt_timestamp_major = channel->sync_timestamp_major + carry;
2001        } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2002                /* packet is behind the sync event but within the fuzz factor.
2003                 * This means the RX packet and sync event crossed as they were
2004                 * placed on the event queue, which can sometimes happen.
2005                 */
2006                pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2007        } else {
2008                /* it's outside tolerance in both directions. this might be
2009                 * indicative of us missing sync events for some reason, so
2010                 * we'll call it an error rather than risk giving a bogus
2011                 * timestamp.
2012                 */
2013                netif_vdbg(efx, drv, efx->net_dev,
2014                          "packet timestamp %x too far from sync event %x:%x\n",
2015                          pkt_timestamp_minor, channel->sync_timestamp_major,
2016                          channel->sync_timestamp_minor);
2017                return;
2018        }
2019
2020        /* attach the timestamps to the skb */
2021        timestamps = skb_hwtstamps(skb);
2022        timestamps->hwtstamp =
2023                ptp->nic_to_kernel_time(pkt_timestamp_major,
2024                                        pkt_timestamp_minor,
2025                                        ptp->ts_corrections.general_rx);
2026}
2027
2028static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2029{
2030        struct efx_ptp_data *ptp_data = container_of(ptp,
2031                                                     struct efx_ptp_data,
2032                                                     phc_clock_info);
2033        struct efx_nic *efx = ptp_data->efx;
2034        MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2035        s64 adjustment_ns;
2036        int rc;
2037
2038        if (delta > MAX_PPB)
2039                delta = MAX_PPB;
2040        else if (delta < -MAX_PPB)
2041                delta = -MAX_PPB;
2042
2043        /* Convert ppb to fixed point ns taking care to round correctly. */
2044        adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2045                         (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2046                        ptp_data->adjfreq_ppb_shift;
2047
2048        MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2049        MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2050        MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2051        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2052        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2053        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2054                          NULL, 0, NULL);
2055        if (rc != 0)
2056                return rc;
2057
2058        ptp_data->current_adjfreq = adjustment_ns;
2059        return 0;
2060}
2061
2062static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2063{
2064        u32 nic_major, nic_minor;
2065        struct efx_ptp_data *ptp_data = container_of(ptp,
2066                                                     struct efx_ptp_data,
2067                                                     phc_clock_info);
2068        struct efx_nic *efx = ptp_data->efx;
2069        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2070
2071        efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2072
2073        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2074        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2075        MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2076        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2077        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2078        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2079                            NULL, 0, NULL);
2080}
2081
2082static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2083{
2084        struct efx_ptp_data *ptp_data = container_of(ptp,
2085                                                     struct efx_ptp_data,
2086                                                     phc_clock_info);
2087        struct efx_nic *efx = ptp_data->efx;
2088        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2089        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2090        int rc;
2091        ktime_t kt;
2092
2093        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2094        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2095
2096        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2097                          outbuf, sizeof(outbuf), NULL);
2098        if (rc != 0)
2099                return rc;
2100
2101        kt = ptp_data->nic_to_kernel_time(
2102                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2103                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2104        *ts = ktime_to_timespec64(kt);
2105        return 0;
2106}
2107
2108static int efx_phc_settime(struct ptp_clock_info *ptp,
2109                           const struct timespec64 *e_ts)
2110{
2111        /* Get the current NIC time, efx_phc_gettime.
2112         * Subtract from the desired time to get the offset
2113         * call efx_phc_adjtime with the offset
2114         */
2115        int rc;
2116        struct timespec64 time_now;
2117        struct timespec64 delta;
2118
2119        rc = efx_phc_gettime(ptp, &time_now);
2120        if (rc != 0)
2121                return rc;
2122
2123        delta = timespec64_sub(*e_ts, time_now);
2124
2125        rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2126        if (rc != 0)
2127                return rc;
2128
2129        return 0;
2130}
2131
2132static int efx_phc_enable(struct ptp_clock_info *ptp,
2133                          struct ptp_clock_request *request,
2134                          int enable)
2135{
2136        struct efx_ptp_data *ptp_data = container_of(ptp,
2137                                                     struct efx_ptp_data,
2138                                                     phc_clock_info);
2139        if (request->type != PTP_CLK_REQ_PPS)
2140                return -EOPNOTSUPP;
2141
2142        ptp_data->nic_ts_enabled = !!enable;
2143        return 0;
2144}
2145
2146static const struct efx_channel_type efx_ptp_channel_type = {
2147        .handle_no_channel      = efx_ptp_handle_no_channel,
2148        .pre_probe              = efx_ptp_probe_channel,
2149        .post_remove            = efx_ptp_remove_channel,
2150        .get_name               = efx_ptp_get_channel_name,
2151        /* no copy operation; there is no need to reallocate this channel */
2152        .receive_skb            = efx_ptp_rx,
2153        .want_txqs              = efx_ptp_want_txqs,
2154        .keep_eventq            = false,
2155};
2156
2157void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2158{
2159        /* Check whether PTP is implemented on this NIC.  The DISABLE
2160         * operation will succeed if and only if it is implemented.
2161         */
2162        if (efx_ptp_disable(efx) == 0)
2163                efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2164                        &efx_ptp_channel_type;
2165}
2166
2167void efx_ptp_start_datapath(struct efx_nic *efx)
2168{
2169        if (efx_ptp_restart(efx))
2170                netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2171        /* re-enable timestamping if it was previously enabled */
2172        if (efx->type->ptp_set_ts_sync_events)
2173                efx->type->ptp_set_ts_sync_events(efx, true, true);
2174}
2175
2176void efx_ptp_stop_datapath(struct efx_nic *efx)
2177{
2178        /* temporarily disable timestamping */
2179        if (efx->type->ptp_set_ts_sync_events)
2180                efx->type->ptp_set_ts_sync_events(efx, false, true);
2181        efx_ptp_stop(efx);
2182}
2183