linux/drivers/net/ethernet/sfc/tx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/pci.h>
   9#include <linux/tcp.h>
  10#include <linux/ip.h>
  11#include <linux/in.h>
  12#include <linux/ipv6.h>
  13#include <linux/slab.h>
  14#include <net/ipv6.h>
  15#include <linux/if_ether.h>
  16#include <linux/highmem.h>
  17#include <linux/cache.h>
  18#include "net_driver.h"
  19#include "efx.h"
  20#include "io.h"
  21#include "nic.h"
  22#include "tx.h"
  23#include "workarounds.h"
  24#include "ef10_regs.h"
  25
  26#ifdef EFX_USE_PIO
  27
  28#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
  29unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
  30
  31#endif /* EFX_USE_PIO */
  32
  33static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
  34                                         struct efx_tx_buffer *buffer)
  35{
  36        unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
  37        struct efx_buffer *page_buf =
  38                &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
  39        unsigned int offset =
  40                ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
  41
  42        if (unlikely(!page_buf->addr) &&
  43            efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
  44                                 GFP_ATOMIC))
  45                return NULL;
  46        buffer->dma_addr = page_buf->dma_addr + offset;
  47        buffer->unmap_len = 0;
  48        return (u8 *)page_buf->addr + offset;
  49}
  50
  51u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
  52                                   struct efx_tx_buffer *buffer, size_t len)
  53{
  54        if (len > EFX_TX_CB_SIZE)
  55                return NULL;
  56        return efx_tx_get_copy_buffer(tx_queue, buffer);
  57}
  58
  59static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
  60                               struct efx_tx_buffer *buffer,
  61                               unsigned int *pkts_compl,
  62                               unsigned int *bytes_compl)
  63{
  64        if (buffer->unmap_len) {
  65                struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
  66                dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
  67                if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
  68                        dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
  69                                         DMA_TO_DEVICE);
  70                else
  71                        dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
  72                                       DMA_TO_DEVICE);
  73                buffer->unmap_len = 0;
  74        }
  75
  76        if (buffer->flags & EFX_TX_BUF_SKB) {
  77                struct sk_buff *skb = (struct sk_buff *)buffer->skb;
  78
  79                EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
  80                (*pkts_compl)++;
  81                (*bytes_compl) += skb->len;
  82                if (tx_queue->timestamping &&
  83                    (tx_queue->completed_timestamp_major ||
  84                     tx_queue->completed_timestamp_minor)) {
  85                        struct skb_shared_hwtstamps hwtstamp;
  86
  87                        hwtstamp.hwtstamp =
  88                                efx_ptp_nic_to_kernel_time(tx_queue);
  89                        skb_tstamp_tx(skb, &hwtstamp);
  90
  91                        tx_queue->completed_timestamp_major = 0;
  92                        tx_queue->completed_timestamp_minor = 0;
  93                }
  94                dev_consume_skb_any((struct sk_buff *)buffer->skb);
  95                netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
  96                           "TX queue %d transmission id %x complete\n",
  97                           tx_queue->queue, tx_queue->read_count);
  98        }
  99
 100        buffer->len = 0;
 101        buffer->flags = 0;
 102}
 103
 104unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
 105{
 106        /* Header and payload descriptor for each output segment, plus
 107         * one for every input fragment boundary within a segment
 108         */
 109        unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
 110
 111        /* Possibly one more per segment for option descriptors */
 112        if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 113                max_descs += EFX_TSO_MAX_SEGS;
 114
 115        /* Possibly more for PCIe page boundaries within input fragments */
 116        if (PAGE_SIZE > EFX_PAGE_SIZE)
 117                max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
 118                                   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
 119
 120        return max_descs;
 121}
 122
 123static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
 124{
 125        /* We need to consider both queues that the net core sees as one */
 126        struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
 127        struct efx_nic *efx = txq1->efx;
 128        unsigned int fill_level;
 129
 130        fill_level = max(txq1->insert_count - txq1->old_read_count,
 131                         txq2->insert_count - txq2->old_read_count);
 132        if (likely(fill_level < efx->txq_stop_thresh))
 133                return;
 134
 135        /* We used the stale old_read_count above, which gives us a
 136         * pessimistic estimate of the fill level (which may even
 137         * validly be >= efx->txq_entries).  Now try again using
 138         * read_count (more likely to be a cache miss).
 139         *
 140         * If we read read_count and then conditionally stop the
 141         * queue, it is possible for the completion path to race with
 142         * us and complete all outstanding descriptors in the middle,
 143         * after which there will be no more completions to wake it.
 144         * Therefore we stop the queue first, then read read_count
 145         * (with a memory barrier to ensure the ordering), then
 146         * restart the queue if the fill level turns out to be low
 147         * enough.
 148         */
 149        netif_tx_stop_queue(txq1->core_txq);
 150        smp_mb();
 151        txq1->old_read_count = READ_ONCE(txq1->read_count);
 152        txq2->old_read_count = READ_ONCE(txq2->read_count);
 153
 154        fill_level = max(txq1->insert_count - txq1->old_read_count,
 155                         txq2->insert_count - txq2->old_read_count);
 156        EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
 157        if (likely(fill_level < efx->txq_stop_thresh)) {
 158                smp_mb();
 159                if (likely(!efx->loopback_selftest))
 160                        netif_tx_start_queue(txq1->core_txq);
 161        }
 162}
 163
 164static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
 165                                struct sk_buff *skb)
 166{
 167        unsigned int copy_len = skb->len;
 168        struct efx_tx_buffer *buffer;
 169        u8 *copy_buffer;
 170        int rc;
 171
 172        EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
 173
 174        buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 175
 176        copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
 177        if (unlikely(!copy_buffer))
 178                return -ENOMEM;
 179
 180        rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
 181        EFX_WARN_ON_PARANOID(rc);
 182        buffer->len = copy_len;
 183
 184        buffer->skb = skb;
 185        buffer->flags = EFX_TX_BUF_SKB;
 186
 187        ++tx_queue->insert_count;
 188        return rc;
 189}
 190
 191#ifdef EFX_USE_PIO
 192
 193struct efx_short_copy_buffer {
 194        int used;
 195        u8 buf[L1_CACHE_BYTES];
 196};
 197
 198/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
 199 * Advances piobuf pointer. Leaves additional data in the copy buffer.
 200 */
 201static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
 202                                    u8 *data, int len,
 203                                    struct efx_short_copy_buffer *copy_buf)
 204{
 205        int block_len = len & ~(sizeof(copy_buf->buf) - 1);
 206
 207        __iowrite64_copy(*piobuf, data, block_len >> 3);
 208        *piobuf += block_len;
 209        len -= block_len;
 210
 211        if (len) {
 212                data += block_len;
 213                BUG_ON(copy_buf->used);
 214                BUG_ON(len > sizeof(copy_buf->buf));
 215                memcpy(copy_buf->buf, data, len);
 216                copy_buf->used = len;
 217        }
 218}
 219
 220/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
 221 * Advances piobuf pointer. Leaves additional data in the copy buffer.
 222 */
 223static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
 224                                       u8 *data, int len,
 225                                       struct efx_short_copy_buffer *copy_buf)
 226{
 227        if (copy_buf->used) {
 228                /* if the copy buffer is partially full, fill it up and write */
 229                int copy_to_buf =
 230                        min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
 231
 232                memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
 233                copy_buf->used += copy_to_buf;
 234
 235                /* if we didn't fill it up then we're done for now */
 236                if (copy_buf->used < sizeof(copy_buf->buf))
 237                        return;
 238
 239                __iowrite64_copy(*piobuf, copy_buf->buf,
 240                                 sizeof(copy_buf->buf) >> 3);
 241                *piobuf += sizeof(copy_buf->buf);
 242                data += copy_to_buf;
 243                len -= copy_to_buf;
 244                copy_buf->used = 0;
 245        }
 246
 247        efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
 248}
 249
 250static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
 251                                  struct efx_short_copy_buffer *copy_buf)
 252{
 253        /* if there's anything in it, write the whole buffer, including junk */
 254        if (copy_buf->used)
 255                __iowrite64_copy(piobuf, copy_buf->buf,
 256                                 sizeof(copy_buf->buf) >> 3);
 257}
 258
 259/* Traverse skb structure and copy fragments in to PIO buffer.
 260 * Advances piobuf pointer.
 261 */
 262static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
 263                                     u8 __iomem **piobuf,
 264                                     struct efx_short_copy_buffer *copy_buf)
 265{
 266        int i;
 267
 268        efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
 269                                copy_buf);
 270
 271        for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
 272                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 273                u8 *vaddr;
 274
 275                vaddr = kmap_atomic(skb_frag_page(f));
 276
 277                efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
 278                                           skb_frag_size(f), copy_buf);
 279                kunmap_atomic(vaddr);
 280        }
 281
 282        EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
 283}
 284
 285static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
 286                               struct sk_buff *skb)
 287{
 288        struct efx_tx_buffer *buffer =
 289                efx_tx_queue_get_insert_buffer(tx_queue);
 290        u8 __iomem *piobuf = tx_queue->piobuf;
 291
 292        /* Copy to PIO buffer. Ensure the writes are padded to the end
 293         * of a cache line, as this is required for write-combining to be
 294         * effective on at least x86.
 295         */
 296
 297        if (skb_shinfo(skb)->nr_frags) {
 298                /* The size of the copy buffer will ensure all writes
 299                 * are the size of a cache line.
 300                 */
 301                struct efx_short_copy_buffer copy_buf;
 302
 303                copy_buf.used = 0;
 304
 305                efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
 306                                         &piobuf, &copy_buf);
 307                efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
 308        } else {
 309                /* Pad the write to the size of a cache line.
 310                 * We can do this because we know the skb_shared_info struct is
 311                 * after the source, and the destination buffer is big enough.
 312                 */
 313                BUILD_BUG_ON(L1_CACHE_BYTES >
 314                             SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
 315                __iowrite64_copy(tx_queue->piobuf, skb->data,
 316                                 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
 317        }
 318
 319        buffer->skb = skb;
 320        buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
 321
 322        EFX_POPULATE_QWORD_5(buffer->option,
 323                             ESF_DZ_TX_DESC_IS_OPT, 1,
 324                             ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
 325                             ESF_DZ_TX_PIO_CONT, 0,
 326                             ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
 327                             ESF_DZ_TX_PIO_BUF_ADDR,
 328                             tx_queue->piobuf_offset);
 329        ++tx_queue->insert_count;
 330        return 0;
 331}
 332#endif /* EFX_USE_PIO */
 333
 334static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
 335                                              dma_addr_t dma_addr,
 336                                              size_t len)
 337{
 338        const struct efx_nic_type *nic_type = tx_queue->efx->type;
 339        struct efx_tx_buffer *buffer;
 340        unsigned int dma_len;
 341
 342        /* Map the fragment taking account of NIC-dependent DMA limits. */
 343        do {
 344                buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 345                dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
 346
 347                buffer->len = dma_len;
 348                buffer->dma_addr = dma_addr;
 349                buffer->flags = EFX_TX_BUF_CONT;
 350                len -= dma_len;
 351                dma_addr += dma_len;
 352                ++tx_queue->insert_count;
 353        } while (len);
 354
 355        return buffer;
 356}
 357
 358/* Map all data from an SKB for DMA and create descriptors on the queue.
 359 */
 360static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
 361                           unsigned int segment_count)
 362{
 363        struct efx_nic *efx = tx_queue->efx;
 364        struct device *dma_dev = &efx->pci_dev->dev;
 365        unsigned int frag_index, nr_frags;
 366        dma_addr_t dma_addr, unmap_addr;
 367        unsigned short dma_flags;
 368        size_t len, unmap_len;
 369
 370        nr_frags = skb_shinfo(skb)->nr_frags;
 371        frag_index = 0;
 372
 373        /* Map header data. */
 374        len = skb_headlen(skb);
 375        dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
 376        dma_flags = EFX_TX_BUF_MAP_SINGLE;
 377        unmap_len = len;
 378        unmap_addr = dma_addr;
 379
 380        if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 381                return -EIO;
 382
 383        if (segment_count) {
 384                /* For TSO we need to put the header in to a separate
 385                 * descriptor. Map this separately if necessary.
 386                 */
 387                size_t header_len = skb_transport_header(skb) - skb->data +
 388                                (tcp_hdr(skb)->doff << 2u);
 389
 390                if (header_len != len) {
 391                        tx_queue->tso_long_headers++;
 392                        efx_tx_map_chunk(tx_queue, dma_addr, header_len);
 393                        len -= header_len;
 394                        dma_addr += header_len;
 395                }
 396        }
 397
 398        /* Add descriptors for each fragment. */
 399        do {
 400                struct efx_tx_buffer *buffer;
 401                skb_frag_t *fragment;
 402
 403                buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
 404
 405                /* The final descriptor for a fragment is responsible for
 406                 * unmapping the whole fragment.
 407                 */
 408                buffer->flags = EFX_TX_BUF_CONT | dma_flags;
 409                buffer->unmap_len = unmap_len;
 410                buffer->dma_offset = buffer->dma_addr - unmap_addr;
 411
 412                if (frag_index >= nr_frags) {
 413                        /* Store SKB details with the final buffer for
 414                         * the completion.
 415                         */
 416                        buffer->skb = skb;
 417                        buffer->flags = EFX_TX_BUF_SKB | dma_flags;
 418                        return 0;
 419                }
 420
 421                /* Move on to the next fragment. */
 422                fragment = &skb_shinfo(skb)->frags[frag_index++];
 423                len = skb_frag_size(fragment);
 424                dma_addr = skb_frag_dma_map(dma_dev, fragment,
 425                                0, len, DMA_TO_DEVICE);
 426                dma_flags = 0;
 427                unmap_len = len;
 428                unmap_addr = dma_addr;
 429
 430                if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 431                        return -EIO;
 432        } while (1);
 433}
 434
 435/* Remove buffers put into a tx_queue for the current packet.
 436 * None of the buffers must have an skb attached.
 437 */
 438static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
 439                               unsigned int insert_count)
 440{
 441        struct efx_tx_buffer *buffer;
 442        unsigned int bytes_compl = 0;
 443        unsigned int pkts_compl = 0;
 444
 445        /* Work backwards until we hit the original insert pointer value */
 446        while (tx_queue->insert_count != insert_count) {
 447                --tx_queue->insert_count;
 448                buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
 449                efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 450        }
 451}
 452
 453/*
 454 * Fallback to software TSO.
 455 *
 456 * This is used if we are unable to send a GSO packet through hardware TSO.
 457 * This should only ever happen due to per-queue restrictions - unsupported
 458 * packets should first be filtered by the feature flags.
 459 *
 460 * Returns 0 on success, error code otherwise.
 461 */
 462static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
 463                               struct sk_buff *skb)
 464{
 465        struct sk_buff *segments, *next;
 466
 467        segments = skb_gso_segment(skb, 0);
 468        if (IS_ERR(segments))
 469                return PTR_ERR(segments);
 470
 471        dev_consume_skb_any(skb);
 472        skb = segments;
 473
 474        while (skb) {
 475                next = skb->next;
 476                skb->next = NULL;
 477
 478                efx_enqueue_skb(tx_queue, skb);
 479                skb = next;
 480        }
 481
 482        return 0;
 483}
 484
 485/*
 486 * Add a socket buffer to a TX queue
 487 *
 488 * This maps all fragments of a socket buffer for DMA and adds them to
 489 * the TX queue.  The queue's insert pointer will be incremented by
 490 * the number of fragments in the socket buffer.
 491 *
 492 * If any DMA mapping fails, any mapped fragments will be unmapped,
 493 * the queue's insert pointer will be restored to its original value.
 494 *
 495 * This function is split out from efx_hard_start_xmit to allow the
 496 * loopback test to direct packets via specific TX queues.
 497 *
 498 * Returns NETDEV_TX_OK.
 499 * You must hold netif_tx_lock() to call this function.
 500 */
 501netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
 502{
 503        unsigned int old_insert_count = tx_queue->insert_count;
 504        bool xmit_more = netdev_xmit_more();
 505        bool data_mapped = false;
 506        unsigned int segments;
 507        unsigned int skb_len;
 508        int rc;
 509
 510        skb_len = skb->len;
 511        segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
 512        if (segments == 1)
 513                segments = 0; /* Don't use TSO for a single segment. */
 514
 515        /* Handle TSO first - it's *possible* (although unlikely) that we might
 516         * be passed a packet to segment that's smaller than the copybreak/PIO
 517         * size limit.
 518         */
 519        if (segments) {
 520                EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
 521                rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
 522                if (rc == -EINVAL) {
 523                        rc = efx_tx_tso_fallback(tx_queue, skb);
 524                        tx_queue->tso_fallbacks++;
 525                        if (rc == 0)
 526                                return 0;
 527                }
 528                if (rc)
 529                        goto err;
 530#ifdef EFX_USE_PIO
 531        } else if (skb_len <= efx_piobuf_size && !xmit_more &&
 532                   efx_nic_may_tx_pio(tx_queue)) {
 533                /* Use PIO for short packets with an empty queue. */
 534                if (efx_enqueue_skb_pio(tx_queue, skb))
 535                        goto err;
 536                tx_queue->pio_packets++;
 537                data_mapped = true;
 538#endif
 539        } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
 540                /* Pad short packets or coalesce short fragmented packets. */
 541                if (efx_enqueue_skb_copy(tx_queue, skb))
 542                        goto err;
 543                tx_queue->cb_packets++;
 544                data_mapped = true;
 545        }
 546
 547        /* Map for DMA and create descriptors if we haven't done so already. */
 548        if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
 549                goto err;
 550
 551        efx_tx_maybe_stop_queue(tx_queue);
 552
 553        /* Pass off to hardware */
 554        if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) {
 555                struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
 556
 557                /* There could be packets left on the partner queue if
 558                 * xmit_more was set. If we do not push those they
 559                 * could be left for a long time and cause a netdev watchdog.
 560                 */
 561                if (txq2->xmit_more_available)
 562                        efx_nic_push_buffers(txq2);
 563
 564                efx_nic_push_buffers(tx_queue);
 565        } else {
 566                tx_queue->xmit_more_available = xmit_more;
 567        }
 568
 569        if (segments) {
 570                tx_queue->tso_bursts++;
 571                tx_queue->tso_packets += segments;
 572                tx_queue->tx_packets  += segments;
 573        } else {
 574                tx_queue->tx_packets++;
 575        }
 576
 577        return NETDEV_TX_OK;
 578
 579
 580err:
 581        efx_enqueue_unwind(tx_queue, old_insert_count);
 582        dev_kfree_skb_any(skb);
 583
 584        /* If we're not expecting another transmit and we had something to push
 585         * on this queue or a partner queue then we need to push here to get the
 586         * previous packets out.
 587         */
 588        if (!xmit_more) {
 589                struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
 590
 591                if (txq2->xmit_more_available)
 592                        efx_nic_push_buffers(txq2);
 593
 594                efx_nic_push_buffers(tx_queue);
 595        }
 596
 597        return NETDEV_TX_OK;
 598}
 599
 600/* Remove packets from the TX queue
 601 *
 602 * This removes packets from the TX queue, up to and including the
 603 * specified index.
 604 */
 605static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
 606                                unsigned int index,
 607                                unsigned int *pkts_compl,
 608                                unsigned int *bytes_compl)
 609{
 610        struct efx_nic *efx = tx_queue->efx;
 611        unsigned int stop_index, read_ptr;
 612
 613        stop_index = (index + 1) & tx_queue->ptr_mask;
 614        read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 615
 616        while (read_ptr != stop_index) {
 617                struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 618
 619                if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
 620                    unlikely(buffer->len == 0)) {
 621                        netif_err(efx, tx_err, efx->net_dev,
 622                                  "TX queue %d spurious TX completion id %x\n",
 623                                  tx_queue->queue, read_ptr);
 624                        efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
 625                        return;
 626                }
 627
 628                efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
 629
 630                ++tx_queue->read_count;
 631                read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 632        }
 633}
 634
 635/* Initiate a packet transmission.  We use one channel per CPU
 636 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 637 * completion events will be directed back to the CPU that transmitted
 638 * the packet, which should be cache-efficient.
 639 *
 640 * Context: non-blocking.
 641 * Note that returning anything other than NETDEV_TX_OK will cause the
 642 * OS to free the skb.
 643 */
 644netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
 645                                struct net_device *net_dev)
 646{
 647        struct efx_nic *efx = netdev_priv(net_dev);
 648        struct efx_tx_queue *tx_queue;
 649        unsigned index, type;
 650
 651        EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
 652
 653        /* PTP "event" packet */
 654        if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
 655            unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
 656                return efx_ptp_tx(efx, skb);
 657        }
 658
 659        index = skb_get_queue_mapping(skb);
 660        type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
 661        if (index >= efx->n_tx_channels) {
 662                index -= efx->n_tx_channels;
 663                type |= EFX_TXQ_TYPE_HIGHPRI;
 664        }
 665        tx_queue = efx_get_tx_queue(efx, index, type);
 666
 667        return efx_enqueue_skb(tx_queue, skb);
 668}
 669
 670void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
 671{
 672        struct efx_nic *efx = tx_queue->efx;
 673
 674        /* Must be inverse of queue lookup in efx_hard_start_xmit() */
 675        tx_queue->core_txq =
 676                netdev_get_tx_queue(efx->net_dev,
 677                                    tx_queue->queue / EFX_TXQ_TYPES +
 678                                    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 679                                     efx->n_tx_channels : 0));
 680}
 681
 682int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
 683                 void *type_data)
 684{
 685        struct efx_nic *efx = netdev_priv(net_dev);
 686        struct tc_mqprio_qopt *mqprio = type_data;
 687        struct efx_channel *channel;
 688        struct efx_tx_queue *tx_queue;
 689        unsigned tc, num_tc;
 690        int rc;
 691
 692        if (type != TC_SETUP_QDISC_MQPRIO)
 693                return -EOPNOTSUPP;
 694
 695        num_tc = mqprio->num_tc;
 696
 697        if (num_tc > EFX_MAX_TX_TC)
 698                return -EINVAL;
 699
 700        mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 701
 702        if (num_tc == net_dev->num_tc)
 703                return 0;
 704
 705        for (tc = 0; tc < num_tc; tc++) {
 706                net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
 707                net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
 708        }
 709
 710        if (num_tc > net_dev->num_tc) {
 711                /* Initialise high-priority queues as necessary */
 712                efx_for_each_channel(channel, efx) {
 713                        efx_for_each_possible_channel_tx_queue(tx_queue,
 714                                                               channel) {
 715                                if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
 716                                        continue;
 717                                if (!tx_queue->buffer) {
 718                                        rc = efx_probe_tx_queue(tx_queue);
 719                                        if (rc)
 720                                                return rc;
 721                                }
 722                                if (!tx_queue->initialised)
 723                                        efx_init_tx_queue(tx_queue);
 724                                efx_init_tx_queue_core_txq(tx_queue);
 725                        }
 726                }
 727        } else {
 728                /* Reduce number of classes before number of queues */
 729                net_dev->num_tc = num_tc;
 730        }
 731
 732        rc = netif_set_real_num_tx_queues(net_dev,
 733                                          max_t(int, num_tc, 1) *
 734                                          efx->n_tx_channels);
 735        if (rc)
 736                return rc;
 737
 738        /* Do not destroy high-priority queues when they become
 739         * unused.  We would have to flush them first, and it is
 740         * fairly difficult to flush a subset of TX queues.  Leave
 741         * it to efx_fini_channels().
 742         */
 743
 744        net_dev->num_tc = num_tc;
 745        return 0;
 746}
 747
 748void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
 749{
 750        unsigned fill_level;
 751        struct efx_nic *efx = tx_queue->efx;
 752        struct efx_tx_queue *txq2;
 753        unsigned int pkts_compl = 0, bytes_compl = 0;
 754
 755        EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
 756
 757        efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
 758        tx_queue->pkts_compl += pkts_compl;
 759        tx_queue->bytes_compl += bytes_compl;
 760
 761        if (pkts_compl > 1)
 762                ++tx_queue->merge_events;
 763
 764        /* See if we need to restart the netif queue.  This memory
 765         * barrier ensures that we write read_count (inside
 766         * efx_dequeue_buffers()) before reading the queue status.
 767         */
 768        smp_mb();
 769        if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
 770            likely(efx->port_enabled) &&
 771            likely(netif_device_present(efx->net_dev))) {
 772                txq2 = efx_tx_queue_partner(tx_queue);
 773                fill_level = max(tx_queue->insert_count - tx_queue->read_count,
 774                                 txq2->insert_count - txq2->read_count);
 775                if (fill_level <= efx->txq_wake_thresh)
 776                        netif_tx_wake_queue(tx_queue->core_txq);
 777        }
 778
 779        /* Check whether the hardware queue is now empty */
 780        if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
 781                tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
 782                if (tx_queue->read_count == tx_queue->old_write_count) {
 783                        smp_mb();
 784                        tx_queue->empty_read_count =
 785                                tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
 786                }
 787        }
 788}
 789
 790static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
 791{
 792        return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
 793}
 794
 795int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
 796{
 797        struct efx_nic *efx = tx_queue->efx;
 798        unsigned int entries;
 799        int rc;
 800
 801        /* Create the smallest power-of-two aligned ring */
 802        entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
 803        EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 804        tx_queue->ptr_mask = entries - 1;
 805
 806        netif_dbg(efx, probe, efx->net_dev,
 807                  "creating TX queue %d size %#x mask %#x\n",
 808                  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 809
 810        /* Allocate software ring */
 811        tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 812                                   GFP_KERNEL);
 813        if (!tx_queue->buffer)
 814                return -ENOMEM;
 815
 816        tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
 817                                    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
 818        if (!tx_queue->cb_page) {
 819                rc = -ENOMEM;
 820                goto fail1;
 821        }
 822
 823        /* Allocate hardware ring */
 824        rc = efx_nic_probe_tx(tx_queue);
 825        if (rc)
 826                goto fail2;
 827
 828        return 0;
 829
 830fail2:
 831        kfree(tx_queue->cb_page);
 832        tx_queue->cb_page = NULL;
 833fail1:
 834        kfree(tx_queue->buffer);
 835        tx_queue->buffer = NULL;
 836        return rc;
 837}
 838
 839void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
 840{
 841        struct efx_nic *efx = tx_queue->efx;
 842
 843        netif_dbg(efx, drv, efx->net_dev,
 844                  "initialising TX queue %d\n", tx_queue->queue);
 845
 846        tx_queue->insert_count = 0;
 847        tx_queue->write_count = 0;
 848        tx_queue->packet_write_count = 0;
 849        tx_queue->old_write_count = 0;
 850        tx_queue->read_count = 0;
 851        tx_queue->old_read_count = 0;
 852        tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
 853        tx_queue->xmit_more_available = false;
 854        tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
 855                                  tx_queue->channel == efx_ptp_channel(efx));
 856        tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
 857        tx_queue->completed_timestamp_major = 0;
 858        tx_queue->completed_timestamp_minor = 0;
 859
 860        /* Set up default function pointers. These may get replaced by
 861         * efx_nic_init_tx() based off NIC/queue capabilities.
 862         */
 863        tx_queue->handle_tso = efx_enqueue_skb_tso;
 864
 865        /* Set up TX descriptor ring */
 866        efx_nic_init_tx(tx_queue);
 867
 868        tx_queue->initialised = true;
 869}
 870
 871void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
 872{
 873        struct efx_tx_buffer *buffer;
 874
 875        netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 876                  "shutting down TX queue %d\n", tx_queue->queue);
 877
 878        if (!tx_queue->buffer)
 879                return;
 880
 881        /* Free any buffers left in the ring */
 882        while (tx_queue->read_count != tx_queue->write_count) {
 883                unsigned int pkts_compl = 0, bytes_compl = 0;
 884                buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
 885                efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 886
 887                ++tx_queue->read_count;
 888        }
 889        tx_queue->xmit_more_available = false;
 890        netdev_tx_reset_queue(tx_queue->core_txq);
 891}
 892
 893void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
 894{
 895        int i;
 896
 897        if (!tx_queue->buffer)
 898                return;
 899
 900        netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 901                  "destroying TX queue %d\n", tx_queue->queue);
 902        efx_nic_remove_tx(tx_queue);
 903
 904        if (tx_queue->cb_page) {
 905                for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
 906                        efx_nic_free_buffer(tx_queue->efx,
 907                                            &tx_queue->cb_page[i]);
 908                kfree(tx_queue->cb_page);
 909                tx_queue->cb_page = NULL;
 910        }
 911
 912        kfree(tx_queue->buffer);
 913        tx_queue->buffer = NULL;
 914}
 915