linux/drivers/net/ethernet/sgi/ioc3-eth.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
   7 *
   8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
   9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
  10 *
  11 * References:
  12 *  o IOC3 ASIC specification 4.51, 1996-04-18
  13 *  o IEEE 802.3 specification, 2000 edition
  14 *  o DP38840A Specification, National Semiconductor, March 1997
  15 *
  16 * To do:
  17 *
  18 *  o Handle allocation failures in ioc3_alloc_skb() more gracefully.
  19 *  o Handle allocation failures in ioc3_init_rings().
  20 *  o Use prefetching for large packets.  What is a good lower limit for
  21 *    prefetching?
  22 *  o We're probably allocating a bit too much memory.
  23 *  o Use hardware checksums.
  24 *  o Convert to using a IOC3 meta driver.
  25 *  o Which PHYs might possibly be attached to the IOC3 in real live,
  26 *    which workarounds are required for them?  Do we ever have Lucent's?
  27 *  o For the 2.5 branch kill the mii-tool ioctls.
  28 */
  29
  30#define IOC3_NAME       "ioc3-eth"
  31#define IOC3_VERSION    "2.6.3-4"
  32
  33#include <linux/delay.h>
  34#include <linux/kernel.h>
  35#include <linux/mm.h>
  36#include <linux/errno.h>
  37#include <linux/module.h>
  38#include <linux/pci.h>
  39#include <linux/crc32.h>
  40#include <linux/mii.h>
  41#include <linux/in.h>
  42#include <linux/ip.h>
  43#include <linux/tcp.h>
  44#include <linux/udp.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/gfp.h>
  47
  48#ifdef CONFIG_SERIAL_8250
  49#include <linux/serial_core.h>
  50#include <linux/serial_8250.h>
  51#include <linux/serial_reg.h>
  52#endif
  53
  54#include <linux/netdevice.h>
  55#include <linux/etherdevice.h>
  56#include <linux/ethtool.h>
  57#include <linux/skbuff.h>
  58#include <net/ip.h>
  59
  60#include <asm/byteorder.h>
  61#include <asm/io.h>
  62#include <asm/pgtable.h>
  63#include <linux/uaccess.h>
  64#include <asm/sn/types.h>
  65#include <asm/sn/ioc3.h>
  66#include <asm/pci/bridge.h>
  67
  68/*
  69 * 64 RX buffers.  This is tunable in the range of 16 <= x < 512.  The
  70 * value must be a power of two.
  71 */
  72#define RX_BUFFS 64
  73
  74#define ETCSR_FD        ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
  75#define ETCSR_HD        ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
  76
  77/* Private per NIC data of the driver.  */
  78struct ioc3_private {
  79        struct ioc3 *regs;
  80        unsigned long *rxr;             /* pointer to receiver ring */
  81        struct ioc3_etxd *txr;
  82        struct sk_buff *rx_skbs[512];
  83        struct sk_buff *tx_skbs[128];
  84        int rx_ci;                      /* RX consumer index */
  85        int rx_pi;                      /* RX producer index */
  86        int tx_ci;                      /* TX consumer index */
  87        int tx_pi;                      /* TX producer index */
  88        int txqlen;
  89        u32 emcr, ehar_h, ehar_l;
  90        spinlock_t ioc3_lock;
  91        struct mii_if_info mii;
  92
  93        struct net_device *dev;
  94        struct pci_dev *pdev;
  95
  96        /* Members used by autonegotiation  */
  97        struct timer_list ioc3_timer;
  98};
  99
 100static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 101static void ioc3_set_multicast_list(struct net_device *dev);
 102static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
 103static void ioc3_timeout(struct net_device *dev);
 104static inline unsigned int ioc3_hash(const unsigned char *addr);
 105static inline void ioc3_stop(struct ioc3_private *ip);
 106static void ioc3_init(struct net_device *dev);
 107
 108static const char ioc3_str[] = "IOC3 Ethernet";
 109static const struct ethtool_ops ioc3_ethtool_ops;
 110
 111/* We use this to acquire receive skb's that we can DMA directly into. */
 112
 113#define IOC3_CACHELINE  128UL
 114
 115static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
 116{
 117        return (~addr + 1) & (IOC3_CACHELINE - 1UL);
 118}
 119
 120static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
 121        unsigned int gfp_mask)
 122{
 123        struct sk_buff *skb;
 124
 125        skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
 126        if (likely(skb)) {
 127                int offset = aligned_rx_skb_addr((unsigned long) skb->data);
 128                if (offset)
 129                        skb_reserve(skb, offset);
 130        }
 131
 132        return skb;
 133}
 134
 135static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
 136{
 137#ifdef CONFIG_SGI_IP27
 138        vdev <<= 57;   /* Shift to PCI64_ATTR_VIRTUAL */
 139
 140        return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
 141               ((unsigned long)ptr & TO_PHYS_MASK);
 142#else
 143        return virt_to_bus(ptr);
 144#endif
 145}
 146
 147/* BEWARE: The IOC3 documentation documents the size of rx buffers as
 148   1644 while it's actually 1664.  This one was nasty to track down ...  */
 149#define RX_OFFSET               10
 150#define RX_BUF_ALLOC_SIZE       (1664 + RX_OFFSET + IOC3_CACHELINE)
 151
 152/* DMA barrier to separate cached and uncached accesses.  */
 153#define BARRIER()                                                       \
 154        __asm__("sync" ::: "memory")
 155
 156
 157#define IOC3_SIZE 0x100000
 158
 159/*
 160 * IOC3 is a big endian device
 161 *
 162 * Unorthodox but makes the users of these macros more readable - the pointer
 163 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
 164 * in the environment.
 165 */
 166#define ioc3_r_mcr()            be32_to_cpu(ioc3->mcr)
 167#define ioc3_w_mcr(v)           do { ioc3->mcr = cpu_to_be32(v); } while (0)
 168#define ioc3_w_gpcr_s(v)        do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
 169#define ioc3_r_emcr()           be32_to_cpu(ioc3->emcr)
 170#define ioc3_w_emcr(v)          do { ioc3->emcr = cpu_to_be32(v); } while (0)
 171#define ioc3_r_eisr()           be32_to_cpu(ioc3->eisr)
 172#define ioc3_w_eisr(v)          do { ioc3->eisr = cpu_to_be32(v); } while (0)
 173#define ioc3_r_eier()           be32_to_cpu(ioc3->eier)
 174#define ioc3_w_eier(v)          do { ioc3->eier = cpu_to_be32(v); } while (0)
 175#define ioc3_r_ercsr()          be32_to_cpu(ioc3->ercsr)
 176#define ioc3_w_ercsr(v)         do { ioc3->ercsr = cpu_to_be32(v); } while (0)
 177#define ioc3_r_erbr_h()         be32_to_cpu(ioc3->erbr_h)
 178#define ioc3_w_erbr_h(v)        do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
 179#define ioc3_r_erbr_l()         be32_to_cpu(ioc3->erbr_l)
 180#define ioc3_w_erbr_l(v)        do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
 181#define ioc3_r_erbar()          be32_to_cpu(ioc3->erbar)
 182#define ioc3_w_erbar(v)         do { ioc3->erbar = cpu_to_be32(v); } while (0)
 183#define ioc3_r_ercir()          be32_to_cpu(ioc3->ercir)
 184#define ioc3_w_ercir(v)         do { ioc3->ercir = cpu_to_be32(v); } while (0)
 185#define ioc3_r_erpir()          be32_to_cpu(ioc3->erpir)
 186#define ioc3_w_erpir(v)         do { ioc3->erpir = cpu_to_be32(v); } while (0)
 187#define ioc3_r_ertr()           be32_to_cpu(ioc3->ertr)
 188#define ioc3_w_ertr(v)          do { ioc3->ertr = cpu_to_be32(v); } while (0)
 189#define ioc3_r_etcsr()          be32_to_cpu(ioc3->etcsr)
 190#define ioc3_w_etcsr(v)         do { ioc3->etcsr = cpu_to_be32(v); } while (0)
 191#define ioc3_r_ersr()           be32_to_cpu(ioc3->ersr)
 192#define ioc3_w_ersr(v)          do { ioc3->ersr = cpu_to_be32(v); } while (0)
 193#define ioc3_r_etcdc()          be32_to_cpu(ioc3->etcdc)
 194#define ioc3_w_etcdc(v)         do { ioc3->etcdc = cpu_to_be32(v); } while (0)
 195#define ioc3_r_ebir()           be32_to_cpu(ioc3->ebir)
 196#define ioc3_w_ebir(v)          do { ioc3->ebir = cpu_to_be32(v); } while (0)
 197#define ioc3_r_etbr_h()         be32_to_cpu(ioc3->etbr_h)
 198#define ioc3_w_etbr_h(v)        do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
 199#define ioc3_r_etbr_l()         be32_to_cpu(ioc3->etbr_l)
 200#define ioc3_w_etbr_l(v)        do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
 201#define ioc3_r_etcir()          be32_to_cpu(ioc3->etcir)
 202#define ioc3_w_etcir(v)         do { ioc3->etcir = cpu_to_be32(v); } while (0)
 203#define ioc3_r_etpir()          be32_to_cpu(ioc3->etpir)
 204#define ioc3_w_etpir(v)         do { ioc3->etpir = cpu_to_be32(v); } while (0)
 205#define ioc3_r_emar_h()         be32_to_cpu(ioc3->emar_h)
 206#define ioc3_w_emar_h(v)        do { ioc3->emar_h = cpu_to_be32(v); } while (0)
 207#define ioc3_r_emar_l()         be32_to_cpu(ioc3->emar_l)
 208#define ioc3_w_emar_l(v)        do { ioc3->emar_l = cpu_to_be32(v); } while (0)
 209#define ioc3_r_ehar_h()         be32_to_cpu(ioc3->ehar_h)
 210#define ioc3_w_ehar_h(v)        do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
 211#define ioc3_r_ehar_l()         be32_to_cpu(ioc3->ehar_l)
 212#define ioc3_w_ehar_l(v)        do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
 213#define ioc3_r_micr()           be32_to_cpu(ioc3->micr)
 214#define ioc3_w_micr(v)          do { ioc3->micr = cpu_to_be32(v); } while (0)
 215#define ioc3_r_midr_r()         be32_to_cpu(ioc3->midr_r)
 216#define ioc3_w_midr_r(v)        do { ioc3->midr_r = cpu_to_be32(v); } while (0)
 217#define ioc3_r_midr_w()         be32_to_cpu(ioc3->midr_w)
 218#define ioc3_w_midr_w(v)        do { ioc3->midr_w = cpu_to_be32(v); } while (0)
 219
 220static inline u32 mcr_pack(u32 pulse, u32 sample)
 221{
 222        return (pulse << 10) | (sample << 2);
 223}
 224
 225static int nic_wait(struct ioc3 *ioc3)
 226{
 227        u32 mcr;
 228
 229        do {
 230                mcr = ioc3_r_mcr();
 231        } while (!(mcr & 2));
 232
 233        return mcr & 1;
 234}
 235
 236static int nic_reset(struct ioc3 *ioc3)
 237{
 238        int presence;
 239
 240        ioc3_w_mcr(mcr_pack(500, 65));
 241        presence = nic_wait(ioc3);
 242
 243        ioc3_w_mcr(mcr_pack(0, 500));
 244        nic_wait(ioc3);
 245
 246        return presence;
 247}
 248
 249static inline int nic_read_bit(struct ioc3 *ioc3)
 250{
 251        int result;
 252
 253        ioc3_w_mcr(mcr_pack(6, 13));
 254        result = nic_wait(ioc3);
 255        ioc3_w_mcr(mcr_pack(0, 100));
 256        nic_wait(ioc3);
 257
 258        return result;
 259}
 260
 261static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
 262{
 263        if (bit)
 264                ioc3_w_mcr(mcr_pack(6, 110));
 265        else
 266                ioc3_w_mcr(mcr_pack(80, 30));
 267
 268        nic_wait(ioc3);
 269}
 270
 271/*
 272 * Read a byte from an iButton device
 273 */
 274static u32 nic_read_byte(struct ioc3 *ioc3)
 275{
 276        u32 result = 0;
 277        int i;
 278
 279        for (i = 0; i < 8; i++)
 280                result = (result >> 1) | (nic_read_bit(ioc3) << 7);
 281
 282        return result;
 283}
 284
 285/*
 286 * Write a byte to an iButton device
 287 */
 288static void nic_write_byte(struct ioc3 *ioc3, int byte)
 289{
 290        int i, bit;
 291
 292        for (i = 8; i; i--) {
 293                bit = byte & 1;
 294                byte >>= 1;
 295
 296                nic_write_bit(ioc3, bit);
 297        }
 298}
 299
 300static u64 nic_find(struct ioc3 *ioc3, int *last)
 301{
 302        int a, b, index, disc;
 303        u64 address = 0;
 304
 305        nic_reset(ioc3);
 306        /* Search ROM.  */
 307        nic_write_byte(ioc3, 0xf0);
 308
 309        /* Algorithm from ``Book of iButton Standards''.  */
 310        for (index = 0, disc = 0; index < 64; index++) {
 311                a = nic_read_bit(ioc3);
 312                b = nic_read_bit(ioc3);
 313
 314                if (a && b) {
 315                        printk("NIC search failed (not fatal).\n");
 316                        *last = 0;
 317                        return 0;
 318                }
 319
 320                if (!a && !b) {
 321                        if (index == *last) {
 322                                address |= 1UL << index;
 323                        } else if (index > *last) {
 324                                address &= ~(1UL << index);
 325                                disc = index;
 326                        } else if ((address & (1UL << index)) == 0)
 327                                disc = index;
 328                        nic_write_bit(ioc3, address & (1UL << index));
 329                        continue;
 330                } else {
 331                        if (a)
 332                                address |= 1UL << index;
 333                        else
 334                                address &= ~(1UL << index);
 335                        nic_write_bit(ioc3, a);
 336                        continue;
 337                }
 338        }
 339
 340        *last = disc;
 341
 342        return address;
 343}
 344
 345static int nic_init(struct ioc3 *ioc3)
 346{
 347        const char *unknown = "unknown";
 348        const char *type = unknown;
 349        u8 crc;
 350        u8 serial[6];
 351        int save = 0, i;
 352
 353        while (1) {
 354                u64 reg;
 355                reg = nic_find(ioc3, &save);
 356
 357                switch (reg & 0xff) {
 358                case 0x91:
 359                        type = "DS1981U";
 360                        break;
 361                default:
 362                        if (save == 0) {
 363                                /* Let the caller try again.  */
 364                                return -1;
 365                        }
 366                        continue;
 367                }
 368
 369                nic_reset(ioc3);
 370
 371                /* Match ROM.  */
 372                nic_write_byte(ioc3, 0x55);
 373                for (i = 0; i < 8; i++)
 374                        nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
 375
 376                reg >>= 8; /* Shift out type.  */
 377                for (i = 0; i < 6; i++) {
 378                        serial[i] = reg & 0xff;
 379                        reg >>= 8;
 380                }
 381                crc = reg & 0xff;
 382                break;
 383        }
 384
 385        printk("Found %s NIC", type);
 386        if (type != unknown)
 387                printk (" registration number %pM, CRC %02x", serial, crc);
 388        printk(".\n");
 389
 390        return 0;
 391}
 392
 393/*
 394 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
 395 * SN0 / SN00 nodeboards and PCI cards.
 396 */
 397static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
 398{
 399        struct ioc3 *ioc3 = ip->regs;
 400        u8 nic[14];
 401        int tries = 2; /* There may be some problem with the battery?  */
 402        int i;
 403
 404        ioc3_w_gpcr_s(1 << 21);
 405
 406        while (tries--) {
 407                if (!nic_init(ioc3))
 408                        break;
 409                udelay(500);
 410        }
 411
 412        if (tries < 0) {
 413                printk("Failed to read MAC address\n");
 414                return;
 415        }
 416
 417        /* Read Memory.  */
 418        nic_write_byte(ioc3, 0xf0);
 419        nic_write_byte(ioc3, 0x00);
 420        nic_write_byte(ioc3, 0x00);
 421
 422        for (i = 13; i >= 0; i--)
 423                nic[i] = nic_read_byte(ioc3);
 424
 425        for (i = 2; i < 8; i++)
 426                ip->dev->dev_addr[i - 2] = nic[i];
 427}
 428
 429/*
 430 * Ok, this is hosed by design.  It's necessary to know what machine the
 431 * NIC is in in order to know how to read the NIC address.  We also have
 432 * to know if it's a PCI card or a NIC in on the node board ...
 433 */
 434static void ioc3_get_eaddr(struct ioc3_private *ip)
 435{
 436        ioc3_get_eaddr_nic(ip);
 437
 438        printk("Ethernet address is %pM.\n", ip->dev->dev_addr);
 439}
 440
 441static void __ioc3_set_mac_address(struct net_device *dev)
 442{
 443        struct ioc3_private *ip = netdev_priv(dev);
 444        struct ioc3 *ioc3 = ip->regs;
 445
 446        ioc3_w_emar_h((dev->dev_addr[5] <<  8) | dev->dev_addr[4]);
 447        ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
 448                      (dev->dev_addr[1] <<  8) | dev->dev_addr[0]);
 449}
 450
 451static int ioc3_set_mac_address(struct net_device *dev, void *addr)
 452{
 453        struct ioc3_private *ip = netdev_priv(dev);
 454        struct sockaddr *sa = addr;
 455
 456        memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
 457
 458        spin_lock_irq(&ip->ioc3_lock);
 459        __ioc3_set_mac_address(dev);
 460        spin_unlock_irq(&ip->ioc3_lock);
 461
 462        return 0;
 463}
 464
 465/*
 466 * Caller must hold the ioc3_lock ever for MII readers.  This is also
 467 * used to protect the transmitter side but it's low contention.
 468 */
 469static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
 470{
 471        struct ioc3_private *ip = netdev_priv(dev);
 472        struct ioc3 *ioc3 = ip->regs;
 473
 474        while (ioc3_r_micr() & MICR_BUSY);
 475        ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
 476        while (ioc3_r_micr() & MICR_BUSY);
 477
 478        return ioc3_r_midr_r() & MIDR_DATA_MASK;
 479}
 480
 481static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
 482{
 483        struct ioc3_private *ip = netdev_priv(dev);
 484        struct ioc3 *ioc3 = ip->regs;
 485
 486        while (ioc3_r_micr() & MICR_BUSY);
 487        ioc3_w_midr_w(data);
 488        ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
 489        while (ioc3_r_micr() & MICR_BUSY);
 490}
 491
 492static int ioc3_mii_init(struct ioc3_private *ip);
 493
 494static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
 495{
 496        struct ioc3_private *ip = netdev_priv(dev);
 497        struct ioc3 *ioc3 = ip->regs;
 498
 499        dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
 500        return &dev->stats;
 501}
 502
 503static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
 504{
 505        struct ethhdr *eh = eth_hdr(skb);
 506        uint32_t csum, ehsum;
 507        unsigned int proto;
 508        struct iphdr *ih;
 509        uint16_t *ew;
 510        unsigned char *cp;
 511
 512        /*
 513         * Did hardware handle the checksum at all?  The cases we can handle
 514         * are:
 515         *
 516         * - TCP and UDP checksums of IPv4 only.
 517         * - IPv6 would be doable but we keep that for later ...
 518         * - Only unfragmented packets.  Did somebody already tell you
 519         *   fragmentation is evil?
 520         * - don't care about packet size.  Worst case when processing a
 521         *   malformed packet we'll try to access the packet at ip header +
 522         *   64 bytes which is still inside the skb.  Even in the unlikely
 523         *   case where the checksum is right the higher layers will still
 524         *   drop the packet as appropriate.
 525         */
 526        if (eh->h_proto != htons(ETH_P_IP))
 527                return;
 528
 529        ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
 530        if (ip_is_fragment(ih))
 531                return;
 532
 533        proto = ih->protocol;
 534        if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
 535                return;
 536
 537        /* Same as tx - compute csum of pseudo header  */
 538        csum = hwsum +
 539               (ih->tot_len - (ih->ihl << 2)) +
 540               htons((uint16_t)ih->protocol) +
 541               (ih->saddr >> 16) + (ih->saddr & 0xffff) +
 542               (ih->daddr >> 16) + (ih->daddr & 0xffff);
 543
 544        /* Sum up ethernet dest addr, src addr and protocol  */
 545        ew = (uint16_t *) eh;
 546        ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
 547
 548        ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 549        ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 550
 551        csum += 0xffff ^ ehsum;
 552
 553        /* In the next step we also subtract the 1's complement
 554           checksum of the trailing ethernet CRC.  */
 555        cp = (char *)eh + len;  /* points at trailing CRC */
 556        if (len & 1) {
 557                csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
 558                csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
 559        } else {
 560                csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
 561                csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
 562        }
 563
 564        csum = (csum & 0xffff) + (csum >> 16);
 565        csum = (csum & 0xffff) + (csum >> 16);
 566
 567        if (csum == 0xffff)
 568                skb->ip_summed = CHECKSUM_UNNECESSARY;
 569}
 570
 571static inline void ioc3_rx(struct net_device *dev)
 572{
 573        struct ioc3_private *ip = netdev_priv(dev);
 574        struct sk_buff *skb, *new_skb;
 575        struct ioc3 *ioc3 = ip->regs;
 576        int rx_entry, n_entry, len;
 577        struct ioc3_erxbuf *rxb;
 578        unsigned long *rxr;
 579        u32 w0, err;
 580
 581        rxr = ip->rxr;          /* Ring base */
 582        rx_entry = ip->rx_ci;                           /* RX consume index */
 583        n_entry = ip->rx_pi;
 584
 585        skb = ip->rx_skbs[rx_entry];
 586        rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
 587        w0 = be32_to_cpu(rxb->w0);
 588
 589        while (w0 & ERXBUF_V) {
 590                err = be32_to_cpu(rxb->err);            /* It's valid ...  */
 591                if (err & ERXBUF_GOODPKT) {
 592                        len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
 593                        skb_trim(skb, len);
 594                        skb->protocol = eth_type_trans(skb, dev);
 595
 596                        new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
 597                        if (!new_skb) {
 598                                /* Ouch, drop packet and just recycle packet
 599                                   to keep the ring filled.  */
 600                                dev->stats.rx_dropped++;
 601                                new_skb = skb;
 602                                goto next;
 603                        }
 604
 605                        if (likely(dev->features & NETIF_F_RXCSUM))
 606                                ioc3_tcpudp_checksum(skb,
 607                                        w0 & ERXBUF_IPCKSUM_MASK, len);
 608
 609                        netif_rx(skb);
 610
 611                        ip->rx_skbs[rx_entry] = NULL;   /* Poison  */
 612
 613                        /* Because we reserve afterwards. */
 614                        skb_put(new_skb, (1664 + RX_OFFSET));
 615                        rxb = (struct ioc3_erxbuf *) new_skb->data;
 616                        skb_reserve(new_skb, RX_OFFSET);
 617
 618                        dev->stats.rx_packets++;                /* Statistics */
 619                        dev->stats.rx_bytes += len;
 620                } else {
 621                        /* The frame is invalid and the skb never
 622                           reached the network layer so we can just
 623                           recycle it.  */
 624                        new_skb = skb;
 625                        dev->stats.rx_errors++;
 626                }
 627                if (err & ERXBUF_CRCERR)        /* Statistics */
 628                        dev->stats.rx_crc_errors++;
 629                if (err & ERXBUF_FRAMERR)
 630                        dev->stats.rx_frame_errors++;
 631next:
 632                ip->rx_skbs[n_entry] = new_skb;
 633                rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
 634                rxb->w0 = 0;                            /* Clear valid flag */
 635                n_entry = (n_entry + 1) & 511;          /* Update erpir */
 636
 637                /* Now go on to the next ring entry.  */
 638                rx_entry = (rx_entry + 1) & 511;
 639                skb = ip->rx_skbs[rx_entry];
 640                rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
 641                w0 = be32_to_cpu(rxb->w0);
 642        }
 643        ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
 644        ip->rx_pi = n_entry;
 645        ip->rx_ci = rx_entry;
 646}
 647
 648static inline void ioc3_tx(struct net_device *dev)
 649{
 650        struct ioc3_private *ip = netdev_priv(dev);
 651        unsigned long packets, bytes;
 652        struct ioc3 *ioc3 = ip->regs;
 653        int tx_entry, o_entry;
 654        struct sk_buff *skb;
 655        u32 etcir;
 656
 657        spin_lock(&ip->ioc3_lock);
 658        etcir = ioc3_r_etcir();
 659
 660        tx_entry = (etcir >> 7) & 127;
 661        o_entry = ip->tx_ci;
 662        packets = 0;
 663        bytes = 0;
 664
 665        while (o_entry != tx_entry) {
 666                packets++;
 667                skb = ip->tx_skbs[o_entry];
 668                bytes += skb->len;
 669                dev_consume_skb_irq(skb);
 670                ip->tx_skbs[o_entry] = NULL;
 671
 672                o_entry = (o_entry + 1) & 127;          /* Next */
 673
 674                etcir = ioc3_r_etcir();                 /* More pkts sent?  */
 675                tx_entry = (etcir >> 7) & 127;
 676        }
 677
 678        dev->stats.tx_packets += packets;
 679        dev->stats.tx_bytes += bytes;
 680        ip->txqlen -= packets;
 681
 682        if (ip->txqlen < 128)
 683                netif_wake_queue(dev);
 684
 685        ip->tx_ci = o_entry;
 686        spin_unlock(&ip->ioc3_lock);
 687}
 688
 689/*
 690 * Deal with fatal IOC3 errors.  This condition might be caused by a hard or
 691 * software problems, so we should try to recover
 692 * more gracefully if this ever happens.  In theory we might be flooded
 693 * with such error interrupts if something really goes wrong, so we might
 694 * also consider to take the interface down.
 695 */
 696static void ioc3_error(struct net_device *dev, u32 eisr)
 697{
 698        struct ioc3_private *ip = netdev_priv(dev);
 699        unsigned char *iface = dev->name;
 700
 701        spin_lock(&ip->ioc3_lock);
 702
 703        if (eisr & EISR_RXOFLO)
 704                printk(KERN_ERR "%s: RX overflow.\n", iface);
 705        if (eisr & EISR_RXBUFOFLO)
 706                printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
 707        if (eisr & EISR_RXMEMERR)
 708                printk(KERN_ERR "%s: RX PCI error.\n", iface);
 709        if (eisr & EISR_RXPARERR)
 710                printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
 711        if (eisr & EISR_TXBUFUFLO)
 712                printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
 713        if (eisr & EISR_TXMEMERR)
 714                printk(KERN_ERR "%s: TX PCI error.\n", iface);
 715
 716        ioc3_stop(ip);
 717        ioc3_init(dev);
 718        ioc3_mii_init(ip);
 719
 720        netif_wake_queue(dev);
 721
 722        spin_unlock(&ip->ioc3_lock);
 723}
 724
 725/* The interrupt handler does all of the Rx thread work and cleans up
 726   after the Tx thread.  */
 727static irqreturn_t ioc3_interrupt(int irq, void *_dev)
 728{
 729        struct net_device *dev = (struct net_device *)_dev;
 730        struct ioc3_private *ip = netdev_priv(dev);
 731        struct ioc3 *ioc3 = ip->regs;
 732        const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
 733                            EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
 734                            EISR_TXEXPLICIT | EISR_TXMEMERR;
 735        u32 eisr;
 736
 737        eisr = ioc3_r_eisr() & enabled;
 738
 739        ioc3_w_eisr(eisr);
 740        (void) ioc3_r_eisr();                           /* Flush */
 741
 742        if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
 743                    EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
 744                ioc3_error(dev, eisr);
 745        if (eisr & EISR_RXTIMERINT)
 746                ioc3_rx(dev);
 747        if (eisr & EISR_TXEXPLICIT)
 748                ioc3_tx(dev);
 749
 750        return IRQ_HANDLED;
 751}
 752
 753static inline void ioc3_setup_duplex(struct ioc3_private *ip)
 754{
 755        struct ioc3 *ioc3 = ip->regs;
 756
 757        if (ip->mii.full_duplex) {
 758                ioc3_w_etcsr(ETCSR_FD);
 759                ip->emcr |= EMCR_DUPLEX;
 760        } else {
 761                ioc3_w_etcsr(ETCSR_HD);
 762                ip->emcr &= ~EMCR_DUPLEX;
 763        }
 764        ioc3_w_emcr(ip->emcr);
 765}
 766
 767static void ioc3_timer(struct timer_list *t)
 768{
 769        struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
 770
 771        /* Print the link status if it has changed */
 772        mii_check_media(&ip->mii, 1, 0);
 773        ioc3_setup_duplex(ip);
 774
 775        ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
 776        add_timer(&ip->ioc3_timer);
 777}
 778
 779/*
 780 * Try to find a PHY.  There is no apparent relation between the MII addresses
 781 * in the SGI documentation and what we find in reality, so we simply probe
 782 * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
 783 * onboard IOC3s has the special oddity that probing doesn't seem to find it
 784 * yet the interface seems to work fine, so if probing fails we for now will
 785 * simply default to PHY 31 instead of bailing out.
 786 */
 787static int ioc3_mii_init(struct ioc3_private *ip)
 788{
 789        int i, found = 0, res = 0;
 790        int ioc3_phy_workaround = 1;
 791        u16 word;
 792
 793        for (i = 0; i < 32; i++) {
 794                word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
 795
 796                if (word != 0xffff && word != 0x0000) {
 797                        found = 1;
 798                        break;                  /* Found a PHY          */
 799                }
 800        }
 801
 802        if (!found) {
 803                if (ioc3_phy_workaround)
 804                        i = 31;
 805                else {
 806                        ip->mii.phy_id = -1;
 807                        res = -ENODEV;
 808                        goto out;
 809                }
 810        }
 811
 812        ip->mii.phy_id = i;
 813
 814out:
 815        return res;
 816}
 817
 818static void ioc3_mii_start(struct ioc3_private *ip)
 819{
 820        ip->ioc3_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
 821        add_timer(&ip->ioc3_timer);
 822}
 823
 824static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
 825{
 826        struct sk_buff *skb;
 827        int i;
 828
 829        for (i = ip->rx_ci; i & 15; i++) {
 830                ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
 831                ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
 832        }
 833        ip->rx_pi &= 511;
 834        ip->rx_ci &= 511;
 835
 836        for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
 837                struct ioc3_erxbuf *rxb;
 838                skb = ip->rx_skbs[i];
 839                rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
 840                rxb->w0 = 0;
 841        }
 842}
 843
 844static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
 845{
 846        struct sk_buff *skb;
 847        int i;
 848
 849        for (i=0; i < 128; i++) {
 850                skb = ip->tx_skbs[i];
 851                if (skb) {
 852                        ip->tx_skbs[i] = NULL;
 853                        dev_kfree_skb_any(skb);
 854                }
 855                ip->txr[i].cmd = 0;
 856        }
 857        ip->tx_pi = 0;
 858        ip->tx_ci = 0;
 859}
 860
 861static void ioc3_free_rings(struct ioc3_private *ip)
 862{
 863        struct sk_buff *skb;
 864        int rx_entry, n_entry;
 865
 866        if (ip->txr) {
 867                ioc3_clean_tx_ring(ip);
 868                free_pages((unsigned long)ip->txr, 2);
 869                ip->txr = NULL;
 870        }
 871
 872        if (ip->rxr) {
 873                n_entry = ip->rx_ci;
 874                rx_entry = ip->rx_pi;
 875
 876                while (n_entry != rx_entry) {
 877                        skb = ip->rx_skbs[n_entry];
 878                        if (skb)
 879                                dev_kfree_skb_any(skb);
 880
 881                        n_entry = (n_entry + 1) & 511;
 882                }
 883                free_page((unsigned long)ip->rxr);
 884                ip->rxr = NULL;
 885        }
 886}
 887
 888static void ioc3_alloc_rings(struct net_device *dev)
 889{
 890        struct ioc3_private *ip = netdev_priv(dev);
 891        struct ioc3_erxbuf *rxb;
 892        unsigned long *rxr;
 893        int i;
 894
 895        if (ip->rxr == NULL) {
 896                /* Allocate and initialize rx ring.  4kb = 512 entries  */
 897                ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
 898                rxr = ip->rxr;
 899                if (!rxr)
 900                        printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
 901
 902                /* Now the rx buffers.  The RX ring may be larger but
 903                   we only allocate 16 buffers for now.  Need to tune
 904                   this for performance and memory later.  */
 905                for (i = 0; i < RX_BUFFS; i++) {
 906                        struct sk_buff *skb;
 907
 908                        skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
 909                        if (!skb) {
 910                                show_free_areas(0, NULL);
 911                                continue;
 912                        }
 913
 914                        ip->rx_skbs[i] = skb;
 915
 916                        /* Because we reserve afterwards. */
 917                        skb_put(skb, (1664 + RX_OFFSET));
 918                        rxb = (struct ioc3_erxbuf *) skb->data;
 919                        rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
 920                        skb_reserve(skb, RX_OFFSET);
 921                }
 922                ip->rx_ci = 0;
 923                ip->rx_pi = RX_BUFFS;
 924        }
 925
 926        if (ip->txr == NULL) {
 927                /* Allocate and initialize tx rings.  16kb = 128 bufs.  */
 928                ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
 929                if (!ip->txr)
 930                        printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
 931                ip->tx_pi = 0;
 932                ip->tx_ci = 0;
 933        }
 934}
 935
 936static void ioc3_init_rings(struct net_device *dev)
 937{
 938        struct ioc3_private *ip = netdev_priv(dev);
 939        struct ioc3 *ioc3 = ip->regs;
 940        unsigned long ring;
 941
 942        ioc3_free_rings(ip);
 943        ioc3_alloc_rings(dev);
 944
 945        ioc3_clean_rx_ring(ip);
 946        ioc3_clean_tx_ring(ip);
 947
 948        /* Now the rx ring base, consume & produce registers.  */
 949        ring = ioc3_map(ip->rxr, 0);
 950        ioc3_w_erbr_h(ring >> 32);
 951        ioc3_w_erbr_l(ring & 0xffffffff);
 952        ioc3_w_ercir(ip->rx_ci << 3);
 953        ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
 954
 955        ring = ioc3_map(ip->txr, 0);
 956
 957        ip->txqlen = 0;                                 /* nothing queued  */
 958
 959        /* Now the tx ring base, consume & produce registers.  */
 960        ioc3_w_etbr_h(ring >> 32);
 961        ioc3_w_etbr_l(ring & 0xffffffff);
 962        ioc3_w_etpir(ip->tx_pi << 7);
 963        ioc3_w_etcir(ip->tx_ci << 7);
 964        (void) ioc3_r_etcir();                          /* Flush */
 965}
 966
 967static inline void ioc3_ssram_disc(struct ioc3_private *ip)
 968{
 969        struct ioc3 *ioc3 = ip->regs;
 970        volatile u32 *ssram0 = &ioc3->ssram[0x0000];
 971        volatile u32 *ssram1 = &ioc3->ssram[0x4000];
 972        unsigned int pattern = 0x5555;
 973
 974        /* Assume the larger size SSRAM and enable parity checking */
 975        ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
 976
 977        *ssram0 = pattern;
 978        *ssram1 = ~pattern & IOC3_SSRAM_DM;
 979
 980        if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
 981            (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
 982                /* set ssram size to 64 KB */
 983                ip->emcr = EMCR_RAMPAR;
 984                ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
 985        } else
 986                ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
 987}
 988
 989static void ioc3_init(struct net_device *dev)
 990{
 991        struct ioc3_private *ip = netdev_priv(dev);
 992        struct ioc3 *ioc3 = ip->regs;
 993
 994        del_timer_sync(&ip->ioc3_timer);        /* Kill if running      */
 995
 996        ioc3_w_emcr(EMCR_RST);                  /* Reset                */
 997        (void) ioc3_r_emcr();                   /* Flush WB             */
 998        udelay(4);                              /* Give it time ...     */
 999        ioc3_w_emcr(0);
1000        (void) ioc3_r_emcr();
1001
1002        /* Misc registers  */
1003#ifdef CONFIG_SGI_IP27
1004        ioc3_w_erbar(PCI64_ATTR_BAR >> 32);     /* Barrier on last store */
1005#else
1006        ioc3_w_erbar(0);                        /* Let PCI API get it right */
1007#endif
1008        (void) ioc3_r_etcdc();                  /* Clear on read */
1009        ioc3_w_ercsr(15);                       /* RX low watermark  */
1010        ioc3_w_ertr(0);                         /* Interrupt immediately */
1011        __ioc3_set_mac_address(dev);
1012        ioc3_w_ehar_h(ip->ehar_h);
1013        ioc3_w_ehar_l(ip->ehar_l);
1014        ioc3_w_ersr(42);                        /* XXX should be random */
1015
1016        ioc3_init_rings(dev);
1017
1018        ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1019                     EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1020        ioc3_w_emcr(ip->emcr);
1021        ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1022                    EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1023                    EISR_TXEXPLICIT | EISR_TXMEMERR);
1024        (void) ioc3_r_eier();
1025}
1026
1027static inline void ioc3_stop(struct ioc3_private *ip)
1028{
1029        struct ioc3 *ioc3 = ip->regs;
1030
1031        ioc3_w_emcr(0);                         /* Shutup */
1032        ioc3_w_eier(0);                         /* Disable interrupts */
1033        (void) ioc3_r_eier();                   /* Flush */
1034}
1035
1036static int ioc3_open(struct net_device *dev)
1037{
1038        struct ioc3_private *ip = netdev_priv(dev);
1039
1040        if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1041                printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1042
1043                return -EAGAIN;
1044        }
1045
1046        ip->ehar_h = 0;
1047        ip->ehar_l = 0;
1048        ioc3_init(dev);
1049        ioc3_mii_start(ip);
1050
1051        netif_start_queue(dev);
1052        return 0;
1053}
1054
1055static int ioc3_close(struct net_device *dev)
1056{
1057        struct ioc3_private *ip = netdev_priv(dev);
1058
1059        del_timer_sync(&ip->ioc3_timer);
1060
1061        netif_stop_queue(dev);
1062
1063        ioc3_stop(ip);
1064        free_irq(dev->irq, dev);
1065
1066        ioc3_free_rings(ip);
1067        return 0;
1068}
1069
1070/*
1071 * MENET cards have four IOC3 chips, which are attached to two sets of
1072 * PCI slot resources each: the primary connections are on slots
1073 * 0..3 and the secondaries are on 4..7
1074 *
1075 * All four ethernets are brought out to connectors; six serial ports
1076 * (a pair from each of the first three IOC3s) are brought out to
1077 * MiniDINs; all other subdevices are left swinging in the wind, leave
1078 * them disabled.
1079 */
1080
1081static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1082{
1083        struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1084        int ret = 0;
1085
1086        if (dev) {
1087                if (dev->vendor == PCI_VENDOR_ID_SGI &&
1088                        dev->device == PCI_DEVICE_ID_SGI_IOC3)
1089                        ret = 1;
1090                pci_dev_put(dev);
1091        }
1092
1093        return ret;
1094}
1095
1096static int ioc3_is_menet(struct pci_dev *pdev)
1097{
1098        return pdev->bus->parent == NULL &&
1099               ioc3_adjacent_is_ioc3(pdev, 0) &&
1100               ioc3_adjacent_is_ioc3(pdev, 1) &&
1101               ioc3_adjacent_is_ioc3(pdev, 2);
1102}
1103
1104#ifdef CONFIG_SERIAL_8250
1105/*
1106 * Note about serial ports and consoles:
1107 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1108 * connected to the master node (look in ip27_setup_console() and
1109 * ip27prom_console_write()).
1110 *
1111 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1112 * addresses on a partitioned machine. Since we currently use the ioc3
1113 * serial ports, we use dynamic serial port discovery that the serial.c
1114 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1115 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1116 * than UARTB's, although UARTA on o200s has traditionally been known as
1117 * port 0. So, we just use one serial port from each ioc3 (since the
1118 * serial driver adds addresses to get to higher ports).
1119 *
1120 * The first one to do a register_console becomes the preferred console
1121 * (if there is no kernel command line console= directive). /dev/console
1122 * (ie 5, 1) is then "aliased" into the device number returned by the
1123 * "device" routine referred to in this console structure
1124 * (ip27prom_console_dev).
1125 *
1126 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1127 * around ioc3 oddities in this respect.
1128 *
1129 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1130 * can be programmed in the SCR register if the DLAB bit is set.
1131 *
1132 * Register to interrupt zero because we share the interrupt with
1133 * the serial driver which we don't properly support yet.
1134 *
1135 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1136 * registered.
1137 */
1138static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1139{
1140#define COSMISC_CONSTANT 6
1141
1142        struct uart_8250_port port = {
1143                .port = {
1144                        .irq            = 0,
1145                        .flags          = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1146                        .iotype         = UPIO_MEM,
1147                        .regshift       = 0,
1148                        .uartclk        = (22000000 << 1) / COSMISC_CONSTANT,
1149
1150                        .membase        = (unsigned char __iomem *) uart,
1151                        .mapbase        = (unsigned long) uart,
1152                }
1153        };
1154        unsigned char lcr;
1155
1156        lcr = uart->iu_lcr;
1157        uart->iu_lcr = lcr | UART_LCR_DLAB;
1158        uart->iu_scr = COSMISC_CONSTANT,
1159        uart->iu_lcr = lcr;
1160        uart->iu_lcr;
1161        serial8250_register_8250_port(&port);
1162}
1163
1164static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1165{
1166        /*
1167         * We need to recognice and treat the fourth MENET serial as it
1168         * does not have an SuperIO chip attached to it, therefore attempting
1169         * to access it will result in bus errors.  We call something an
1170         * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1171         * in it.  This is paranoid but we want to avoid blowing up on a
1172         * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1173         * not paranoid enough ...
1174         */
1175        if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1176                return;
1177
1178        /*
1179         * Switch IOC3 to PIO mode.  It probably already was but let's be
1180         * paranoid
1181         */
1182        ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1183        ioc3->gpcr_s;
1184        ioc3->gppr_6 = 0;
1185        ioc3->gppr_6;
1186        ioc3->gppr_7 = 0;
1187        ioc3->gppr_7;
1188        ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1189        ioc3->sscr_a;
1190        ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1191        ioc3->sscr_b;
1192        /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1193        ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1194                            SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1195                            SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1196                            SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1197        ioc3->sio_iec |= SIO_IR_SA_INT;
1198        ioc3->sscr_a = 0;
1199        ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1200                            SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1201                            SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1202                            SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1203        ioc3->sio_iec |= SIO_IR_SB_INT;
1204        ioc3->sscr_b = 0;
1205
1206        ioc3_8250_register(&ioc3->sregs.uarta);
1207        ioc3_8250_register(&ioc3->sregs.uartb);
1208}
1209#endif
1210
1211static const struct net_device_ops ioc3_netdev_ops = {
1212        .ndo_open               = ioc3_open,
1213        .ndo_stop               = ioc3_close,
1214        .ndo_start_xmit         = ioc3_start_xmit,
1215        .ndo_tx_timeout         = ioc3_timeout,
1216        .ndo_get_stats          = ioc3_get_stats,
1217        .ndo_set_rx_mode        = ioc3_set_multicast_list,
1218        .ndo_do_ioctl           = ioc3_ioctl,
1219        .ndo_validate_addr      = eth_validate_addr,
1220        .ndo_set_mac_address    = ioc3_set_mac_address,
1221};
1222
1223static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1224{
1225        unsigned int sw_physid1, sw_physid2;
1226        struct net_device *dev = NULL;
1227        struct ioc3_private *ip;
1228        struct ioc3 *ioc3;
1229        unsigned long ioc3_base, ioc3_size;
1230        u32 vendor, model, rev;
1231        int err, pci_using_dac;
1232
1233        /* Configure DMA attributes. */
1234        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1235        if (!err) {
1236                pci_using_dac = 1;
1237                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1238                if (err < 0) {
1239                        printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1240                               "for consistent allocations\n", pci_name(pdev));
1241                        goto out;
1242                }
1243        } else {
1244                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1245                if (err) {
1246                        printk(KERN_ERR "%s: No usable DMA configuration, "
1247                               "aborting.\n", pci_name(pdev));
1248                        goto out;
1249                }
1250                pci_using_dac = 0;
1251        }
1252
1253        if (pci_enable_device(pdev))
1254                return -ENODEV;
1255
1256        dev = alloc_etherdev(sizeof(struct ioc3_private));
1257        if (!dev) {
1258                err = -ENOMEM;
1259                goto out_disable;
1260        }
1261
1262        if (pci_using_dac)
1263                dev->features |= NETIF_F_HIGHDMA;
1264
1265        err = pci_request_regions(pdev, "ioc3");
1266        if (err)
1267                goto out_free;
1268
1269        SET_NETDEV_DEV(dev, &pdev->dev);
1270
1271        ip = netdev_priv(dev);
1272        ip->dev = dev;
1273
1274        dev->irq = pdev->irq;
1275
1276        ioc3_base = pci_resource_start(pdev, 0);
1277        ioc3_size = pci_resource_len(pdev, 0);
1278        ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1279        if (!ioc3) {
1280                printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1281                       pci_name(pdev));
1282                err = -ENOMEM;
1283                goto out_res;
1284        }
1285        ip->regs = ioc3;
1286
1287#ifdef CONFIG_SERIAL_8250
1288        ioc3_serial_probe(pdev, ioc3);
1289#endif
1290
1291        spin_lock_init(&ip->ioc3_lock);
1292        timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
1293
1294        ioc3_stop(ip);
1295        ioc3_init(dev);
1296
1297        ip->pdev = pdev;
1298
1299        ip->mii.phy_id_mask = 0x1f;
1300        ip->mii.reg_num_mask = 0x1f;
1301        ip->mii.dev = dev;
1302        ip->mii.mdio_read = ioc3_mdio_read;
1303        ip->mii.mdio_write = ioc3_mdio_write;
1304
1305        ioc3_mii_init(ip);
1306
1307        if (ip->mii.phy_id == -1) {
1308                printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1309                       pci_name(pdev));
1310                err = -ENODEV;
1311                goto out_stop;
1312        }
1313
1314        ioc3_mii_start(ip);
1315        ioc3_ssram_disc(ip);
1316        ioc3_get_eaddr(ip);
1317
1318        /* The IOC3-specific entries in the device structure. */
1319        dev->watchdog_timeo     = 5 * HZ;
1320        dev->netdev_ops         = &ioc3_netdev_ops;
1321        dev->ethtool_ops        = &ioc3_ethtool_ops;
1322        dev->hw_features        = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1323        dev->features           = NETIF_F_IP_CSUM;
1324
1325        sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1326        sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1327
1328        err = register_netdev(dev);
1329        if (err)
1330                goto out_stop;
1331
1332        mii_check_media(&ip->mii, 1, 1);
1333        ioc3_setup_duplex(ip);
1334
1335        vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1336        model  = (sw_physid2 >> 4) & 0x3f;
1337        rev    = sw_physid2 & 0xf;
1338        printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1339               "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1340        printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1341               ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1342
1343        return 0;
1344
1345out_stop:
1346        ioc3_stop(ip);
1347        del_timer_sync(&ip->ioc3_timer);
1348        ioc3_free_rings(ip);
1349out_res:
1350        pci_release_regions(pdev);
1351out_free:
1352        free_netdev(dev);
1353out_disable:
1354        /*
1355         * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1356         * such a weird device ...
1357         */
1358out:
1359        return err;
1360}
1361
1362static void ioc3_remove_one(struct pci_dev *pdev)
1363{
1364        struct net_device *dev = pci_get_drvdata(pdev);
1365        struct ioc3_private *ip = netdev_priv(dev);
1366        struct ioc3 *ioc3 = ip->regs;
1367
1368        unregister_netdev(dev);
1369        del_timer_sync(&ip->ioc3_timer);
1370
1371        iounmap(ioc3);
1372        pci_release_regions(pdev);
1373        free_netdev(dev);
1374        /*
1375         * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1376         * such a weird device ...
1377         */
1378}
1379
1380static const struct pci_device_id ioc3_pci_tbl[] = {
1381        { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1382        { 0 }
1383};
1384MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1385
1386static struct pci_driver ioc3_driver = {
1387        .name           = "ioc3-eth",
1388        .id_table       = ioc3_pci_tbl,
1389        .probe          = ioc3_probe,
1390        .remove         = ioc3_remove_one,
1391};
1392
1393static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1394{
1395        unsigned long data;
1396        struct ioc3_private *ip = netdev_priv(dev);
1397        struct ioc3 *ioc3 = ip->regs;
1398        unsigned int len;
1399        struct ioc3_etxd *desc;
1400        uint32_t w0 = 0;
1401        int produce;
1402
1403        /*
1404         * IOC3 has a fairly simple minded checksumming hardware which simply
1405         * adds up the 1's complement checksum for the entire packet and
1406         * inserts it at an offset which can be specified in the descriptor
1407         * into the transmit packet.  This means we have to compensate for the
1408         * MAC header which should not be summed and the TCP/UDP pseudo headers
1409         * manually.
1410         */
1411        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1412                const struct iphdr *ih = ip_hdr(skb);
1413                const int proto = ntohs(ih->protocol);
1414                unsigned int csoff;
1415                uint32_t csum, ehsum;
1416                uint16_t *eh;
1417
1418                /* The MAC header.  skb->mac seem the logic approach
1419                   to find the MAC header - except it's a NULL pointer ...  */
1420                eh = (uint16_t *) skb->data;
1421
1422                /* Sum up dest addr, src addr and protocol  */
1423                ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1424
1425                /* Fold ehsum.  can't use csum_fold which negates also ...  */
1426                ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1427                ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1428
1429                /* Skip IP header; it's sum is always zero and was
1430                   already filled in by ip_output.c */
1431                csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1432                                          ih->tot_len - (ih->ihl << 2),
1433                                          proto, 0xffff ^ ehsum);
1434
1435                csum = (csum & 0xffff) + (csum >> 16);  /* Fold again */
1436                csum = (csum & 0xffff) + (csum >> 16);
1437
1438                csoff = ETH_HLEN + (ih->ihl << 2);
1439                if (proto == IPPROTO_UDP) {
1440                        csoff += offsetof(struct udphdr, check);
1441                        udp_hdr(skb)->check = csum;
1442                }
1443                if (proto == IPPROTO_TCP) {
1444                        csoff += offsetof(struct tcphdr, check);
1445                        tcp_hdr(skb)->check = csum;
1446                }
1447
1448                w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1449        }
1450
1451        spin_lock_irq(&ip->ioc3_lock);
1452
1453        data = (unsigned long) skb->data;
1454        len = skb->len;
1455
1456        produce = ip->tx_pi;
1457        desc = &ip->txr[produce];
1458
1459        if (len <= 104) {
1460                /* Short packet, let's copy it directly into the ring.  */
1461                skb_copy_from_linear_data(skb, desc->data, skb->len);
1462                if (len < ETH_ZLEN) {
1463                        /* Very short packet, pad with zeros at the end. */
1464                        memset(desc->data + len, 0, ETH_ZLEN - len);
1465                        len = ETH_ZLEN;
1466                }
1467                desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1468                desc->bufcnt = cpu_to_be32(len);
1469        } else if ((data ^ (data + len - 1)) & 0x4000) {
1470                unsigned long b2 = (data | 0x3fffUL) + 1UL;
1471                unsigned long s1 = b2 - data;
1472                unsigned long s2 = data + len - b2;
1473
1474                desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1475                                           ETXD_B1V | ETXD_B2V | w0);
1476                desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1477                                           (s2 << ETXD_B2CNT_SHIFT));
1478                desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1479                desc->p2     = cpu_to_be64(ioc3_map((void *) b2, 1));
1480        } else {
1481                /* Normal sized packet that doesn't cross a page boundary. */
1482                desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1483                desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1484                desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1485        }
1486
1487        BARRIER();
1488
1489        ip->tx_skbs[produce] = skb;                     /* Remember skb */
1490        produce = (produce + 1) & 127;
1491        ip->tx_pi = produce;
1492        ioc3_w_etpir(produce << 7);                     /* Fire ... */
1493
1494        ip->txqlen++;
1495
1496        if (ip->txqlen >= 127)
1497                netif_stop_queue(dev);
1498
1499        spin_unlock_irq(&ip->ioc3_lock);
1500
1501        return NETDEV_TX_OK;
1502}
1503
1504static void ioc3_timeout(struct net_device *dev)
1505{
1506        struct ioc3_private *ip = netdev_priv(dev);
1507
1508        printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1509
1510        spin_lock_irq(&ip->ioc3_lock);
1511
1512        ioc3_stop(ip);
1513        ioc3_init(dev);
1514        ioc3_mii_init(ip);
1515        ioc3_mii_start(ip);
1516
1517        spin_unlock_irq(&ip->ioc3_lock);
1518
1519        netif_wake_queue(dev);
1520}
1521
1522/*
1523 * Given a multicast ethernet address, this routine calculates the
1524 * address's bit index in the logical address filter mask
1525 */
1526
1527static inline unsigned int ioc3_hash(const unsigned char *addr)
1528{
1529        unsigned int temp = 0;
1530        u32 crc;
1531        int bits;
1532
1533        crc = ether_crc_le(ETH_ALEN, addr);
1534
1535        crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1536        for (bits = 6; --bits >= 0; ) {
1537                temp <<= 1;
1538                temp |= (crc & 0x1);
1539                crc >>= 1;
1540        }
1541
1542        return temp;
1543}
1544
1545static void ioc3_get_drvinfo (struct net_device *dev,
1546        struct ethtool_drvinfo *info)
1547{
1548        struct ioc3_private *ip = netdev_priv(dev);
1549
1550        strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1551        strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1552        strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1553}
1554
1555static int ioc3_get_link_ksettings(struct net_device *dev,
1556                                   struct ethtool_link_ksettings *cmd)
1557{
1558        struct ioc3_private *ip = netdev_priv(dev);
1559
1560        spin_lock_irq(&ip->ioc3_lock);
1561        mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1562        spin_unlock_irq(&ip->ioc3_lock);
1563
1564        return 0;
1565}
1566
1567static int ioc3_set_link_ksettings(struct net_device *dev,
1568                                   const struct ethtool_link_ksettings *cmd)
1569{
1570        struct ioc3_private *ip = netdev_priv(dev);
1571        int rc;
1572
1573        spin_lock_irq(&ip->ioc3_lock);
1574        rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1575        spin_unlock_irq(&ip->ioc3_lock);
1576
1577        return rc;
1578}
1579
1580static int ioc3_nway_reset(struct net_device *dev)
1581{
1582        struct ioc3_private *ip = netdev_priv(dev);
1583        int rc;
1584
1585        spin_lock_irq(&ip->ioc3_lock);
1586        rc = mii_nway_restart(&ip->mii);
1587        spin_unlock_irq(&ip->ioc3_lock);
1588
1589        return rc;
1590}
1591
1592static u32 ioc3_get_link(struct net_device *dev)
1593{
1594        struct ioc3_private *ip = netdev_priv(dev);
1595        int rc;
1596
1597        spin_lock_irq(&ip->ioc3_lock);
1598        rc = mii_link_ok(&ip->mii);
1599        spin_unlock_irq(&ip->ioc3_lock);
1600
1601        return rc;
1602}
1603
1604static const struct ethtool_ops ioc3_ethtool_ops = {
1605        .get_drvinfo            = ioc3_get_drvinfo,
1606        .nway_reset             = ioc3_nway_reset,
1607        .get_link               = ioc3_get_link,
1608        .get_link_ksettings     = ioc3_get_link_ksettings,
1609        .set_link_ksettings     = ioc3_set_link_ksettings,
1610};
1611
1612static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1613{
1614        struct ioc3_private *ip = netdev_priv(dev);
1615        int rc;
1616
1617        spin_lock_irq(&ip->ioc3_lock);
1618        rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1619        spin_unlock_irq(&ip->ioc3_lock);
1620
1621        return rc;
1622}
1623
1624static void ioc3_set_multicast_list(struct net_device *dev)
1625{
1626        struct netdev_hw_addr *ha;
1627        struct ioc3_private *ip = netdev_priv(dev);
1628        struct ioc3 *ioc3 = ip->regs;
1629        u64 ehar = 0;
1630
1631        netif_stop_queue(dev);                          /* Lock out others. */
1632
1633        if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous.  */
1634                ip->emcr |= EMCR_PROMISC;
1635                ioc3_w_emcr(ip->emcr);
1636                (void) ioc3_r_emcr();
1637        } else {
1638                ip->emcr &= ~EMCR_PROMISC;
1639                ioc3_w_emcr(ip->emcr);                  /* Clear promiscuous. */
1640                (void) ioc3_r_emcr();
1641
1642                if ((dev->flags & IFF_ALLMULTI) ||
1643                    (netdev_mc_count(dev) > 64)) {
1644                        /* Too many for hashing to make sense or we want all
1645                           multicast packets anyway,  so skip computing all the
1646                           hashes and just accept all packets.  */
1647                        ip->ehar_h = 0xffffffff;
1648                        ip->ehar_l = 0xffffffff;
1649                } else {
1650                        netdev_for_each_mc_addr(ha, dev) {
1651                                ehar |= (1UL << ioc3_hash(ha->addr));
1652                        }
1653                        ip->ehar_h = ehar >> 32;
1654                        ip->ehar_l = ehar & 0xffffffff;
1655                }
1656                ioc3_w_ehar_h(ip->ehar_h);
1657                ioc3_w_ehar_l(ip->ehar_l);
1658        }
1659
1660        netif_wake_queue(dev);                  /* Let us get going again. */
1661}
1662
1663module_pci_driver(ioc3_driver);
1664MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1665MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1666MODULE_LICENSE("GPL");
1667