linux/drivers/net/ethernet/sis/sis900.c
<<
>>
Prefs
   1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
   2   Copyright 1999 Silicon Integrated System Corporation
   3   Revision:    1.08.10 Apr. 2 2006
   4
   5   Modified from the driver which is originally written by Donald Becker.
   6
   7   This software may be used and distributed according to the terms
   8   of the GNU General Public License (GPL), incorporated herein by reference.
   9   Drivers based on this skeleton fall under the GPL and must retain
  10   the authorship (implicit copyright) notice.
  11
  12   References:
  13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
  14   preliminary Rev. 1.0 Jan. 14, 1998
  15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
  16   preliminary Rev. 1.0 Nov. 10, 1998
  17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
  18   preliminary Rev. 1.0 Jan. 18, 1998
  19
  20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
  21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
  22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
  23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
  24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
  25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
  26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
  27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
  28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
  29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
  30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
  31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
  32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
  33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
  34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
  35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
  36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
  37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
  38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
  39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
  40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
  41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
  42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
  43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
  44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
  45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
  46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
  47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
  48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
  49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
  50*/
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/kernel.h>
  55#include <linux/sched.h>
  56#include <linux/string.h>
  57#include <linux/timer.h>
  58#include <linux/errno.h>
  59#include <linux/ioport.h>
  60#include <linux/slab.h>
  61#include <linux/interrupt.h>
  62#include <linux/pci.h>
  63#include <linux/netdevice.h>
  64#include <linux/init.h>
  65#include <linux/mii.h>
  66#include <linux/etherdevice.h>
  67#include <linux/skbuff.h>
  68#include <linux/delay.h>
  69#include <linux/ethtool.h>
  70#include <linux/crc32.h>
  71#include <linux/bitops.h>
  72#include <linux/dma-mapping.h>
  73
  74#include <asm/processor.h>      /* Processor type for cache alignment. */
  75#include <asm/io.h>
  76#include <asm/irq.h>
  77#include <linux/uaccess.h>      /* User space memory access functions */
  78
  79#include "sis900.h"
  80
  81#define SIS900_MODULE_NAME "sis900"
  82#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
  83
  84static const char version[] =
  85        KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
  86
  87static int max_interrupt_work = 40;
  88static int multicast_filter_limit = 128;
  89
  90static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
  91
  92#define SIS900_DEF_MSG \
  93        (NETIF_MSG_DRV          | \
  94         NETIF_MSG_LINK         | \
  95         NETIF_MSG_RX_ERR       | \
  96         NETIF_MSG_TX_ERR)
  97
  98/* Time in jiffies before concluding the transmitter is hung. */
  99#define TX_TIMEOUT  (4*HZ)
 100
 101enum {
 102        SIS_900 = 0,
 103        SIS_7016
 104};
 105static const char * card_names[] = {
 106        "SiS 900 PCI Fast Ethernet",
 107        "SiS 7016 PCI Fast Ethernet"
 108};
 109
 110static const struct pci_device_id sis900_pci_tbl[] = {
 111        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
 112         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
 113        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
 114         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
 115        {0,}
 116};
 117MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
 118
 119static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
 120
 121static const struct mii_chip_info {
 122        const char * name;
 123        u16 phy_id0;
 124        u16 phy_id1;
 125        u8  phy_types;
 126#define HOME    0x0001
 127#define LAN     0x0002
 128#define MIX     0x0003
 129#define UNKNOWN 0x0
 130} mii_chip_table[] = {
 131        { "SiS 900 Internal MII PHY",           0x001d, 0x8000, LAN },
 132        { "SiS 7014 Physical Layer Solution",   0x0016, 0xf830, LAN },
 133        { "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
 134        { "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
 135        { "ADM 7001 LAN PHY",                   0x002e, 0xcc60, LAN },
 136        { "AMD 79C901 10BASE-T PHY",            0x0000, 0x6B70, LAN },
 137        { "AMD 79C901 HomePNA PHY",             0x0000, 0x6B90, HOME},
 138        { "ICS LAN PHY",                        0x0015, 0xF440, LAN },
 139        { "ICS LAN PHY",                        0x0143, 0xBC70, LAN },
 140        { "NS 83851 PHY",                       0x2000, 0x5C20, MIX },
 141        { "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
 142        { "Realtek RTL8201 PHY",                0x0000, 0x8200, LAN },
 143        { "VIA 6103 PHY",                       0x0101, 0x8f20, LAN },
 144        {NULL,},
 145};
 146
 147struct mii_phy {
 148        struct mii_phy * next;
 149        int phy_addr;
 150        u16 phy_id0;
 151        u16 phy_id1;
 152        u16 status;
 153        u8  phy_types;
 154};
 155
 156typedef struct _BufferDesc {
 157        u32 link;
 158        u32 cmdsts;
 159        u32 bufptr;
 160} BufferDesc;
 161
 162struct sis900_private {
 163        struct pci_dev * pci_dev;
 164
 165        spinlock_t lock;
 166
 167        struct mii_phy * mii;
 168        struct mii_phy * first_mii; /* record the first mii structure */
 169        unsigned int cur_phy;
 170        struct mii_if_info mii_info;
 171
 172        void __iomem    *ioaddr;
 173
 174        struct timer_list timer; /* Link status detection timer. */
 175        u8 autong_complete; /* 1: auto-negotiate complete  */
 176
 177        u32 msg_enable;
 178
 179        unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
 180        unsigned int cur_tx, dirty_tx;
 181
 182        /* The saved address of a sent/receive-in-place packet buffer */
 183        struct sk_buff *tx_skbuff[NUM_TX_DESC];
 184        struct sk_buff *rx_skbuff[NUM_RX_DESC];
 185        BufferDesc *tx_ring;
 186        BufferDesc *rx_ring;
 187
 188        dma_addr_t tx_ring_dma;
 189        dma_addr_t rx_ring_dma;
 190
 191        unsigned int tx_full; /* The Tx queue is full. */
 192        u8 host_bridge_rev;
 193        u8 chipset_rev;
 194};
 195
 196MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
 197MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
 198MODULE_LICENSE("GPL");
 199
 200module_param(multicast_filter_limit, int, 0444);
 201module_param(max_interrupt_work, int, 0444);
 202module_param(sis900_debug, int, 0444);
 203MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
 204MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
 205MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
 206
 207#define sw32(reg, val)  iowrite32(val, ioaddr + (reg))
 208#define sw8(reg, val)   iowrite8(val, ioaddr + (reg))
 209#define sr32(reg)       ioread32(ioaddr + (reg))
 210#define sr16(reg)       ioread16(ioaddr + (reg))
 211
 212#ifdef CONFIG_NET_POLL_CONTROLLER
 213static void sis900_poll(struct net_device *dev);
 214#endif
 215static int sis900_open(struct net_device *net_dev);
 216static int sis900_mii_probe (struct net_device * net_dev);
 217static void sis900_init_rxfilter (struct net_device * net_dev);
 218static u16 read_eeprom(void __iomem *ioaddr, int location);
 219static int mdio_read(struct net_device *net_dev, int phy_id, int location);
 220static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
 221static void sis900_timer(struct timer_list *t);
 222static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
 223static void sis900_tx_timeout(struct net_device *net_dev);
 224static void sis900_init_tx_ring(struct net_device *net_dev);
 225static void sis900_init_rx_ring(struct net_device *net_dev);
 226static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
 227                                     struct net_device *net_dev);
 228static int sis900_rx(struct net_device *net_dev);
 229static void sis900_finish_xmit (struct net_device *net_dev);
 230static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
 231static int sis900_close(struct net_device *net_dev);
 232static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
 233static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
 234static void set_rx_mode(struct net_device *net_dev);
 235static void sis900_reset(struct net_device *net_dev);
 236static void sis630_set_eq(struct net_device *net_dev, u8 revision);
 237static int sis900_set_config(struct net_device *dev, struct ifmap *map);
 238static u16 sis900_default_phy(struct net_device * net_dev);
 239static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
 240static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
 241static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
 242static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
 243static const struct ethtool_ops sis900_ethtool_ops;
 244
 245/**
 246 *      sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
 247 *      @pci_dev: the sis900 pci device
 248 *      @net_dev: the net device to get address for
 249 *
 250 *      Older SiS900 and friends, use EEPROM to store MAC address.
 251 *      MAC address is read from read_eeprom() into @net_dev->dev_addr.
 252 */
 253
 254static int sis900_get_mac_addr(struct pci_dev *pci_dev,
 255                               struct net_device *net_dev)
 256{
 257        struct sis900_private *sis_priv = netdev_priv(net_dev);
 258        void __iomem *ioaddr = sis_priv->ioaddr;
 259        u16 signature;
 260        int i;
 261
 262        /* check to see if we have sane EEPROM */
 263        signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
 264        if (signature == 0xffff || signature == 0x0000) {
 265                printk (KERN_WARNING "%s: Error EEPROM read %x\n",
 266                        pci_name(pci_dev), signature);
 267                return 0;
 268        }
 269
 270        /* get MAC address from EEPROM */
 271        for (i = 0; i < 3; i++)
 272                ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
 273
 274        return 1;
 275}
 276
 277/**
 278 *      sis630e_get_mac_addr - Get MAC address for SiS630E model
 279 *      @pci_dev: the sis900 pci device
 280 *      @net_dev: the net device to get address for
 281 *
 282 *      SiS630E model, use APC CMOS RAM to store MAC address.
 283 *      APC CMOS RAM is accessed through ISA bridge.
 284 *      MAC address is read into @net_dev->dev_addr.
 285 */
 286
 287static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
 288                                struct net_device *net_dev)
 289{
 290        struct pci_dev *isa_bridge = NULL;
 291        u8 reg;
 292        int i;
 293
 294        isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
 295        if (!isa_bridge)
 296                isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
 297        if (!isa_bridge) {
 298                printk(KERN_WARNING "%s: Can not find ISA bridge\n",
 299                       pci_name(pci_dev));
 300                return 0;
 301        }
 302        pci_read_config_byte(isa_bridge, 0x48, &reg);
 303        pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
 304
 305        for (i = 0; i < 6; i++) {
 306                outb(0x09 + i, 0x70);
 307                ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
 308        }
 309
 310        pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
 311        pci_dev_put(isa_bridge);
 312
 313        return 1;
 314}
 315
 316
 317/**
 318 *      sis635_get_mac_addr - Get MAC address for SIS635 model
 319 *      @pci_dev: the sis900 pci device
 320 *      @net_dev: the net device to get address for
 321 *
 322 *      SiS635 model, set MAC Reload Bit to load Mac address from APC
 323 *      to rfdr. rfdr is accessed through rfcr. MAC address is read into
 324 *      @net_dev->dev_addr.
 325 */
 326
 327static int sis635_get_mac_addr(struct pci_dev *pci_dev,
 328                               struct net_device *net_dev)
 329{
 330        struct sis900_private *sis_priv = netdev_priv(net_dev);
 331        void __iomem *ioaddr = sis_priv->ioaddr;
 332        u32 rfcrSave;
 333        u32 i;
 334
 335        rfcrSave = sr32(rfcr);
 336
 337        sw32(cr, rfcrSave | RELOAD);
 338        sw32(cr, 0);
 339
 340        /* disable packet filtering before setting filter */
 341        sw32(rfcr, rfcrSave & ~RFEN);
 342
 343        /* load MAC addr to filter data register */
 344        for (i = 0 ; i < 3 ; i++) {
 345                sw32(rfcr, (i << RFADDR_shift));
 346                *( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
 347        }
 348
 349        /* enable packet filtering */
 350        sw32(rfcr, rfcrSave | RFEN);
 351
 352        return 1;
 353}
 354
 355/**
 356 *      sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
 357 *      @pci_dev: the sis900 pci device
 358 *      @net_dev: the net device to get address for
 359 *
 360 *      SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
 361 *      is shared by
 362 *      LAN and 1394. When accessing EEPROM, send EEREQ signal to hardware first
 363 *      and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be accessed
 364 *      by LAN, otherwise it is not. After MAC address is read from EEPROM, send
 365 *      EEDONE signal to refuse EEPROM access by LAN.
 366 *      The EEPROM map of SiS962 or SiS963 is different to SiS900.
 367 *      The signature field in SiS962 or SiS963 spec is meaningless.
 368 *      MAC address is read into @net_dev->dev_addr.
 369 */
 370
 371static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
 372                               struct net_device *net_dev)
 373{
 374        struct sis900_private *sis_priv = netdev_priv(net_dev);
 375        void __iomem *ioaddr = sis_priv->ioaddr;
 376        int wait, rc = 0;
 377
 378        sw32(mear, EEREQ);
 379        for (wait = 0; wait < 2000; wait++) {
 380                if (sr32(mear) & EEGNT) {
 381                        u16 *mac = (u16 *)net_dev->dev_addr;
 382                        int i;
 383
 384                        /* get MAC address from EEPROM */
 385                        for (i = 0; i < 3; i++)
 386                                mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
 387
 388                        rc = 1;
 389                        break;
 390                }
 391                udelay(1);
 392        }
 393        sw32(mear, EEDONE);
 394        return rc;
 395}
 396
 397static const struct net_device_ops sis900_netdev_ops = {
 398        .ndo_open                = sis900_open,
 399        .ndo_stop               = sis900_close,
 400        .ndo_start_xmit         = sis900_start_xmit,
 401        .ndo_set_config         = sis900_set_config,
 402        .ndo_set_rx_mode        = set_rx_mode,
 403        .ndo_validate_addr      = eth_validate_addr,
 404        .ndo_set_mac_address    = eth_mac_addr,
 405        .ndo_do_ioctl           = mii_ioctl,
 406        .ndo_tx_timeout         = sis900_tx_timeout,
 407#ifdef CONFIG_NET_POLL_CONTROLLER
 408        .ndo_poll_controller    = sis900_poll,
 409#endif
 410};
 411
 412/**
 413 *      sis900_probe - Probe for sis900 device
 414 *      @pci_dev: the sis900 pci device
 415 *      @pci_id: the pci device ID
 416 *
 417 *      Check and probe sis900 net device for @pci_dev.
 418 *      Get mac address according to the chip revision,
 419 *      and assign SiS900-specific entries in the device structure.
 420 *      ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
 421 */
 422
 423static int sis900_probe(struct pci_dev *pci_dev,
 424                        const struct pci_device_id *pci_id)
 425{
 426        struct sis900_private *sis_priv;
 427        struct net_device *net_dev;
 428        struct pci_dev *dev;
 429        dma_addr_t ring_dma;
 430        void *ring_space;
 431        void __iomem *ioaddr;
 432        int i, ret;
 433        const char *card_name = card_names[pci_id->driver_data];
 434        const char *dev_name = pci_name(pci_dev);
 435
 436/* when built into the kernel, we only print version if device is found */
 437#ifndef MODULE
 438        static int printed_version;
 439        if (!printed_version++)
 440                printk(version);
 441#endif
 442
 443        /* setup various bits in PCI command register */
 444        ret = pci_enable_device(pci_dev);
 445        if(ret) return ret;
 446
 447        i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
 448        if(i){
 449                printk(KERN_ERR "sis900.c: architecture does not support "
 450                        "32bit PCI busmaster DMA\n");
 451                return i;
 452        }
 453
 454        pci_set_master(pci_dev);
 455
 456        net_dev = alloc_etherdev(sizeof(struct sis900_private));
 457        if (!net_dev)
 458                return -ENOMEM;
 459        SET_NETDEV_DEV(net_dev, &pci_dev->dev);
 460
 461        /* We do a request_region() to register /proc/ioports info. */
 462        ret = pci_request_regions(pci_dev, "sis900");
 463        if (ret)
 464                goto err_out;
 465
 466        /* IO region. */
 467        ioaddr = pci_iomap(pci_dev, 0, 0);
 468        if (!ioaddr) {
 469                ret = -ENOMEM;
 470                goto err_out_cleardev;
 471        }
 472
 473        sis_priv = netdev_priv(net_dev);
 474        sis_priv->ioaddr = ioaddr;
 475        sis_priv->pci_dev = pci_dev;
 476        spin_lock_init(&sis_priv->lock);
 477
 478        pci_set_drvdata(pci_dev, net_dev);
 479
 480        ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
 481        if (!ring_space) {
 482                ret = -ENOMEM;
 483                goto err_out_unmap;
 484        }
 485        sis_priv->tx_ring = ring_space;
 486        sis_priv->tx_ring_dma = ring_dma;
 487
 488        ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
 489        if (!ring_space) {
 490                ret = -ENOMEM;
 491                goto err_unmap_tx;
 492        }
 493        sis_priv->rx_ring = ring_space;
 494        sis_priv->rx_ring_dma = ring_dma;
 495
 496        /* The SiS900-specific entries in the device structure. */
 497        net_dev->netdev_ops = &sis900_netdev_ops;
 498        net_dev->watchdog_timeo = TX_TIMEOUT;
 499        net_dev->ethtool_ops = &sis900_ethtool_ops;
 500
 501        if (sis900_debug > 0)
 502                sis_priv->msg_enable = sis900_debug;
 503        else
 504                sis_priv->msg_enable = SIS900_DEF_MSG;
 505
 506        sis_priv->mii_info.dev = net_dev;
 507        sis_priv->mii_info.mdio_read = mdio_read;
 508        sis_priv->mii_info.mdio_write = mdio_write;
 509        sis_priv->mii_info.phy_id_mask = 0x1f;
 510        sis_priv->mii_info.reg_num_mask = 0x1f;
 511
 512        /* Get Mac address according to the chip revision */
 513        sis_priv->chipset_rev = pci_dev->revision;
 514        if(netif_msg_probe(sis_priv))
 515                printk(KERN_DEBUG "%s: detected revision %2.2x, "
 516                                "trying to get MAC address...\n",
 517                                dev_name, sis_priv->chipset_rev);
 518
 519        ret = 0;
 520        if (sis_priv->chipset_rev == SIS630E_900_REV)
 521                ret = sis630e_get_mac_addr(pci_dev, net_dev);
 522        else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
 523                ret = sis635_get_mac_addr(pci_dev, net_dev);
 524        else if (sis_priv->chipset_rev == SIS96x_900_REV)
 525                ret = sis96x_get_mac_addr(pci_dev, net_dev);
 526        else
 527                ret = sis900_get_mac_addr(pci_dev, net_dev);
 528
 529        if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
 530                eth_hw_addr_random(net_dev);
 531                printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
 532                                "using random generated one\n", dev_name);
 533        }
 534
 535        /* 630ET : set the mii access mode as software-mode */
 536        if (sis_priv->chipset_rev == SIS630ET_900_REV)
 537                sw32(cr, ACCESSMODE | sr32(cr));
 538
 539        /* probe for mii transceiver */
 540        if (sis900_mii_probe(net_dev) == 0) {
 541                printk(KERN_WARNING "%s: Error probing MII device.\n",
 542                       dev_name);
 543                ret = -ENODEV;
 544                goto err_unmap_rx;
 545        }
 546
 547        /* save our host bridge revision */
 548        dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
 549        if (dev) {
 550                sis_priv->host_bridge_rev = dev->revision;
 551                pci_dev_put(dev);
 552        }
 553
 554        ret = register_netdev(net_dev);
 555        if (ret)
 556                goto err_unmap_rx;
 557
 558        /* print some information about our NIC */
 559        printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
 560               net_dev->name, card_name, ioaddr, pci_dev->irq,
 561               net_dev->dev_addr);
 562
 563        /* Detect Wake on Lan support */
 564        ret = (sr32(CFGPMC) & PMESP) >> 27;
 565        if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
 566                printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
 567
 568        return 0;
 569
 570err_unmap_rx:
 571        pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
 572                sis_priv->rx_ring_dma);
 573err_unmap_tx:
 574        pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
 575                sis_priv->tx_ring_dma);
 576err_out_unmap:
 577        pci_iounmap(pci_dev, ioaddr);
 578err_out_cleardev:
 579        pci_release_regions(pci_dev);
 580 err_out:
 581        free_netdev(net_dev);
 582        return ret;
 583}
 584
 585/**
 586 *      sis900_mii_probe - Probe MII PHY for sis900
 587 *      @net_dev: the net device to probe for
 588 *
 589 *      Search for total of 32 possible mii phy addresses.
 590 *      Identify and set current phy if found one,
 591 *      return error if it failed to found.
 592 */
 593
 594static int sis900_mii_probe(struct net_device *net_dev)
 595{
 596        struct sis900_private *sis_priv = netdev_priv(net_dev);
 597        const char *dev_name = pci_name(sis_priv->pci_dev);
 598        u16 poll_bit = MII_STAT_LINK, status = 0;
 599        unsigned long timeout = jiffies + 5 * HZ;
 600        int phy_addr;
 601
 602        sis_priv->mii = NULL;
 603
 604        /* search for total of 32 possible mii phy addresses */
 605        for (phy_addr = 0; phy_addr < 32; phy_addr++) {
 606                struct mii_phy * mii_phy = NULL;
 607                u16 mii_status;
 608                int i;
 609
 610                mii_phy = NULL;
 611                for(i = 0; i < 2; i++)
 612                        mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
 613
 614                if (mii_status == 0xffff || mii_status == 0x0000) {
 615                        if (netif_msg_probe(sis_priv))
 616                                printk(KERN_DEBUG "%s: MII at address %d"
 617                                                " not accessible\n",
 618                                                dev_name, phy_addr);
 619                        continue;
 620                }
 621
 622                if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
 623                        mii_phy = sis_priv->first_mii;
 624                        while (mii_phy) {
 625                                struct mii_phy *phy;
 626                                phy = mii_phy;
 627                                mii_phy = mii_phy->next;
 628                                kfree(phy);
 629                        }
 630                        return 0;
 631                }
 632
 633                mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
 634                mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
 635                mii_phy->phy_addr = phy_addr;
 636                mii_phy->status = mii_status;
 637                mii_phy->next = sis_priv->mii;
 638                sis_priv->mii = mii_phy;
 639                sis_priv->first_mii = mii_phy;
 640
 641                for (i = 0; mii_chip_table[i].phy_id1; i++)
 642                        if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
 643                            ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
 644                                mii_phy->phy_types = mii_chip_table[i].phy_types;
 645                                if (mii_chip_table[i].phy_types == MIX)
 646                                        mii_phy->phy_types =
 647                                            (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
 648                                printk(KERN_INFO "%s: %s transceiver found "
 649                                                        "at address %d.\n",
 650                                                        dev_name,
 651                                                        mii_chip_table[i].name,
 652                                                        phy_addr);
 653                                break;
 654                        }
 655
 656                if( !mii_chip_table[i].phy_id1 ) {
 657                        printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
 658                               dev_name, phy_addr);
 659                        mii_phy->phy_types = UNKNOWN;
 660                }
 661        }
 662
 663        if (sis_priv->mii == NULL) {
 664                printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
 665                return 0;
 666        }
 667
 668        /* select default PHY for mac */
 669        sis_priv->mii = NULL;
 670        sis900_default_phy( net_dev );
 671
 672        /* Reset phy if default phy is internal sis900 */
 673        if ((sis_priv->mii->phy_id0 == 0x001D) &&
 674            ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
 675                status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
 676
 677        /* workaround for ICS1893 PHY */
 678        if ((sis_priv->mii->phy_id0 == 0x0015) &&
 679            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
 680                mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
 681
 682        if(status & MII_STAT_LINK){
 683                while (poll_bit) {
 684                        yield();
 685
 686                        poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
 687                        if (time_after_eq(jiffies, timeout)) {
 688                                printk(KERN_WARNING "%s: reset phy and link down now\n",
 689                                       dev_name);
 690                                return -ETIME;
 691                        }
 692                }
 693        }
 694
 695        if (sis_priv->chipset_rev == SIS630E_900_REV) {
 696                /* SiS 630E has some bugs on default value of PHY registers */
 697                mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
 698                mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
 699                mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
 700                mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
 701                //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
 702        }
 703
 704        if (sis_priv->mii->status & MII_STAT_LINK)
 705                netif_carrier_on(net_dev);
 706        else
 707                netif_carrier_off(net_dev);
 708
 709        return 1;
 710}
 711
 712/**
 713 *      sis900_default_phy - Select default PHY for sis900 mac.
 714 *      @net_dev: the net device to probe for
 715 *
 716 *      Select first detected PHY with link as default.
 717 *      If no one is link on, select PHY whose types is HOME as default.
 718 *      If HOME doesn't exist, select LAN.
 719 */
 720
 721static u16 sis900_default_phy(struct net_device * net_dev)
 722{
 723        struct sis900_private *sis_priv = netdev_priv(net_dev);
 724        struct mii_phy *phy = NULL, *phy_home = NULL,
 725                *default_phy = NULL, *phy_lan = NULL;
 726        u16 status;
 727
 728        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
 729                status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 730                status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 731
 732                /* Link ON & Not select default PHY & not ghost PHY */
 733                if ((status & MII_STAT_LINK) && !default_phy &&
 734                    (phy->phy_types != UNKNOWN)) {
 735                        default_phy = phy;
 736                } else {
 737                        status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
 738                        mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
 739                                status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
 740                        if (phy->phy_types == HOME)
 741                                phy_home = phy;
 742                        else if(phy->phy_types == LAN)
 743                                phy_lan = phy;
 744                }
 745        }
 746
 747        if (!default_phy && phy_home)
 748                default_phy = phy_home;
 749        else if (!default_phy && phy_lan)
 750                default_phy = phy_lan;
 751        else if (!default_phy)
 752                default_phy = sis_priv->first_mii;
 753
 754        if (sis_priv->mii != default_phy) {
 755                sis_priv->mii = default_phy;
 756                sis_priv->cur_phy = default_phy->phy_addr;
 757                printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
 758                       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
 759        }
 760
 761        sis_priv->mii_info.phy_id = sis_priv->cur_phy;
 762
 763        status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
 764        status &= (~MII_CNTL_ISOLATE);
 765
 766        mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
 767        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 768        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 769
 770        return status;
 771}
 772
 773
 774/**
 775 *      sis900_set_capability - set the media capability of network adapter.
 776 *      @net_dev : the net device to probe for
 777 *      @phy : default PHY
 778 *
 779 *      Set the media capability of network adapter according to
 780 *      mii status register. It's necessary before auto-negotiate.
 781 */
 782
 783static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
 784{
 785        u16 cap;
 786        u16 status;
 787
 788        status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 789        status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 790
 791        cap = MII_NWAY_CSMA_CD |
 792                ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
 793                ((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
 794                ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
 795                ((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
 796
 797        mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
 798}
 799
 800
 801/* Delay between EEPROM clock transitions. */
 802#define eeprom_delay()  sr32(mear)
 803
 804/**
 805 *      read_eeprom - Read Serial EEPROM
 806 *      @ioaddr: base i/o address
 807 *      @location: the EEPROM location to read
 808 *
 809 *      Read Serial EEPROM through EEPROM Access Register.
 810 *      Note that location is in word (16 bits) unit
 811 */
 812
 813static u16 read_eeprom(void __iomem *ioaddr, int location)
 814{
 815        u32 read_cmd = location | EEread;
 816        int i;
 817        u16 retval = 0;
 818
 819        sw32(mear, 0);
 820        eeprom_delay();
 821        sw32(mear, EECS);
 822        eeprom_delay();
 823
 824        /* Shift the read command (9) bits out. */
 825        for (i = 8; i >= 0; i--) {
 826                u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
 827
 828                sw32(mear, dataval);
 829                eeprom_delay();
 830                sw32(mear, dataval | EECLK);
 831                eeprom_delay();
 832        }
 833        sw32(mear, EECS);
 834        eeprom_delay();
 835
 836        /* read the 16-bits data in */
 837        for (i = 16; i > 0; i--) {
 838                sw32(mear, EECS);
 839                eeprom_delay();
 840                sw32(mear, EECS | EECLK);
 841                eeprom_delay();
 842                retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
 843                eeprom_delay();
 844        }
 845
 846        /* Terminate the EEPROM access. */
 847        sw32(mear, 0);
 848        eeprom_delay();
 849
 850        return retval;
 851}
 852
 853/* Read and write the MII management registers using software-generated
 854   serial MDIO protocol. Note that the command bits and data bits are
 855   send out separately */
 856#define mdio_delay()    sr32(mear)
 857
 858static void mdio_idle(struct sis900_private *sp)
 859{
 860        void __iomem *ioaddr = sp->ioaddr;
 861
 862        sw32(mear, MDIO | MDDIR);
 863        mdio_delay();
 864        sw32(mear, MDIO | MDDIR | MDC);
 865}
 866
 867/* Synchronize the MII management interface by shifting 32 one bits out. */
 868static void mdio_reset(struct sis900_private *sp)
 869{
 870        void __iomem *ioaddr = sp->ioaddr;
 871        int i;
 872
 873        for (i = 31; i >= 0; i--) {
 874                sw32(mear, MDDIR | MDIO);
 875                mdio_delay();
 876                sw32(mear, MDDIR | MDIO | MDC);
 877                mdio_delay();
 878        }
 879}
 880
 881/**
 882 *      mdio_read - read MII PHY register
 883 *      @net_dev: the net device to read
 884 *      @phy_id: the phy address to read
 885 *      @location: the phy register id to read
 886 *
 887 *      Read MII registers through MDIO and MDC
 888 *      using MDIO management frame structure and protocol(defined by ISO/IEC).
 889 *      Please see SiS7014 or ICS spec
 890 */
 891
 892static int mdio_read(struct net_device *net_dev, int phy_id, int location)
 893{
 894        int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 895        struct sis900_private *sp = netdev_priv(net_dev);
 896        void __iomem *ioaddr = sp->ioaddr;
 897        u16 retval = 0;
 898        int i;
 899
 900        mdio_reset(sp);
 901        mdio_idle(sp);
 902
 903        for (i = 15; i >= 0; i--) {
 904                int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 905
 906                sw32(mear, dataval);
 907                mdio_delay();
 908                sw32(mear, dataval | MDC);
 909                mdio_delay();
 910        }
 911
 912        /* Read the 16 data bits. */
 913        for (i = 16; i > 0; i--) {
 914                sw32(mear, 0);
 915                mdio_delay();
 916                retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
 917                sw32(mear, MDC);
 918                mdio_delay();
 919        }
 920        sw32(mear, 0x00);
 921
 922        return retval;
 923}
 924
 925/**
 926 *      mdio_write - write MII PHY register
 927 *      @net_dev: the net device to write
 928 *      @phy_id: the phy address to write
 929 *      @location: the phy register id to write
 930 *      @value: the register value to write with
 931 *
 932 *      Write MII registers with @value through MDIO and MDC
 933 *      using MDIO management frame structure and protocol(defined by ISO/IEC)
 934 *      please see SiS7014 or ICS spec
 935 */
 936
 937static void mdio_write(struct net_device *net_dev, int phy_id, int location,
 938                        int value)
 939{
 940        int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 941        struct sis900_private *sp = netdev_priv(net_dev);
 942        void __iomem *ioaddr = sp->ioaddr;
 943        int i;
 944
 945        mdio_reset(sp);
 946        mdio_idle(sp);
 947
 948        /* Shift the command bits out. */
 949        for (i = 15; i >= 0; i--) {
 950                int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 951
 952                sw8(mear, dataval);
 953                mdio_delay();
 954                sw8(mear, dataval | MDC);
 955                mdio_delay();
 956        }
 957        mdio_delay();
 958
 959        /* Shift the value bits out. */
 960        for (i = 15; i >= 0; i--) {
 961                int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
 962
 963                sw32(mear, dataval);
 964                mdio_delay();
 965                sw32(mear, dataval | MDC);
 966                mdio_delay();
 967        }
 968        mdio_delay();
 969
 970        /* Clear out extra bits. */
 971        for (i = 2; i > 0; i--) {
 972                sw8(mear, 0);
 973                mdio_delay();
 974                sw8(mear, MDC);
 975                mdio_delay();
 976        }
 977        sw32(mear, 0x00);
 978}
 979
 980
 981/**
 982 *      sis900_reset_phy - reset sis900 mii phy.
 983 *      @net_dev: the net device to write
 984 *      @phy_addr: default phy address
 985 *
 986 *      Some specific phy can't work properly without reset.
 987 *      This function will be called during initialization and
 988 *      link status change from ON to DOWN.
 989 */
 990
 991static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
 992{
 993        int i;
 994        u16 status;
 995
 996        for (i = 0; i < 2; i++)
 997                status = mdio_read(net_dev, phy_addr, MII_STATUS);
 998
 999        mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1000
1001        return status;
1002}
1003
1004#ifdef CONFIG_NET_POLL_CONTROLLER
1005/*
1006 * Polling 'interrupt' - used by things like netconsole to send skbs
1007 * without having to re-enable interrupts. It's not called while
1008 * the interrupt routine is executing.
1009*/
1010static void sis900_poll(struct net_device *dev)
1011{
1012        struct sis900_private *sp = netdev_priv(dev);
1013        const int irq = sp->pci_dev->irq;
1014
1015        disable_irq(irq);
1016        sis900_interrupt(irq, dev);
1017        enable_irq(irq);
1018}
1019#endif
1020
1021/**
1022 *      sis900_open - open sis900 device
1023 *      @net_dev: the net device to open
1024 *
1025 *      Do some initialization and start net interface.
1026 *      enable interrupts and set sis900 timer.
1027 */
1028
1029static int
1030sis900_open(struct net_device *net_dev)
1031{
1032        struct sis900_private *sis_priv = netdev_priv(net_dev);
1033        void __iomem *ioaddr = sis_priv->ioaddr;
1034        int ret;
1035
1036        /* Soft reset the chip. */
1037        sis900_reset(net_dev);
1038
1039        /* Equalizer workaround Rule */
1040        sis630_set_eq(net_dev, sis_priv->chipset_rev);
1041
1042        ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1043                          net_dev->name, net_dev);
1044        if (ret)
1045                return ret;
1046
1047        sis900_init_rxfilter(net_dev);
1048
1049        sis900_init_tx_ring(net_dev);
1050        sis900_init_rx_ring(net_dev);
1051
1052        set_rx_mode(net_dev);
1053
1054        netif_start_queue(net_dev);
1055
1056        /* Workaround for EDB */
1057        sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1058
1059        /* Enable all known interrupts by setting the interrupt mask. */
1060        sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1061        sw32(cr, RxENA | sr32(cr));
1062        sw32(ier, IE);
1063
1064        sis900_check_mode(net_dev, sis_priv->mii);
1065
1066        /* Set the timer to switch to check for link beat and perhaps switch
1067           to an alternate media type. */
1068        timer_setup(&sis_priv->timer, sis900_timer, 0);
1069        sis_priv->timer.expires = jiffies + HZ;
1070        add_timer(&sis_priv->timer);
1071
1072        return 0;
1073}
1074
1075/**
1076 *      sis900_init_rxfilter - Initialize the Rx filter
1077 *      @net_dev: the net device to initialize for
1078 *
1079 *      Set receive filter address to our MAC address
1080 *      and enable packet filtering.
1081 */
1082
1083static void
1084sis900_init_rxfilter (struct net_device * net_dev)
1085{
1086        struct sis900_private *sis_priv = netdev_priv(net_dev);
1087        void __iomem *ioaddr = sis_priv->ioaddr;
1088        u32 rfcrSave;
1089        u32 i;
1090
1091        rfcrSave = sr32(rfcr);
1092
1093        /* disable packet filtering before setting filter */
1094        sw32(rfcr, rfcrSave & ~RFEN);
1095
1096        /* load MAC addr to filter data register */
1097        for (i = 0 ; i < 3 ; i++) {
1098                u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1099
1100                sw32(rfcr, i << RFADDR_shift);
1101                sw32(rfdr, w);
1102
1103                if (netif_msg_hw(sis_priv)) {
1104                        printk(KERN_DEBUG "%s: Receive Filter Address[%d]=%x\n",
1105                               net_dev->name, i, sr32(rfdr));
1106                }
1107        }
1108
1109        /* enable packet filtering */
1110        sw32(rfcr, rfcrSave | RFEN);
1111}
1112
1113/**
1114 *      sis900_init_tx_ring - Initialize the Tx descriptor ring
1115 *      @net_dev: the net device to initialize for
1116 *
1117 *      Initialize the Tx descriptor ring,
1118 */
1119
1120static void
1121sis900_init_tx_ring(struct net_device *net_dev)
1122{
1123        struct sis900_private *sis_priv = netdev_priv(net_dev);
1124        void __iomem *ioaddr = sis_priv->ioaddr;
1125        int i;
1126
1127        sis_priv->tx_full = 0;
1128        sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1129
1130        for (i = 0; i < NUM_TX_DESC; i++) {
1131                sis_priv->tx_skbuff[i] = NULL;
1132
1133                sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1134                        ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1135                sis_priv->tx_ring[i].cmdsts = 0;
1136                sis_priv->tx_ring[i].bufptr = 0;
1137        }
1138
1139        /* load Transmit Descriptor Register */
1140        sw32(txdp, sis_priv->tx_ring_dma);
1141        if (netif_msg_hw(sis_priv))
1142                printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1143                       net_dev->name, sr32(txdp));
1144}
1145
1146/**
1147 *      sis900_init_rx_ring - Initialize the Rx descriptor ring
1148 *      @net_dev: the net device to initialize for
1149 *
1150 *      Initialize the Rx descriptor ring,
1151 *      and pre-allocate receive buffers (socket buffer)
1152 */
1153
1154static void
1155sis900_init_rx_ring(struct net_device *net_dev)
1156{
1157        struct sis900_private *sis_priv = netdev_priv(net_dev);
1158        void __iomem *ioaddr = sis_priv->ioaddr;
1159        int i;
1160
1161        sis_priv->cur_rx = 0;
1162        sis_priv->dirty_rx = 0;
1163
1164        /* init RX descriptor */
1165        for (i = 0; i < NUM_RX_DESC; i++) {
1166                sis_priv->rx_skbuff[i] = NULL;
1167
1168                sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1169                        ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1170                sis_priv->rx_ring[i].cmdsts = 0;
1171                sis_priv->rx_ring[i].bufptr = 0;
1172        }
1173
1174        /* allocate sock buffers */
1175        for (i = 0; i < NUM_RX_DESC; i++) {
1176                struct sk_buff *skb;
1177
1178                if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1179                        /* not enough memory for skbuff, this makes a "hole"
1180                           on the buffer ring, it is not clear how the
1181                           hardware will react to this kind of degenerated
1182                           buffer */
1183                        break;
1184                }
1185                sis_priv->rx_skbuff[i] = skb;
1186                sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1187                sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1188                                skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1189                if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1190                                sis_priv->rx_ring[i].bufptr))) {
1191                        dev_kfree_skb(skb);
1192                        sis_priv->rx_skbuff[i] = NULL;
1193                        break;
1194                }
1195        }
1196        sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1197
1198        /* load Receive Descriptor Register */
1199        sw32(rxdp, sis_priv->rx_ring_dma);
1200        if (netif_msg_hw(sis_priv))
1201                printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1202                       net_dev->name, sr32(rxdp));
1203}
1204
1205/**
1206 *      sis630_set_eq - set phy equalizer value for 630 LAN
1207 *      @net_dev: the net device to set equalizer value
1208 *      @revision: 630 LAN revision number
1209 *
1210 *      630E equalizer workaround rule(Cyrus Huang 08/15)
1211 *      PHY register 14h(Test)
1212 *      Bit 14: 0 -- Automatically detect (default)
1213 *              1 -- Manually set Equalizer filter
1214 *      Bit 13: 0 -- (Default)
1215 *              1 -- Speed up convergence of equalizer setting
1216 *      Bit 9 : 0 -- (Default)
1217 *              1 -- Disable Baseline Wander
1218 *      Bit 3~7   -- Equalizer filter setting
1219 *      Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1220 *      Then calculate equalizer value
1221 *      Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1222 *      Link Off:Set Bit 13 to 1, Bit 14 to 0
1223 *      Calculate Equalizer value:
1224 *      When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1225 *      When the equalizer is stable, this value is not a fixed value. It will be within
1226 *      a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1227 *      0 <= max <= 4  --> set equalizer to max
1228 *      5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1229 *      max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1230 */
1231
1232static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1233{
1234        struct sis900_private *sis_priv = netdev_priv(net_dev);
1235        u16 reg14h, eq_value=0, max_value=0, min_value=0;
1236        int i, maxcount=10;
1237
1238        if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1239               revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1240                return;
1241
1242        if (netif_carrier_ok(net_dev)) {
1243                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1244                mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1245                                        (0x2200 | reg14h) & 0xBFFF);
1246                for (i=0; i < maxcount; i++) {
1247                        eq_value = (0x00F8 & mdio_read(net_dev,
1248                                        sis_priv->cur_phy, MII_RESV)) >> 3;
1249                        if (i == 0)
1250                                max_value=min_value=eq_value;
1251                        max_value = (eq_value > max_value) ?
1252                                                eq_value : max_value;
1253                        min_value = (eq_value < min_value) ?
1254                                                eq_value : min_value;
1255                }
1256                /* 630E rule to determine the equalizer value */
1257                if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1258                    revision == SIS630ET_900_REV) {
1259                        if (max_value < 5)
1260                                eq_value = max_value;
1261                        else if (max_value >= 5 && max_value < 15)
1262                                eq_value = (max_value == min_value) ?
1263                                                max_value+2 : max_value+1;
1264                        else if (max_value >= 15)
1265                                eq_value=(max_value == min_value) ?
1266                                                max_value+6 : max_value+5;
1267                }
1268                /* 630B0&B1 rule to determine the equalizer value */
1269                if (revision == SIS630A_900_REV &&
1270                    (sis_priv->host_bridge_rev == SIS630B0 ||
1271                     sis_priv->host_bridge_rev == SIS630B1)) {
1272                        if (max_value == 0)
1273                                eq_value = 3;
1274                        else
1275                                eq_value = (max_value + min_value + 1)/2;
1276                }
1277                /* write equalizer value and setting */
1278                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1279                reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1280                reg14h = (reg14h | 0x6000) & 0xFDFF;
1281                mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1282        } else {
1283                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1284                if (revision == SIS630A_900_REV &&
1285                    (sis_priv->host_bridge_rev == SIS630B0 ||
1286                     sis_priv->host_bridge_rev == SIS630B1))
1287                        mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1288                                                (reg14h | 0x2200) & 0xBFFF);
1289                else
1290                        mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1291                                                (reg14h | 0x2000) & 0xBFFF);
1292        }
1293}
1294
1295/**
1296 *      sis900_timer - sis900 timer routine
1297 *      @data: pointer to sis900 net device
1298 *
1299 *      On each timer ticks we check two things,
1300 *      link status (ON/OFF) and link mode (10/100/Full/Half)
1301 */
1302
1303static void sis900_timer(struct timer_list *t)
1304{
1305        struct sis900_private *sis_priv = from_timer(sis_priv, t, timer);
1306        struct net_device *net_dev = sis_priv->mii_info.dev;
1307        struct mii_phy *mii_phy = sis_priv->mii;
1308        static const int next_tick = 5*HZ;
1309        int speed = 0, duplex = 0;
1310        u16 status;
1311
1312        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1313        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1314
1315        /* Link OFF -> ON */
1316        if (!netif_carrier_ok(net_dev)) {
1317        LookForLink:
1318                /* Search for new PHY */
1319                status = sis900_default_phy(net_dev);
1320                mii_phy = sis_priv->mii;
1321
1322                if (status & MII_STAT_LINK) {
1323                        WARN_ON(!(status & MII_STAT_AUTO_DONE));
1324
1325                        sis900_read_mode(net_dev, &speed, &duplex);
1326                        if (duplex) {
1327                                sis900_set_mode(sis_priv, speed, duplex);
1328                                sis630_set_eq(net_dev, sis_priv->chipset_rev);
1329                                netif_carrier_on(net_dev);
1330                        }
1331                }
1332        } else {
1333        /* Link ON -> OFF */
1334                if (!(status & MII_STAT_LINK)){
1335                        netif_carrier_off(net_dev);
1336                        if(netif_msg_link(sis_priv))
1337                                printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1338
1339                        /* Change mode issue */
1340                        if ((mii_phy->phy_id0 == 0x001D) &&
1341                            ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1342                                sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1343
1344                        sis630_set_eq(net_dev, sis_priv->chipset_rev);
1345
1346                        goto LookForLink;
1347                }
1348        }
1349
1350        sis_priv->timer.expires = jiffies + next_tick;
1351        add_timer(&sis_priv->timer);
1352}
1353
1354/**
1355 *      sis900_check_mode - check the media mode for sis900
1356 *      @net_dev: the net device to be checked
1357 *      @mii_phy: the mii phy
1358 *
1359 *      Older driver gets the media mode from mii status output
1360 *      register. Now we set our media capability and auto-negotiate
1361 *      to get the upper bound of speed and duplex between two ends.
1362 *      If the types of mii phy is HOME, it doesn't need to auto-negotiate
1363 *      and autong_complete should be set to 1.
1364 */
1365
1366static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1367{
1368        struct sis900_private *sis_priv = netdev_priv(net_dev);
1369        void __iomem *ioaddr = sis_priv->ioaddr;
1370        int speed, duplex;
1371
1372        if (mii_phy->phy_types == LAN) {
1373                sw32(cfg, ~EXD & sr32(cfg));
1374                sis900_set_capability(net_dev , mii_phy);
1375                sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1376        } else {
1377                sw32(cfg, EXD | sr32(cfg));
1378                speed = HW_SPEED_HOME;
1379                duplex = FDX_CAPABLE_HALF_SELECTED;
1380                sis900_set_mode(sis_priv, speed, duplex);
1381                sis_priv->autong_complete = 1;
1382        }
1383}
1384
1385/**
1386 *      sis900_set_mode - Set the media mode of mac register.
1387 *      @sp:     the device private data
1388 *      @speed : the transmit speed to be determined
1389 *      @duplex: the duplex mode to be determined
1390 *
1391 *      Set the media mode of mac register txcfg/rxcfg according to
1392 *      speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1393 *      bus is used instead of PCI bus. When this bit is set 1, the
1394 *      Max DMA Burst Size for TX/RX DMA should be no larger than 16
1395 *      double words.
1396 */
1397
1398static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1399{
1400        void __iomem *ioaddr = sp->ioaddr;
1401        u32 tx_flags = 0, rx_flags = 0;
1402
1403        if (sr32( cfg) & EDB_MASTER_EN) {
1404                tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1405                                        (TX_FILL_THRESH << TxFILLT_shift);
1406                rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1407        } else {
1408                tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1409                                        (TX_FILL_THRESH << TxFILLT_shift);
1410                rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1411        }
1412
1413        if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1414                rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1415                tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1416        } else {
1417                rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1418                tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1419        }
1420
1421        if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1422                tx_flags |= (TxCSI | TxHBI);
1423                rx_flags |= RxATX;
1424        }
1425
1426#if IS_ENABLED(CONFIG_VLAN_8021Q)
1427        /* Can accept Jumbo packet */
1428        rx_flags |= RxAJAB;
1429#endif
1430
1431        sw32(txcfg, tx_flags);
1432        sw32(rxcfg, rx_flags);
1433}
1434
1435/**
1436 *      sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1437 *      @net_dev: the net device to read mode for
1438 *      @phy_addr: mii phy address
1439 *
1440 *      If the adapter is link-on, set the auto-negotiate enable/reset bit.
1441 *      autong_complete should be set to 0 when starting auto-negotiation.
1442 *      autong_complete should be set to 1 if we didn't start auto-negotiation.
1443 *      sis900_timer will wait for link on again if autong_complete = 0.
1444 */
1445
1446static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1447{
1448        struct sis900_private *sis_priv = netdev_priv(net_dev);
1449        int i = 0;
1450        u32 status;
1451
1452        for (i = 0; i < 2; i++)
1453                status = mdio_read(net_dev, phy_addr, MII_STATUS);
1454
1455        if (!(status & MII_STAT_LINK)){
1456                if(netif_msg_link(sis_priv))
1457                        printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1458                sis_priv->autong_complete = 1;
1459                netif_carrier_off(net_dev);
1460                return;
1461        }
1462
1463        /* (Re)start AutoNegotiate */
1464        mdio_write(net_dev, phy_addr, MII_CONTROL,
1465                   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1466        sis_priv->autong_complete = 0;
1467}
1468
1469
1470/**
1471 *      sis900_read_mode - read media mode for sis900 internal phy
1472 *      @net_dev: the net device to read mode for
1473 *      @speed  : the transmit speed to be determined
1474 *      @duplex : the duplex mode to be determined
1475 *
1476 *      The capability of remote end will be put in mii register autorec
1477 *      after auto-negotiation. Use AND operation to get the upper bound
1478 *      of speed and duplex between two ends.
1479 */
1480
1481static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1482{
1483        struct sis900_private *sis_priv = netdev_priv(net_dev);
1484        struct mii_phy *phy = sis_priv->mii;
1485        int phy_addr = sis_priv->cur_phy;
1486        u32 status;
1487        u16 autoadv, autorec;
1488        int i;
1489
1490        for (i = 0; i < 2; i++)
1491                status = mdio_read(net_dev, phy_addr, MII_STATUS);
1492
1493        if (!(status & MII_STAT_LINK))
1494                return;
1495
1496        /* AutoNegotiate completed */
1497        autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1498        autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1499        status = autoadv & autorec;
1500
1501        *speed = HW_SPEED_10_MBPS;
1502        *duplex = FDX_CAPABLE_HALF_SELECTED;
1503
1504        if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1505                *speed = HW_SPEED_100_MBPS;
1506        if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1507                *duplex = FDX_CAPABLE_FULL_SELECTED;
1508
1509        sis_priv->autong_complete = 1;
1510
1511        /* Workaround for Realtek RTL8201 PHY issue */
1512        if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1513                if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1514                        *duplex = FDX_CAPABLE_FULL_SELECTED;
1515                if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1516                        *speed = HW_SPEED_100_MBPS;
1517        }
1518
1519        if(netif_msg_link(sis_priv))
1520                printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1521                                        net_dev->name,
1522                                        *speed == HW_SPEED_100_MBPS ?
1523                                                "100mbps" : "10mbps",
1524                                        *duplex == FDX_CAPABLE_FULL_SELECTED ?
1525                                                "full" : "half");
1526}
1527
1528/**
1529 *      sis900_tx_timeout - sis900 transmit timeout routine
1530 *      @net_dev: the net device to transmit
1531 *
1532 *      print transmit timeout status
1533 *      disable interrupts and do some tasks
1534 */
1535
1536static void sis900_tx_timeout(struct net_device *net_dev)
1537{
1538        struct sis900_private *sis_priv = netdev_priv(net_dev);
1539        void __iomem *ioaddr = sis_priv->ioaddr;
1540        unsigned long flags;
1541        int i;
1542
1543        if (netif_msg_tx_err(sis_priv)) {
1544                printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1545                        net_dev->name, sr32(cr), sr32(isr));
1546        }
1547
1548        /* Disable interrupts by clearing the interrupt mask. */
1549        sw32(imr, 0x0000);
1550
1551        /* use spinlock to prevent interrupt handler accessing buffer ring */
1552        spin_lock_irqsave(&sis_priv->lock, flags);
1553
1554        /* discard unsent packets */
1555        sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1556        for (i = 0; i < NUM_TX_DESC; i++) {
1557                struct sk_buff *skb = sis_priv->tx_skbuff[i];
1558
1559                if (skb) {
1560                        pci_unmap_single(sis_priv->pci_dev,
1561                                sis_priv->tx_ring[i].bufptr, skb->len,
1562                                PCI_DMA_TODEVICE);
1563                        dev_kfree_skb_irq(skb);
1564                        sis_priv->tx_skbuff[i] = NULL;
1565                        sis_priv->tx_ring[i].cmdsts = 0;
1566                        sis_priv->tx_ring[i].bufptr = 0;
1567                        net_dev->stats.tx_dropped++;
1568                }
1569        }
1570        sis_priv->tx_full = 0;
1571        netif_wake_queue(net_dev);
1572
1573        spin_unlock_irqrestore(&sis_priv->lock, flags);
1574
1575        netif_trans_update(net_dev); /* prevent tx timeout */
1576
1577        /* load Transmit Descriptor Register */
1578        sw32(txdp, sis_priv->tx_ring_dma);
1579
1580        /* Enable all known interrupts by setting the interrupt mask. */
1581        sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1582}
1583
1584/**
1585 *      sis900_start_xmit - sis900 start transmit routine
1586 *      @skb: socket buffer pointer to put the data being transmitted
1587 *      @net_dev: the net device to transmit with
1588 *
1589 *      Set the transmit buffer descriptor,
1590 *      and write TxENA to enable transmit state machine.
1591 *      tell upper layer if the buffer is full
1592 */
1593
1594static netdev_tx_t
1595sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1596{
1597        struct sis900_private *sis_priv = netdev_priv(net_dev);
1598        void __iomem *ioaddr = sis_priv->ioaddr;
1599        unsigned int  entry;
1600        unsigned long flags;
1601        unsigned int  index_cur_tx, index_dirty_tx;
1602        unsigned int  count_dirty_tx;
1603
1604        spin_lock_irqsave(&sis_priv->lock, flags);
1605
1606        /* Calculate the next Tx descriptor entry. */
1607        entry = sis_priv->cur_tx % NUM_TX_DESC;
1608        sis_priv->tx_skbuff[entry] = skb;
1609
1610        /* set the transmit buffer descriptor and enable Transmit State Machine */
1611        sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1612                skb->data, skb->len, PCI_DMA_TODEVICE);
1613        if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1614                sis_priv->tx_ring[entry].bufptr))) {
1615                        dev_kfree_skb_any(skb);
1616                        sis_priv->tx_skbuff[entry] = NULL;
1617                        net_dev->stats.tx_dropped++;
1618                        spin_unlock_irqrestore(&sis_priv->lock, flags);
1619                        return NETDEV_TX_OK;
1620        }
1621        sis_priv->tx_ring[entry].cmdsts = (OWN | INTR | skb->len);
1622        sw32(cr, TxENA | sr32(cr));
1623
1624        sis_priv->cur_tx ++;
1625        index_cur_tx = sis_priv->cur_tx;
1626        index_dirty_tx = sis_priv->dirty_tx;
1627
1628        for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1629                count_dirty_tx ++;
1630
1631        if (index_cur_tx == index_dirty_tx) {
1632                /* dirty_tx is met in the cycle of cur_tx, buffer full */
1633                sis_priv->tx_full = 1;
1634                netif_stop_queue(net_dev);
1635        } else if (count_dirty_tx < NUM_TX_DESC) {
1636                /* Typical path, tell upper layer that more transmission is possible */
1637                netif_start_queue(net_dev);
1638        } else {
1639                /* buffer full, tell upper layer no more transmission */
1640                sis_priv->tx_full = 1;
1641                netif_stop_queue(net_dev);
1642        }
1643
1644        spin_unlock_irqrestore(&sis_priv->lock, flags);
1645
1646        if (netif_msg_tx_queued(sis_priv))
1647                printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1648                       "to slot %d.\n",
1649                       net_dev->name, skb->data, (int)skb->len, entry);
1650
1651        return NETDEV_TX_OK;
1652}
1653
1654/**
1655 *      sis900_interrupt - sis900 interrupt handler
1656 *      @irq: the irq number
1657 *      @dev_instance: the client data object
1658 *
1659 *      The interrupt handler does all of the Rx thread work,
1660 *      and cleans up after the Tx thread
1661 */
1662
1663static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1664{
1665        struct net_device *net_dev = dev_instance;
1666        struct sis900_private *sis_priv = netdev_priv(net_dev);
1667        int boguscnt = max_interrupt_work;
1668        void __iomem *ioaddr = sis_priv->ioaddr;
1669        u32 status;
1670        unsigned int handled = 0;
1671
1672        spin_lock (&sis_priv->lock);
1673
1674        do {
1675                status = sr32(isr);
1676
1677                if ((status & (HIBERR|TxURN|TxERR|TxDESC|RxORN|RxERR|RxOK)) == 0)
1678                        /* nothing interesting happened */
1679                        break;
1680                handled = 1;
1681
1682                /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1683                if (status & (RxORN | RxERR | RxOK))
1684                        /* Rx interrupt */
1685                        sis900_rx(net_dev);
1686
1687                if (status & (TxURN | TxERR | TxDESC))
1688                        /* Tx interrupt */
1689                        sis900_finish_xmit(net_dev);
1690
1691                /* something strange happened !!! */
1692                if (status & HIBERR) {
1693                        if(netif_msg_intr(sis_priv))
1694                                printk(KERN_INFO "%s: Abnormal interrupt, "
1695                                        "status %#8.8x.\n", net_dev->name, status);
1696                        break;
1697                }
1698                if (--boguscnt < 0) {
1699                        if(netif_msg_intr(sis_priv))
1700                                printk(KERN_INFO "%s: Too much work at interrupt, "
1701                                        "interrupt status = %#8.8x.\n",
1702                                        net_dev->name, status);
1703                        break;
1704                }
1705        } while (1);
1706
1707        if(netif_msg_intr(sis_priv))
1708                printk(KERN_DEBUG "%s: exiting interrupt, "
1709                       "interrupt status = %#8.8x\n",
1710                       net_dev->name, sr32(isr));
1711
1712        spin_unlock (&sis_priv->lock);
1713        return IRQ_RETVAL(handled);
1714}
1715
1716/**
1717 *      sis900_rx - sis900 receive routine
1718 *      @net_dev: the net device which receives data
1719 *
1720 *      Process receive interrupt events,
1721 *      put buffer to higher layer and refill buffer pool
1722 *      Note: This function is called by interrupt handler,
1723 *      don't do "too much" work here
1724 */
1725
1726static int sis900_rx(struct net_device *net_dev)
1727{
1728        struct sis900_private *sis_priv = netdev_priv(net_dev);
1729        void __iomem *ioaddr = sis_priv->ioaddr;
1730        unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1731        u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1732        int rx_work_limit;
1733
1734        if (netif_msg_rx_status(sis_priv))
1735                printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1736                       "status:0x%8.8x\n",
1737                       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1738        rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1739
1740        while (rx_status & OWN) {
1741                unsigned int rx_size;
1742                unsigned int data_size;
1743
1744                if (--rx_work_limit < 0)
1745                        break;
1746
1747                data_size = rx_status & DSIZE;
1748                rx_size = data_size - CRC_SIZE;
1749
1750#if IS_ENABLED(CONFIG_VLAN_8021Q)
1751                /* ``TOOLONG'' flag means jumbo packet received. */
1752                if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1753                        rx_status &= (~ ((unsigned int)TOOLONG));
1754#endif
1755
1756                if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1757                        /* corrupted packet received */
1758                        if (netif_msg_rx_err(sis_priv))
1759                                printk(KERN_DEBUG "%s: Corrupted packet "
1760                                       "received, buffer status = 0x%8.8x/%d.\n",
1761                                       net_dev->name, rx_status, data_size);
1762                        net_dev->stats.rx_errors++;
1763                        if (rx_status & OVERRUN)
1764                                net_dev->stats.rx_over_errors++;
1765                        if (rx_status & (TOOLONG|RUNT))
1766                                net_dev->stats.rx_length_errors++;
1767                        if (rx_status & (RXISERR | FAERR))
1768                                net_dev->stats.rx_frame_errors++;
1769                        if (rx_status & CRCERR)
1770                                net_dev->stats.rx_crc_errors++;
1771                        /* reset buffer descriptor state */
1772                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1773                } else {
1774                        struct sk_buff * skb;
1775                        struct sk_buff * rx_skb;
1776
1777                        pci_unmap_single(sis_priv->pci_dev,
1778                                sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1779                                PCI_DMA_FROMDEVICE);
1780
1781                        /* refill the Rx buffer, what if there is not enough
1782                         * memory for new socket buffer ?? */
1783                        if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1784                                /*
1785                                 * Not enough memory to refill the buffer
1786                                 * so we need to recycle the old one so
1787                                 * as to avoid creating a memory hole
1788                                 * in the rx ring
1789                                 */
1790                                skb = sis_priv->rx_skbuff[entry];
1791                                net_dev->stats.rx_dropped++;
1792                                goto refill_rx_ring;
1793                        }
1794
1795                        /* This situation should never happen, but due to
1796                           some unknown bugs, it is possible that
1797                           we are working on NULL sk_buff :-( */
1798                        if (sis_priv->rx_skbuff[entry] == NULL) {
1799                                if (netif_msg_rx_err(sis_priv))
1800                                        printk(KERN_WARNING "%s: NULL pointer "
1801                                              "encountered in Rx ring\n"
1802                                              "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1803                                              net_dev->name, sis_priv->cur_rx,
1804                                              sis_priv->dirty_rx);
1805                                dev_kfree_skb(skb);
1806                                break;
1807                        }
1808
1809                        /* give the socket buffer to upper layers */
1810                        rx_skb = sis_priv->rx_skbuff[entry];
1811                        skb_put(rx_skb, rx_size);
1812                        rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1813                        netif_rx(rx_skb);
1814
1815                        /* some network statistics */
1816                        if ((rx_status & BCAST) == MCAST)
1817                                net_dev->stats.multicast++;
1818                        net_dev->stats.rx_bytes += rx_size;
1819                        net_dev->stats.rx_packets++;
1820                        sis_priv->dirty_rx++;
1821refill_rx_ring:
1822                        sis_priv->rx_skbuff[entry] = skb;
1823                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1824                        sis_priv->rx_ring[entry].bufptr =
1825                                pci_map_single(sis_priv->pci_dev, skb->data,
1826                                        RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1827                        if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1828                                sis_priv->rx_ring[entry].bufptr))) {
1829                                dev_kfree_skb_irq(skb);
1830                                sis_priv->rx_skbuff[entry] = NULL;
1831                                break;
1832                        }
1833                }
1834                sis_priv->cur_rx++;
1835                entry = sis_priv->cur_rx % NUM_RX_DESC;
1836                rx_status = sis_priv->rx_ring[entry].cmdsts;
1837        } // while
1838
1839        /* refill the Rx buffer, what if the rate of refilling is slower
1840         * than consuming ?? */
1841        for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1842                struct sk_buff *skb;
1843
1844                entry = sis_priv->dirty_rx % NUM_RX_DESC;
1845
1846                if (sis_priv->rx_skbuff[entry] == NULL) {
1847                        skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1848                        if (skb == NULL) {
1849                                /* not enough memory for skbuff, this makes a
1850                                 * "hole" on the buffer ring, it is not clear
1851                                 * how the hardware will react to this kind
1852                                 * of degenerated buffer */
1853                                net_dev->stats.rx_dropped++;
1854                                break;
1855                        }
1856                        sis_priv->rx_skbuff[entry] = skb;
1857                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1858                        sis_priv->rx_ring[entry].bufptr =
1859                                pci_map_single(sis_priv->pci_dev, skb->data,
1860                                        RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1861                        if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1862                                        sis_priv->rx_ring[entry].bufptr))) {
1863                                dev_kfree_skb_irq(skb);
1864                                sis_priv->rx_skbuff[entry] = NULL;
1865                                break;
1866                        }
1867                }
1868        }
1869        /* re-enable the potentially idle receive state matchine */
1870        sw32(cr , RxENA | sr32(cr));
1871
1872        return 0;
1873}
1874
1875/**
1876 *      sis900_finish_xmit - finish up transmission of packets
1877 *      @net_dev: the net device to be transmitted on
1878 *
1879 *      Check for error condition and free socket buffer etc
1880 *      schedule for more transmission as needed
1881 *      Note: This function is called by interrupt handler,
1882 *      don't do "too much" work here
1883 */
1884
1885static void sis900_finish_xmit (struct net_device *net_dev)
1886{
1887        struct sis900_private *sis_priv = netdev_priv(net_dev);
1888
1889        for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1890                struct sk_buff *skb;
1891                unsigned int entry;
1892                u32 tx_status;
1893
1894                entry = sis_priv->dirty_tx % NUM_TX_DESC;
1895                tx_status = sis_priv->tx_ring[entry].cmdsts;
1896
1897                if (tx_status & OWN) {
1898                        /* The packet is not transmitted yet (owned by hardware) !
1899                         * Note: this is an almost impossible condition
1900                         * on TxDESC interrupt ('descriptor interrupt') */
1901                        break;
1902                }
1903
1904                if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1905                        /* packet unsuccessfully transmitted */
1906                        if (netif_msg_tx_err(sis_priv))
1907                                printk(KERN_DEBUG "%s: Transmit "
1908                                       "error, Tx status %8.8x.\n",
1909                                       net_dev->name, tx_status);
1910                        net_dev->stats.tx_errors++;
1911                        if (tx_status & UNDERRUN)
1912                                net_dev->stats.tx_fifo_errors++;
1913                        if (tx_status & ABORT)
1914                                net_dev->stats.tx_aborted_errors++;
1915                        if (tx_status & NOCARRIER)
1916                                net_dev->stats.tx_carrier_errors++;
1917                        if (tx_status & OWCOLL)
1918                                net_dev->stats.tx_window_errors++;
1919                } else {
1920                        /* packet successfully transmitted */
1921                        net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1922                        net_dev->stats.tx_bytes += tx_status & DSIZE;
1923                        net_dev->stats.tx_packets++;
1924                }
1925                /* Free the original skb. */
1926                skb = sis_priv->tx_skbuff[entry];
1927                pci_unmap_single(sis_priv->pci_dev,
1928                        sis_priv->tx_ring[entry].bufptr, skb->len,
1929                        PCI_DMA_TODEVICE);
1930                dev_consume_skb_irq(skb);
1931                sis_priv->tx_skbuff[entry] = NULL;
1932                sis_priv->tx_ring[entry].bufptr = 0;
1933                sis_priv->tx_ring[entry].cmdsts = 0;
1934        }
1935
1936        if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1937            sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1938                /* The ring is no longer full, clear tx_full and schedule
1939                 * more transmission by netif_wake_queue(net_dev) */
1940                sis_priv->tx_full = 0;
1941                netif_wake_queue (net_dev);
1942        }
1943}
1944
1945/**
1946 *      sis900_close - close sis900 device
1947 *      @net_dev: the net device to be closed
1948 *
1949 *      Disable interrupts, stop the Tx and Rx Status Machine
1950 *      free Tx and RX socket buffer
1951 */
1952
1953static int sis900_close(struct net_device *net_dev)
1954{
1955        struct sis900_private *sis_priv = netdev_priv(net_dev);
1956        struct pci_dev *pdev = sis_priv->pci_dev;
1957        void __iomem *ioaddr = sis_priv->ioaddr;
1958        struct sk_buff *skb;
1959        int i;
1960
1961        netif_stop_queue(net_dev);
1962
1963        /* Disable interrupts by clearing the interrupt mask. */
1964        sw32(imr, 0x0000);
1965        sw32(ier, 0x0000);
1966
1967        /* Stop the chip's Tx and Rx Status Machine */
1968        sw32(cr, RxDIS | TxDIS | sr32(cr));
1969
1970        del_timer(&sis_priv->timer);
1971
1972        free_irq(pdev->irq, net_dev);
1973
1974        /* Free Tx and RX skbuff */
1975        for (i = 0; i < NUM_RX_DESC; i++) {
1976                skb = sis_priv->rx_skbuff[i];
1977                if (skb) {
1978                        pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1979                                         RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1980                        dev_kfree_skb(skb);
1981                        sis_priv->rx_skbuff[i] = NULL;
1982                }
1983        }
1984        for (i = 0; i < NUM_TX_DESC; i++) {
1985                skb = sis_priv->tx_skbuff[i];
1986                if (skb) {
1987                        pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1988                                         skb->len, PCI_DMA_TODEVICE);
1989                        dev_kfree_skb(skb);
1990                        sis_priv->tx_skbuff[i] = NULL;
1991                }
1992        }
1993
1994        /* Green! Put the chip in low-power mode. */
1995
1996        return 0;
1997}
1998
1999/**
2000 *      sis900_get_drvinfo - Return information about driver
2001 *      @net_dev: the net device to probe
2002 *      @info: container for info returned
2003 *
2004 *      Process ethtool command such as "ehtool -i" to show information
2005 */
2006
2007static void sis900_get_drvinfo(struct net_device *net_dev,
2008                               struct ethtool_drvinfo *info)
2009{
2010        struct sis900_private *sis_priv = netdev_priv(net_dev);
2011
2012        strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2013        strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2014        strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2015                sizeof(info->bus_info));
2016}
2017
2018static u32 sis900_get_msglevel(struct net_device *net_dev)
2019{
2020        struct sis900_private *sis_priv = netdev_priv(net_dev);
2021        return sis_priv->msg_enable;
2022}
2023
2024static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2025{
2026        struct sis900_private *sis_priv = netdev_priv(net_dev);
2027        sis_priv->msg_enable = value;
2028}
2029
2030static u32 sis900_get_link(struct net_device *net_dev)
2031{
2032        struct sis900_private *sis_priv = netdev_priv(net_dev);
2033        return mii_link_ok(&sis_priv->mii_info);
2034}
2035
2036static int sis900_get_link_ksettings(struct net_device *net_dev,
2037                                     struct ethtool_link_ksettings *cmd)
2038{
2039        struct sis900_private *sis_priv = netdev_priv(net_dev);
2040        spin_lock_irq(&sis_priv->lock);
2041        mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd);
2042        spin_unlock_irq(&sis_priv->lock);
2043        return 0;
2044}
2045
2046static int sis900_set_link_ksettings(struct net_device *net_dev,
2047                                     const struct ethtool_link_ksettings *cmd)
2048{
2049        struct sis900_private *sis_priv = netdev_priv(net_dev);
2050        int rt;
2051        spin_lock_irq(&sis_priv->lock);
2052        rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd);
2053        spin_unlock_irq(&sis_priv->lock);
2054        return rt;
2055}
2056
2057static int sis900_nway_reset(struct net_device *net_dev)
2058{
2059        struct sis900_private *sis_priv = netdev_priv(net_dev);
2060        return mii_nway_restart(&sis_priv->mii_info);
2061}
2062
2063/**
2064 *      sis900_set_wol - Set up Wake on Lan registers
2065 *      @net_dev: the net device to probe
2066 *      @wol: container for info passed to the driver
2067 *
2068 *      Process ethtool command "wol" to setup wake on lan features.
2069 *      SiS900 supports sending WoL events if a correct packet is received,
2070 *      but there is no simple way to filter them to only a subset (broadcast,
2071 *      multicast, unicast or arp).
2072 */
2073
2074static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2075{
2076        struct sis900_private *sis_priv = netdev_priv(net_dev);
2077        void __iomem *ioaddr = sis_priv->ioaddr;
2078        u32 cfgpmcsr = 0, pmctrl_bits = 0;
2079
2080        if (wol->wolopts == 0) {
2081                pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2082                cfgpmcsr &= ~PME_EN;
2083                pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2084                sw32(pmctrl, pmctrl_bits);
2085                if (netif_msg_wol(sis_priv))
2086                        printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2087                return 0;
2088        }
2089
2090        if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2091                                | WAKE_BCAST | WAKE_ARP))
2092                return -EINVAL;
2093
2094        if (wol->wolopts & WAKE_MAGIC)
2095                pmctrl_bits |= MAGICPKT;
2096        if (wol->wolopts & WAKE_PHY)
2097                pmctrl_bits |= LINKON;
2098
2099        sw32(pmctrl, pmctrl_bits);
2100
2101        pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2102        cfgpmcsr |= PME_EN;
2103        pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2104        if (netif_msg_wol(sis_priv))
2105                printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2106
2107        return 0;
2108}
2109
2110static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2111{
2112        struct sis900_private *sp = netdev_priv(net_dev);
2113        void __iomem *ioaddr = sp->ioaddr;
2114        u32 pmctrl_bits;
2115
2116        pmctrl_bits = sr32(pmctrl);
2117        if (pmctrl_bits & MAGICPKT)
2118                wol->wolopts |= WAKE_MAGIC;
2119        if (pmctrl_bits & LINKON)
2120                wol->wolopts |= WAKE_PHY;
2121
2122        wol->supported = (WAKE_PHY | WAKE_MAGIC);
2123}
2124
2125static const struct ethtool_ops sis900_ethtool_ops = {
2126        .get_drvinfo    = sis900_get_drvinfo,
2127        .get_msglevel   = sis900_get_msglevel,
2128        .set_msglevel   = sis900_set_msglevel,
2129        .get_link       = sis900_get_link,
2130        .nway_reset     = sis900_nway_reset,
2131        .get_wol        = sis900_get_wol,
2132        .set_wol        = sis900_set_wol,
2133        .get_link_ksettings = sis900_get_link_ksettings,
2134        .set_link_ksettings = sis900_set_link_ksettings,
2135};
2136
2137/**
2138 *      mii_ioctl - process MII i/o control command
2139 *      @net_dev: the net device to command for
2140 *      @rq: parameter for command
2141 *      @cmd: the i/o command
2142 *
2143 *      Process MII command like read/write MII register
2144 */
2145
2146static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2147{
2148        struct sis900_private *sis_priv = netdev_priv(net_dev);
2149        struct mii_ioctl_data *data = if_mii(rq);
2150
2151        switch(cmd) {
2152        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
2153                data->phy_id = sis_priv->mii->phy_addr;
2154                /* Fall Through */
2155
2156        case SIOCGMIIREG:               /* Read MII PHY register. */
2157                data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2158                return 0;
2159
2160        case SIOCSMIIREG:               /* Write MII PHY register. */
2161                mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2162                return 0;
2163        default:
2164                return -EOPNOTSUPP;
2165        }
2166}
2167
2168/**
2169 *      sis900_set_config - Set media type by net_device.set_config
2170 *      @dev: the net device for media type change
2171 *      @map: ifmap passed by ifconfig
2172 *
2173 *      Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2174 *      we support only port changes. All other runtime configuration
2175 *      changes will be ignored
2176 */
2177
2178static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2179{
2180        struct sis900_private *sis_priv = netdev_priv(dev);
2181        struct mii_phy *mii_phy = sis_priv->mii;
2182
2183        u16 status;
2184
2185        if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2186                /* we switch on the ifmap->port field. I couldn't find anything
2187                 * like a definition or standard for the values of that field.
2188                 * I think the meaning of those values is device specific. But
2189                 * since I would like to change the media type via the ifconfig
2190                 * command I use the definition from linux/netdevice.h
2191                 * (which seems to be different from the ifport(pcmcia) definition) */
2192                switch(map->port){
2193                case IF_PORT_UNKNOWN: /* use auto here */
2194                        dev->if_port = map->port;
2195                        /* we are going to change the media type, so the Link
2196                         * will be temporary down and we need to reflect that
2197                         * here. When the Link comes up again, it will be
2198                         * sensed by the sis_timer procedure, which also does
2199                         * all the rest for us */
2200                        netif_carrier_off(dev);
2201
2202                        /* read current state */
2203                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2204
2205                        /* enable auto negotiation and reset the negotioation
2206                         * (I don't really know what the auto negatiotiation
2207                         * reset really means, but it sounds for me right to
2208                         * do one here) */
2209                        mdio_write(dev, mii_phy->phy_addr,
2210                                   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2211
2212                        break;
2213
2214                case IF_PORT_10BASET: /* 10BaseT */
2215                        dev->if_port = map->port;
2216
2217                        /* we are going to change the media type, so the Link
2218                         * will be temporary down and we need to reflect that
2219                         * here. When the Link comes up again, it will be
2220                         * sensed by the sis_timer procedure, which also does
2221                         * all the rest for us */
2222                        netif_carrier_off(dev);
2223
2224                        /* set Speed to 10Mbps */
2225                        /* read current state */
2226                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2227
2228                        /* disable auto negotiation and force 10MBit mode*/
2229                        mdio_write(dev, mii_phy->phy_addr,
2230                                   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2231                                        MII_CNTL_AUTO));
2232                        break;
2233
2234                case IF_PORT_100BASET: /* 100BaseT */
2235                case IF_PORT_100BASETX: /* 100BaseTx */
2236                        dev->if_port = map->port;
2237
2238                        /* we are going to change the media type, so the Link
2239                         * will be temporary down and we need to reflect that
2240                         * here. When the Link comes up again, it will be
2241                         * sensed by the sis_timer procedure, which also does
2242                         * all the rest for us */
2243                        netif_carrier_off(dev);
2244
2245                        /* set Speed to 100Mbps */
2246                        /* disable auto negotiation and enable 100MBit Mode */
2247                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2248                        mdio_write(dev, mii_phy->phy_addr,
2249                                   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2250                                   MII_CNTL_SPEED);
2251
2252                        break;
2253
2254                case IF_PORT_10BASE2: /* 10Base2 */
2255                case IF_PORT_AUI: /* AUI */
2256                case IF_PORT_100BASEFX: /* 100BaseFx */
2257                        /* These Modes are not supported (are they?)*/
2258                        return -EOPNOTSUPP;
2259
2260                default:
2261                        return -EINVAL;
2262                }
2263        }
2264        return 0;
2265}
2266
2267/**
2268 *      sis900_mcast_bitnr - compute hashtable index
2269 *      @addr: multicast address
2270 *      @revision: revision id of chip
2271 *
2272 *      SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2273 *      hash table, which makes this function a little bit different from other drivers
2274 *      SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2275 *      multicast hash table.
2276 */
2277
2278static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2279{
2280
2281        u32 crc = ether_crc(6, addr);
2282
2283        /* leave 8 or 7 most siginifant bits */
2284        if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2285                return (int)(crc >> 24);
2286        else
2287                return (int)(crc >> 25);
2288}
2289
2290/**
2291 *      set_rx_mode - Set SiS900 receive mode
2292 *      @net_dev: the net device to be set
2293 *
2294 *      Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2295 *      And set the appropriate multicast filter.
2296 *      Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2297 */
2298
2299static void set_rx_mode(struct net_device *net_dev)
2300{
2301        struct sis900_private *sis_priv = netdev_priv(net_dev);
2302        void __iomem *ioaddr = sis_priv->ioaddr;
2303        u16 mc_filter[16] = {0};        /* 256/128 bits multicast hash table */
2304        int i, table_entries;
2305        u32 rx_mode;
2306
2307        /* 635 Hash Table entries = 256(2^16) */
2308        if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2309                        (sis_priv->chipset_rev == SIS900B_900_REV))
2310                table_entries = 16;
2311        else
2312                table_entries = 8;
2313
2314        if (net_dev->flags & IFF_PROMISC) {
2315                /* Accept any kinds of packets */
2316                rx_mode = RFPromiscuous;
2317                for (i = 0; i < table_entries; i++)
2318                        mc_filter[i] = 0xffff;
2319        } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2320                   (net_dev->flags & IFF_ALLMULTI)) {
2321                /* too many multicast addresses or accept all multicast packet */
2322                rx_mode = RFAAB | RFAAM;
2323                for (i = 0; i < table_entries; i++)
2324                        mc_filter[i] = 0xffff;
2325        } else {
2326                /* Accept Broadcast packet, destination address matchs our
2327                 * MAC address, use Receive Filter to reject unwanted MCAST
2328                 * packets */
2329                struct netdev_hw_addr *ha;
2330                rx_mode = RFAAB;
2331
2332                netdev_for_each_mc_addr(ha, net_dev) {
2333                        unsigned int bit_nr;
2334
2335                        bit_nr = sis900_mcast_bitnr(ha->addr,
2336                                                    sis_priv->chipset_rev);
2337                        mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2338                }
2339        }
2340
2341        /* update Multicast Hash Table in Receive Filter */
2342        for (i = 0; i < table_entries; i++) {
2343                /* why plus 0x04 ??, That makes the correct value for hash table. */
2344                sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2345                sw32(rfdr, mc_filter[i]);
2346        }
2347
2348        sw32(rfcr, RFEN | rx_mode);
2349
2350        /* sis900 is capable of looping back packets at MAC level for
2351         * debugging purpose */
2352        if (net_dev->flags & IFF_LOOPBACK) {
2353                u32 cr_saved;
2354                /* We must disable Tx/Rx before setting loopback mode */
2355                cr_saved = sr32(cr);
2356                sw32(cr, cr_saved | TxDIS | RxDIS);
2357                /* enable loopback */
2358                sw32(txcfg, sr32(txcfg) | TxMLB);
2359                sw32(rxcfg, sr32(rxcfg) | RxATX);
2360                /* restore cr */
2361                sw32(cr, cr_saved);
2362        }
2363}
2364
2365/**
2366 *      sis900_reset - Reset sis900 MAC
2367 *      @net_dev: the net device to reset
2368 *
2369 *      reset sis900 MAC and wait until finished
2370 *      reset through command register
2371 *      change backoff algorithm for 900B0 & 635 M/B
2372 */
2373
2374static void sis900_reset(struct net_device *net_dev)
2375{
2376        struct sis900_private *sis_priv = netdev_priv(net_dev);
2377        void __iomem *ioaddr = sis_priv->ioaddr;
2378        u32 status = TxRCMP | RxRCMP;
2379        int i;
2380
2381        sw32(ier, 0);
2382        sw32(imr, 0);
2383        sw32(rfcr, 0);
2384
2385        sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2386
2387        /* Check that the chip has finished the reset. */
2388        for (i = 0; status && (i < 1000); i++)
2389                status ^= sr32(isr) & status;
2390
2391        if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2392            sis_priv->chipset_rev == SIS900B_900_REV)
2393                sw32(cfg, PESEL | RND_CNT);
2394        else
2395                sw32(cfg, PESEL);
2396}
2397
2398/**
2399 *      sis900_remove - Remove sis900 device
2400 *      @pci_dev: the pci device to be removed
2401 *
2402 *      remove and release SiS900 net device
2403 */
2404
2405static void sis900_remove(struct pci_dev *pci_dev)
2406{
2407        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2408        struct sis900_private *sis_priv = netdev_priv(net_dev);
2409
2410        unregister_netdev(net_dev);
2411
2412        while (sis_priv->first_mii) {
2413                struct mii_phy *phy = sis_priv->first_mii;
2414
2415                sis_priv->first_mii = phy->next;
2416                kfree(phy);
2417        }
2418
2419        pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2420                sis_priv->rx_ring_dma);
2421        pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2422                sis_priv->tx_ring_dma);
2423        pci_iounmap(pci_dev, sis_priv->ioaddr);
2424        free_netdev(net_dev);
2425        pci_release_regions(pci_dev);
2426}
2427
2428#ifdef CONFIG_PM
2429
2430static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2431{
2432        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2433        struct sis900_private *sis_priv = netdev_priv(net_dev);
2434        void __iomem *ioaddr = sis_priv->ioaddr;
2435
2436        if(!netif_running(net_dev))
2437                return 0;
2438
2439        netif_stop_queue(net_dev);
2440        netif_device_detach(net_dev);
2441
2442        /* Stop the chip's Tx and Rx Status Machine */
2443        sw32(cr, RxDIS | TxDIS | sr32(cr));
2444
2445        pci_set_power_state(pci_dev, PCI_D3hot);
2446        pci_save_state(pci_dev);
2447
2448        return 0;
2449}
2450
2451static int sis900_resume(struct pci_dev *pci_dev)
2452{
2453        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2454        struct sis900_private *sis_priv = netdev_priv(net_dev);
2455        void __iomem *ioaddr = sis_priv->ioaddr;
2456
2457        if(!netif_running(net_dev))
2458                return 0;
2459        pci_restore_state(pci_dev);
2460        pci_set_power_state(pci_dev, PCI_D0);
2461
2462        sis900_init_rxfilter(net_dev);
2463
2464        sis900_init_tx_ring(net_dev);
2465        sis900_init_rx_ring(net_dev);
2466
2467        set_rx_mode(net_dev);
2468
2469        netif_device_attach(net_dev);
2470        netif_start_queue(net_dev);
2471
2472        /* Workaround for EDB */
2473        sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2474
2475        /* Enable all known interrupts by setting the interrupt mask. */
2476        sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
2477        sw32(cr, RxENA | sr32(cr));
2478        sw32(ier, IE);
2479
2480        sis900_check_mode(net_dev, sis_priv->mii);
2481
2482        return 0;
2483}
2484#endif /* CONFIG_PM */
2485
2486static struct pci_driver sis900_pci_driver = {
2487        .name           = SIS900_MODULE_NAME,
2488        .id_table       = sis900_pci_tbl,
2489        .probe          = sis900_probe,
2490        .remove         = sis900_remove,
2491#ifdef CONFIG_PM
2492        .suspend        = sis900_suspend,
2493        .resume         = sis900_resume,
2494#endif /* CONFIG_PM */
2495};
2496
2497static int __init sis900_init_module(void)
2498{
2499/* when a module, this is printed whether or not devices are found in probe */
2500#ifdef MODULE
2501        printk(version);
2502#endif
2503
2504        return pci_register_driver(&sis900_pci_driver);
2505}
2506
2507static void __exit sis900_cleanup_module(void)
2508{
2509        pci_unregister_driver(&sis900_pci_driver);
2510}
2511
2512module_init(sis900_init_module);
2513module_exit(sis900_cleanup_module);
2514
2515