linux/drivers/net/ethernet/smsc/smc91x.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * smc91x.c
   4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
   5 *
   6 * Copyright (C) 1996 by Erik Stahlman
   7 * Copyright (C) 2001 Standard Microsystems Corporation
   8 *      Developed by Simple Network Magic Corporation
   9 * Copyright (C) 2003 Monta Vista Software, Inc.
  10 *      Unified SMC91x driver by Nicolas Pitre
  11 *
  12 * Arguments:
  13 *      io      = for the base address
  14 *      irq     = for the IRQ
  15 *      nowait  = 0 for normal wait states, 1 eliminates additional wait states
  16 *
  17 * original author:
  18 *      Erik Stahlman <erik@vt.edu>
  19 *
  20 * hardware multicast code:
  21 *    Peter Cammaert <pc@denkart.be>
  22 *
  23 * contributors:
  24 *      Daris A Nevil <dnevil@snmc.com>
  25 *      Nicolas Pitre <nico@fluxnic.net>
  26 *      Russell King <rmk@arm.linux.org.uk>
  27 *
  28 * History:
  29 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
  30 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
  31 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
  32 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
  33 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
  34 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
  35 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
  36 *                                more bus abstraction, big cleanup, etc.
  37 *   29/09/03  Russell King       - add driver model support
  38 *                                - ethtool support
  39 *                                - convert to use generic MII interface
  40 *                                - add link up/down notification
  41 *                                - don't try to handle full negotiation in
  42 *                                  smc_phy_configure
  43 *                                - clean up (and fix stack overrun) in PHY
  44 *                                  MII read/write functions
  45 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
  46 */
  47static const char version[] =
  48        "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
  49
  50/* Debugging level */
  51#ifndef SMC_DEBUG
  52#define SMC_DEBUG               0
  53#endif
  54
  55
  56#include <linux/module.h>
  57#include <linux/kernel.h>
  58#include <linux/sched.h>
  59#include <linux/delay.h>
  60#include <linux/interrupt.h>
  61#include <linux/irq.h>
  62#include <linux/errno.h>
  63#include <linux/ioport.h>
  64#include <linux/crc32.h>
  65#include <linux/platform_device.h>
  66#include <linux/spinlock.h>
  67#include <linux/ethtool.h>
  68#include <linux/mii.h>
  69#include <linux/workqueue.h>
  70#include <linux/of.h>
  71#include <linux/of_device.h>
  72#include <linux/of_gpio.h>
  73
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77
  78#include <asm/io.h>
  79
  80#include "smc91x.h"
  81
  82#if defined(CONFIG_ASSABET_NEPONSET)
  83#include <mach/assabet.h>
  84#include <mach/neponset.h>
  85#endif
  86
  87#ifndef SMC_NOWAIT
  88# define SMC_NOWAIT             0
  89#endif
  90static int nowait = SMC_NOWAIT;
  91module_param(nowait, int, 0400);
  92MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
  93
  94/*
  95 * Transmit timeout, default 5 seconds.
  96 */
  97static int watchdog = 1000;
  98module_param(watchdog, int, 0400);
  99MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 100
 101MODULE_LICENSE("GPL");
 102MODULE_ALIAS("platform:smc91x");
 103
 104/*
 105 * The internal workings of the driver.  If you are changing anything
 106 * here with the SMC stuff, you should have the datasheet and know
 107 * what you are doing.
 108 */
 109#define CARDNAME "smc91x"
 110
 111/*
 112 * Use power-down feature of the chip
 113 */
 114#define POWER_DOWN              1
 115
 116/*
 117 * Wait time for memory to be free.  This probably shouldn't be
 118 * tuned that much, as waiting for this means nothing else happens
 119 * in the system
 120 */
 121#define MEMORY_WAIT_TIME        16
 122
 123/*
 124 * The maximum number of processing loops allowed for each call to the
 125 * IRQ handler.
 126 */
 127#define MAX_IRQ_LOOPS           8
 128
 129/*
 130 * This selects whether TX packets are sent one by one to the SMC91x internal
 131 * memory and throttled until transmission completes.  This may prevent
 132 * RX overruns a litle by keeping much of the memory free for RX packets
 133 * but to the expense of reduced TX throughput and increased IRQ overhead.
 134 * Note this is not a cure for a too slow data bus or too high IRQ latency.
 135 */
 136#define THROTTLE_TX_PKTS        0
 137
 138/*
 139 * The MII clock high/low times.  2x this number gives the MII clock period
 140 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
 141 */
 142#define MII_DELAY               1
 143
 144#define DBG(n, dev, fmt, ...)                                   \
 145        do {                                                    \
 146                if (SMC_DEBUG >= (n))                           \
 147                        netdev_dbg(dev, fmt, ##__VA_ARGS__);    \
 148        } while (0)
 149
 150#define PRINTK(dev, fmt, ...)                                   \
 151        do {                                                    \
 152                if (SMC_DEBUG > 0)                              \
 153                        netdev_info(dev, fmt, ##__VA_ARGS__);   \
 154                else                                            \
 155                        netdev_dbg(dev, fmt, ##__VA_ARGS__);    \
 156        } while (0)
 157
 158#if SMC_DEBUG > 3
 159static void PRINT_PKT(u_char *buf, int length)
 160{
 161        int i;
 162        int remainder;
 163        int lines;
 164
 165        lines = length / 16;
 166        remainder = length % 16;
 167
 168        for (i = 0; i < lines ; i ++) {
 169                int cur;
 170                printk(KERN_DEBUG);
 171                for (cur = 0; cur < 8; cur++) {
 172                        u_char a, b;
 173                        a = *buf++;
 174                        b = *buf++;
 175                        pr_cont("%02x%02x ", a, b);
 176                }
 177                pr_cont("\n");
 178        }
 179        printk(KERN_DEBUG);
 180        for (i = 0; i < remainder/2 ; i++) {
 181                u_char a, b;
 182                a = *buf++;
 183                b = *buf++;
 184                pr_cont("%02x%02x ", a, b);
 185        }
 186        pr_cont("\n");
 187}
 188#else
 189static inline void PRINT_PKT(u_char *buf, int length) { }
 190#endif
 191
 192
 193/* this enables an interrupt in the interrupt mask register */
 194#define SMC_ENABLE_INT(lp, x) do {                                      \
 195        unsigned char mask;                                             \
 196        unsigned long smc_enable_flags;                                 \
 197        spin_lock_irqsave(&lp->lock, smc_enable_flags);                 \
 198        mask = SMC_GET_INT_MASK(lp);                                    \
 199        mask |= (x);                                                    \
 200        SMC_SET_INT_MASK(lp, mask);                                     \
 201        spin_unlock_irqrestore(&lp->lock, smc_enable_flags);            \
 202} while (0)
 203
 204/* this disables an interrupt from the interrupt mask register */
 205#define SMC_DISABLE_INT(lp, x) do {                                     \
 206        unsigned char mask;                                             \
 207        unsigned long smc_disable_flags;                                \
 208        spin_lock_irqsave(&lp->lock, smc_disable_flags);                \
 209        mask = SMC_GET_INT_MASK(lp);                                    \
 210        mask &= ~(x);                                                   \
 211        SMC_SET_INT_MASK(lp, mask);                                     \
 212        spin_unlock_irqrestore(&lp->lock, smc_disable_flags);           \
 213} while (0)
 214
 215/*
 216 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
 217 * if at all, but let's avoid deadlocking the system if the hardware
 218 * decides to go south.
 219 */
 220#define SMC_WAIT_MMU_BUSY(lp) do {                                      \
 221        if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {          \
 222                unsigned long timeout = jiffies + 2;                    \
 223                while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {         \
 224                        if (time_after(jiffies, timeout)) {             \
 225                                netdev_dbg(dev, "timeout %s line %d\n", \
 226                                           __FILE__, __LINE__);         \
 227                                break;                                  \
 228                        }                                               \
 229                        cpu_relax();                                    \
 230                }                                                       \
 231        }                                                               \
 232} while (0)
 233
 234
 235/*
 236 * this does a soft reset on the device
 237 */
 238static void smc_reset(struct net_device *dev)
 239{
 240        struct smc_local *lp = netdev_priv(dev);
 241        void __iomem *ioaddr = lp->base;
 242        unsigned int ctl, cfg;
 243        struct sk_buff *pending_skb;
 244
 245        DBG(2, dev, "%s\n", __func__);
 246
 247        /* Disable all interrupts, block TX tasklet */
 248        spin_lock_irq(&lp->lock);
 249        SMC_SELECT_BANK(lp, 2);
 250        SMC_SET_INT_MASK(lp, 0);
 251        pending_skb = lp->pending_tx_skb;
 252        lp->pending_tx_skb = NULL;
 253        spin_unlock_irq(&lp->lock);
 254
 255        /* free any pending tx skb */
 256        if (pending_skb) {
 257                dev_kfree_skb(pending_skb);
 258                dev->stats.tx_errors++;
 259                dev->stats.tx_aborted_errors++;
 260        }
 261
 262        /*
 263         * This resets the registers mostly to defaults, but doesn't
 264         * affect EEPROM.  That seems unnecessary
 265         */
 266        SMC_SELECT_BANK(lp, 0);
 267        SMC_SET_RCR(lp, RCR_SOFTRST);
 268
 269        /*
 270         * Setup the Configuration Register
 271         * This is necessary because the CONFIG_REG is not affected
 272         * by a soft reset
 273         */
 274        SMC_SELECT_BANK(lp, 1);
 275
 276        cfg = CONFIG_DEFAULT;
 277
 278        /*
 279         * Setup for fast accesses if requested.  If the card/system
 280         * can't handle it then there will be no recovery except for
 281         * a hard reset or power cycle
 282         */
 283        if (lp->cfg.flags & SMC91X_NOWAIT)
 284                cfg |= CONFIG_NO_WAIT;
 285
 286        /*
 287         * Release from possible power-down state
 288         * Configuration register is not affected by Soft Reset
 289         */
 290        cfg |= CONFIG_EPH_POWER_EN;
 291
 292        SMC_SET_CONFIG(lp, cfg);
 293
 294        /* this should pause enough for the chip to be happy */
 295        /*
 296         * elaborate?  What does the chip _need_? --jgarzik
 297         *
 298         * This seems to be undocumented, but something the original
 299         * driver(s) have always done.  Suspect undocumented timing
 300         * info/determined empirically. --rmk
 301         */
 302        udelay(1);
 303
 304        /* Disable transmit and receive functionality */
 305        SMC_SELECT_BANK(lp, 0);
 306        SMC_SET_RCR(lp, RCR_CLEAR);
 307        SMC_SET_TCR(lp, TCR_CLEAR);
 308
 309        SMC_SELECT_BANK(lp, 1);
 310        ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
 311
 312        /*
 313         * Set the control register to automatically release successfully
 314         * transmitted packets, to make the best use out of our limited
 315         * memory
 316         */
 317        if(!THROTTLE_TX_PKTS)
 318                ctl |= CTL_AUTO_RELEASE;
 319        else
 320                ctl &= ~CTL_AUTO_RELEASE;
 321        SMC_SET_CTL(lp, ctl);
 322
 323        /* Reset the MMU */
 324        SMC_SELECT_BANK(lp, 2);
 325        SMC_SET_MMU_CMD(lp, MC_RESET);
 326        SMC_WAIT_MMU_BUSY(lp);
 327}
 328
 329/*
 330 * Enable Interrupts, Receive, and Transmit
 331 */
 332static void smc_enable(struct net_device *dev)
 333{
 334        struct smc_local *lp = netdev_priv(dev);
 335        void __iomem *ioaddr = lp->base;
 336        int mask;
 337
 338        DBG(2, dev, "%s\n", __func__);
 339
 340        /* see the header file for options in TCR/RCR DEFAULT */
 341        SMC_SELECT_BANK(lp, 0);
 342        SMC_SET_TCR(lp, lp->tcr_cur_mode);
 343        SMC_SET_RCR(lp, lp->rcr_cur_mode);
 344
 345        SMC_SELECT_BANK(lp, 1);
 346        SMC_SET_MAC_ADDR(lp, dev->dev_addr);
 347
 348        /* now, enable interrupts */
 349        mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
 350        if (lp->version >= (CHIP_91100 << 4))
 351                mask |= IM_MDINT;
 352        SMC_SELECT_BANK(lp, 2);
 353        SMC_SET_INT_MASK(lp, mask);
 354
 355        /*
 356         * From this point the register bank must _NOT_ be switched away
 357         * to something else than bank 2 without proper locking against
 358         * races with any tasklet or interrupt handlers until smc_shutdown()
 359         * or smc_reset() is called.
 360         */
 361}
 362
 363/*
 364 * this puts the device in an inactive state
 365 */
 366static void smc_shutdown(struct net_device *dev)
 367{
 368        struct smc_local *lp = netdev_priv(dev);
 369        void __iomem *ioaddr = lp->base;
 370        struct sk_buff *pending_skb;
 371
 372        DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
 373
 374        /* no more interrupts for me */
 375        spin_lock_irq(&lp->lock);
 376        SMC_SELECT_BANK(lp, 2);
 377        SMC_SET_INT_MASK(lp, 0);
 378        pending_skb = lp->pending_tx_skb;
 379        lp->pending_tx_skb = NULL;
 380        spin_unlock_irq(&lp->lock);
 381        if (pending_skb)
 382                dev_kfree_skb(pending_skb);
 383
 384        /* and tell the card to stay away from that nasty outside world */
 385        SMC_SELECT_BANK(lp, 0);
 386        SMC_SET_RCR(lp, RCR_CLEAR);
 387        SMC_SET_TCR(lp, TCR_CLEAR);
 388
 389#ifdef POWER_DOWN
 390        /* finally, shut the chip down */
 391        SMC_SELECT_BANK(lp, 1);
 392        SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
 393#endif
 394}
 395
 396/*
 397 * This is the procedure to handle the receipt of a packet.
 398 */
 399static inline void  smc_rcv(struct net_device *dev)
 400{
 401        struct smc_local *lp = netdev_priv(dev);
 402        void __iomem *ioaddr = lp->base;
 403        unsigned int packet_number, status, packet_len;
 404
 405        DBG(3, dev, "%s\n", __func__);
 406
 407        packet_number = SMC_GET_RXFIFO(lp);
 408        if (unlikely(packet_number & RXFIFO_REMPTY)) {
 409                PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
 410                return;
 411        }
 412
 413        /* read from start of packet */
 414        SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
 415
 416        /* First two words are status and packet length */
 417        SMC_GET_PKT_HDR(lp, status, packet_len);
 418        packet_len &= 0x07ff;  /* mask off top bits */
 419        DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
 420            packet_number, status, packet_len, packet_len);
 421
 422        back:
 423        if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
 424                if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
 425                        /* accept VLAN packets */
 426                        status &= ~RS_TOOLONG;
 427                        goto back;
 428                }
 429                if (packet_len < 6) {
 430                        /* bloody hardware */
 431                        netdev_err(dev, "fubar (rxlen %u status %x\n",
 432                                   packet_len, status);
 433                        status |= RS_TOOSHORT;
 434                }
 435                SMC_WAIT_MMU_BUSY(lp);
 436                SMC_SET_MMU_CMD(lp, MC_RELEASE);
 437                dev->stats.rx_errors++;
 438                if (status & RS_ALGNERR)
 439                        dev->stats.rx_frame_errors++;
 440                if (status & (RS_TOOSHORT | RS_TOOLONG))
 441                        dev->stats.rx_length_errors++;
 442                if (status & RS_BADCRC)
 443                        dev->stats.rx_crc_errors++;
 444        } else {
 445                struct sk_buff *skb;
 446                unsigned char *data;
 447                unsigned int data_len;
 448
 449                /* set multicast stats */
 450                if (status & RS_MULTICAST)
 451                        dev->stats.multicast++;
 452
 453                /*
 454                 * Actual payload is packet_len - 6 (or 5 if odd byte).
 455                 * We want skb_reserve(2) and the final ctrl word
 456                 * (2 bytes, possibly containing the payload odd byte).
 457                 * Furthermore, we add 2 bytes to allow rounding up to
 458                 * multiple of 4 bytes on 32 bit buses.
 459                 * Hence packet_len - 6 + 2 + 2 + 2.
 460                 */
 461                skb = netdev_alloc_skb(dev, packet_len);
 462                if (unlikely(skb == NULL)) {
 463                        SMC_WAIT_MMU_BUSY(lp);
 464                        SMC_SET_MMU_CMD(lp, MC_RELEASE);
 465                        dev->stats.rx_dropped++;
 466                        return;
 467                }
 468
 469                /* Align IP header to 32 bits */
 470                skb_reserve(skb, 2);
 471
 472                /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
 473                if (lp->version == 0x90)
 474                        status |= RS_ODDFRAME;
 475
 476                /*
 477                 * If odd length: packet_len - 5,
 478                 * otherwise packet_len - 6.
 479                 * With the trailing ctrl byte it's packet_len - 4.
 480                 */
 481                data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
 482                data = skb_put(skb, data_len);
 483                SMC_PULL_DATA(lp, data, packet_len - 4);
 484
 485                SMC_WAIT_MMU_BUSY(lp);
 486                SMC_SET_MMU_CMD(lp, MC_RELEASE);
 487
 488                PRINT_PKT(data, packet_len - 4);
 489
 490                skb->protocol = eth_type_trans(skb, dev);
 491                netif_rx(skb);
 492                dev->stats.rx_packets++;
 493                dev->stats.rx_bytes += data_len;
 494        }
 495}
 496
 497#ifdef CONFIG_SMP
 498/*
 499 * On SMP we have the following problem:
 500 *
 501 *      A = smc_hardware_send_pkt()
 502 *      B = smc_hard_start_xmit()
 503 *      C = smc_interrupt()
 504 *
 505 * A and B can never be executed simultaneously.  However, at least on UP,
 506 * it is possible (and even desirable) for C to interrupt execution of
 507 * A or B in order to have better RX reliability and avoid overruns.
 508 * C, just like A and B, must have exclusive access to the chip and
 509 * each of them must lock against any other concurrent access.
 510 * Unfortunately this is not possible to have C suspend execution of A or
 511 * B taking place on another CPU. On UP this is no an issue since A and B
 512 * are run from softirq context and C from hard IRQ context, and there is
 513 * no other CPU where concurrent access can happen.
 514 * If ever there is a way to force at least B and C to always be executed
 515 * on the same CPU then we could use read/write locks to protect against
 516 * any other concurrent access and C would always interrupt B. But life
 517 * isn't that easy in a SMP world...
 518 */
 519#define smc_special_trylock(lock, flags)                                \
 520({                                                                      \
 521        int __ret;                                                      \
 522        local_irq_save(flags);                                          \
 523        __ret = spin_trylock(lock);                                     \
 524        if (!__ret)                                                     \
 525                local_irq_restore(flags);                               \
 526        __ret;                                                          \
 527})
 528#define smc_special_lock(lock, flags)           spin_lock_irqsave(lock, flags)
 529#define smc_special_unlock(lock, flags)         spin_unlock_irqrestore(lock, flags)
 530#else
 531#define smc_special_trylock(lock, flags)        ((void)flags, true)
 532#define smc_special_lock(lock, flags)           do { flags = 0; } while (0)
 533#define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
 534#endif
 535
 536/*
 537 * This is called to actually send a packet to the chip.
 538 */
 539static void smc_hardware_send_pkt(unsigned long data)
 540{
 541        struct net_device *dev = (struct net_device *)data;
 542        struct smc_local *lp = netdev_priv(dev);
 543        void __iomem *ioaddr = lp->base;
 544        struct sk_buff *skb;
 545        unsigned int packet_no, len;
 546        unsigned char *buf;
 547        unsigned long flags;
 548
 549        DBG(3, dev, "%s\n", __func__);
 550
 551        if (!smc_special_trylock(&lp->lock, flags)) {
 552                netif_stop_queue(dev);
 553                tasklet_schedule(&lp->tx_task);
 554                return;
 555        }
 556
 557        skb = lp->pending_tx_skb;
 558        if (unlikely(!skb)) {
 559                smc_special_unlock(&lp->lock, flags);
 560                return;
 561        }
 562        lp->pending_tx_skb = NULL;
 563
 564        packet_no = SMC_GET_AR(lp);
 565        if (unlikely(packet_no & AR_FAILED)) {
 566                netdev_err(dev, "Memory allocation failed.\n");
 567                dev->stats.tx_errors++;
 568                dev->stats.tx_fifo_errors++;
 569                smc_special_unlock(&lp->lock, flags);
 570                goto done;
 571        }
 572
 573        /* point to the beginning of the packet */
 574        SMC_SET_PN(lp, packet_no);
 575        SMC_SET_PTR(lp, PTR_AUTOINC);
 576
 577        buf = skb->data;
 578        len = skb->len;
 579        DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
 580            packet_no, len, len, buf);
 581        PRINT_PKT(buf, len);
 582
 583        /*
 584         * Send the packet length (+6 for status words, length, and ctl.
 585         * The card will pad to 64 bytes with zeroes if packet is too small.
 586         */
 587        SMC_PUT_PKT_HDR(lp, 0, len + 6);
 588
 589        /* send the actual data */
 590        SMC_PUSH_DATA(lp, buf, len & ~1);
 591
 592        /* Send final ctl word with the last byte if there is one */
 593        SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
 594                 DATA_REG(lp));
 595
 596        /*
 597         * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
 598         * have the effect of having at most one packet queued for TX
 599         * in the chip's memory at all time.
 600         *
 601         * If THROTTLE_TX_PKTS is not set then the queue is stopped only
 602         * when memory allocation (MC_ALLOC) does not succeed right away.
 603         */
 604        if (THROTTLE_TX_PKTS)
 605                netif_stop_queue(dev);
 606
 607        /* queue the packet for TX */
 608        SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
 609        smc_special_unlock(&lp->lock, flags);
 610
 611        netif_trans_update(dev);
 612        dev->stats.tx_packets++;
 613        dev->stats.tx_bytes += len;
 614
 615        SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
 616
 617done:   if (!THROTTLE_TX_PKTS)
 618                netif_wake_queue(dev);
 619
 620        dev_consume_skb_any(skb);
 621}
 622
 623/*
 624 * Since I am not sure if I will have enough room in the chip's ram
 625 * to store the packet, I call this routine which either sends it
 626 * now, or set the card to generates an interrupt when ready
 627 * for the packet.
 628 */
 629static netdev_tx_t
 630smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
 631{
 632        struct smc_local *lp = netdev_priv(dev);
 633        void __iomem *ioaddr = lp->base;
 634        unsigned int numPages, poll_count, status;
 635        unsigned long flags;
 636
 637        DBG(3, dev, "%s\n", __func__);
 638
 639        BUG_ON(lp->pending_tx_skb != NULL);
 640
 641        /*
 642         * The MMU wants the number of pages to be the number of 256 bytes
 643         * 'pages', minus 1 (since a packet can't ever have 0 pages :))
 644         *
 645         * The 91C111 ignores the size bits, but earlier models don't.
 646         *
 647         * Pkt size for allocating is data length +6 (for additional status
 648         * words, length and ctl)
 649         *
 650         * If odd size then last byte is included in ctl word.
 651         */
 652        numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
 653        if (unlikely(numPages > 7)) {
 654                netdev_warn(dev, "Far too big packet error.\n");
 655                dev->stats.tx_errors++;
 656                dev->stats.tx_dropped++;
 657                dev_kfree_skb_any(skb);
 658                return NETDEV_TX_OK;
 659        }
 660
 661        smc_special_lock(&lp->lock, flags);
 662
 663        /* now, try to allocate the memory */
 664        SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
 665
 666        /*
 667         * Poll the chip for a short amount of time in case the
 668         * allocation succeeds quickly.
 669         */
 670        poll_count = MEMORY_WAIT_TIME;
 671        do {
 672                status = SMC_GET_INT(lp);
 673                if (status & IM_ALLOC_INT) {
 674                        SMC_ACK_INT(lp, IM_ALLOC_INT);
 675                        break;
 676                }
 677        } while (--poll_count);
 678
 679        smc_special_unlock(&lp->lock, flags);
 680
 681        lp->pending_tx_skb = skb;
 682        if (!poll_count) {
 683                /* oh well, wait until the chip finds memory later */
 684                netif_stop_queue(dev);
 685                DBG(2, dev, "TX memory allocation deferred.\n");
 686                SMC_ENABLE_INT(lp, IM_ALLOC_INT);
 687        } else {
 688                /*
 689                 * Allocation succeeded: push packet to the chip's own memory
 690                 * immediately.
 691                 */
 692                smc_hardware_send_pkt((unsigned long)dev);
 693        }
 694
 695        return NETDEV_TX_OK;
 696}
 697
 698/*
 699 * This handles a TX interrupt, which is only called when:
 700 * - a TX error occurred, or
 701 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
 702 */
 703static void smc_tx(struct net_device *dev)
 704{
 705        struct smc_local *lp = netdev_priv(dev);
 706        void __iomem *ioaddr = lp->base;
 707        unsigned int saved_packet, packet_no, tx_status, pkt_len;
 708
 709        DBG(3, dev, "%s\n", __func__);
 710
 711        /* If the TX FIFO is empty then nothing to do */
 712        packet_no = SMC_GET_TXFIFO(lp);
 713        if (unlikely(packet_no & TXFIFO_TEMPTY)) {
 714                PRINTK(dev, "smc_tx with nothing on FIFO.\n");
 715                return;
 716        }
 717
 718        /* select packet to read from */
 719        saved_packet = SMC_GET_PN(lp);
 720        SMC_SET_PN(lp, packet_no);
 721
 722        /* read the first word (status word) from this packet */
 723        SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
 724        SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
 725        DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
 726            tx_status, packet_no);
 727
 728        if (!(tx_status & ES_TX_SUC))
 729                dev->stats.tx_errors++;
 730
 731        if (tx_status & ES_LOSTCARR)
 732                dev->stats.tx_carrier_errors++;
 733
 734        if (tx_status & (ES_LATCOL | ES_16COL)) {
 735                PRINTK(dev, "%s occurred on last xmit\n",
 736                       (tx_status & ES_LATCOL) ?
 737                        "late collision" : "too many collisions");
 738                dev->stats.tx_window_errors++;
 739                if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
 740                        netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
 741                }
 742        }
 743
 744        /* kill the packet */
 745        SMC_WAIT_MMU_BUSY(lp);
 746        SMC_SET_MMU_CMD(lp, MC_FREEPKT);
 747
 748        /* Don't restore Packet Number Reg until busy bit is cleared */
 749        SMC_WAIT_MMU_BUSY(lp);
 750        SMC_SET_PN(lp, saved_packet);
 751
 752        /* re-enable transmit */
 753        SMC_SELECT_BANK(lp, 0);
 754        SMC_SET_TCR(lp, lp->tcr_cur_mode);
 755        SMC_SELECT_BANK(lp, 2);
 756}
 757
 758
 759/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
 760
 761static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
 762{
 763        struct smc_local *lp = netdev_priv(dev);
 764        void __iomem *ioaddr = lp->base;
 765        unsigned int mii_reg, mask;
 766
 767        mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 768        mii_reg |= MII_MDOE;
 769
 770        for (mask = 1 << (bits - 1); mask; mask >>= 1) {
 771                if (val & mask)
 772                        mii_reg |= MII_MDO;
 773                else
 774                        mii_reg &= ~MII_MDO;
 775
 776                SMC_SET_MII(lp, mii_reg);
 777                udelay(MII_DELAY);
 778                SMC_SET_MII(lp, mii_reg | MII_MCLK);
 779                udelay(MII_DELAY);
 780        }
 781}
 782
 783static unsigned int smc_mii_in(struct net_device *dev, int bits)
 784{
 785        struct smc_local *lp = netdev_priv(dev);
 786        void __iomem *ioaddr = lp->base;
 787        unsigned int mii_reg, mask, val;
 788
 789        mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 790        SMC_SET_MII(lp, mii_reg);
 791
 792        for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
 793                if (SMC_GET_MII(lp) & MII_MDI)
 794                        val |= mask;
 795
 796                SMC_SET_MII(lp, mii_reg);
 797                udelay(MII_DELAY);
 798                SMC_SET_MII(lp, mii_reg | MII_MCLK);
 799                udelay(MII_DELAY);
 800        }
 801
 802        return val;
 803}
 804
 805/*
 806 * Reads a register from the MII Management serial interface
 807 */
 808static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
 809{
 810        struct smc_local *lp = netdev_priv(dev);
 811        void __iomem *ioaddr = lp->base;
 812        unsigned int phydata;
 813
 814        SMC_SELECT_BANK(lp, 3);
 815
 816        /* Idle - 32 ones */
 817        smc_mii_out(dev, 0xffffffff, 32);
 818
 819        /* Start code (01) + read (10) + phyaddr + phyreg */
 820        smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
 821
 822        /* Turnaround (2bits) + phydata */
 823        phydata = smc_mii_in(dev, 18);
 824
 825        /* Return to idle state */
 826        SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 827
 828        DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 829            __func__, phyaddr, phyreg, phydata);
 830
 831        SMC_SELECT_BANK(lp, 2);
 832        return phydata;
 833}
 834
 835/*
 836 * Writes a register to the MII Management serial interface
 837 */
 838static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
 839                          int phydata)
 840{
 841        struct smc_local *lp = netdev_priv(dev);
 842        void __iomem *ioaddr = lp->base;
 843
 844        SMC_SELECT_BANK(lp, 3);
 845
 846        /* Idle - 32 ones */
 847        smc_mii_out(dev, 0xffffffff, 32);
 848
 849        /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
 850        smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
 851
 852        /* Return to idle state */
 853        SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 854
 855        DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 856            __func__, phyaddr, phyreg, phydata);
 857
 858        SMC_SELECT_BANK(lp, 2);
 859}
 860
 861/*
 862 * Finds and reports the PHY address
 863 */
 864static void smc_phy_detect(struct net_device *dev)
 865{
 866        struct smc_local *lp = netdev_priv(dev);
 867        int phyaddr;
 868
 869        DBG(2, dev, "%s\n", __func__);
 870
 871        lp->phy_type = 0;
 872
 873        /*
 874         * Scan all 32 PHY addresses if necessary, starting at
 875         * PHY#1 to PHY#31, and then PHY#0 last.
 876         */
 877        for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
 878                unsigned int id1, id2;
 879
 880                /* Read the PHY identifiers */
 881                id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
 882                id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
 883
 884                DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
 885                    id1, id2);
 886
 887                /* Make sure it is a valid identifier */
 888                if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
 889                    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
 890                        /* Save the PHY's address */
 891                        lp->mii.phy_id = phyaddr & 31;
 892                        lp->phy_type = id1 << 16 | id2;
 893                        break;
 894                }
 895        }
 896}
 897
 898/*
 899 * Sets the PHY to a configuration as determined by the user
 900 */
 901static int smc_phy_fixed(struct net_device *dev)
 902{
 903        struct smc_local *lp = netdev_priv(dev);
 904        void __iomem *ioaddr = lp->base;
 905        int phyaddr = lp->mii.phy_id;
 906        int bmcr, cfg1;
 907
 908        DBG(3, dev, "%s\n", __func__);
 909
 910        /* Enter Link Disable state */
 911        cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
 912        cfg1 |= PHY_CFG1_LNKDIS;
 913        smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
 914
 915        /*
 916         * Set our fixed capabilities
 917         * Disable auto-negotiation
 918         */
 919        bmcr = 0;
 920
 921        if (lp->ctl_rfduplx)
 922                bmcr |= BMCR_FULLDPLX;
 923
 924        if (lp->ctl_rspeed == 100)
 925                bmcr |= BMCR_SPEED100;
 926
 927        /* Write our capabilities to the phy control register */
 928        smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
 929
 930        /* Re-Configure the Receive/Phy Control register */
 931        SMC_SELECT_BANK(lp, 0);
 932        SMC_SET_RPC(lp, lp->rpc_cur_mode);
 933        SMC_SELECT_BANK(lp, 2);
 934
 935        return 1;
 936}
 937
 938/**
 939 * smc_phy_reset - reset the phy
 940 * @dev: net device
 941 * @phy: phy address
 942 *
 943 * Issue a software reset for the specified PHY and
 944 * wait up to 100ms for the reset to complete.  We should
 945 * not access the PHY for 50ms after issuing the reset.
 946 *
 947 * The time to wait appears to be dependent on the PHY.
 948 *
 949 * Must be called with lp->lock locked.
 950 */
 951static int smc_phy_reset(struct net_device *dev, int phy)
 952{
 953        struct smc_local *lp = netdev_priv(dev);
 954        unsigned int bmcr;
 955        int timeout;
 956
 957        smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
 958
 959        for (timeout = 2; timeout; timeout--) {
 960                spin_unlock_irq(&lp->lock);
 961                msleep(50);
 962                spin_lock_irq(&lp->lock);
 963
 964                bmcr = smc_phy_read(dev, phy, MII_BMCR);
 965                if (!(bmcr & BMCR_RESET))
 966                        break;
 967        }
 968
 969        return bmcr & BMCR_RESET;
 970}
 971
 972/**
 973 * smc_phy_powerdown - powerdown phy
 974 * @dev: net device
 975 *
 976 * Power down the specified PHY
 977 */
 978static void smc_phy_powerdown(struct net_device *dev)
 979{
 980        struct smc_local *lp = netdev_priv(dev);
 981        unsigned int bmcr;
 982        int phy = lp->mii.phy_id;
 983
 984        if (lp->phy_type == 0)
 985                return;
 986
 987        /* We need to ensure that no calls to smc_phy_configure are
 988           pending.
 989        */
 990        cancel_work_sync(&lp->phy_configure);
 991
 992        bmcr = smc_phy_read(dev, phy, MII_BMCR);
 993        smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
 994}
 995
 996/**
 997 * smc_phy_check_media - check the media status and adjust TCR
 998 * @dev: net device
 999 * @init: set true for initialisation
1000 *
1001 * Select duplex mode depending on negotiation state.  This
1002 * also updates our carrier state.
1003 */
1004static void smc_phy_check_media(struct net_device *dev, int init)
1005{
1006        struct smc_local *lp = netdev_priv(dev);
1007        void __iomem *ioaddr = lp->base;
1008
1009        if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1010                /* duplex state has changed */
1011                if (lp->mii.full_duplex) {
1012                        lp->tcr_cur_mode |= TCR_SWFDUP;
1013                } else {
1014                        lp->tcr_cur_mode &= ~TCR_SWFDUP;
1015                }
1016
1017                SMC_SELECT_BANK(lp, 0);
1018                SMC_SET_TCR(lp, lp->tcr_cur_mode);
1019        }
1020}
1021
1022/*
1023 * Configures the specified PHY through the MII management interface
1024 * using Autonegotiation.
1025 * Calls smc_phy_fixed() if the user has requested a certain config.
1026 * If RPC ANEG bit is set, the media selection is dependent purely on
1027 * the selection by the MII (either in the MII BMCR reg or the result
1028 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1029 * is controlled by the RPC SPEED and RPC DPLX bits.
1030 */
1031static void smc_phy_configure(struct work_struct *work)
1032{
1033        struct smc_local *lp =
1034                container_of(work, struct smc_local, phy_configure);
1035        struct net_device *dev = lp->dev;
1036        void __iomem *ioaddr = lp->base;
1037        int phyaddr = lp->mii.phy_id;
1038        int my_phy_caps; /* My PHY capabilities */
1039        int my_ad_caps; /* My Advertised capabilities */
1040        int status;
1041
1042        DBG(3, dev, "smc_program_phy()\n");
1043
1044        spin_lock_irq(&lp->lock);
1045
1046        /*
1047         * We should not be called if phy_type is zero.
1048         */
1049        if (lp->phy_type == 0)
1050                goto smc_phy_configure_exit;
1051
1052        if (smc_phy_reset(dev, phyaddr)) {
1053                netdev_info(dev, "PHY reset timed out\n");
1054                goto smc_phy_configure_exit;
1055        }
1056
1057        /*
1058         * Enable PHY Interrupts (for register 18)
1059         * Interrupts listed here are disabled
1060         */
1061        smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1062                PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1063                PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1064                PHY_INT_SPDDET | PHY_INT_DPLXDET);
1065
1066        /* Configure the Receive/Phy Control register */
1067        SMC_SELECT_BANK(lp, 0);
1068        SMC_SET_RPC(lp, lp->rpc_cur_mode);
1069
1070        /* If the user requested no auto neg, then go set his request */
1071        if (lp->mii.force_media) {
1072                smc_phy_fixed(dev);
1073                goto smc_phy_configure_exit;
1074        }
1075
1076        /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1077        my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1078
1079        if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1080                netdev_info(dev, "Auto negotiation NOT supported\n");
1081                smc_phy_fixed(dev);
1082                goto smc_phy_configure_exit;
1083        }
1084
1085        my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1086
1087        if (my_phy_caps & BMSR_100BASE4)
1088                my_ad_caps |= ADVERTISE_100BASE4;
1089        if (my_phy_caps & BMSR_100FULL)
1090                my_ad_caps |= ADVERTISE_100FULL;
1091        if (my_phy_caps & BMSR_100HALF)
1092                my_ad_caps |= ADVERTISE_100HALF;
1093        if (my_phy_caps & BMSR_10FULL)
1094                my_ad_caps |= ADVERTISE_10FULL;
1095        if (my_phy_caps & BMSR_10HALF)
1096                my_ad_caps |= ADVERTISE_10HALF;
1097
1098        /* Disable capabilities not selected by our user */
1099        if (lp->ctl_rspeed != 100)
1100                my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1101
1102        if (!lp->ctl_rfduplx)
1103                my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1104
1105        /* Update our Auto-Neg Advertisement Register */
1106        smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1107        lp->mii.advertising = my_ad_caps;
1108
1109        /*
1110         * Read the register back.  Without this, it appears that when
1111         * auto-negotiation is restarted, sometimes it isn't ready and
1112         * the link does not come up.
1113         */
1114        status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1115
1116        DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1117        DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1118
1119        /* Restart auto-negotiation process in order to advertise my caps */
1120        smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1121
1122        smc_phy_check_media(dev, 1);
1123
1124smc_phy_configure_exit:
1125        SMC_SELECT_BANK(lp, 2);
1126        spin_unlock_irq(&lp->lock);
1127}
1128
1129/*
1130 * smc_phy_interrupt
1131 *
1132 * Purpose:  Handle interrupts relating to PHY register 18. This is
1133 *  called from the "hard" interrupt handler under our private spinlock.
1134 */
1135static void smc_phy_interrupt(struct net_device *dev)
1136{
1137        struct smc_local *lp = netdev_priv(dev);
1138        int phyaddr = lp->mii.phy_id;
1139        int phy18;
1140
1141        DBG(2, dev, "%s\n", __func__);
1142
1143        if (lp->phy_type == 0)
1144                return;
1145
1146        for(;;) {
1147                smc_phy_check_media(dev, 0);
1148
1149                /* Read PHY Register 18, Status Output */
1150                phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1151                if ((phy18 & PHY_INT_INT) == 0)
1152                        break;
1153        }
1154}
1155
1156/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1157
1158static void smc_10bt_check_media(struct net_device *dev, int init)
1159{
1160        struct smc_local *lp = netdev_priv(dev);
1161        void __iomem *ioaddr = lp->base;
1162        unsigned int old_carrier, new_carrier;
1163
1164        old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1165
1166        SMC_SELECT_BANK(lp, 0);
1167        new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1168        SMC_SELECT_BANK(lp, 2);
1169
1170        if (init || (old_carrier != new_carrier)) {
1171                if (!new_carrier) {
1172                        netif_carrier_off(dev);
1173                } else {
1174                        netif_carrier_on(dev);
1175                }
1176                if (netif_msg_link(lp))
1177                        netdev_info(dev, "link %s\n",
1178                                    new_carrier ? "up" : "down");
1179        }
1180}
1181
1182static void smc_eph_interrupt(struct net_device *dev)
1183{
1184        struct smc_local *lp = netdev_priv(dev);
1185        void __iomem *ioaddr = lp->base;
1186        unsigned int ctl;
1187
1188        smc_10bt_check_media(dev, 0);
1189
1190        SMC_SELECT_BANK(lp, 1);
1191        ctl = SMC_GET_CTL(lp);
1192        SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1193        SMC_SET_CTL(lp, ctl);
1194        SMC_SELECT_BANK(lp, 2);
1195}
1196
1197/*
1198 * This is the main routine of the driver, to handle the device when
1199 * it needs some attention.
1200 */
1201static irqreturn_t smc_interrupt(int irq, void *dev_id)
1202{
1203        struct net_device *dev = dev_id;
1204        struct smc_local *lp = netdev_priv(dev);
1205        void __iomem *ioaddr = lp->base;
1206        int status, mask, timeout, card_stats;
1207        int saved_pointer;
1208
1209        DBG(3, dev, "%s\n", __func__);
1210
1211        spin_lock(&lp->lock);
1212
1213        /* A preamble may be used when there is a potential race
1214         * between the interruptible transmit functions and this
1215         * ISR. */
1216        SMC_INTERRUPT_PREAMBLE;
1217
1218        saved_pointer = SMC_GET_PTR(lp);
1219        mask = SMC_GET_INT_MASK(lp);
1220        SMC_SET_INT_MASK(lp, 0);
1221
1222        /* set a timeout value, so I don't stay here forever */
1223        timeout = MAX_IRQ_LOOPS;
1224
1225        do {
1226                status = SMC_GET_INT(lp);
1227
1228                DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1229                    status, mask,
1230                    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1231                       meminfo = SMC_GET_MIR(lp);
1232                       SMC_SELECT_BANK(lp, 2); meminfo; }),
1233                    SMC_GET_FIFO(lp));
1234
1235                status &= mask;
1236                if (!status)
1237                        break;
1238
1239                if (status & IM_TX_INT) {
1240                        /* do this before RX as it will free memory quickly */
1241                        DBG(3, dev, "TX int\n");
1242                        smc_tx(dev);
1243                        SMC_ACK_INT(lp, IM_TX_INT);
1244                        if (THROTTLE_TX_PKTS)
1245                                netif_wake_queue(dev);
1246                } else if (status & IM_RCV_INT) {
1247                        DBG(3, dev, "RX irq\n");
1248                        smc_rcv(dev);
1249                } else if (status & IM_ALLOC_INT) {
1250                        DBG(3, dev, "Allocation irq\n");
1251                        tasklet_hi_schedule(&lp->tx_task);
1252                        mask &= ~IM_ALLOC_INT;
1253                } else if (status & IM_TX_EMPTY_INT) {
1254                        DBG(3, dev, "TX empty\n");
1255                        mask &= ~IM_TX_EMPTY_INT;
1256
1257                        /* update stats */
1258                        SMC_SELECT_BANK(lp, 0);
1259                        card_stats = SMC_GET_COUNTER(lp);
1260                        SMC_SELECT_BANK(lp, 2);
1261
1262                        /* single collisions */
1263                        dev->stats.collisions += card_stats & 0xF;
1264                        card_stats >>= 4;
1265
1266                        /* multiple collisions */
1267                        dev->stats.collisions += card_stats & 0xF;
1268                } else if (status & IM_RX_OVRN_INT) {
1269                        DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1270                            ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1271                               eph_st = SMC_GET_EPH_STATUS(lp);
1272                               SMC_SELECT_BANK(lp, 2); eph_st; }));
1273                        SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1274                        dev->stats.rx_errors++;
1275                        dev->stats.rx_fifo_errors++;
1276                } else if (status & IM_EPH_INT) {
1277                        smc_eph_interrupt(dev);
1278                } else if (status & IM_MDINT) {
1279                        SMC_ACK_INT(lp, IM_MDINT);
1280                        smc_phy_interrupt(dev);
1281                } else if (status & IM_ERCV_INT) {
1282                        SMC_ACK_INT(lp, IM_ERCV_INT);
1283                        PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1284                }
1285        } while (--timeout);
1286
1287        /* restore register states */
1288        SMC_SET_PTR(lp, saved_pointer);
1289        SMC_SET_INT_MASK(lp, mask);
1290        spin_unlock(&lp->lock);
1291
1292#ifndef CONFIG_NET_POLL_CONTROLLER
1293        if (timeout == MAX_IRQ_LOOPS)
1294                PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1295                       mask);
1296#endif
1297        DBG(3, dev, "Interrupt done (%d loops)\n",
1298            MAX_IRQ_LOOPS - timeout);
1299
1300        /*
1301         * We return IRQ_HANDLED unconditionally here even if there was
1302         * nothing to do.  There is a possibility that a packet might
1303         * get enqueued into the chip right after TX_EMPTY_INT is raised
1304         * but just before the CPU acknowledges the IRQ.
1305         * Better take an unneeded IRQ in some occasions than complexifying
1306         * the code for all cases.
1307         */
1308        return IRQ_HANDLED;
1309}
1310
1311#ifdef CONFIG_NET_POLL_CONTROLLER
1312/*
1313 * Polling receive - used by netconsole and other diagnostic tools
1314 * to allow network i/o with interrupts disabled.
1315 */
1316static void smc_poll_controller(struct net_device *dev)
1317{
1318        disable_irq(dev->irq);
1319        smc_interrupt(dev->irq, dev);
1320        enable_irq(dev->irq);
1321}
1322#endif
1323
1324/* Our watchdog timed out. Called by the networking layer */
1325static void smc_timeout(struct net_device *dev)
1326{
1327        struct smc_local *lp = netdev_priv(dev);
1328        void __iomem *ioaddr = lp->base;
1329        int status, mask, eph_st, meminfo, fifo;
1330
1331        DBG(2, dev, "%s\n", __func__);
1332
1333        spin_lock_irq(&lp->lock);
1334        status = SMC_GET_INT(lp);
1335        mask = SMC_GET_INT_MASK(lp);
1336        fifo = SMC_GET_FIFO(lp);
1337        SMC_SELECT_BANK(lp, 0);
1338        eph_st = SMC_GET_EPH_STATUS(lp);
1339        meminfo = SMC_GET_MIR(lp);
1340        SMC_SELECT_BANK(lp, 2);
1341        spin_unlock_irq(&lp->lock);
1342        PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1343               status, mask, meminfo, fifo, eph_st);
1344
1345        smc_reset(dev);
1346        smc_enable(dev);
1347
1348        /*
1349         * Reconfiguring the PHY doesn't seem like a bad idea here, but
1350         * smc_phy_configure() calls msleep() which calls schedule_timeout()
1351         * which calls schedule().  Hence we use a work queue.
1352         */
1353        if (lp->phy_type != 0)
1354                schedule_work(&lp->phy_configure);
1355
1356        /* We can accept TX packets again */
1357        netif_trans_update(dev); /* prevent tx timeout */
1358        netif_wake_queue(dev);
1359}
1360
1361/*
1362 * This routine will, depending on the values passed to it,
1363 * either make it accept multicast packets, go into
1364 * promiscuous mode (for TCPDUMP and cousins) or accept
1365 * a select set of multicast packets
1366 */
1367static void smc_set_multicast_list(struct net_device *dev)
1368{
1369        struct smc_local *lp = netdev_priv(dev);
1370        void __iomem *ioaddr = lp->base;
1371        unsigned char multicast_table[8];
1372        int update_multicast = 0;
1373
1374        DBG(2, dev, "%s\n", __func__);
1375
1376        if (dev->flags & IFF_PROMISC) {
1377                DBG(2, dev, "RCR_PRMS\n");
1378                lp->rcr_cur_mode |= RCR_PRMS;
1379        }
1380
1381/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1382   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1383   when promiscuous mode is turned on.
1384*/
1385
1386        /*
1387         * Here, I am setting this to accept all multicast packets.
1388         * I don't need to zero the multicast table, because the flag is
1389         * checked before the table is
1390         */
1391        else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1392                DBG(2, dev, "RCR_ALMUL\n");
1393                lp->rcr_cur_mode |= RCR_ALMUL;
1394        }
1395
1396        /*
1397         * This sets the internal hardware table to filter out unwanted
1398         * multicast packets before they take up memory.
1399         *
1400         * The SMC chip uses a hash table where the high 6 bits of the CRC of
1401         * address are the offset into the table.  If that bit is 1, then the
1402         * multicast packet is accepted.  Otherwise, it's dropped silently.
1403         *
1404         * To use the 6 bits as an offset into the table, the high 3 bits are
1405         * the number of the 8 bit register, while the low 3 bits are the bit
1406         * within that register.
1407         */
1408        else if (!netdev_mc_empty(dev)) {
1409                struct netdev_hw_addr *ha;
1410
1411                /* table for flipping the order of 3 bits */
1412                static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1413
1414                /* start with a table of all zeros: reject all */
1415                memset(multicast_table, 0, sizeof(multicast_table));
1416
1417                netdev_for_each_mc_addr(ha, dev) {
1418                        int position;
1419
1420                        /* only use the low order bits */
1421                        position = crc32_le(~0, ha->addr, 6) & 0x3f;
1422
1423                        /* do some messy swapping to put the bit in the right spot */
1424                        multicast_table[invert3[position&7]] |=
1425                                (1<<invert3[(position>>3)&7]);
1426                }
1427
1428                /* be sure I get rid of flags I might have set */
1429                lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1430
1431                /* now, the table can be loaded into the chipset */
1432                update_multicast = 1;
1433        } else  {
1434                DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1435                lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1436
1437                /*
1438                 * since I'm disabling all multicast entirely, I need to
1439                 * clear the multicast list
1440                 */
1441                memset(multicast_table, 0, sizeof(multicast_table));
1442                update_multicast = 1;
1443        }
1444
1445        spin_lock_irq(&lp->lock);
1446        SMC_SELECT_BANK(lp, 0);
1447        SMC_SET_RCR(lp, lp->rcr_cur_mode);
1448        if (update_multicast) {
1449                SMC_SELECT_BANK(lp, 3);
1450                SMC_SET_MCAST(lp, multicast_table);
1451        }
1452        SMC_SELECT_BANK(lp, 2);
1453        spin_unlock_irq(&lp->lock);
1454}
1455
1456
1457/*
1458 * Open and Initialize the board
1459 *
1460 * Set up everything, reset the card, etc..
1461 */
1462static int
1463smc_open(struct net_device *dev)
1464{
1465        struct smc_local *lp = netdev_priv(dev);
1466
1467        DBG(2, dev, "%s\n", __func__);
1468
1469        /* Setup the default Register Modes */
1470        lp->tcr_cur_mode = TCR_DEFAULT;
1471        lp->rcr_cur_mode = RCR_DEFAULT;
1472        lp->rpc_cur_mode = RPC_DEFAULT |
1473                                lp->cfg.leda << RPC_LSXA_SHFT |
1474                                lp->cfg.ledb << RPC_LSXB_SHFT;
1475
1476        /*
1477         * If we are not using a MII interface, we need to
1478         * monitor our own carrier signal to detect faults.
1479         */
1480        if (lp->phy_type == 0)
1481                lp->tcr_cur_mode |= TCR_MON_CSN;
1482
1483        /* reset the hardware */
1484        smc_reset(dev);
1485        smc_enable(dev);
1486
1487        /* Configure the PHY, initialize the link state */
1488        if (lp->phy_type != 0)
1489                smc_phy_configure(&lp->phy_configure);
1490        else {
1491                spin_lock_irq(&lp->lock);
1492                smc_10bt_check_media(dev, 1);
1493                spin_unlock_irq(&lp->lock);
1494        }
1495
1496        netif_start_queue(dev);
1497        return 0;
1498}
1499
1500/*
1501 * smc_close
1502 *
1503 * this makes the board clean up everything that it can
1504 * and not talk to the outside world.   Caused by
1505 * an 'ifconfig ethX down'
1506 */
1507static int smc_close(struct net_device *dev)
1508{
1509        struct smc_local *lp = netdev_priv(dev);
1510
1511        DBG(2, dev, "%s\n", __func__);
1512
1513        netif_stop_queue(dev);
1514        netif_carrier_off(dev);
1515
1516        /* clear everything */
1517        smc_shutdown(dev);
1518        tasklet_kill(&lp->tx_task);
1519        smc_phy_powerdown(dev);
1520        return 0;
1521}
1522
1523/*
1524 * Ethtool support
1525 */
1526static int
1527smc_ethtool_get_link_ksettings(struct net_device *dev,
1528                               struct ethtool_link_ksettings *cmd)
1529{
1530        struct smc_local *lp = netdev_priv(dev);
1531
1532        if (lp->phy_type != 0) {
1533                spin_lock_irq(&lp->lock);
1534                mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1535                spin_unlock_irq(&lp->lock);
1536        } else {
1537                u32 supported = SUPPORTED_10baseT_Half |
1538                                 SUPPORTED_10baseT_Full |
1539                                 SUPPORTED_TP | SUPPORTED_AUI;
1540
1541                if (lp->ctl_rspeed == 10)
1542                        cmd->base.speed = SPEED_10;
1543                else if (lp->ctl_rspeed == 100)
1544                        cmd->base.speed = SPEED_100;
1545
1546                cmd->base.autoneg = AUTONEG_DISABLE;
1547                cmd->base.port = 0;
1548                cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1549                        DUPLEX_FULL : DUPLEX_HALF;
1550
1551                ethtool_convert_legacy_u32_to_link_mode(
1552                        cmd->link_modes.supported, supported);
1553        }
1554
1555        return 0;
1556}
1557
1558static int
1559smc_ethtool_set_link_ksettings(struct net_device *dev,
1560                               const struct ethtool_link_ksettings *cmd)
1561{
1562        struct smc_local *lp = netdev_priv(dev);
1563        int ret;
1564
1565        if (lp->phy_type != 0) {
1566                spin_lock_irq(&lp->lock);
1567                ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1568                spin_unlock_irq(&lp->lock);
1569        } else {
1570                if (cmd->base.autoneg != AUTONEG_DISABLE ||
1571                    cmd->base.speed != SPEED_10 ||
1572                    (cmd->base.duplex != DUPLEX_HALF &&
1573                     cmd->base.duplex != DUPLEX_FULL) ||
1574                    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1575                        return -EINVAL;
1576
1577//              lp->port = cmd->base.port;
1578                lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1579
1580//              if (netif_running(dev))
1581//                      smc_set_port(dev);
1582
1583                ret = 0;
1584        }
1585
1586        return ret;
1587}
1588
1589static void
1590smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1591{
1592        strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1593        strlcpy(info->version, version, sizeof(info->version));
1594        strlcpy(info->bus_info, dev_name(dev->dev.parent),
1595                sizeof(info->bus_info));
1596}
1597
1598static int smc_ethtool_nwayreset(struct net_device *dev)
1599{
1600        struct smc_local *lp = netdev_priv(dev);
1601        int ret = -EINVAL;
1602
1603        if (lp->phy_type != 0) {
1604                spin_lock_irq(&lp->lock);
1605                ret = mii_nway_restart(&lp->mii);
1606                spin_unlock_irq(&lp->lock);
1607        }
1608
1609        return ret;
1610}
1611
1612static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1613{
1614        struct smc_local *lp = netdev_priv(dev);
1615        return lp->msg_enable;
1616}
1617
1618static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1619{
1620        struct smc_local *lp = netdev_priv(dev);
1621        lp->msg_enable = level;
1622}
1623
1624static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1625{
1626        u16 ctl;
1627        struct smc_local *lp = netdev_priv(dev);
1628        void __iomem *ioaddr = lp->base;
1629
1630        spin_lock_irq(&lp->lock);
1631        /* load word into GP register */
1632        SMC_SELECT_BANK(lp, 1);
1633        SMC_SET_GP(lp, word);
1634        /* set the address to put the data in EEPROM */
1635        SMC_SELECT_BANK(lp, 2);
1636        SMC_SET_PTR(lp, addr);
1637        /* tell it to write */
1638        SMC_SELECT_BANK(lp, 1);
1639        ctl = SMC_GET_CTL(lp);
1640        SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1641        /* wait for it to finish */
1642        do {
1643                udelay(1);
1644        } while (SMC_GET_CTL(lp) & CTL_STORE);
1645        /* clean up */
1646        SMC_SET_CTL(lp, ctl);
1647        SMC_SELECT_BANK(lp, 2);
1648        spin_unlock_irq(&lp->lock);
1649        return 0;
1650}
1651
1652static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1653{
1654        u16 ctl;
1655        struct smc_local *lp = netdev_priv(dev);
1656        void __iomem *ioaddr = lp->base;
1657
1658        spin_lock_irq(&lp->lock);
1659        /* set the EEPROM address to get the data from */
1660        SMC_SELECT_BANK(lp, 2);
1661        SMC_SET_PTR(lp, addr | PTR_READ);
1662        /* tell it to load */
1663        SMC_SELECT_BANK(lp, 1);
1664        SMC_SET_GP(lp, 0xffff); /* init to known */
1665        ctl = SMC_GET_CTL(lp);
1666        SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1667        /* wait for it to finish */
1668        do {
1669                udelay(1);
1670        } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1671        /* read word from GP register */
1672        *word = SMC_GET_GP(lp);
1673        /* clean up */
1674        SMC_SET_CTL(lp, ctl);
1675        SMC_SELECT_BANK(lp, 2);
1676        spin_unlock_irq(&lp->lock);
1677        return 0;
1678}
1679
1680static int smc_ethtool_geteeprom_len(struct net_device *dev)
1681{
1682        return 0x23 * 2;
1683}
1684
1685static int smc_ethtool_geteeprom(struct net_device *dev,
1686                struct ethtool_eeprom *eeprom, u8 *data)
1687{
1688        int i;
1689        int imax;
1690
1691        DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1692                eeprom->len, eeprom->offset, eeprom->offset);
1693        imax = smc_ethtool_geteeprom_len(dev);
1694        for (i = 0; i < eeprom->len; i += 2) {
1695                int ret;
1696                u16 wbuf;
1697                int offset = i + eeprom->offset;
1698                if (offset > imax)
1699                        break;
1700                ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1701                if (ret != 0)
1702                        return ret;
1703                DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1704                data[i] = (wbuf >> 8) & 0xff;
1705                data[i+1] = wbuf & 0xff;
1706        }
1707        return 0;
1708}
1709
1710static int smc_ethtool_seteeprom(struct net_device *dev,
1711                struct ethtool_eeprom *eeprom, u8 *data)
1712{
1713        int i;
1714        int imax;
1715
1716        DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1717            eeprom->len, eeprom->offset, eeprom->offset);
1718        imax = smc_ethtool_geteeprom_len(dev);
1719        for (i = 0; i < eeprom->len; i += 2) {
1720                int ret;
1721                u16 wbuf;
1722                int offset = i + eeprom->offset;
1723                if (offset > imax)
1724                        break;
1725                wbuf = (data[i] << 8) | data[i + 1];
1726                DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1727                ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1728                if (ret != 0)
1729                        return ret;
1730        }
1731        return 0;
1732}
1733
1734
1735static const struct ethtool_ops smc_ethtool_ops = {
1736        .get_drvinfo    = smc_ethtool_getdrvinfo,
1737
1738        .get_msglevel   = smc_ethtool_getmsglevel,
1739        .set_msglevel   = smc_ethtool_setmsglevel,
1740        .nway_reset     = smc_ethtool_nwayreset,
1741        .get_link       = ethtool_op_get_link,
1742        .get_eeprom_len = smc_ethtool_geteeprom_len,
1743        .get_eeprom     = smc_ethtool_geteeprom,
1744        .set_eeprom     = smc_ethtool_seteeprom,
1745        .get_link_ksettings     = smc_ethtool_get_link_ksettings,
1746        .set_link_ksettings     = smc_ethtool_set_link_ksettings,
1747};
1748
1749static const struct net_device_ops smc_netdev_ops = {
1750        .ndo_open               = smc_open,
1751        .ndo_stop               = smc_close,
1752        .ndo_start_xmit         = smc_hard_start_xmit,
1753        .ndo_tx_timeout         = smc_timeout,
1754        .ndo_set_rx_mode        = smc_set_multicast_list,
1755        .ndo_validate_addr      = eth_validate_addr,
1756        .ndo_set_mac_address    = eth_mac_addr,
1757#ifdef CONFIG_NET_POLL_CONTROLLER
1758        .ndo_poll_controller    = smc_poll_controller,
1759#endif
1760};
1761
1762/*
1763 * smc_findirq
1764 *
1765 * This routine has a simple purpose -- make the SMC chip generate an
1766 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1767 */
1768/*
1769 * does this still work?
1770 *
1771 * I just deleted auto_irq.c, since it was never built...
1772 *   --jgarzik
1773 */
1774static int smc_findirq(struct smc_local *lp)
1775{
1776        void __iomem *ioaddr = lp->base;
1777        int timeout = 20;
1778        unsigned long cookie;
1779
1780        DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1781
1782        cookie = probe_irq_on();
1783
1784        /*
1785         * What I try to do here is trigger an ALLOC_INT. This is done
1786         * by allocating a small chunk of memory, which will give an interrupt
1787         * when done.
1788         */
1789        /* enable ALLOCation interrupts ONLY */
1790        SMC_SELECT_BANK(lp, 2);
1791        SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1792
1793        /*
1794         * Allocate 512 bytes of memory.  Note that the chip was just
1795         * reset so all the memory is available
1796         */
1797        SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1798
1799        /*
1800         * Wait until positive that the interrupt has been generated
1801         */
1802        do {
1803                int int_status;
1804                udelay(10);
1805                int_status = SMC_GET_INT(lp);
1806                if (int_status & IM_ALLOC_INT)
1807                        break;          /* got the interrupt */
1808        } while (--timeout);
1809
1810        /*
1811         * there is really nothing that I can do here if timeout fails,
1812         * as autoirq_report will return a 0 anyway, which is what I
1813         * want in this case.   Plus, the clean up is needed in both
1814         * cases.
1815         */
1816
1817        /* and disable all interrupts again */
1818        SMC_SET_INT_MASK(lp, 0);
1819
1820        /* and return what I found */
1821        return probe_irq_off(cookie);
1822}
1823
1824/*
1825 * Function: smc_probe(unsigned long ioaddr)
1826 *
1827 * Purpose:
1828 *      Tests to see if a given ioaddr points to an SMC91x chip.
1829 *      Returns a 0 on success
1830 *
1831 * Algorithm:
1832 *      (1) see if the high byte of BANK_SELECT is 0x33
1833 *      (2) compare the ioaddr with the base register's address
1834 *      (3) see if I recognize the chip ID in the appropriate register
1835 *
1836 * Here I do typical initialization tasks.
1837 *
1838 * o  Initialize the structure if needed
1839 * o  print out my vanity message if not done so already
1840 * o  print out what type of hardware is detected
1841 * o  print out the ethernet address
1842 * o  find the IRQ
1843 * o  set up my private data
1844 * o  configure the dev structure with my subroutines
1845 * o  actually GRAB the irq.
1846 * o  GRAB the region
1847 */
1848static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1849                     unsigned long irq_flags)
1850{
1851        struct smc_local *lp = netdev_priv(dev);
1852        int retval;
1853        unsigned int val, revision_register;
1854        const char *version_string;
1855
1856        DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1857
1858        /* First, see if the high byte is 0x33 */
1859        val = SMC_CURRENT_BANK(lp);
1860        DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1861            CARDNAME, val);
1862        if ((val & 0xFF00) != 0x3300) {
1863                if ((val & 0xFF) == 0x33) {
1864                        netdev_warn(dev,
1865                                    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1866                                    CARDNAME, ioaddr);
1867                }
1868                retval = -ENODEV;
1869                goto err_out;
1870        }
1871
1872        /*
1873         * The above MIGHT indicate a device, but I need to write to
1874         * further test this.
1875         */
1876        SMC_SELECT_BANK(lp, 0);
1877        val = SMC_CURRENT_BANK(lp);
1878        if ((val & 0xFF00) != 0x3300) {
1879                retval = -ENODEV;
1880                goto err_out;
1881        }
1882
1883        /*
1884         * well, we've already written once, so hopefully another
1885         * time won't hurt.  This time, I need to switch the bank
1886         * register to bank 1, so I can access the base address
1887         * register
1888         */
1889        SMC_SELECT_BANK(lp, 1);
1890        val = SMC_GET_BASE(lp);
1891        val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1892        if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1893                netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1894                            CARDNAME, ioaddr, val);
1895        }
1896
1897        /*
1898         * check if the revision register is something that I
1899         * recognize.  These might need to be added to later,
1900         * as future revisions could be added.
1901         */
1902        SMC_SELECT_BANK(lp, 3);
1903        revision_register = SMC_GET_REV(lp);
1904        DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1905        version_string = chip_ids[ (revision_register >> 4) & 0xF];
1906        if (!version_string || (revision_register & 0xff00) != 0x3300) {
1907                /* I don't recognize this chip, so... */
1908                netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1909                            CARDNAME, ioaddr, revision_register);
1910
1911                retval = -ENODEV;
1912                goto err_out;
1913        }
1914
1915        /* At this point I'll assume that the chip is an SMC91x. */
1916        pr_info_once("%s\n", version);
1917
1918        /* fill in some of the fields */
1919        dev->base_addr = (unsigned long)ioaddr;
1920        lp->base = ioaddr;
1921        lp->version = revision_register & 0xff;
1922        spin_lock_init(&lp->lock);
1923
1924        /* Get the MAC address */
1925        SMC_SELECT_BANK(lp, 1);
1926        SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1927
1928        /* now, reset the chip, and put it into a known state */
1929        smc_reset(dev);
1930
1931        /*
1932         * If dev->irq is 0, then the device has to be banged on to see
1933         * what the IRQ is.
1934         *
1935         * This banging doesn't always detect the IRQ, for unknown reasons.
1936         * a workaround is to reset the chip and try again.
1937         *
1938         * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1939         * be what is requested on the command line.   I don't do that, mostly
1940         * because the card that I have uses a non-standard method of accessing
1941         * the IRQs, and because this _should_ work in most configurations.
1942         *
1943         * Specifying an IRQ is done with the assumption that the user knows
1944         * what (s)he is doing.  No checking is done!!!!
1945         */
1946        if (dev->irq < 1) {
1947                int trials;
1948
1949                trials = 3;
1950                while (trials--) {
1951                        dev->irq = smc_findirq(lp);
1952                        if (dev->irq)
1953                                break;
1954                        /* kick the card and try again */
1955                        smc_reset(dev);
1956                }
1957        }
1958        if (dev->irq == 0) {
1959                netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1960                retval = -ENODEV;
1961                goto err_out;
1962        }
1963        dev->irq = irq_canonicalize(dev->irq);
1964
1965        dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1966        dev->netdev_ops = &smc_netdev_ops;
1967        dev->ethtool_ops = &smc_ethtool_ops;
1968
1969        tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1970        INIT_WORK(&lp->phy_configure, smc_phy_configure);
1971        lp->dev = dev;
1972        lp->mii.phy_id_mask = 0x1f;
1973        lp->mii.reg_num_mask = 0x1f;
1974        lp->mii.force_media = 0;
1975        lp->mii.full_duplex = 0;
1976        lp->mii.dev = dev;
1977        lp->mii.mdio_read = smc_phy_read;
1978        lp->mii.mdio_write = smc_phy_write;
1979
1980        /*
1981         * Locate the phy, if any.
1982         */
1983        if (lp->version >= (CHIP_91100 << 4))
1984                smc_phy_detect(dev);
1985
1986        /* then shut everything down to save power */
1987        smc_shutdown(dev);
1988        smc_phy_powerdown(dev);
1989
1990        /* Set default parameters */
1991        lp->msg_enable = NETIF_MSG_LINK;
1992        lp->ctl_rfduplx = 0;
1993        lp->ctl_rspeed = 10;
1994
1995        if (lp->version >= (CHIP_91100 << 4)) {
1996                lp->ctl_rfduplx = 1;
1997                lp->ctl_rspeed = 100;
1998        }
1999
2000        /* Grab the IRQ */
2001        retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2002        if (retval)
2003                goto err_out;
2004
2005#ifdef CONFIG_ARCH_PXA
2006#  ifdef SMC_USE_PXA_DMA
2007        lp->cfg.flags |= SMC91X_USE_DMA;
2008#  endif
2009        if (lp->cfg.flags & SMC91X_USE_DMA) {
2010                dma_cap_mask_t mask;
2011
2012                dma_cap_zero(mask);
2013                dma_cap_set(DMA_SLAVE, mask);
2014                lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2015        }
2016#endif
2017
2018        retval = register_netdev(dev);
2019        if (retval == 0) {
2020                /* now, print out the card info, in a short format.. */
2021                netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2022                            version_string, revision_register & 0x0f,
2023                            lp->base, dev->irq);
2024
2025                if (lp->dma_chan)
2026                        pr_cont(" DMA %p", lp->dma_chan);
2027
2028                pr_cont("%s%s\n",
2029                        lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2030                        THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2031
2032                if (!is_valid_ether_addr(dev->dev_addr)) {
2033                        netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2034                } else {
2035                        /* Print the Ethernet address */
2036                        netdev_info(dev, "Ethernet addr: %pM\n",
2037                                    dev->dev_addr);
2038                }
2039
2040                if (lp->phy_type == 0) {
2041                        PRINTK(dev, "No PHY found\n");
2042                } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2043                        PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2044                } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2045                        PRINTK(dev, "PHY LAN83C180\n");
2046                }
2047        }
2048
2049err_out:
2050#ifdef CONFIG_ARCH_PXA
2051        if (retval && lp->dma_chan)
2052                dma_release_channel(lp->dma_chan);
2053#endif
2054        return retval;
2055}
2056
2057static int smc_enable_device(struct platform_device *pdev)
2058{
2059        struct net_device *ndev = platform_get_drvdata(pdev);
2060        struct smc_local *lp = netdev_priv(ndev);
2061        unsigned long flags;
2062        unsigned char ecor, ecsr;
2063        void __iomem *addr;
2064        struct resource * res;
2065
2066        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2067        if (!res)
2068                return 0;
2069
2070        /*
2071         * Map the attribute space.  This is overkill, but clean.
2072         */
2073        addr = ioremap(res->start, ATTRIB_SIZE);
2074        if (!addr)
2075                return -ENOMEM;
2076
2077        /*
2078         * Reset the device.  We must disable IRQs around this
2079         * since a reset causes the IRQ line become active.
2080         */
2081        local_irq_save(flags);
2082        ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2083        writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2084        readb(addr + (ECOR << SMC_IO_SHIFT));
2085
2086        /*
2087         * Wait 100us for the chip to reset.
2088         */
2089        udelay(100);
2090
2091        /*
2092         * The device will ignore all writes to the enable bit while
2093         * reset is asserted, even if the reset bit is cleared in the
2094         * same write.  Must clear reset first, then enable the device.
2095         */
2096        writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2097        writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2098
2099        /*
2100         * Set the appropriate byte/word mode.
2101         */
2102        ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2103        if (!SMC_16BIT(lp))
2104                ecsr |= ECSR_IOIS8;
2105        writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2106        local_irq_restore(flags);
2107
2108        iounmap(addr);
2109
2110        /*
2111         * Wait for the chip to wake up.  We could poll the control
2112         * register in the main register space, but that isn't mapped
2113         * yet.  We know this is going to take 750us.
2114         */
2115        msleep(1);
2116
2117        return 0;
2118}
2119
2120static int smc_request_attrib(struct platform_device *pdev,
2121                              struct net_device *ndev)
2122{
2123        struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2124        struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2125
2126        if (!res)
2127                return 0;
2128
2129        if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2130                return -EBUSY;
2131
2132        return 0;
2133}
2134
2135static void smc_release_attrib(struct platform_device *pdev,
2136                               struct net_device *ndev)
2137{
2138        struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2139        struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2140
2141        if (res)
2142                release_mem_region(res->start, ATTRIB_SIZE);
2143}
2144
2145static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2146{
2147        if (SMC_CAN_USE_DATACS) {
2148                struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2149                struct smc_local *lp = netdev_priv(ndev);
2150
2151                if (!res)
2152                        return;
2153
2154                if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2155                        netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2156                                    CARDNAME);
2157                        return;
2158                }
2159
2160                lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2161        }
2162}
2163
2164static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2165{
2166        if (SMC_CAN_USE_DATACS) {
2167                struct smc_local *lp = netdev_priv(ndev);
2168                struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2169
2170                if (lp->datacs)
2171                        iounmap(lp->datacs);
2172
2173                lp->datacs = NULL;
2174
2175                if (res)
2176                        release_mem_region(res->start, SMC_DATA_EXTENT);
2177        }
2178}
2179
2180static const struct acpi_device_id smc91x_acpi_match[] = {
2181        { "LNRO0003", 0 },
2182        { }
2183};
2184MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2185
2186#if IS_BUILTIN(CONFIG_OF)
2187static const struct of_device_id smc91x_match[] = {
2188        { .compatible = "smsc,lan91c94", },
2189        { .compatible = "smsc,lan91c111", },
2190        {},
2191};
2192MODULE_DEVICE_TABLE(of, smc91x_match);
2193
2194/**
2195 * of_try_set_control_gpio - configure a gpio if it exists
2196 */
2197static int try_toggle_control_gpio(struct device *dev,
2198                                   struct gpio_desc **desc,
2199                                   const char *name, int index,
2200                                   int value, unsigned int nsdelay)
2201{
2202        struct gpio_desc *gpio = *desc;
2203        enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2204
2205        gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2206        if (IS_ERR(gpio))
2207                return PTR_ERR(gpio);
2208
2209        if (gpio) {
2210                if (nsdelay)
2211                        usleep_range(nsdelay, 2 * nsdelay);
2212                gpiod_set_value_cansleep(gpio, value);
2213        }
2214        *desc = gpio;
2215
2216        return 0;
2217}
2218#endif
2219
2220/*
2221 * smc_init(void)
2222 *   Input parameters:
2223 *      dev->base_addr == 0, try to find all possible locations
2224 *      dev->base_addr > 0x1ff, this is the address to check
2225 *      dev->base_addr == <anything else>, return failure code
2226 *
2227 *   Output:
2228 *      0 --> there is a device
2229 *      anything else, error
2230 */
2231static int smc_drv_probe(struct platform_device *pdev)
2232{
2233        struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2234        const struct of_device_id *match = NULL;
2235        struct smc_local *lp;
2236        struct net_device *ndev;
2237        struct resource *res;
2238        unsigned int __iomem *addr;
2239        unsigned long irq_flags = SMC_IRQ_FLAGS;
2240        unsigned long irq_resflags;
2241        int ret;
2242
2243        ndev = alloc_etherdev(sizeof(struct smc_local));
2244        if (!ndev) {
2245                ret = -ENOMEM;
2246                goto out;
2247        }
2248        SET_NETDEV_DEV(ndev, &pdev->dev);
2249
2250        /* get configuration from platform data, only allow use of
2251         * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2252         */
2253
2254        lp = netdev_priv(ndev);
2255        lp->cfg.flags = 0;
2256
2257        if (pd) {
2258                memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2259                lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2260
2261                if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2262                        dev_err(&pdev->dev,
2263                                "at least one of 8-bit or 16-bit access support is required.\n");
2264                        ret = -ENXIO;
2265                        goto out_free_netdev;
2266                }
2267        }
2268
2269#if IS_BUILTIN(CONFIG_OF)
2270        match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2271        if (match) {
2272                u32 val;
2273
2274                /* Optional pwrdwn GPIO configured? */
2275                ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2276                                              "power", 0, 0, 100);
2277                if (ret)
2278                        return ret;
2279
2280                /*
2281                 * Optional reset GPIO configured? Minimum 100 ns reset needed
2282                 * according to LAN91C96 datasheet page 14.
2283                 */
2284                ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2285                                              "reset", 0, 0, 100);
2286                if (ret)
2287                        return ret;
2288
2289                /*
2290                 * Need to wait for optional EEPROM to load, max 750 us according
2291                 * to LAN91C96 datasheet page 55.
2292                 */
2293                if (lp->reset_gpio)
2294                        usleep_range(750, 1000);
2295
2296                /* Combination of IO widths supported, default to 16-bit */
2297                if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2298                                              &val)) {
2299                        if (val & 1)
2300                                lp->cfg.flags |= SMC91X_USE_8BIT;
2301                        if ((val == 0) || (val & 2))
2302                                lp->cfg.flags |= SMC91X_USE_16BIT;
2303                        if (val & 4)
2304                                lp->cfg.flags |= SMC91X_USE_32BIT;
2305                } else {
2306                        lp->cfg.flags |= SMC91X_USE_16BIT;
2307                }
2308                if (!device_property_read_u32(&pdev->dev, "reg-shift",
2309                                              &val))
2310                        lp->io_shift = val;
2311                lp->cfg.pxa_u16_align4 =
2312                        device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2313        }
2314#endif
2315
2316        if (!pd && !match) {
2317                lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2318                lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2319                lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2320                lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2321        }
2322
2323        if (!lp->cfg.leda && !lp->cfg.ledb) {
2324                lp->cfg.leda = RPC_LSA_DEFAULT;
2325                lp->cfg.ledb = RPC_LSB_DEFAULT;
2326        }
2327
2328        ndev->dma = (unsigned char)-1;
2329
2330        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2331        if (!res)
2332                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2333        if (!res) {
2334                ret = -ENODEV;
2335                goto out_free_netdev;
2336        }
2337
2338
2339        if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2340                ret = -EBUSY;
2341                goto out_free_netdev;
2342        }
2343
2344        ndev->irq = platform_get_irq(pdev, 0);
2345        if (ndev->irq < 0) {
2346                ret = ndev->irq;
2347                goto out_release_io;
2348        }
2349        /*
2350         * If this platform does not specify any special irqflags, or if
2351         * the resource supplies a trigger, override the irqflags with
2352         * the trigger flags from the resource.
2353         */
2354        irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2355        if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2356                irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2357
2358        ret = smc_request_attrib(pdev, ndev);
2359        if (ret)
2360                goto out_release_io;
2361#if defined(CONFIG_ASSABET_NEPONSET)
2362        if (machine_is_assabet() && machine_has_neponset())
2363                neponset_ncr_set(NCR_ENET_OSC_EN);
2364#endif
2365        platform_set_drvdata(pdev, ndev);
2366        ret = smc_enable_device(pdev);
2367        if (ret)
2368                goto out_release_attrib;
2369
2370        addr = ioremap(res->start, SMC_IO_EXTENT);
2371        if (!addr) {
2372                ret = -ENOMEM;
2373                goto out_release_attrib;
2374        }
2375
2376#ifdef CONFIG_ARCH_PXA
2377        {
2378                struct smc_local *lp = netdev_priv(ndev);
2379                lp->device = &pdev->dev;
2380                lp->physaddr = res->start;
2381
2382        }
2383#endif
2384
2385        ret = smc_probe(ndev, addr, irq_flags);
2386        if (ret != 0)
2387                goto out_iounmap;
2388
2389        smc_request_datacs(pdev, ndev);
2390
2391        return 0;
2392
2393 out_iounmap:
2394        iounmap(addr);
2395 out_release_attrib:
2396        smc_release_attrib(pdev, ndev);
2397 out_release_io:
2398        release_mem_region(res->start, SMC_IO_EXTENT);
2399 out_free_netdev:
2400        free_netdev(ndev);
2401 out:
2402        pr_info("%s: not found (%d).\n", CARDNAME, ret);
2403
2404        return ret;
2405}
2406
2407static int smc_drv_remove(struct platform_device *pdev)
2408{
2409        struct net_device *ndev = platform_get_drvdata(pdev);
2410        struct smc_local *lp = netdev_priv(ndev);
2411        struct resource *res;
2412
2413        unregister_netdev(ndev);
2414
2415        free_irq(ndev->irq, ndev);
2416
2417#ifdef CONFIG_ARCH_PXA
2418        if (lp->dma_chan)
2419                dma_release_channel(lp->dma_chan);
2420#endif
2421        iounmap(lp->base);
2422
2423        smc_release_datacs(pdev,ndev);
2424        smc_release_attrib(pdev,ndev);
2425
2426        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2427        if (!res)
2428                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2429        release_mem_region(res->start, SMC_IO_EXTENT);
2430
2431        free_netdev(ndev);
2432
2433        return 0;
2434}
2435
2436static int smc_drv_suspend(struct device *dev)
2437{
2438        struct net_device *ndev = dev_get_drvdata(dev);
2439
2440        if (ndev) {
2441                if (netif_running(ndev)) {
2442                        netif_device_detach(ndev);
2443                        smc_shutdown(ndev);
2444                        smc_phy_powerdown(ndev);
2445                }
2446        }
2447        return 0;
2448}
2449
2450static int smc_drv_resume(struct device *dev)
2451{
2452        struct platform_device *pdev = to_platform_device(dev);
2453        struct net_device *ndev = platform_get_drvdata(pdev);
2454
2455        if (ndev) {
2456                struct smc_local *lp = netdev_priv(ndev);
2457                smc_enable_device(pdev);
2458                if (netif_running(ndev)) {
2459                        smc_reset(ndev);
2460                        smc_enable(ndev);
2461                        if (lp->phy_type != 0)
2462                                smc_phy_configure(&lp->phy_configure);
2463                        netif_device_attach(ndev);
2464                }
2465        }
2466        return 0;
2467}
2468
2469static const struct dev_pm_ops smc_drv_pm_ops = {
2470        .suspend        = smc_drv_suspend,
2471        .resume         = smc_drv_resume,
2472};
2473
2474static struct platform_driver smc_driver = {
2475        .probe          = smc_drv_probe,
2476        .remove         = smc_drv_remove,
2477        .driver         = {
2478                .name   = CARDNAME,
2479                .pm     = &smc_drv_pm_ops,
2480                .of_match_table   = of_match_ptr(smc91x_match),
2481                .acpi_match_table = smc91x_acpi_match,
2482        },
2483};
2484
2485module_platform_driver(smc_driver);
2486