linux/drivers/net/ethernet/tehuti/tehuti.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Tehuti Networks(R) Network Driver
   4 * ethtool interface implementation
   5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
   6 */
   7
   8/*
   9 * RX HW/SW interaction overview
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 * There are 2 types of RX communication channels between driver and NIC.
  12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  14 * info about buffer's location, size and ID. An ID field is used to identify a
  15 * buffer when it's returned with data via RXD Fifo (see below)
  16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  17 * filled by HW and is readen by SW. Each descriptor holds status and ID.
  18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  19 * via dma moves it into host memory, builds new RXD descriptor with same ID,
  20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  21 *
  22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  23 * One holds 1.5K packets and another - 26K packets. Depending on incoming
  24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  25 * filled with data, HW builds new RXD descriptor for it and push it into single
  26 * RXD Fifo.
  27 *
  28 * RX SW Data Structures
  29 * ~~~~~~~~~~~~~~~~~~~~~
  30 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  31 * For RX case, ownership lasts from allocating new empty skb for RXF until
  32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  33 * skb db. Implemented as array with bitmask.
  34 * fifo - keeps info about fifo's size and location, relevant HW registers,
  35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  36 * Implemented as simple struct.
  37 *
  38 * RX SW Execution Flow
  39 * ~~~~~~~~~~~~~~~~~~~~
  40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  41 * relevant registers. At the end of init phase, driver enables interrupts.
  42 * NIC sees that there is no RXF buffers and raises
  43 * RD_INTR interrupt, isr fills skbs and Rx begins.
  44 * Driver has two receive operation modes:
  45 *    NAPI - interrupt-driven mixed with polling
  46 *    interrupt-driven only
  47 *
  48 * Interrupt-driven only flow is following. When buffer is ready, HW raises
  49 * interrupt and isr is called. isr collects all available packets
  50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  51
  52 * Rx buffer allocation note
  53 * ~~~~~~~~~~~~~~~~~~~~~~~~~
  54 * Driver cares to feed such amount of RxF descriptors that respective amount of
  55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  56 * overflow check in Bordeaux for RxD fifo free/used size.
  57 * FIXME: this is NOT fully implemented, more work should be done
  58 *
  59 */
  60
  61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  62
  63#include "tehuti.h"
  64
  65static const struct pci_device_id bdx_pci_tbl[] = {
  66        { PCI_VDEVICE(TEHUTI, 0x3009), },
  67        { PCI_VDEVICE(TEHUTI, 0x3010), },
  68        { PCI_VDEVICE(TEHUTI, 0x3014), },
  69        { 0 }
  70};
  71
  72MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  73
  74/* Definitions needed by ISR or NAPI functions */
  75static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  76static void bdx_tx_cleanup(struct bdx_priv *priv);
  77static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  78
  79/* Definitions needed by FW loading */
  80static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  81
  82/* Definitions needed by hw_start */
  83static int bdx_tx_init(struct bdx_priv *priv);
  84static int bdx_rx_init(struct bdx_priv *priv);
  85
  86/* Definitions needed by bdx_close */
  87static void bdx_rx_free(struct bdx_priv *priv);
  88static void bdx_tx_free(struct bdx_priv *priv);
  89
  90/* Definitions needed by bdx_probe */
  91static void bdx_set_ethtool_ops(struct net_device *netdev);
  92
  93/*************************************************************************
  94 *    Print Info                                                         *
  95 *************************************************************************/
  96
  97static void print_hw_id(struct pci_dev *pdev)
  98{
  99        struct pci_nic *nic = pci_get_drvdata(pdev);
 100        u16 pci_link_status = 0;
 101        u16 pci_ctrl = 0;
 102
 103        pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 104        pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 105
 106        pr_info("%s%s\n", BDX_NIC_NAME,
 107                nic->port_num == 1 ? "" : ", 2-Port");
 108        pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
 109                readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 110                readl(nic->regs + FPGA_SEED),
 111                GET_LINK_STATUS_LANES(pci_link_status),
 112                GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 113}
 114
 115static void print_fw_id(struct pci_nic *nic)
 116{
 117        pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
 118}
 119
 120static void print_eth_id(struct net_device *ndev)
 121{
 122        netdev_info(ndev, "%s, Port %c\n",
 123                    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
 124
 125}
 126
 127/*************************************************************************
 128 *    Code                                                               *
 129 *************************************************************************/
 130
 131#define bdx_enable_interrupts(priv)     \
 132        do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 133#define bdx_disable_interrupts(priv)    \
 134        do { WRITE_REG(priv, regIMR, 0); } while (0)
 135
 136/**
 137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
 138 * @priv: NIC private structure
 139 * @f: fifo to initialize
 140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 141 * @reg_XXX: offsets of registers relative to base address
 142 *
 143 * 1K extra space is allocated at the end of the fifo to simplify
 144 * processing of descriptors that wraps around fifo's end
 145 *
 146 * Returns 0 on success, negative value on failure
 147 *
 148 */
 149static int
 150bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 151              u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 152{
 153        u16 memsz = FIFO_SIZE * (1 << fsz_type);
 154
 155        memset(f, 0, sizeof(struct fifo));
 156        /* pci_alloc_consistent gives us 4k-aligned memory */
 157        f->va = pci_alloc_consistent(priv->pdev,
 158                                     memsz + FIFO_EXTRA_SPACE, &f->da);
 159        if (!f->va) {
 160                pr_err("pci_alloc_consistent failed\n");
 161                RET(-ENOMEM);
 162        }
 163        f->reg_CFG0 = reg_CFG0;
 164        f->reg_CFG1 = reg_CFG1;
 165        f->reg_RPTR = reg_RPTR;
 166        f->reg_WPTR = reg_WPTR;
 167        f->rptr = 0;
 168        f->wptr = 0;
 169        f->memsz = memsz;
 170        f->size_mask = memsz - 1;
 171        WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 172        WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 173
 174        RET(0);
 175}
 176
 177/**
 178 * bdx_fifo_free - free all resources used by fifo
 179 * @priv: NIC private structure
 180 * @f: fifo to release
 181 */
 182static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 183{
 184        ENTER;
 185        if (f->va) {
 186                pci_free_consistent(priv->pdev,
 187                                    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 188                f->va = NULL;
 189        }
 190        RET();
 191}
 192
 193/**
 194 * bdx_link_changed - notifies OS about hw link state.
 195 * @priv: hw adapter structure
 196 */
 197static void bdx_link_changed(struct bdx_priv *priv)
 198{
 199        u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 200
 201        if (!link) {
 202                if (netif_carrier_ok(priv->ndev)) {
 203                        netif_stop_queue(priv->ndev);
 204                        netif_carrier_off(priv->ndev);
 205                        netdev_err(priv->ndev, "Link Down\n");
 206                }
 207        } else {
 208                if (!netif_carrier_ok(priv->ndev)) {
 209                        netif_wake_queue(priv->ndev);
 210                        netif_carrier_on(priv->ndev);
 211                        netdev_err(priv->ndev, "Link Up\n");
 212                }
 213        }
 214}
 215
 216static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 217{
 218        if (isr & IR_RX_FREE_0) {
 219                bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 220                DBG("RX_FREE_0\n");
 221        }
 222
 223        if (isr & IR_LNKCHG0)
 224                bdx_link_changed(priv);
 225
 226        if (isr & IR_PCIE_LINK)
 227                netdev_err(priv->ndev, "PCI-E Link Fault\n");
 228
 229        if (isr & IR_PCIE_TOUT)
 230                netdev_err(priv->ndev, "PCI-E Time Out\n");
 231
 232}
 233
 234/**
 235 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
 236 * @irq: interrupt number
 237 * @dev: network device
 238 *
 239 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 240 *
 241 * It reads ISR register to know interrupt reasons, and proceed them one by one.
 242 * Reasons of interest are:
 243 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 244 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 245 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 246 */
 247
 248static irqreturn_t bdx_isr_napi(int irq, void *dev)
 249{
 250        struct net_device *ndev = dev;
 251        struct bdx_priv *priv = netdev_priv(ndev);
 252        u32 isr;
 253
 254        ENTER;
 255        isr = (READ_REG(priv, regISR) & IR_RUN);
 256        if (unlikely(!isr)) {
 257                bdx_enable_interrupts(priv);
 258                return IRQ_NONE;        /* Not our interrupt */
 259        }
 260
 261        if (isr & IR_EXTRA)
 262                bdx_isr_extra(priv, isr);
 263
 264        if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 265                if (likely(napi_schedule_prep(&priv->napi))) {
 266                        __napi_schedule(&priv->napi);
 267                        RET(IRQ_HANDLED);
 268                } else {
 269                        /* NOTE: we get here if intr has slipped into window
 270                         * between these lines in bdx_poll:
 271                         *    bdx_enable_interrupts(priv);
 272                         *    return 0;
 273                         * currently intrs are disabled (since we read ISR),
 274                         * and we have failed to register next poll.
 275                         * so we read the regs to trigger chip
 276                         * and allow further interupts. */
 277                        READ_REG(priv, regTXF_WPTR_0);
 278                        READ_REG(priv, regRXD_WPTR_0);
 279                }
 280        }
 281
 282        bdx_enable_interrupts(priv);
 283        RET(IRQ_HANDLED);
 284}
 285
 286static int bdx_poll(struct napi_struct *napi, int budget)
 287{
 288        struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 289        int work_done;
 290
 291        ENTER;
 292        bdx_tx_cleanup(priv);
 293        work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 294        if ((work_done < budget) ||
 295            (priv->napi_stop++ >= 30)) {
 296                DBG("rx poll is done. backing to isr-driven\n");
 297
 298                /* from time to time we exit to let NAPI layer release
 299                 * device lock and allow waiting tasks (eg rmmod) to advance) */
 300                priv->napi_stop = 0;
 301
 302                napi_complete_done(napi, work_done);
 303                bdx_enable_interrupts(priv);
 304        }
 305        return work_done;
 306}
 307
 308/**
 309 * bdx_fw_load - loads firmware to NIC
 310 * @priv: NIC private structure
 311 *
 312 * Firmware is loaded via TXD fifo, so it must be initialized first.
 313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 314 * can have few of them). So all drivers use semaphore register to choose one
 315 * that will actually load FW to NIC.
 316 */
 317
 318static int bdx_fw_load(struct bdx_priv *priv)
 319{
 320        const struct firmware *fw = NULL;
 321        int master, i;
 322        int rc;
 323
 324        ENTER;
 325        master = READ_REG(priv, regINIT_SEMAPHORE);
 326        if (!READ_REG(priv, regINIT_STATUS) && master) {
 327                rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
 328                if (rc)
 329                        goto out;
 330                bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 331                mdelay(100);
 332        }
 333        for (i = 0; i < 200; i++) {
 334                if (READ_REG(priv, regINIT_STATUS)) {
 335                        rc = 0;
 336                        goto out;
 337                }
 338                mdelay(2);
 339        }
 340        rc = -EIO;
 341out:
 342        if (master)
 343                WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 344
 345        release_firmware(fw);
 346
 347        if (rc) {
 348                netdev_err(priv->ndev, "firmware loading failed\n");
 349                if (rc == -EIO)
 350                        DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 351                            READ_REG(priv, regVPC),
 352                            READ_REG(priv, regVIC),
 353                            READ_REG(priv, regINIT_STATUS), i);
 354                RET(rc);
 355        } else {
 356                DBG("%s: firmware loading success\n", priv->ndev->name);
 357                RET(0);
 358        }
 359}
 360
 361static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 362{
 363        u32 val;
 364
 365        ENTER;
 366        DBG("mac0=%x mac1=%x mac2=%x\n",
 367            READ_REG(priv, regUNC_MAC0_A),
 368            READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 369
 370        val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 371        WRITE_REG(priv, regUNC_MAC2_A, val);
 372        val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 373        WRITE_REG(priv, regUNC_MAC1_A, val);
 374        val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 375        WRITE_REG(priv, regUNC_MAC0_A, val);
 376
 377        DBG("mac0=%x mac1=%x mac2=%x\n",
 378            READ_REG(priv, regUNC_MAC0_A),
 379            READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 380        RET();
 381}
 382
 383/**
 384 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 385 * @priv: NIC private structure
 386 */
 387static int bdx_hw_start(struct bdx_priv *priv)
 388{
 389        int rc = -EIO;
 390        struct net_device *ndev = priv->ndev;
 391
 392        ENTER;
 393        bdx_link_changed(priv);
 394
 395        /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 396        WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 397        WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 398        WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 399        WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 400        WRITE_REG(priv, regRX_FULLNESS, 0);
 401        WRITE_REG(priv, regTX_FULLNESS, 0);
 402        WRITE_REG(priv, regCTRLST,
 403                  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 404
 405        WRITE_REG(priv, regVGLB, 0);
 406        WRITE_REG(priv, regMAX_FRAME_A,
 407                  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 408
 409        DBG("RDINTCM=%08x\n", priv->rdintcm);   /*NOTE: test script uses this */
 410        WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 411        WRITE_REG(priv, regRDINTCM2, 0);        /*cpu_to_le32(rcm.val)); */
 412
 413        DBG("TDINTCM=%08x\n", priv->tdintcm);   /*NOTE: test script uses this */
 414        WRITE_REG(priv, regTDINTCM0, priv->tdintcm);    /* old val = 0x300064 */
 415
 416        /* Enable timer interrupt once in 2 secs. */
 417        /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 418        bdx_restore_mac(priv->ndev, priv);
 419
 420        WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 421                  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 422
 423#define BDX_IRQ_TYPE    ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
 424
 425        rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
 426                         ndev->name, ndev);
 427        if (rc)
 428                goto err_irq;
 429        bdx_enable_interrupts(priv);
 430
 431        RET(0);
 432
 433err_irq:
 434        RET(rc);
 435}
 436
 437static void bdx_hw_stop(struct bdx_priv *priv)
 438{
 439        ENTER;
 440        bdx_disable_interrupts(priv);
 441        free_irq(priv->pdev->irq, priv->ndev);
 442
 443        netif_carrier_off(priv->ndev);
 444        netif_stop_queue(priv->ndev);
 445
 446        RET();
 447}
 448
 449static int bdx_hw_reset_direct(void __iomem *regs)
 450{
 451        u32 val, i;
 452        ENTER;
 453
 454        /* reset sequences: read, write 1, read, write 0 */
 455        val = readl(regs + regCLKPLL);
 456        writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 457        udelay(50);
 458        val = readl(regs + regCLKPLL);
 459        writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 460
 461        /* check that the PLLs are locked and reset ended */
 462        for (i = 0; i < 70; i++, mdelay(10))
 463                if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 464                        /* do any PCI-E read transaction */
 465                        readl(regs + regRXD_CFG0_0);
 466                        return 0;
 467                }
 468        pr_err("HW reset failed\n");
 469        return 1;               /* failure */
 470}
 471
 472static int bdx_hw_reset(struct bdx_priv *priv)
 473{
 474        u32 val, i;
 475        ENTER;
 476
 477        if (priv->port == 0) {
 478                /* reset sequences: read, write 1, read, write 0 */
 479                val = READ_REG(priv, regCLKPLL);
 480                WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 481                udelay(50);
 482                val = READ_REG(priv, regCLKPLL);
 483                WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 484        }
 485        /* check that the PLLs are locked and reset ended */
 486        for (i = 0; i < 70; i++, mdelay(10))
 487                if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 488                        /* do any PCI-E read transaction */
 489                        READ_REG(priv, regRXD_CFG0_0);
 490                        return 0;
 491                }
 492        pr_err("HW reset failed\n");
 493        return 1;               /* failure */
 494}
 495
 496static int bdx_sw_reset(struct bdx_priv *priv)
 497{
 498        int i;
 499
 500        ENTER;
 501        /* 1. load MAC (obsolete) */
 502        /* 2. disable Rx (and Tx) */
 503        WRITE_REG(priv, regGMAC_RXF_A, 0);
 504        mdelay(100);
 505        /* 3. disable port */
 506        WRITE_REG(priv, regDIS_PORT, 1);
 507        /* 4. disable queue */
 508        WRITE_REG(priv, regDIS_QU, 1);
 509        /* 5. wait until hw is disabled */
 510        for (i = 0; i < 50; i++) {
 511                if (READ_REG(priv, regRST_PORT) & 1)
 512                        break;
 513                mdelay(10);
 514        }
 515        if (i == 50)
 516                netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
 517
 518        /* 6. disable intrs */
 519        WRITE_REG(priv, regRDINTCM0, 0);
 520        WRITE_REG(priv, regTDINTCM0, 0);
 521        WRITE_REG(priv, regIMR, 0);
 522        READ_REG(priv, regISR);
 523
 524        /* 7. reset queue */
 525        WRITE_REG(priv, regRST_QU, 1);
 526        /* 8. reset port */
 527        WRITE_REG(priv, regRST_PORT, 1);
 528        /* 9. zero all read and write pointers */
 529        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 530                DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 531        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 532                WRITE_REG(priv, i, 0);
 533        /* 10. unseet port disable */
 534        WRITE_REG(priv, regDIS_PORT, 0);
 535        /* 11. unset queue disable */
 536        WRITE_REG(priv, regDIS_QU, 0);
 537        /* 12. unset queue reset */
 538        WRITE_REG(priv, regRST_QU, 0);
 539        /* 13. unset port reset */
 540        WRITE_REG(priv, regRST_PORT, 0);
 541        /* 14. enable Rx */
 542        /* skiped. will be done later */
 543        /* 15. save MAC (obsolete) */
 544        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 545                DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 546
 547        RET(0);
 548}
 549
 550/* bdx_reset - performs right type of reset depending on hw type */
 551static int bdx_reset(struct bdx_priv *priv)
 552{
 553        ENTER;
 554        RET((priv->pdev->device == 0x3009)
 555            ? bdx_hw_reset(priv)
 556            : bdx_sw_reset(priv));
 557}
 558
 559/**
 560 * bdx_close - Disables a network interface
 561 * @netdev: network interface device structure
 562 *
 563 * Returns 0, this is not allowed to fail
 564 *
 565 * The close entry point is called when an interface is de-activated
 566 * by the OS.  The hardware is still under the drivers control, but
 567 * needs to be disabled.  A global MAC reset is issued to stop the
 568 * hardware, and all transmit and receive resources are freed.
 569 **/
 570static int bdx_close(struct net_device *ndev)
 571{
 572        struct bdx_priv *priv = NULL;
 573
 574        ENTER;
 575        priv = netdev_priv(ndev);
 576
 577        napi_disable(&priv->napi);
 578
 579        bdx_reset(priv);
 580        bdx_hw_stop(priv);
 581        bdx_rx_free(priv);
 582        bdx_tx_free(priv);
 583        RET(0);
 584}
 585
 586/**
 587 * bdx_open - Called when a network interface is made active
 588 * @netdev: network interface device structure
 589 *
 590 * Returns 0 on success, negative value on failure
 591 *
 592 * The open entry point is called when a network interface is made
 593 * active by the system (IFF_UP).  At this point all resources needed
 594 * for transmit and receive operations are allocated, the interrupt
 595 * handler is registered with the OS, the watchdog timer is started,
 596 * and the stack is notified that the interface is ready.
 597 **/
 598static int bdx_open(struct net_device *ndev)
 599{
 600        struct bdx_priv *priv;
 601        int rc;
 602
 603        ENTER;
 604        priv = netdev_priv(ndev);
 605        bdx_reset(priv);
 606        if (netif_running(ndev))
 607                netif_stop_queue(priv->ndev);
 608
 609        if ((rc = bdx_tx_init(priv)) ||
 610            (rc = bdx_rx_init(priv)) ||
 611            (rc = bdx_fw_load(priv)))
 612                goto err;
 613
 614        bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 615
 616        rc = bdx_hw_start(priv);
 617        if (rc)
 618                goto err;
 619
 620        napi_enable(&priv->napi);
 621
 622        print_fw_id(priv->nic);
 623
 624        RET(0);
 625
 626err:
 627        bdx_close(ndev);
 628        RET(rc);
 629}
 630
 631static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 632{
 633        return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 634                -EINVAL : 0;
 635}
 636
 637static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
 638{
 639        struct bdx_priv *priv = netdev_priv(ndev);
 640        u32 data[3];
 641        int error;
 642
 643        ENTER;
 644
 645        DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 646        if (cmd != SIOCDEVPRIVATE) {
 647                error = copy_from_user(data, ifr->ifr_data, sizeof(data));
 648                if (error) {
 649                        pr_err("can't copy from user\n");
 650                        RET(-EFAULT);
 651                }
 652                DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 653        } else {
 654                return -EOPNOTSUPP;
 655        }
 656
 657        if (!capable(CAP_SYS_RAWIO))
 658                return -EPERM;
 659
 660        switch (data[0]) {
 661
 662        case BDX_OP_READ:
 663                error = bdx_range_check(priv, data[1]);
 664                if (error < 0)
 665                        return error;
 666                data[2] = READ_REG(priv, data[1]);
 667                DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 668                    data[2]);
 669                error = copy_to_user(ifr->ifr_data, data, sizeof(data));
 670                if (error)
 671                        RET(-EFAULT);
 672                break;
 673
 674        case BDX_OP_WRITE:
 675                error = bdx_range_check(priv, data[1]);
 676                if (error < 0)
 677                        return error;
 678                WRITE_REG(priv, data[1], data[2]);
 679                DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 680                break;
 681
 682        default:
 683                RET(-EOPNOTSUPP);
 684        }
 685        return 0;
 686}
 687
 688static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
 689{
 690        ENTER;
 691        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
 692                RET(bdx_ioctl_priv(ndev, ifr, cmd));
 693        else
 694                RET(-EOPNOTSUPP);
 695}
 696
 697/**
 698 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 699 * @ndev: network device
 700 * @vid:  VLAN vid
 701 * @op:   add or kill operation
 702 *
 703 * Passes VLAN filter table to hardware
 704 */
 705static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 706{
 707        struct bdx_priv *priv = netdev_priv(ndev);
 708        u32 reg, bit, val;
 709
 710        ENTER;
 711        DBG2("vid=%d value=%d\n", (int)vid, enable);
 712        if (unlikely(vid >= 4096)) {
 713                pr_err("invalid VID: %u (> 4096)\n", vid);
 714                RET();
 715        }
 716        reg = regVLAN_0 + (vid / 32) * 4;
 717        bit = 1 << vid % 32;
 718        val = READ_REG(priv, reg);
 719        DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 720        if (enable)
 721                val |= bit;
 722        else
 723                val &= ~bit;
 724        DBG2("new val %x\n", val);
 725        WRITE_REG(priv, reg, val);
 726        RET();
 727}
 728
 729/**
 730 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 731 * @ndev: network device
 732 * @vid:  VLAN vid to add
 733 */
 734static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
 735{
 736        __bdx_vlan_rx_vid(ndev, vid, 1);
 737        return 0;
 738}
 739
 740/**
 741 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 742 * @ndev: network device
 743 * @vid:  VLAN vid to kill
 744 */
 745static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
 746{
 747        __bdx_vlan_rx_vid(ndev, vid, 0);
 748        return 0;
 749}
 750
 751/**
 752 * bdx_change_mtu - Change the Maximum Transfer Unit
 753 * @netdev: network interface device structure
 754 * @new_mtu: new value for maximum frame size
 755 *
 756 * Returns 0 on success, negative on failure
 757 */
 758static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 759{
 760        ENTER;
 761
 762        ndev->mtu = new_mtu;
 763        if (netif_running(ndev)) {
 764                bdx_close(ndev);
 765                bdx_open(ndev);
 766        }
 767        RET(0);
 768}
 769
 770static void bdx_setmulti(struct net_device *ndev)
 771{
 772        struct bdx_priv *priv = netdev_priv(ndev);
 773
 774        u32 rxf_val =
 775            GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 776        int i;
 777
 778        ENTER;
 779        /* IMF - imperfect (hash) rx multicat filter */
 780        /* PMF - perfect rx multicat filter */
 781
 782        /* FIXME: RXE(OFF) */
 783        if (ndev->flags & IFF_PROMISC) {
 784                rxf_val |= GMAC_RX_FILTER_PRM;
 785        } else if (ndev->flags & IFF_ALLMULTI) {
 786                /* set IMF to accept all multicast frmaes */
 787                for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 788                        WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 789        } else if (!netdev_mc_empty(ndev)) {
 790                u8 hash;
 791                struct netdev_hw_addr *ha;
 792                u32 reg, val;
 793
 794                /* set IMF to deny all multicast frames */
 795                for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 796                        WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 797                /* set PMF to deny all multicast frames */
 798                for (i = 0; i < MAC_MCST_NUM; i++) {
 799                        WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 800                        WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 801                }
 802
 803                /* use PMF to accept first MAC_MCST_NUM (15) addresses */
 804                /* TBD: sort addresses and write them in ascending order
 805                 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 806                 * multicast frames throu IMF */
 807                /* accept the rest of addresses throu IMF */
 808                netdev_for_each_mc_addr(ha, ndev) {
 809                        hash = 0;
 810                        for (i = 0; i < ETH_ALEN; i++)
 811                                hash ^= ha->addr[i];
 812                        reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 813                        val = READ_REG(priv, reg);
 814                        val |= (1 << (hash % 32));
 815                        WRITE_REG(priv, reg, val);
 816                }
 817
 818        } else {
 819                DBG("only own mac %d\n", netdev_mc_count(ndev));
 820                rxf_val |= GMAC_RX_FILTER_AB;
 821        }
 822        WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 823        /* enable RX */
 824        /* FIXME: RXE(ON) */
 825        RET();
 826}
 827
 828static int bdx_set_mac(struct net_device *ndev, void *p)
 829{
 830        struct bdx_priv *priv = netdev_priv(ndev);
 831        struct sockaddr *addr = p;
 832
 833        ENTER;
 834        /*
 835           if (netif_running(dev))
 836           return -EBUSY
 837         */
 838        memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 839        bdx_restore_mac(ndev, priv);
 840        RET(0);
 841}
 842
 843static int bdx_read_mac(struct bdx_priv *priv)
 844{
 845        u16 macAddress[3], i;
 846        ENTER;
 847
 848        macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 849        macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 850        macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 851        macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 852        macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 853        macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 854        for (i = 0; i < 3; i++) {
 855                priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 856                priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 857        }
 858        RET(0);
 859}
 860
 861static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 862{
 863        u64 val;
 864
 865        val = READ_REG(priv, reg);
 866        val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 867        return val;
 868}
 869
 870/*Do the statistics-update work*/
 871static void bdx_update_stats(struct bdx_priv *priv)
 872{
 873        struct bdx_stats *stats = &priv->hw_stats;
 874        u64 *stats_vector = (u64 *) stats;
 875        int i;
 876        int addr;
 877
 878        /*Fill HW structure */
 879        addr = 0x7200;
 880        /*First 12 statistics - 0x7200 - 0x72B0 */
 881        for (i = 0; i < 12; i++) {
 882                stats_vector[i] = bdx_read_l2stat(priv, addr);
 883                addr += 0x10;
 884        }
 885        BDX_ASSERT(addr != 0x72C0);
 886        /* 0x72C0-0x72E0 RSRV */
 887        addr = 0x72F0;
 888        for (; i < 16; i++) {
 889                stats_vector[i] = bdx_read_l2stat(priv, addr);
 890                addr += 0x10;
 891        }
 892        BDX_ASSERT(addr != 0x7330);
 893        /* 0x7330-0x7360 RSRV */
 894        addr = 0x7370;
 895        for (; i < 19; i++) {
 896                stats_vector[i] = bdx_read_l2stat(priv, addr);
 897                addr += 0x10;
 898        }
 899        BDX_ASSERT(addr != 0x73A0);
 900        /* 0x73A0-0x73B0 RSRV */
 901        addr = 0x73C0;
 902        for (; i < 23; i++) {
 903                stats_vector[i] = bdx_read_l2stat(priv, addr);
 904                addr += 0x10;
 905        }
 906        BDX_ASSERT(addr != 0x7400);
 907        BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 908}
 909
 910static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 911                       u16 rxd_vlan);
 912static void print_rxfd(struct rxf_desc *rxfd);
 913
 914/*************************************************************************
 915 *     Rx DB                                                             *
 916 *************************************************************************/
 917
 918static void bdx_rxdb_destroy(struct rxdb *db)
 919{
 920        vfree(db);
 921}
 922
 923static struct rxdb *bdx_rxdb_create(int nelem)
 924{
 925        struct rxdb *db;
 926        int i;
 927
 928        db = vmalloc(sizeof(struct rxdb)
 929                     + (nelem * sizeof(int))
 930                     + (nelem * sizeof(struct rx_map)));
 931        if (likely(db != NULL)) {
 932                db->stack = (int *)(db + 1);
 933                db->elems = (void *)(db->stack + nelem);
 934                db->nelem = nelem;
 935                db->top = nelem;
 936                for (i = 0; i < nelem; i++)
 937                        db->stack[i] = nelem - i - 1;   /* to make first allocs
 938                                                           close to db struct*/
 939        }
 940
 941        return db;
 942}
 943
 944static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 945{
 946        BDX_ASSERT(db->top <= 0);
 947        return db->stack[--(db->top)];
 948}
 949
 950static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 951{
 952        BDX_ASSERT((n < 0) || (n >= db->nelem));
 953        return db->elems + n;
 954}
 955
 956static inline int bdx_rxdb_available(struct rxdb *db)
 957{
 958        return db->top;
 959}
 960
 961static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 962{
 963        BDX_ASSERT((n >= db->nelem) || (n < 0));
 964        db->stack[(db->top)++] = n;
 965}
 966
 967/*************************************************************************
 968 *     Rx Init                                                           *
 969 *************************************************************************/
 970
 971/**
 972 * bdx_rx_init - initialize RX all related HW and SW resources
 973 * @priv: NIC private structure
 974 *
 975 * Returns 0 on success, negative value on failure
 976 *
 977 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
 978 * skb for rx. It assumes that Rx is desabled in HW
 979 * funcs are grouped for better cache usage
 980 *
 981 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
 982 * filled and packets will be dropped by nic without getting into host or
 983 * cousing interrupt. Anyway, in that condition, host has no chance to process
 984 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
 985 */
 986
 987/* TBD: ensure proper packet size */
 988
 989static int bdx_rx_init(struct bdx_priv *priv)
 990{
 991        ENTER;
 992
 993        if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
 994                          regRXD_CFG0_0, regRXD_CFG1_0,
 995                          regRXD_RPTR_0, regRXD_WPTR_0))
 996                goto err_mem;
 997        if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
 998                          regRXF_CFG0_0, regRXF_CFG1_0,
 999                          regRXF_RPTR_0, regRXF_WPTR_0))
1000                goto err_mem;
1001        priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1002                                     sizeof(struct rxf_desc));
1003        if (!priv->rxdb)
1004                goto err_mem;
1005
1006        priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1007        return 0;
1008
1009err_mem:
1010        netdev_err(priv->ndev, "Rx init failed\n");
1011        return -ENOMEM;
1012}
1013
1014/**
1015 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1016 * @priv: NIC private structure
1017 * @f: RXF fifo
1018 */
1019static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1020{
1021        struct rx_map *dm;
1022        struct rxdb *db = priv->rxdb;
1023        u16 i;
1024
1025        ENTER;
1026        DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1027            db->nelem - bdx_rxdb_available(db));
1028        while (bdx_rxdb_available(db) > 0) {
1029                i = bdx_rxdb_alloc_elem(db);
1030                dm = bdx_rxdb_addr_elem(db, i);
1031                dm->dma = 0;
1032        }
1033        for (i = 0; i < db->nelem; i++) {
1034                dm = bdx_rxdb_addr_elem(db, i);
1035                if (dm->dma) {
1036                        pci_unmap_single(priv->pdev,
1037                                         dm->dma, f->m.pktsz,
1038                                         PCI_DMA_FROMDEVICE);
1039                        dev_kfree_skb(dm->skb);
1040                }
1041        }
1042}
1043
1044/**
1045 * bdx_rx_free - release all Rx resources
1046 * @priv: NIC private structure
1047 *
1048 * It assumes that Rx is desabled in HW
1049 */
1050static void bdx_rx_free(struct bdx_priv *priv)
1051{
1052        ENTER;
1053        if (priv->rxdb) {
1054                bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1055                bdx_rxdb_destroy(priv->rxdb);
1056                priv->rxdb = NULL;
1057        }
1058        bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1059        bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1060
1061        RET();
1062}
1063
1064/*************************************************************************
1065 *     Rx Engine                                                         *
1066 *************************************************************************/
1067
1068/**
1069 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1070 * @priv: nic's private structure
1071 * @f: RXF fifo that needs skbs
1072 *
1073 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1074 * skb's virtual and physical addresses are stored in skb db.
1075 * To calculate free space, func uses cached values of RPTR and WPTR
1076 * When needed, it also updates RPTR and WPTR.
1077 */
1078
1079/* TBD: do not update WPTR if no desc were written */
1080
1081static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1082{
1083        struct sk_buff *skb;
1084        struct rxf_desc *rxfd;
1085        struct rx_map *dm;
1086        int dno, delta, idx;
1087        struct rxdb *db = priv->rxdb;
1088
1089        ENTER;
1090        dno = bdx_rxdb_available(db) - 1;
1091        while (dno > 0) {
1092                skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1093                if (!skb)
1094                        break;
1095
1096                skb_reserve(skb, NET_IP_ALIGN);
1097
1098                idx = bdx_rxdb_alloc_elem(db);
1099                dm = bdx_rxdb_addr_elem(db, idx);
1100                dm->dma = pci_map_single(priv->pdev,
1101                                         skb->data, f->m.pktsz,
1102                                         PCI_DMA_FROMDEVICE);
1103                dm->skb = skb;
1104                rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1105                rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1106                rxfd->va_lo = idx;
1107                rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1108                rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1109                rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1110                print_rxfd(rxfd);
1111
1112                f->m.wptr += sizeof(struct rxf_desc);
1113                delta = f->m.wptr - f->m.memsz;
1114                if (unlikely(delta >= 0)) {
1115                        f->m.wptr = delta;
1116                        if (delta > 0) {
1117                                memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1118                                DBG("wrapped descriptor\n");
1119                        }
1120                }
1121                dno--;
1122        }
1123        /*TBD: to do - delayed rxf wptr like in txd */
1124        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1125        RET();
1126}
1127
1128static inline void
1129NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1130             struct sk_buff *skb)
1131{
1132        ENTER;
1133        DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1134        if (GET_RXD_VTAG(rxd_val1)) {
1135                DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1136                    priv->ndev->name,
1137                    GET_RXD_VLAN_ID(rxd_vlan),
1138                    GET_RXD_VTAG(rxd_val1));
1139                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1140        }
1141        netif_receive_skb(skb);
1142}
1143
1144static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1145{
1146        struct rxf_desc *rxfd;
1147        struct rx_map *dm;
1148        struct rxf_fifo *f;
1149        struct rxdb *db;
1150        int delta;
1151
1152        ENTER;
1153        DBG("priv=%p rxdd=%p\n", priv, rxdd);
1154        f = &priv->rxf_fifo0;
1155        db = priv->rxdb;
1156        DBG("db=%p f=%p\n", db, f);
1157        dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1158        DBG("dm=%p\n", dm);
1159        rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1160        rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1161        rxfd->va_lo = rxdd->va_lo;
1162        rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1163        rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1164        rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1165        print_rxfd(rxfd);
1166
1167        f->m.wptr += sizeof(struct rxf_desc);
1168        delta = f->m.wptr - f->m.memsz;
1169        if (unlikely(delta >= 0)) {
1170                f->m.wptr = delta;
1171                if (delta > 0) {
1172                        memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1173                        DBG("wrapped descriptor\n");
1174                }
1175        }
1176        RET();
1177}
1178
1179/**
1180 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1181 * NOTE: a special treatment is given to non-continuous descriptors
1182 * that start near the end, wraps around and continue at the beginning. a second
1183 * part is copied right after the first, and then descriptor is interpreted as
1184 * normal. fifo has an extra space to allow such operations
1185 * @priv: nic's private structure
1186 * @f: RXF fifo that needs skbs
1187 * @budget: maximum number of packets to receive
1188 */
1189
1190/* TBD: replace memcpy func call by explicite inline asm */
1191
1192static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1193{
1194        struct net_device *ndev = priv->ndev;
1195        struct sk_buff *skb, *skb2;
1196        struct rxd_desc *rxdd;
1197        struct rx_map *dm;
1198        struct rxf_fifo *rxf_fifo;
1199        int tmp_len, size;
1200        int done = 0;
1201        int max_done = BDX_MAX_RX_DONE;
1202        struct rxdb *db = NULL;
1203        /* Unmarshalled descriptor - copy of descriptor in host order */
1204        u32 rxd_val1;
1205        u16 len;
1206        u16 rxd_vlan;
1207
1208        ENTER;
1209        max_done = budget;
1210
1211        f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1212
1213        size = f->m.wptr - f->m.rptr;
1214        if (size < 0)
1215                size = f->m.memsz + size;       /* size is negative :-) */
1216
1217        while (size > 0) {
1218
1219                rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1220                rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1221
1222                len = CPU_CHIP_SWAP16(rxdd->len);
1223
1224                rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1225
1226                print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1227
1228                tmp_len = GET_RXD_BC(rxd_val1) << 3;
1229                BDX_ASSERT(tmp_len <= 0);
1230                size -= tmp_len;
1231                if (size < 0)   /* test for partially arrived descriptor */
1232                        break;
1233
1234                f->m.rptr += tmp_len;
1235
1236                tmp_len = f->m.rptr - f->m.memsz;
1237                if (unlikely(tmp_len >= 0)) {
1238                        f->m.rptr = tmp_len;
1239                        if (tmp_len > 0) {
1240                                DBG("wrapped desc rptr=%d tmp_len=%d\n",
1241                                    f->m.rptr, tmp_len);
1242                                memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1243                        }
1244                }
1245
1246                if (unlikely(GET_RXD_ERR(rxd_val1))) {
1247                        DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1248                        ndev->stats.rx_errors++;
1249                        bdx_recycle_skb(priv, rxdd);
1250                        continue;
1251                }
1252
1253                rxf_fifo = &priv->rxf_fifo0;
1254                db = priv->rxdb;
1255                dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1256                skb = dm->skb;
1257
1258                if (len < BDX_COPYBREAK &&
1259                    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1260                        skb_reserve(skb2, NET_IP_ALIGN);
1261                        /*skb_put(skb2, len); */
1262                        pci_dma_sync_single_for_cpu(priv->pdev,
1263                                                    dm->dma, rxf_fifo->m.pktsz,
1264                                                    PCI_DMA_FROMDEVICE);
1265                        memcpy(skb2->data, skb->data, len);
1266                        bdx_recycle_skb(priv, rxdd);
1267                        skb = skb2;
1268                } else {
1269                        pci_unmap_single(priv->pdev,
1270                                         dm->dma, rxf_fifo->m.pktsz,
1271                                         PCI_DMA_FROMDEVICE);
1272                        bdx_rxdb_free_elem(db, rxdd->va_lo);
1273                }
1274
1275                ndev->stats.rx_bytes += len;
1276
1277                skb_put(skb, len);
1278                skb->protocol = eth_type_trans(skb, ndev);
1279
1280                /* Non-IP packets aren't checksum-offloaded */
1281                if (GET_RXD_PKT_ID(rxd_val1) == 0)
1282                        skb_checksum_none_assert(skb);
1283                else
1284                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1285
1286                NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1287
1288                if (++done >= max_done)
1289                        break;
1290        }
1291
1292        ndev->stats.rx_packets += done;
1293
1294        /* FIXME: do smth to minimize pci accesses    */
1295        WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1296
1297        bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1298
1299        RET(done);
1300}
1301
1302/*************************************************************************
1303 * Debug / Temprorary Code                                               *
1304 *************************************************************************/
1305static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1306                       u16 rxd_vlan)
1307{
1308        DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1309            GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1310            GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1311            GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1312            GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1313            GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1314            rxdd->va_hi);
1315}
1316
1317static void print_rxfd(struct rxf_desc *rxfd)
1318{
1319        DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1320            "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1321            rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1322}
1323
1324/*
1325 * TX HW/SW interaction overview
1326 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1327 * There are 2 types of TX communication channels between driver and NIC.
1328 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1329 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1330 *
1331 * Currently NIC supports TSO, checksuming and gather DMA
1332 * UFO and IP fragmentation is on the way
1333 *
1334 * RX SW Data Structures
1335 * ~~~~~~~~~~~~~~~~~~~~~
1336 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1337 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1338 * acknowledges sent by TXF descriptors.
1339 * Implemented as cyclic buffer.
1340 * fifo - keeps info about fifo's size and location, relevant HW registers,
1341 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1342 * Implemented as simple struct.
1343 *
1344 * TX SW Execution Flow
1345 * ~~~~~~~~~~~~~~~~~~~~
1346 * OS calls driver's hard_xmit method with packet to sent.
1347 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1348 * by updating TXD WPTR.
1349 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1350 * To prevent TXD fifo overflow without reading HW registers every time,
1351 * SW deploys "tx level" technique.
1352 * Upon strart up, tx level is initialized to TXD fifo length.
1353 * For every sent packet, SW gets its TXD descriptor sizei
1354 * (from precalculated array) and substructs it from tx level.
1355 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1356 * original TXD descriptor from txdb and adds it to tx level.
1357 * When Tx level drops under some predefined treshhold, the driver
1358 * stops the TX queue. When TX level rises above that level,
1359 * the tx queue is enabled again.
1360 *
1361 * This technique avoids eccessive reading of RPTR and WPTR registers.
1362 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1363 */
1364
1365/*************************************************************************
1366 *     Tx DB                                                             *
1367 *************************************************************************/
1368static inline int bdx_tx_db_size(struct txdb *db)
1369{
1370        int taken = db->wptr - db->rptr;
1371        if (taken < 0)
1372                taken = db->size + 1 + taken;   /* (size + 1) equals memsz */
1373
1374        return db->size - taken;
1375}
1376
1377/**
1378 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1379 * @db: tx data base
1380 * @pptr: read or write pointer
1381 */
1382static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1383{
1384        BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1385
1386        BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1387                   *pptr != db->wptr);  /* or write pointer */
1388
1389        BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1390                   *pptr >= db->end);   /* in range */
1391
1392        ++*pptr;
1393        if (unlikely(*pptr == db->end))
1394                *pptr = db->start;
1395}
1396
1397/**
1398 * bdx_tx_db_inc_rptr - increment read pointer
1399 * @db: tx data base
1400 */
1401static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1402{
1403        BDX_ASSERT(db->rptr == db->wptr);       /* can't read from empty db */
1404        __bdx_tx_db_ptr_next(db, &db->rptr);
1405}
1406
1407/**
1408 * bdx_tx_db_inc_wptr - increment write pointer
1409 * @db: tx data base
1410 */
1411static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1412{
1413        __bdx_tx_db_ptr_next(db, &db->wptr);
1414        BDX_ASSERT(db->rptr == db->wptr);       /* we can not get empty db as
1415                                                   a result of write */
1416}
1417
1418/**
1419 * bdx_tx_db_init - creates and initializes tx db
1420 * @d: tx data base
1421 * @sz_type: size of tx fifo
1422 *
1423 * Returns 0 on success, error code otherwise
1424 */
1425static int bdx_tx_db_init(struct txdb *d, int sz_type)
1426{
1427        int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1428
1429        d->start = vmalloc(memsz);
1430        if (!d->start)
1431                return -ENOMEM;
1432
1433        /*
1434         * In order to differentiate between db is empty and db is full
1435         * states at least one element should always be empty in order to
1436         * avoid rptr == wptr which means db is empty
1437         */
1438        d->size = memsz / sizeof(struct tx_map) - 1;
1439        d->end = d->start + d->size + 1;        /* just after last element */
1440
1441        /* all dbs are created equally empty */
1442        d->rptr = d->start;
1443        d->wptr = d->start;
1444
1445        return 0;
1446}
1447
1448/**
1449 * bdx_tx_db_close - closes tx db and frees all memory
1450 * @d: tx data base
1451 */
1452static void bdx_tx_db_close(struct txdb *d)
1453{
1454        BDX_ASSERT(d == NULL);
1455
1456        vfree(d->start);
1457        d->start = NULL;
1458}
1459
1460/*************************************************************************
1461 *     Tx Engine                                                         *
1462 *************************************************************************/
1463
1464/* sizes of tx desc (including padding if needed) as function
1465 * of skb's frag number */
1466static struct {
1467        u16 bytes;
1468        u16 qwords;             /* qword = 64 bit */
1469} txd_sizes[MAX_SKB_FRAGS + 1];
1470
1471/**
1472 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1473 * @priv: NIC private structure
1474 * @skb: socket buffer to map
1475 * @txdd: TX descriptor to use
1476 *
1477 * It makes dma mappings for skb's data blocks and writes them to PBL of
1478 * new tx descriptor. It also stores them in the tx db, so they could be
1479 * unmaped after data was sent. It is reponsibility of a caller to make
1480 * sure that there is enough space in the tx db. Last element holds pointer
1481 * to skb itself and marked with zero length
1482 */
1483static inline void
1484bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1485               struct txd_desc *txdd)
1486{
1487        struct txdb *db = &priv->txdb;
1488        struct pbl *pbl = &txdd->pbl[0];
1489        int nr_frags = skb_shinfo(skb)->nr_frags;
1490        int i;
1491
1492        db->wptr->len = skb_headlen(skb);
1493        db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1494                                            db->wptr->len, PCI_DMA_TODEVICE);
1495        pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1496        pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1497        pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1498        DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1499        DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1500        DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1501        bdx_tx_db_inc_wptr(db);
1502
1503        for (i = 0; i < nr_frags; i++) {
1504                const struct skb_frag_struct *frag;
1505
1506                frag = &skb_shinfo(skb)->frags[i];
1507                db->wptr->len = skb_frag_size(frag);
1508                db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1509                                                      0, skb_frag_size(frag),
1510                                                      DMA_TO_DEVICE);
1511
1512                pbl++;
1513                pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1514                pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1515                pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1516                bdx_tx_db_inc_wptr(db);
1517        }
1518
1519        /* add skb clean up info. */
1520        db->wptr->len = -txd_sizes[nr_frags].bytes;
1521        db->wptr->addr.skb = skb;
1522        bdx_tx_db_inc_wptr(db);
1523}
1524
1525/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1526 * number of frags is used as index to fetch correct descriptors size,
1527 * instead of calculating it each time */
1528static void __init init_txd_sizes(void)
1529{
1530        int i, lwords;
1531
1532        /* 7 - is number of lwords in txd with one phys buffer
1533         * 3 - is number of lwords used for every additional phys buffer */
1534        for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1535                lwords = 7 + (i * 3);
1536                if (lwords & 1)
1537                        lwords++;       /* pad it with 1 lword */
1538                txd_sizes[i].qwords = lwords >> 1;
1539                txd_sizes[i].bytes = lwords << 2;
1540        }
1541}
1542
1543/* bdx_tx_init - initialize all Tx related stuff.
1544 * Namely, TXD and TXF fifos, database etc */
1545static int bdx_tx_init(struct bdx_priv *priv)
1546{
1547        if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1548                          regTXD_CFG0_0,
1549                          regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1550                goto err_mem;
1551        if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1552                          regTXF_CFG0_0,
1553                          regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1554                goto err_mem;
1555
1556        /* The TX db has to keep mappings for all packets sent (on TxD)
1557         * and not yet reclaimed (on TxF) */
1558        if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1559                goto err_mem;
1560
1561        priv->tx_level = BDX_MAX_TX_LEVEL;
1562#ifdef BDX_DELAY_WPTR
1563        priv->tx_update_mark = priv->tx_level - 1024;
1564#endif
1565        return 0;
1566
1567err_mem:
1568        netdev_err(priv->ndev, "Tx init failed\n");
1569        return -ENOMEM;
1570}
1571
1572/**
1573 * bdx_tx_space - calculates available space in TX fifo
1574 * @priv: NIC private structure
1575 *
1576 * Returns available space in TX fifo in bytes
1577 */
1578static inline int bdx_tx_space(struct bdx_priv *priv)
1579{
1580        struct txd_fifo *f = &priv->txd_fifo0;
1581        int fsize;
1582
1583        f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1584        fsize = f->m.rptr - f->m.wptr;
1585        if (fsize <= 0)
1586                fsize = f->m.memsz + fsize;
1587        return fsize;
1588}
1589
1590/**
1591 * bdx_tx_transmit - send packet to NIC
1592 * @skb: packet to send
1593 * @ndev: network device assigned to NIC
1594 * Return codes:
1595 * o NETDEV_TX_OK everything ok.
1596 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1597 *   Usually a bug, means queue start/stop flow control is broken in
1598 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1599 */
1600static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1601                                   struct net_device *ndev)
1602{
1603        struct bdx_priv *priv = netdev_priv(ndev);
1604        struct txd_fifo *f = &priv->txd_fifo0;
1605        int txd_checksum = 7;   /* full checksum */
1606        int txd_lgsnd = 0;
1607        int txd_vlan_id = 0;
1608        int txd_vtag = 0;
1609        int txd_mss = 0;
1610
1611        int nr_frags = skb_shinfo(skb)->nr_frags;
1612        struct txd_desc *txdd;
1613        int len;
1614        unsigned long flags;
1615
1616        ENTER;
1617        local_irq_save(flags);
1618        spin_lock(&priv->tx_lock);
1619
1620        /* build tx descriptor */
1621        BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* started with valid wptr */
1622        txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1623        if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1624                txd_checksum = 0;
1625
1626        if (skb_shinfo(skb)->gso_size) {
1627                txd_mss = skb_shinfo(skb)->gso_size;
1628                txd_lgsnd = 1;
1629                DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1630                    txd_mss);
1631        }
1632
1633        if (skb_vlan_tag_present(skb)) {
1634                /*Cut VLAN ID to 12 bits */
1635                txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1636                txd_vtag = 1;
1637        }
1638
1639        txdd->length = CPU_CHIP_SWAP16(skb->len);
1640        txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1641        txdd->txd_val1 =
1642            CPU_CHIP_SWAP32(TXD_W1_VAL
1643                            (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1644                             txd_lgsnd, txd_vlan_id));
1645        DBG("=== TxD desc =====================\n");
1646        DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1647        DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1648
1649        bdx_tx_map_skb(priv, skb, txdd);
1650
1651        /* increment TXD write pointer. In case of
1652           fifo wrapping copy reminder of the descriptor
1653           to the beginning */
1654        f->m.wptr += txd_sizes[nr_frags].bytes;
1655        len = f->m.wptr - f->m.memsz;
1656        if (unlikely(len >= 0)) {
1657                f->m.wptr = len;
1658                if (len > 0) {
1659                        BDX_ASSERT(len > f->m.memsz);
1660                        memcpy(f->m.va, f->m.va + f->m.memsz, len);
1661                }
1662        }
1663        BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* finished with valid wptr */
1664
1665        priv->tx_level -= txd_sizes[nr_frags].bytes;
1666        BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1667#ifdef BDX_DELAY_WPTR
1668        if (priv->tx_level > priv->tx_update_mark) {
1669                /* Force memory writes to complete before letting h/w
1670                   know there are new descriptors to fetch.
1671                   (might be needed on platforms like IA64)
1672                   wmb(); */
1673                WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1674        } else {
1675                if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1676                        priv->tx_noupd = 0;
1677                        WRITE_REG(priv, f->m.reg_WPTR,
1678                                  f->m.wptr & TXF_WPTR_WR_PTR);
1679                }
1680        }
1681#else
1682        /* Force memory writes to complete before letting h/w
1683           know there are new descriptors to fetch.
1684           (might be needed on platforms like IA64)
1685           wmb(); */
1686        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1687
1688#endif
1689#ifdef BDX_LLTX
1690        netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1691#endif
1692        ndev->stats.tx_packets++;
1693        ndev->stats.tx_bytes += skb->len;
1694
1695        if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1696                DBG("%s: %s: TX Q STOP level %d\n",
1697                    BDX_DRV_NAME, ndev->name, priv->tx_level);
1698                netif_stop_queue(ndev);
1699        }
1700
1701        spin_unlock_irqrestore(&priv->tx_lock, flags);
1702        return NETDEV_TX_OK;
1703}
1704
1705/**
1706 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1707 * @priv: bdx adapter
1708 *
1709 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1710 * that those packets were sent
1711 */
1712static void bdx_tx_cleanup(struct bdx_priv *priv)
1713{
1714        struct txf_fifo *f = &priv->txf_fifo0;
1715        struct txdb *db = &priv->txdb;
1716        int tx_level = 0;
1717
1718        ENTER;
1719        f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1720        BDX_ASSERT(f->m.rptr >= f->m.memsz);    /* started with valid rptr */
1721
1722        while (f->m.wptr != f->m.rptr) {
1723                f->m.rptr += BDX_TXF_DESC_SZ;
1724                f->m.rptr &= f->m.size_mask;
1725
1726                /* unmap all the fragments */
1727                /* first has to come tx_maps containing dma */
1728                BDX_ASSERT(db->rptr->len == 0);
1729                do {
1730                        BDX_ASSERT(db->rptr->addr.dma == 0);
1731                        pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1732                                       db->rptr->len, PCI_DMA_TODEVICE);
1733                        bdx_tx_db_inc_rptr(db);
1734                } while (db->rptr->len > 0);
1735                tx_level -= db->rptr->len;      /* '-' koz len is negative */
1736
1737                /* now should come skb pointer - free it */
1738                dev_consume_skb_irq(db->rptr->addr.skb);
1739                bdx_tx_db_inc_rptr(db);
1740        }
1741
1742        /* let h/w know which TXF descriptors were cleaned */
1743        BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1744        WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1745
1746        /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1747         * we resume the transmission and use tx_lock to synchronize with xmit.*/
1748        spin_lock(&priv->tx_lock);
1749        priv->tx_level += tx_level;
1750        BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1751#ifdef BDX_DELAY_WPTR
1752        if (priv->tx_noupd) {
1753                priv->tx_noupd = 0;
1754                WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1755                          priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1756        }
1757#endif
1758
1759        if (unlikely(netif_queue_stopped(priv->ndev) &&
1760                     netif_carrier_ok(priv->ndev) &&
1761                     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1762                DBG("%s: %s: TX Q WAKE level %d\n",
1763                    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1764                netif_wake_queue(priv->ndev);
1765        }
1766        spin_unlock(&priv->tx_lock);
1767}
1768
1769/**
1770 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1771 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1772 */
1773static void bdx_tx_free_skbs(struct bdx_priv *priv)
1774{
1775        struct txdb *db = &priv->txdb;
1776
1777        ENTER;
1778        while (db->rptr != db->wptr) {
1779                if (likely(db->rptr->len))
1780                        pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1781                                       db->rptr->len, PCI_DMA_TODEVICE);
1782                else
1783                        dev_kfree_skb(db->rptr->addr.skb);
1784                bdx_tx_db_inc_rptr(db);
1785        }
1786        RET();
1787}
1788
1789/* bdx_tx_free - frees all Tx resources */
1790static void bdx_tx_free(struct bdx_priv *priv)
1791{
1792        ENTER;
1793        bdx_tx_free_skbs(priv);
1794        bdx_fifo_free(priv, &priv->txd_fifo0.m);
1795        bdx_fifo_free(priv, &priv->txf_fifo0.m);
1796        bdx_tx_db_close(&priv->txdb);
1797}
1798
1799/**
1800 * bdx_tx_push_desc - push descriptor to TxD fifo
1801 * @priv: NIC private structure
1802 * @data: desc's data
1803 * @size: desc's size
1804 *
1805 * Pushes desc to TxD fifo and overlaps it if needed.
1806 * NOTE: this func does not check for available space. this is responsibility
1807 *    of the caller. Neither does it check that data size is smaller than
1808 *    fifo size.
1809 */
1810static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1811{
1812        struct txd_fifo *f = &priv->txd_fifo0;
1813        int i = f->m.memsz - f->m.wptr;
1814
1815        if (size == 0)
1816                return;
1817
1818        if (i > size) {
1819                memcpy(f->m.va + f->m.wptr, data, size);
1820                f->m.wptr += size;
1821        } else {
1822                memcpy(f->m.va + f->m.wptr, data, i);
1823                f->m.wptr = size - i;
1824                memcpy(f->m.va, data + i, f->m.wptr);
1825        }
1826        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1827}
1828
1829/**
1830 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1831 * @priv: NIC private structure
1832 * @data: desc's data
1833 * @size: desc's size
1834 *
1835 * NOTE: this func does check for available space and, if necessary, waits for
1836 *   NIC to read existing data before writing new one.
1837 */
1838static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1839{
1840        int timer = 0;
1841        ENTER;
1842
1843        while (size > 0) {
1844                /* we substruct 8 because when fifo is full rptr == wptr
1845                   which also means that fifo is empty, we can understand
1846                   the difference, but could hw do the same ??? :) */
1847                int avail = bdx_tx_space(priv) - 8;
1848                if (avail <= 0) {
1849                        if (timer++ > 300) {    /* prevent endless loop */
1850                                DBG("timeout while writing desc to TxD fifo\n");
1851                                break;
1852                        }
1853                        udelay(50);     /* give hw a chance to clean fifo */
1854                        continue;
1855                }
1856                avail = min(avail, size);
1857                DBG("about to push  %d bytes starting %p size %d\n", avail,
1858                    data, size);
1859                bdx_tx_push_desc(priv, data, avail);
1860                size -= avail;
1861                data += avail;
1862        }
1863        RET();
1864}
1865
1866static const struct net_device_ops bdx_netdev_ops = {
1867        .ndo_open               = bdx_open,
1868        .ndo_stop               = bdx_close,
1869        .ndo_start_xmit         = bdx_tx_transmit,
1870        .ndo_validate_addr      = eth_validate_addr,
1871        .ndo_do_ioctl           = bdx_ioctl,
1872        .ndo_set_rx_mode        = bdx_setmulti,
1873        .ndo_change_mtu         = bdx_change_mtu,
1874        .ndo_set_mac_address    = bdx_set_mac,
1875        .ndo_vlan_rx_add_vid    = bdx_vlan_rx_add_vid,
1876        .ndo_vlan_rx_kill_vid   = bdx_vlan_rx_kill_vid,
1877};
1878
1879/**
1880 * bdx_probe - Device Initialization Routine
1881 * @pdev: PCI device information struct
1882 * @ent: entry in bdx_pci_tbl
1883 *
1884 * Returns 0 on success, negative on failure
1885 *
1886 * bdx_probe initializes an adapter identified by a pci_dev structure.
1887 * The OS initialization, configuring of the adapter private structure,
1888 * and a hardware reset occur.
1889 *
1890 * functions and their order used as explained in
1891 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1892 *
1893 */
1894
1895/* TBD: netif_msg should be checked and implemented. I disable it for now */
1896static int
1897bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1898{
1899        struct net_device *ndev;
1900        struct bdx_priv *priv;
1901        int err, pci_using_dac, port;
1902        unsigned long pciaddr;
1903        u32 regionSize;
1904        struct pci_nic *nic;
1905
1906        ENTER;
1907
1908        nic = vmalloc(sizeof(*nic));
1909        if (!nic)
1910                RET(-ENOMEM);
1911
1912    /************** pci *****************/
1913        err = pci_enable_device(pdev);
1914        if (err)                        /* it triggers interrupt, dunno why. */
1915                goto err_pci;           /* it's not a problem though */
1916
1917        if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1918            !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1919                pci_using_dac = 1;
1920        } else {
1921                if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1922                    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1923                        pr_err("No usable DMA configuration, aborting\n");
1924                        goto err_dma;
1925                }
1926                pci_using_dac = 0;
1927        }
1928
1929        err = pci_request_regions(pdev, BDX_DRV_NAME);
1930        if (err)
1931                goto err_dma;
1932
1933        pci_set_master(pdev);
1934
1935        pciaddr = pci_resource_start(pdev, 0);
1936        if (!pciaddr) {
1937                err = -EIO;
1938                pr_err("no MMIO resource\n");
1939                goto err_out_res;
1940        }
1941        regionSize = pci_resource_len(pdev, 0);
1942        if (regionSize < BDX_REGS_SIZE) {
1943                err = -EIO;
1944                pr_err("MMIO resource (%x) too small\n", regionSize);
1945                goto err_out_res;
1946        }
1947
1948        nic->regs = ioremap(pciaddr, regionSize);
1949        if (!nic->regs) {
1950                err = -EIO;
1951                pr_err("ioremap failed\n");
1952                goto err_out_res;
1953        }
1954
1955        if (pdev->irq < 2) {
1956                err = -EIO;
1957                pr_err("invalid irq (%d)\n", pdev->irq);
1958                goto err_out_iomap;
1959        }
1960        pci_set_drvdata(pdev, nic);
1961
1962        if (pdev->device == 0x3014)
1963                nic->port_num = 2;
1964        else
1965                nic->port_num = 1;
1966
1967        print_hw_id(pdev);
1968
1969        bdx_hw_reset_direct(nic->regs);
1970
1971        nic->irq_type = IRQ_INTX;
1972#ifdef BDX_MSI
1973        if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1974                err = pci_enable_msi(pdev);
1975                if (err)
1976                        pr_err("Can't enable msi. error is %d\n", err);
1977                else
1978                        nic->irq_type = IRQ_MSI;
1979        } else
1980                DBG("HW does not support MSI\n");
1981#endif
1982
1983    /************** netdev **************/
1984        for (port = 0; port < nic->port_num; port++) {
1985                ndev = alloc_etherdev(sizeof(struct bdx_priv));
1986                if (!ndev) {
1987                        err = -ENOMEM;
1988                        goto err_out_iomap;
1989                }
1990
1991                ndev->netdev_ops = &bdx_netdev_ops;
1992                ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1993
1994                bdx_set_ethtool_ops(ndev);      /* ethtool interface */
1995
1996                /* these fields are used for info purposes only
1997                 * so we can have them same for all ports of the board */
1998                ndev->if_port = port;
1999                ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2000                    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2001                    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
2002                    ;
2003                ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2004                        NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
2005
2006                if (pci_using_dac)
2007                        ndev->features |= NETIF_F_HIGHDMA;
2008
2009        /************** priv ****************/
2010                priv = nic->priv[port] = netdev_priv(ndev);
2011
2012                priv->pBdxRegs = nic->regs + port * 0x8000;
2013                priv->port = port;
2014                priv->pdev = pdev;
2015                priv->ndev = ndev;
2016                priv->nic = nic;
2017                priv->msg_enable = BDX_DEF_MSG_ENABLE;
2018
2019                netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2020
2021                if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2022                        DBG("HW statistics not supported\n");
2023                        priv->stats_flag = 0;
2024                } else {
2025                        priv->stats_flag = 1;
2026                }
2027
2028                /* Initialize fifo sizes. */
2029                priv->txd_size = 2;
2030                priv->txf_size = 2;
2031                priv->rxd_size = 2;
2032                priv->rxf_size = 3;
2033
2034                /* Initialize the initial coalescing registers. */
2035                priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2036                priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2037
2038                /* ndev->xmit_lock spinlock is not used.
2039                 * Private priv->tx_lock is used for synchronization
2040                 * between transmit and TX irq cleanup.  In addition
2041                 * set multicast list callback has to use priv->tx_lock.
2042                 */
2043#ifdef BDX_LLTX
2044                ndev->features |= NETIF_F_LLTX;
2045#endif
2046                /* MTU range: 60 - 16384 */
2047                ndev->min_mtu = ETH_ZLEN;
2048                ndev->max_mtu = BDX_MAX_MTU;
2049
2050                spin_lock_init(&priv->tx_lock);
2051
2052                /*bdx_hw_reset(priv); */
2053                if (bdx_read_mac(priv)) {
2054                        pr_err("load MAC address failed\n");
2055                        goto err_out_iomap;
2056                }
2057                SET_NETDEV_DEV(ndev, &pdev->dev);
2058                err = register_netdev(ndev);
2059                if (err) {
2060                        pr_err("register_netdev failed\n");
2061                        goto err_out_free;
2062                }
2063                netif_carrier_off(ndev);
2064                netif_stop_queue(ndev);
2065
2066                print_eth_id(ndev);
2067        }
2068        RET(0);
2069
2070err_out_free:
2071        free_netdev(ndev);
2072err_out_iomap:
2073        iounmap(nic->regs);
2074err_out_res:
2075        pci_release_regions(pdev);
2076err_dma:
2077        pci_disable_device(pdev);
2078err_pci:
2079        vfree(nic);
2080
2081        RET(err);
2082}
2083
2084/****************** Ethtool interface *********************/
2085/* get strings for statistics counters */
2086static const char
2087 bdx_stat_names[][ETH_GSTRING_LEN] = {
2088        "InUCast",              /* 0x7200 */
2089        "InMCast",              /* 0x7210 */
2090        "InBCast",              /* 0x7220 */
2091        "InPkts",               /* 0x7230 */
2092        "InErrors",             /* 0x7240 */
2093        "InDropped",            /* 0x7250 */
2094        "FrameTooLong",         /* 0x7260 */
2095        "FrameSequenceErrors",  /* 0x7270 */
2096        "InVLAN",               /* 0x7280 */
2097        "InDroppedDFE",         /* 0x7290 */
2098        "InDroppedIntFull",     /* 0x72A0 */
2099        "InFrameAlignErrors",   /* 0x72B0 */
2100
2101        /* 0x72C0-0x72E0 RSRV */
2102
2103        "OutUCast",             /* 0x72F0 */
2104        "OutMCast",             /* 0x7300 */
2105        "OutBCast",             /* 0x7310 */
2106        "OutPkts",              /* 0x7320 */
2107
2108        /* 0x7330-0x7360 RSRV */
2109
2110        "OutVLAN",              /* 0x7370 */
2111        "InUCastOctects",       /* 0x7380 */
2112        "OutUCastOctects",      /* 0x7390 */
2113
2114        /* 0x73A0-0x73B0 RSRV */
2115
2116        "InBCastOctects",       /* 0x73C0 */
2117        "OutBCastOctects",      /* 0x73D0 */
2118        "InOctects",            /* 0x73E0 */
2119        "OutOctects",           /* 0x73F0 */
2120};
2121
2122/*
2123 * bdx_get_link_ksettings - get device-specific settings
2124 * @netdev
2125 * @ecmd
2126 */
2127static int bdx_get_link_ksettings(struct net_device *netdev,
2128                                  struct ethtool_link_ksettings *ecmd)
2129{
2130        ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2131        ethtool_link_ksettings_add_link_mode(ecmd, supported,
2132                                             10000baseT_Full);
2133        ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2134        ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2135        ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2136                                             10000baseT_Full);
2137        ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2138
2139        ecmd->base.speed = SPEED_10000;
2140        ecmd->base.duplex = DUPLEX_FULL;
2141        ecmd->base.port = PORT_FIBRE;
2142        ecmd->base.autoneg = AUTONEG_DISABLE;
2143
2144        return 0;
2145}
2146
2147/*
2148 * bdx_get_drvinfo - report driver information
2149 * @netdev
2150 * @drvinfo
2151 */
2152static void
2153bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2154{
2155        struct bdx_priv *priv = netdev_priv(netdev);
2156
2157        strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2158        strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2159        strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2160        strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2161                sizeof(drvinfo->bus_info));
2162}
2163
2164/*
2165 * bdx_get_coalesce - get interrupt coalescing parameters
2166 * @netdev
2167 * @ecoal
2168 */
2169static int
2170bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2171{
2172        u32 rdintcm;
2173        u32 tdintcm;
2174        struct bdx_priv *priv = netdev_priv(netdev);
2175
2176        rdintcm = priv->rdintcm;
2177        tdintcm = priv->tdintcm;
2178
2179        /* PCK_TH measures in multiples of FIFO bytes
2180           We translate to packets */
2181        ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2182        ecoal->rx_max_coalesced_frames =
2183            ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2184
2185        ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2186        ecoal->tx_max_coalesced_frames =
2187            ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2188
2189        /* adaptive parameters ignored */
2190        return 0;
2191}
2192
2193/*
2194 * bdx_set_coalesce - set interrupt coalescing parameters
2195 * @netdev
2196 * @ecoal
2197 */
2198static int
2199bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2200{
2201        u32 rdintcm;
2202        u32 tdintcm;
2203        struct bdx_priv *priv = netdev_priv(netdev);
2204        int rx_coal;
2205        int tx_coal;
2206        int rx_max_coal;
2207        int tx_max_coal;
2208
2209        /* Check for valid input */
2210        rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2211        tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2212        rx_max_coal = ecoal->rx_max_coalesced_frames;
2213        tx_max_coal = ecoal->tx_max_coalesced_frames;
2214
2215        /* Translate from packets to multiples of FIFO bytes */
2216        rx_max_coal =
2217            (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2218             / PCK_TH_MULT);
2219        tx_max_coal =
2220            (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2221             / PCK_TH_MULT);
2222
2223        if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2224            (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2225                return -EINVAL;
2226
2227        rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2228                              GET_RXF_TH(priv->rdintcm), rx_max_coal);
2229        tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2230                              tx_max_coal);
2231
2232        priv->rdintcm = rdintcm;
2233        priv->tdintcm = tdintcm;
2234
2235        WRITE_REG(priv, regRDINTCM0, rdintcm);
2236        WRITE_REG(priv, regTDINTCM0, tdintcm);
2237
2238        return 0;
2239}
2240
2241/* Convert RX fifo size to number of pending packets */
2242static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2243{
2244        return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2245}
2246
2247/* Convert TX fifo size to number of pending packets */
2248static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2249{
2250        return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2251}
2252
2253/*
2254 * bdx_get_ringparam - report ring sizes
2255 * @netdev
2256 * @ring
2257 */
2258static void
2259bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2260{
2261        struct bdx_priv *priv = netdev_priv(netdev);
2262
2263        /*max_pending - the maximum-sized FIFO we allow */
2264        ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2265        ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2266        ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2267        ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2268}
2269
2270/*
2271 * bdx_set_ringparam - set ring sizes
2272 * @netdev
2273 * @ring
2274 */
2275static int
2276bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2277{
2278        struct bdx_priv *priv = netdev_priv(netdev);
2279        int rx_size = 0;
2280        int tx_size = 0;
2281
2282        for (; rx_size < 4; rx_size++) {
2283                if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2284                        break;
2285        }
2286        if (rx_size == 4)
2287                rx_size = 3;
2288
2289        for (; tx_size < 4; tx_size++) {
2290                if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2291                        break;
2292        }
2293        if (tx_size == 4)
2294                tx_size = 3;
2295
2296        /*Is there anything to do? */
2297        if ((rx_size == priv->rxf_size) &&
2298            (tx_size == priv->txd_size))
2299                return 0;
2300
2301        priv->rxf_size = rx_size;
2302        if (rx_size > 1)
2303                priv->rxd_size = rx_size - 1;
2304        else
2305                priv->rxd_size = rx_size;
2306
2307        priv->txf_size = priv->txd_size = tx_size;
2308
2309        if (netif_running(netdev)) {
2310                bdx_close(netdev);
2311                bdx_open(netdev);
2312        }
2313        return 0;
2314}
2315
2316/*
2317 * bdx_get_strings - return a set of strings that describe the requested objects
2318 * @netdev
2319 * @data
2320 */
2321static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2322{
2323        switch (stringset) {
2324        case ETH_SS_STATS:
2325                memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2326                break;
2327        }
2328}
2329
2330/*
2331 * bdx_get_sset_count - return number of statistics or tests
2332 * @netdev
2333 */
2334static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2335{
2336        struct bdx_priv *priv = netdev_priv(netdev);
2337
2338        switch (stringset) {
2339        case ETH_SS_STATS:
2340                BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2341                           != sizeof(struct bdx_stats) / sizeof(u64));
2342                return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)  : 0;
2343        }
2344
2345        return -EINVAL;
2346}
2347
2348/*
2349 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2350 * @netdev
2351 * @stats
2352 * @data
2353 */
2354static void bdx_get_ethtool_stats(struct net_device *netdev,
2355                                  struct ethtool_stats *stats, u64 *data)
2356{
2357        struct bdx_priv *priv = netdev_priv(netdev);
2358
2359        if (priv->stats_flag) {
2360
2361                /* Update stats from HW */
2362                bdx_update_stats(priv);
2363
2364                /* Copy data to user buffer */
2365                memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2366        }
2367}
2368
2369/*
2370 * bdx_set_ethtool_ops - ethtool interface implementation
2371 * @netdev
2372 */
2373static void bdx_set_ethtool_ops(struct net_device *netdev)
2374{
2375        static const struct ethtool_ops bdx_ethtool_ops = {
2376                .get_drvinfo = bdx_get_drvinfo,
2377                .get_link = ethtool_op_get_link,
2378                .get_coalesce = bdx_get_coalesce,
2379                .set_coalesce = bdx_set_coalesce,
2380                .get_ringparam = bdx_get_ringparam,
2381                .set_ringparam = bdx_set_ringparam,
2382                .get_strings = bdx_get_strings,
2383                .get_sset_count = bdx_get_sset_count,
2384                .get_ethtool_stats = bdx_get_ethtool_stats,
2385                .get_link_ksettings = bdx_get_link_ksettings,
2386        };
2387
2388        netdev->ethtool_ops = &bdx_ethtool_ops;
2389}
2390
2391/**
2392 * bdx_remove - Device Removal Routine
2393 * @pdev: PCI device information struct
2394 *
2395 * bdx_remove is called by the PCI subsystem to alert the driver
2396 * that it should release a PCI device.  The could be caused by a
2397 * Hot-Plug event, or because the driver is going to be removed from
2398 * memory.
2399 **/
2400static void bdx_remove(struct pci_dev *pdev)
2401{
2402        struct pci_nic *nic = pci_get_drvdata(pdev);
2403        struct net_device *ndev;
2404        int port;
2405
2406        for (port = 0; port < nic->port_num; port++) {
2407                ndev = nic->priv[port]->ndev;
2408                unregister_netdev(ndev);
2409                free_netdev(ndev);
2410        }
2411
2412        /*bdx_hw_reset_direct(nic->regs); */
2413#ifdef BDX_MSI
2414        if (nic->irq_type == IRQ_MSI)
2415                pci_disable_msi(pdev);
2416#endif
2417
2418        iounmap(nic->regs);
2419        pci_release_regions(pdev);
2420        pci_disable_device(pdev);
2421        vfree(nic);
2422
2423        RET();
2424}
2425
2426static struct pci_driver bdx_pci_driver = {
2427        .name = BDX_DRV_NAME,
2428        .id_table = bdx_pci_tbl,
2429        .probe = bdx_probe,
2430        .remove = bdx_remove,
2431};
2432
2433/*
2434 * print_driver_id - print parameters of the driver build
2435 */
2436static void __init print_driver_id(void)
2437{
2438        pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2439        pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2440}
2441
2442static int __init bdx_module_init(void)
2443{
2444        ENTER;
2445        init_txd_sizes();
2446        print_driver_id();
2447        RET(pci_register_driver(&bdx_pci_driver));
2448}
2449
2450module_init(bdx_module_init);
2451
2452static void __exit bdx_module_exit(void)
2453{
2454        ENTER;
2455        pci_unregister_driver(&bdx_pci_driver);
2456        RET();
2457}
2458
2459module_exit(bdx_module_exit);
2460
2461MODULE_LICENSE("GPL");
2462MODULE_AUTHOR(DRIVER_AUTHOR);
2463MODULE_DESCRIPTION(BDX_DRV_DESC);
2464MODULE_FIRMWARE("tehuti/bdx.bin");
2465