linux/drivers/net/fddi/skfp/skfddi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * File Name:
   4 *   skfddi.c
   5 *
   6 * Copyright Information:
   7 *   Copyright SysKonnect 1998,1999.
   8 *
   9 * The information in this file is provided "AS IS" without warranty.
  10 *
  11 * Abstract:
  12 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
  13 *   familie.
  14 *
  15 * Maintainers:
  16 *   CG    Christoph Goos (cgoos@syskonnect.de)
  17 *
  18 * Contributors:
  19 *   DM    David S. Miller
  20 *
  21 * Address all question to:
  22 *   linux@syskonnect.de
  23 *
  24 * The technical manual for the adapters is available from SysKonnect's
  25 * web pages: www.syskonnect.com
  26 * Goto "Support" and search Knowledge Base for "manual".
  27 *
  28 * Driver Architecture:
  29 *   The driver architecture is based on the DEC FDDI driver by
  30 *   Lawrence V. Stefani and several ethernet drivers.
  31 *   I also used an existing Windows NT miniport driver.
  32 *   All hardware dependent functions are handled by the SysKonnect
  33 *   Hardware Module.
  34 *   The only headerfiles that are directly related to this source
  35 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
  36 *   The others belong to the SysKonnect FDDI Hardware Module and
  37 *   should better not be changed.
  38 *
  39 * Modification History:
  40 *              Date            Name    Description
  41 *              02-Mar-98       CG      Created.
  42 *
  43 *              10-Mar-99       CG      Support for 2.2.x added.
  44 *              25-Mar-99       CG      Corrected IRQ routing for SMP (APIC)
  45 *              26-Oct-99       CG      Fixed compilation error on 2.2.13
  46 *              12-Nov-99       CG      Source code release
  47 *              22-Nov-99       CG      Included in kernel source.
  48 *              07-May-00       DM      64 bit fixes, new dma interface
  49 *              31-Jul-03       DB      Audit copy_*_user in skfp_ioctl
  50 *                                        Daniele Bellucci <bellucda@tiscali.it>
  51 *              03-Dec-03       SH      Convert to PCI device model
  52 *
  53 * Compilation options (-Dxxx):
  54 *              DRIVERDEBUG     print lots of messages to log file
  55 *              DUMPPACKETS     print received/transmitted packets to logfile
  56 * 
  57 * Tested cpu architectures:
  58 *      - i386
  59 *      - sparc64
  60 */
  61
  62/* Version information string - should be updated prior to */
  63/* each new release!!! */
  64#define VERSION         "2.07"
  65
  66static const char * const boot_msg = 
  67        "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
  68        "  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
  69
  70/* Include files */
  71
  72#include <linux/capability.h>
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/errno.h>
  76#include <linux/ioport.h>
  77#include <linux/interrupt.h>
  78#include <linux/pci.h>
  79#include <linux/netdevice.h>
  80#include <linux/fddidevice.h>
  81#include <linux/skbuff.h>
  82#include <linux/bitops.h>
  83#include <linux/gfp.h>
  84
  85#include <asm/byteorder.h>
  86#include <asm/io.h>
  87#include <linux/uaccess.h>
  88
  89#include        "h/types.h"
  90#undef ADDR                     // undo Linux definition
  91#include        "h/skfbi.h"
  92#include        "h/fddi.h"
  93#include        "h/smc.h"
  94#include        "h/smtstate.h"
  95
  96
  97// Define module-wide (static) routines
  98static int skfp_driver_init(struct net_device *dev);
  99static int skfp_open(struct net_device *dev);
 100static int skfp_close(struct net_device *dev);
 101static irqreturn_t skfp_interrupt(int irq, void *dev_id);
 102static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
 103static void skfp_ctl_set_multicast_list(struct net_device *dev);
 104static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
 105static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
 106static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 107static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
 108                                       struct net_device *dev);
 109static void send_queued_packets(struct s_smc *smc);
 110static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
 111static void ResetAdapter(struct s_smc *smc);
 112
 113
 114// Functions needed by the hardware module
 115void *mac_drv_get_space(struct s_smc *smc, u_int size);
 116void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
 117unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
 118unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
 119void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
 120                  int flag);
 121void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
 122void llc_restart_tx(struct s_smc *smc);
 123void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 124                         int frag_count, int len);
 125void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 126                         int frag_count);
 127void mac_drv_fill_rxd(struct s_smc *smc);
 128void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 129                       int frag_count);
 130int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
 131                    int la_len);
 132void dump_data(unsigned char *Data, int length);
 133
 134// External functions from the hardware module
 135extern u_int mac_drv_check_space(void);
 136extern int mac_drv_init(struct s_smc *smc);
 137extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
 138                        int len, int frame_status);
 139extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
 140                       int frame_len, int frame_status);
 141extern void fddi_isr(struct s_smc *smc);
 142extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
 143                        int len, int frame_status);
 144extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
 145extern void mac_drv_clear_rx_queue(struct s_smc *smc);
 146extern void enable_tx_irq(struct s_smc *smc, u_short queue);
 147
 148static const struct pci_device_id skfddi_pci_tbl[] = {
 149        { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
 150        { }                     /* Terminating entry */
 151};
 152MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
 153MODULE_LICENSE("GPL");
 154MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
 155
 156// Define module-wide (static) variables
 157
 158static int num_boards;  /* total number of adapters configured */
 159
 160static const struct net_device_ops skfp_netdev_ops = {
 161        .ndo_open               = skfp_open,
 162        .ndo_stop               = skfp_close,
 163        .ndo_start_xmit         = skfp_send_pkt,
 164        .ndo_get_stats          = skfp_ctl_get_stats,
 165        .ndo_set_rx_mode        = skfp_ctl_set_multicast_list,
 166        .ndo_set_mac_address    = skfp_ctl_set_mac_address,
 167        .ndo_do_ioctl           = skfp_ioctl,
 168};
 169
 170/*
 171 * =================
 172 * = skfp_init_one =
 173 * =================
 174 *   
 175 * Overview:
 176 *   Probes for supported FDDI PCI controllers
 177 *  
 178 * Returns:
 179 *   Condition code
 180 *       
 181 * Arguments:
 182 *   pdev - pointer to PCI device information
 183 *
 184 * Functional Description:
 185 *   This is now called by PCI driver registration process
 186 *   for each board found.
 187 *   
 188 * Return Codes:
 189 *   0           - This device (fddi0, fddi1, etc) configured successfully
 190 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
 191 *                         present for this device name
 192 *
 193 *
 194 * Side Effects:
 195 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 196 *   initialized and the board resources are read and stored in
 197 *   the device structure.
 198 */
 199static int skfp_init_one(struct pci_dev *pdev,
 200                                const struct pci_device_id *ent)
 201{
 202        struct net_device *dev;
 203        struct s_smc *smc;      /* board pointer */
 204        void __iomem *mem;
 205        int err;
 206
 207        pr_debug("entering skfp_init_one\n");
 208
 209        if (num_boards == 0) 
 210                printk("%s\n", boot_msg);
 211
 212        err = pci_enable_device(pdev);
 213        if (err)
 214                return err;
 215
 216        err = pci_request_regions(pdev, "skfddi");
 217        if (err)
 218                goto err_out1;
 219
 220        pci_set_master(pdev);
 221
 222#ifdef MEM_MAPPED_IO
 223        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
 224                printk(KERN_ERR "skfp: region is not an MMIO resource\n");
 225                err = -EIO;
 226                goto err_out2;
 227        }
 228
 229        mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
 230#else
 231        if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
 232                printk(KERN_ERR "skfp: region is not PIO resource\n");
 233                err = -EIO;
 234                goto err_out2;
 235        }
 236
 237        mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
 238#endif
 239        if (!mem) {
 240                printk(KERN_ERR "skfp:  Unable to map register, "
 241                                "FDDI adapter will be disabled.\n");
 242                err = -EIO;
 243                goto err_out2;
 244        }
 245
 246        dev = alloc_fddidev(sizeof(struct s_smc));
 247        if (!dev) {
 248                printk(KERN_ERR "skfp: Unable to allocate fddi device, "
 249                                "FDDI adapter will be disabled.\n");
 250                err = -ENOMEM;
 251                goto err_out3;
 252        }
 253
 254        dev->irq = pdev->irq;
 255        dev->netdev_ops = &skfp_netdev_ops;
 256
 257        SET_NETDEV_DEV(dev, &pdev->dev);
 258
 259        /* Initialize board structure with bus-specific info */
 260        smc = netdev_priv(dev);
 261        smc->os.dev = dev;
 262        smc->os.bus_type = SK_BUS_TYPE_PCI;
 263        smc->os.pdev = *pdev;
 264        smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
 265        smc->os.MaxFrameSize = MAX_FRAME_SIZE;
 266        smc->os.dev = dev;
 267        smc->hw.slot = -1;
 268        smc->hw.iop = mem;
 269        smc->os.ResetRequested = FALSE;
 270        skb_queue_head_init(&smc->os.SendSkbQueue);
 271
 272        dev->base_addr = (unsigned long)mem;
 273
 274        err = skfp_driver_init(dev);
 275        if (err)
 276                goto err_out4;
 277
 278        err = register_netdev(dev);
 279        if (err)
 280                goto err_out5;
 281
 282        ++num_boards;
 283        pci_set_drvdata(pdev, dev);
 284
 285        if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
 286            (pdev->subsystem_device & 0xff00) == 0x5800) 
 287                printk("%s: SysKonnect FDDI PCI adapter"
 288                       " found (SK-%04X)\n", dev->name, 
 289                       pdev->subsystem_device);
 290        else
 291                printk("%s: FDDI PCI adapter found\n", dev->name);
 292
 293        return 0;
 294err_out5:
 295        if (smc->os.SharedMemAddr) 
 296                dma_free_coherent(&pdev->dev, smc->os.SharedMemSize,
 297                                  smc->os.SharedMemAddr,
 298                                  smc->os.SharedMemDMA);
 299        dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE,
 300                          smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
 301err_out4:
 302        free_netdev(dev);
 303err_out3:
 304#ifdef MEM_MAPPED_IO
 305        iounmap(mem);
 306#else
 307        ioport_unmap(mem);
 308#endif
 309err_out2:
 310        pci_release_regions(pdev);
 311err_out1:
 312        pci_disable_device(pdev);
 313        return err;
 314}
 315
 316/*
 317 * Called for each adapter board from pci_unregister_driver
 318 */
 319static void skfp_remove_one(struct pci_dev *pdev)
 320{
 321        struct net_device *p = pci_get_drvdata(pdev);
 322        struct s_smc *lp = netdev_priv(p);
 323
 324        unregister_netdev(p);
 325
 326        if (lp->os.SharedMemAddr) {
 327                dma_free_coherent(&pdev->dev,
 328                                  lp->os.SharedMemSize,
 329                                  lp->os.SharedMemAddr,
 330                                  lp->os.SharedMemDMA);
 331                lp->os.SharedMemAddr = NULL;
 332        }
 333        if (lp->os.LocalRxBuffer) {
 334                dma_free_coherent(&pdev->dev,
 335                                  MAX_FRAME_SIZE,
 336                                  lp->os.LocalRxBuffer,
 337                                  lp->os.LocalRxBufferDMA);
 338                lp->os.LocalRxBuffer = NULL;
 339        }
 340#ifdef MEM_MAPPED_IO
 341        iounmap(lp->hw.iop);
 342#else
 343        ioport_unmap(lp->hw.iop);
 344#endif
 345        pci_release_regions(pdev);
 346        free_netdev(p);
 347
 348        pci_disable_device(pdev);
 349}
 350
 351/*
 352 * ====================
 353 * = skfp_driver_init =
 354 * ====================
 355 *   
 356 * Overview:
 357 *   Initializes remaining adapter board structure information
 358 *   and makes sure adapter is in a safe state prior to skfp_open().
 359 *  
 360 * Returns:
 361 *   Condition code
 362 *       
 363 * Arguments:
 364 *   dev - pointer to device information
 365 *
 366 * Functional Description:
 367 *   This function allocates additional resources such as the host memory
 368 *   blocks needed by the adapter.
 369 *   The adapter is also reset. The OS must call skfp_open() to open 
 370 *   the adapter and bring it on-line.
 371 *
 372 * Return Codes:
 373 *    0 - initialization succeeded
 374 *   -1 - initialization failed
 375 */
 376static  int skfp_driver_init(struct net_device *dev)
 377{
 378        struct s_smc *smc = netdev_priv(dev);
 379        skfddi_priv *bp = &smc->os;
 380        int err = -EIO;
 381
 382        pr_debug("entering skfp_driver_init\n");
 383
 384        // set the io address in private structures
 385        bp->base_addr = dev->base_addr;
 386
 387        // Get the interrupt level from the PCI Configuration Table
 388        smc->hw.irq = dev->irq;
 389
 390        spin_lock_init(&bp->DriverLock);
 391        
 392        // Allocate invalid frame
 393        bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
 394                                               &bp->LocalRxBufferDMA,
 395                                               GFP_ATOMIC);
 396        if (!bp->LocalRxBuffer) {
 397                printk("could not allocate mem for ");
 398                printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
 399                goto fail;
 400        }
 401
 402        // Determine the required size of the 'shared' memory area.
 403        bp->SharedMemSize = mac_drv_check_space();
 404        pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
 405        if (bp->SharedMemSize > 0) {
 406                bp->SharedMemSize += 16;        // for descriptor alignment
 407
 408                bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev,
 409                                                       bp->SharedMemSize,
 410                                                       &bp->SharedMemDMA,
 411                                                       GFP_ATOMIC);
 412                if (!bp->SharedMemAddr) {
 413                        printk("could not allocate mem for ");
 414                        printk("hardware module: %ld byte\n",
 415                               bp->SharedMemSize);
 416                        goto fail;
 417                }
 418
 419        } else {
 420                bp->SharedMemAddr = NULL;
 421        }
 422
 423        bp->SharedMemHeap = 0;
 424
 425        card_stop(smc);         // Reset adapter.
 426
 427        pr_debug("mac_drv_init()..\n");
 428        if (mac_drv_init(smc) != 0) {
 429                pr_debug("mac_drv_init() failed\n");
 430                goto fail;
 431        }
 432        read_address(smc, NULL);
 433        pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
 434        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
 435
 436        smt_reset_defaults(smc, 0);
 437
 438        return 0;
 439
 440fail:
 441        if (bp->SharedMemAddr) {
 442                dma_free_coherent(&bp->pdev.dev,
 443                                  bp->SharedMemSize,
 444                                  bp->SharedMemAddr,
 445                                  bp->SharedMemDMA);
 446                bp->SharedMemAddr = NULL;
 447        }
 448        if (bp->LocalRxBuffer) {
 449                dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
 450                                  bp->LocalRxBuffer, bp->LocalRxBufferDMA);
 451                bp->LocalRxBuffer = NULL;
 452        }
 453        return err;
 454}                               // skfp_driver_init
 455
 456
 457/*
 458 * =============
 459 * = skfp_open =
 460 * =============
 461 *   
 462 * Overview:
 463 *   Opens the adapter
 464 *  
 465 * Returns:
 466 *   Condition code
 467 *       
 468 * Arguments:
 469 *   dev - pointer to device information
 470 *
 471 * Functional Description:
 472 *   This function brings the adapter to an operational state.
 473 *
 474 * Return Codes:
 475 *   0           - Adapter was successfully opened
 476 *   -EAGAIN - Could not register IRQ
 477 */
 478static int skfp_open(struct net_device *dev)
 479{
 480        struct s_smc *smc = netdev_priv(dev);
 481        int err;
 482
 483        pr_debug("entering skfp_open\n");
 484        /* Register IRQ - support shared interrupts by passing device ptr */
 485        err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
 486                          dev->name, dev);
 487        if (err)
 488                return err;
 489
 490        /*
 491         * Set current address to factory MAC address
 492         *
 493         * Note: We've already done this step in skfp_driver_init.
 494         *       However, it's possible that a user has set a node
 495         *               address override, then closed and reopened the
 496         *               adapter.  Unless we reset the device address field
 497         *               now, we'll continue to use the existing modified
 498         *               address.
 499         */
 500        read_address(smc, NULL);
 501        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
 502
 503        init_smt(smc, NULL);
 504        smt_online(smc, 1);
 505        STI_FBI();
 506
 507        /* Clear local multicast address tables */
 508        mac_clear_multicast(smc);
 509
 510        /* Disable promiscuous filter settings */
 511        mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 512
 513        netif_start_queue(dev);
 514        return 0;
 515}                               // skfp_open
 516
 517
 518/*
 519 * ==============
 520 * = skfp_close =
 521 * ==============
 522 *   
 523 * Overview:
 524 *   Closes the device/module.
 525 *  
 526 * Returns:
 527 *   Condition code
 528 *       
 529 * Arguments:
 530 *   dev - pointer to device information
 531 *
 532 * Functional Description:
 533 *   This routine closes the adapter and brings it to a safe state.
 534 *   The interrupt service routine is deregistered with the OS.
 535 *   The adapter can be opened again with another call to skfp_open().
 536 *
 537 * Return Codes:
 538 *   Always return 0.
 539 *
 540 * Assumptions:
 541 *   No further requests for this adapter are made after this routine is
 542 *   called.  skfp_open() can be called to reset and reinitialize the
 543 *   adapter.
 544 */
 545static int skfp_close(struct net_device *dev)
 546{
 547        struct s_smc *smc = netdev_priv(dev);
 548        skfddi_priv *bp = &smc->os;
 549
 550        CLI_FBI();
 551        smt_reset_defaults(smc, 1);
 552        card_stop(smc);
 553        mac_drv_clear_tx_queue(smc);
 554        mac_drv_clear_rx_queue(smc);
 555
 556        netif_stop_queue(dev);
 557        /* Deregister (free) IRQ */
 558        free_irq(dev->irq, dev);
 559
 560        skb_queue_purge(&bp->SendSkbQueue);
 561        bp->QueueSkb = MAX_TX_QUEUE_LEN;
 562
 563        return 0;
 564}                               // skfp_close
 565
 566
 567/*
 568 * ==================
 569 * = skfp_interrupt =
 570 * ==================
 571 *   
 572 * Overview:
 573 *   Interrupt processing routine
 574 *  
 575 * Returns:
 576 *   None
 577 *       
 578 * Arguments:
 579 *   irq        - interrupt vector
 580 *   dev_id     - pointer to device information
 581 *
 582 * Functional Description:
 583 *   This routine calls the interrupt processing routine for this adapter.  It
 584 *   disables and reenables adapter interrupts, as appropriate.  We can support
 585 *   shared interrupts since the incoming dev_id pointer provides our device
 586 *   structure context. All the real work is done in the hardware module.
 587 *
 588 * Return Codes:
 589 *   None
 590 *
 591 * Assumptions:
 592 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
 593 *   on Intel-based systems) is done by the operating system outside this
 594 *   routine.
 595 *
 596 *       System interrupts are enabled through this call.
 597 *
 598 * Side Effects:
 599 *   Interrupts are disabled, then reenabled at the adapter.
 600 */
 601
 602static irqreturn_t skfp_interrupt(int irq, void *dev_id)
 603{
 604        struct net_device *dev = dev_id;
 605        struct s_smc *smc;      /* private board structure pointer */
 606        skfddi_priv *bp;
 607
 608        smc = netdev_priv(dev);
 609        bp = &smc->os;
 610
 611        // IRQs enabled or disabled ?
 612        if (inpd(ADDR(B0_IMSK)) == 0) {
 613                // IRQs are disabled: must be shared interrupt
 614                return IRQ_NONE;
 615        }
 616        // Note: At this point, IRQs are enabled.
 617        if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {    // IRQ?
 618                // Adapter did not issue an IRQ: must be shared interrupt
 619                return IRQ_NONE;
 620        }
 621        CLI_FBI();              // Disable IRQs from our adapter.
 622        spin_lock(&bp->DriverLock);
 623
 624        // Call interrupt handler in hardware module (HWM).
 625        fddi_isr(smc);
 626
 627        if (smc->os.ResetRequested) {
 628                ResetAdapter(smc);
 629                smc->os.ResetRequested = FALSE;
 630        }
 631        spin_unlock(&bp->DriverLock);
 632        STI_FBI();              // Enable IRQs from our adapter.
 633
 634        return IRQ_HANDLED;
 635}                               // skfp_interrupt
 636
 637
 638/*
 639 * ======================
 640 * = skfp_ctl_get_stats =
 641 * ======================
 642 *   
 643 * Overview:
 644 *   Get statistics for FDDI adapter
 645 *  
 646 * Returns:
 647 *   Pointer to FDDI statistics structure
 648 *       
 649 * Arguments:
 650 *   dev - pointer to device information
 651 *
 652 * Functional Description:
 653 *   Gets current MIB objects from adapter, then
 654 *   returns FDDI statistics structure as defined
 655 *   in if_fddi.h.
 656 *
 657 *   Note: Since the FDDI statistics structure is
 658 *   still new and the device structure doesn't
 659 *   have an FDDI-specific get statistics handler,
 660 *   we'll return the FDDI statistics structure as
 661 *   a pointer to an Ethernet statistics structure.
 662 *   That way, at least the first part of the statistics
 663 *   structure can be decoded properly.
 664 *   We'll have to pay attention to this routine as the
 665 *   device structure becomes more mature and LAN media
 666 *   independent.
 667 *
 668 */
 669static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
 670{
 671        struct s_smc *bp = netdev_priv(dev);
 672
 673        /* Fill the bp->stats structure with driver-maintained counters */
 674
 675        bp->os.MacStat.port_bs_flag[0] = 0x1234;
 676        bp->os.MacStat.port_bs_flag[1] = 0x5678;
 677// goos: need to fill out fddi statistic
 678#if 0
 679        /* Get FDDI SMT MIB objects */
 680
 681/* Fill the bp->stats structure with the SMT MIB object values */
 682
 683        memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
 684        bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
 685        bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
 686        bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
 687        memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
 688        bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
 689        bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
 690        bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
 691        bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
 692        bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
 693        bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
 694        bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
 695        bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
 696        bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
 697        bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
 698        bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
 699        bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
 700        bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
 701        bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
 702        bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
 703        bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
 704        bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
 705        bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
 706        bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
 707        bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
 708        bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
 709        bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
 710        bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
 711        bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
 712        memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
 713        memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
 714        memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
 715        memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
 716        bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
 717        bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
 718        bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
 719        memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
 720        bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
 721        bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
 722        bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
 723        bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
 724        bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
 725        bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
 726        bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
 727        bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
 728        bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
 729        bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
 730        bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
 731        bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
 732        bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
 733        bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
 734        bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
 735        bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
 736        memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
 737        bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
 738        bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
 739        bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
 740        bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
 741        bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
 742        bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
 743        bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
 744        bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
 745        bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
 746        bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
 747        memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
 748        memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
 749        bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
 750        bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
 751        bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
 752        bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
 753        bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
 754        bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
 755        bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
 756        bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
 757        bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
 758        bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
 759        bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
 760        bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
 761        bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
 762        bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
 763        bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
 764        bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
 765        bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
 766        bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
 767        bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
 768        bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
 769        bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
 770        bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
 771        bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
 772        bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
 773        bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
 774        bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
 775
 776
 777        /* Fill the bp->stats structure with the FDDI counter values */
 778
 779        bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
 780        bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
 781        bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
 782        bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
 783        bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
 784        bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
 785        bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
 786        bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
 787        bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
 788        bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
 789        bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
 790
 791#endif
 792        return (struct net_device_stats *)&bp->os.MacStat;
 793}                               // ctl_get_stat
 794
 795
 796/*
 797 * ==============================
 798 * = skfp_ctl_set_multicast_list =
 799 * ==============================
 800 *   
 801 * Overview:
 802 *   Enable/Disable LLC frame promiscuous mode reception
 803 *   on the adapter and/or update multicast address table.
 804 *  
 805 * Returns:
 806 *   None
 807 *       
 808 * Arguments:
 809 *   dev - pointer to device information
 810 *
 811 * Functional Description:
 812 *   This function acquires the driver lock and only calls
 813 *   skfp_ctl_set_multicast_list_wo_lock then.
 814 *   This routine follows a fairly simple algorithm for setting the
 815 *   adapter filters and CAM:
 816 *
 817 *      if IFF_PROMISC flag is set
 818 *              enable promiscuous mode
 819 *      else
 820 *              disable promiscuous mode
 821 *              if number of multicast addresses <= max. multicast number
 822 *                      add mc addresses to adapter table
 823 *              else
 824 *                      enable promiscuous mode
 825 *              update adapter filters
 826 *
 827 * Assumptions:
 828 *   Multicast addresses are presented in canonical (LSB) format.
 829 *
 830 * Side Effects:
 831 *   On-board adapter filters are updated.
 832 */
 833static void skfp_ctl_set_multicast_list(struct net_device *dev)
 834{
 835        struct s_smc *smc = netdev_priv(dev);
 836        skfddi_priv *bp = &smc->os;
 837        unsigned long Flags;
 838
 839        spin_lock_irqsave(&bp->DriverLock, Flags);
 840        skfp_ctl_set_multicast_list_wo_lock(dev);
 841        spin_unlock_irqrestore(&bp->DriverLock, Flags);
 842}                               // skfp_ctl_set_multicast_list
 843
 844
 845
 846static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
 847{
 848        struct s_smc *smc = netdev_priv(dev);
 849        struct netdev_hw_addr *ha;
 850
 851        /* Enable promiscuous mode, if necessary */
 852        if (dev->flags & IFF_PROMISC) {
 853                mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
 854                pr_debug("PROMISCUOUS MODE ENABLED\n");
 855        }
 856        /* Else, update multicast address table */
 857        else {
 858                mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 859                pr_debug("PROMISCUOUS MODE DISABLED\n");
 860
 861                // Reset all MC addresses
 862                mac_clear_multicast(smc);
 863                mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
 864
 865                if (dev->flags & IFF_ALLMULTI) {
 866                        mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 867                        pr_debug("ENABLE ALL MC ADDRESSES\n");
 868                } else if (!netdev_mc_empty(dev)) {
 869                        if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
 870                                /* use exact filtering */
 871
 872                                // point to first multicast addr
 873                                netdev_for_each_mc_addr(ha, dev) {
 874                                        mac_add_multicast(smc,
 875                                                (struct fddi_addr *)ha->addr,
 876                                                1);
 877
 878                                        pr_debug("ENABLE MC ADDRESS: %pMF\n",
 879                                                 ha->addr);
 880                                }
 881
 882                        } else {        // more MC addresses than HW supports
 883
 884                                mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 885                                pr_debug("ENABLE ALL MC ADDRESSES\n");
 886                        }
 887                } else {        // no MC addresses
 888
 889                        pr_debug("DISABLE ALL MC ADDRESSES\n");
 890                }
 891
 892                /* Update adapter filters */
 893                mac_update_multicast(smc);
 894        }
 895}                               // skfp_ctl_set_multicast_list_wo_lock
 896
 897
 898/*
 899 * ===========================
 900 * = skfp_ctl_set_mac_address =
 901 * ===========================
 902 *   
 903 * Overview:
 904 *   set new mac address on adapter and update dev_addr field in device table.
 905 *  
 906 * Returns:
 907 *   None
 908 *       
 909 * Arguments:
 910 *   dev  - pointer to device information
 911 *   addr - pointer to sockaddr structure containing unicast address to set
 912 *
 913 * Assumptions:
 914 *   The address pointed to by addr->sa_data is a valid unicast
 915 *   address and is presented in canonical (LSB) format.
 916 */
 917static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
 918{
 919        struct s_smc *smc = netdev_priv(dev);
 920        struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
 921        skfddi_priv *bp = &smc->os;
 922        unsigned long Flags;
 923
 924
 925        memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
 926        spin_lock_irqsave(&bp->DriverLock, Flags);
 927        ResetAdapter(smc);
 928        spin_unlock_irqrestore(&bp->DriverLock, Flags);
 929
 930        return 0;               /* always return zero */
 931}                               // skfp_ctl_set_mac_address
 932
 933
 934/*
 935 * ==============
 936 * = skfp_ioctl =
 937 * ==============
 938 *   
 939 * Overview:
 940 *
 941 * Perform IOCTL call functions here. Some are privileged operations and the
 942 * effective uid is checked in those cases.
 943 *  
 944 * Returns:
 945 *   status value
 946 *   0 - success
 947 *   other - failure
 948 *       
 949 * Arguments:
 950 *   dev  - pointer to device information
 951 *   rq - pointer to ioctl request structure
 952 *   cmd - ?
 953 *
 954 */
 955
 956
 957static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 958{
 959        struct s_smc *smc = netdev_priv(dev);
 960        skfddi_priv *lp = &smc->os;
 961        struct s_skfp_ioctl ioc;
 962        int status = 0;
 963
 964        if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
 965                return -EFAULT;
 966
 967        switch (ioc.cmd) {
 968        case SKFP_GET_STATS:    /* Get the driver statistics */
 969                ioc.len = sizeof(lp->MacStat);
 970                status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
 971                                ? -EFAULT : 0;
 972                break;
 973        case SKFP_CLR_STATS:    /* Zero out the driver statistics */
 974                if (!capable(CAP_NET_ADMIN)) {
 975                        status = -EPERM;
 976                } else {
 977                        memset(&lp->MacStat, 0, sizeof(lp->MacStat));
 978                }
 979                break;
 980        default:
 981                printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
 982                status = -EOPNOTSUPP;
 983
 984        }                       // switch
 985
 986        return status;
 987}                               // skfp_ioctl
 988
 989
 990/*
 991 * =====================
 992 * = skfp_send_pkt     =
 993 * =====================
 994 *   
 995 * Overview:
 996 *   Queues a packet for transmission and try to transmit it.
 997 *  
 998 * Returns:
 999 *   Condition code
1000 *       
1001 * Arguments:
1002 *   skb - pointer to sk_buff to queue for transmission
1003 *   dev - pointer to device information
1004 *
1005 * Functional Description:
1006 *   Here we assume that an incoming skb transmit request
1007 *   is contained in a single physically contiguous buffer
1008 *   in which the virtual address of the start of packet
1009 *   (skb->data) can be converted to a physical address
1010 *   by using pci_map_single().
1011 *
1012 *   We have an internal queue for packets we can not send 
1013 *   immediately. Packets in this queue can be given to the 
1014 *   adapter if transmit buffers are freed.
1015 *
1016 *   We can't free the skb until after it's been DMA'd
1017 *   out by the adapter, so we'll keep it in the driver and
1018 *   return it in mac_drv_tx_complete.
1019 *
1020 * Return Codes:
1021 *   0 - driver has queued and/or sent packet
1022 *       1 - caller should requeue the sk_buff for later transmission
1023 *
1024 * Assumptions:
1025 *   The entire packet is stored in one physically
1026 *   contiguous buffer which is not cached and whose
1027 *   32-bit physical address can be determined.
1028 *
1029 *   It's vital that this routine is NOT reentered for the
1030 *   same board and that the OS is not in another section of
1031 *   code (eg. skfp_interrupt) for the same board on a
1032 *   different thread.
1033 *
1034 * Side Effects:
1035 *   None
1036 */
1037static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1038                                       struct net_device *dev)
1039{
1040        struct s_smc *smc = netdev_priv(dev);
1041        skfddi_priv *bp = &smc->os;
1042
1043        pr_debug("skfp_send_pkt\n");
1044
1045        /*
1046         * Verify that incoming transmit request is OK
1047         *
1048         * Note: The packet size check is consistent with other
1049         *               Linux device drivers, although the correct packet
1050         *               size should be verified before calling the
1051         *               transmit routine.
1052         */
1053
1054        if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1055                bp->MacStat.gen.tx_errors++;    /* bump error counter */
1056                // dequeue packets from xmt queue and send them
1057                netif_start_queue(dev);
1058                dev_kfree_skb(skb);
1059                return NETDEV_TX_OK;    /* return "success" */
1060        }
1061        if (bp->QueueSkb == 0) {        // return with tbusy set: queue full
1062
1063                netif_stop_queue(dev);
1064                return NETDEV_TX_BUSY;
1065        }
1066        bp->QueueSkb--;
1067        skb_queue_tail(&bp->SendSkbQueue, skb);
1068        send_queued_packets(netdev_priv(dev));
1069        if (bp->QueueSkb == 0) {
1070                netif_stop_queue(dev);
1071        }
1072        return NETDEV_TX_OK;
1073
1074}                               // skfp_send_pkt
1075
1076
1077/*
1078 * =======================
1079 * = send_queued_packets =
1080 * =======================
1081 *   
1082 * Overview:
1083 *   Send packets from the driver queue as long as there are some and
1084 *   transmit resources are available.
1085 *  
1086 * Returns:
1087 *   None
1088 *       
1089 * Arguments:
1090 *   smc - pointer to smc (adapter) structure
1091 *
1092 * Functional Description:
1093 *   Take a packet from queue if there is any. If not, then we are done.
1094 *   Check if there are resources to send the packet. If not, requeue it
1095 *   and exit. 
1096 *   Set packet descriptor flags and give packet to adapter.
1097 *   Check if any send resources can be freed (we do not use the
1098 *   transmit complete interrupt).
1099 */
1100static void send_queued_packets(struct s_smc *smc)
1101{
1102        skfddi_priv *bp = &smc->os;
1103        struct sk_buff *skb;
1104        unsigned char fc;
1105        int queue;
1106        struct s_smt_fp_txd *txd;       // Current TxD.
1107        dma_addr_t dma_address;
1108        unsigned long Flags;
1109
1110        int frame_status;       // HWM tx frame status.
1111
1112        pr_debug("send queued packets\n");
1113        for (;;) {
1114                // send first buffer from queue
1115                skb = skb_dequeue(&bp->SendSkbQueue);
1116
1117                if (!skb) {
1118                        pr_debug("queue empty\n");
1119                        return;
1120                }               // queue empty !
1121
1122                spin_lock_irqsave(&bp->DriverLock, Flags);
1123                fc = skb->data[0];
1124                queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1125#ifdef ESS
1126                // Check if the frame may/must be sent as a synchronous frame.
1127
1128                if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1129                        // It's an LLC frame.
1130                        if (!smc->ess.sync_bw_available)
1131                                fc &= ~FC_SYNC_BIT; // No bandwidth available.
1132
1133                        else {  // Bandwidth is available.
1134
1135                                if (smc->mib.fddiESSSynchTxMode) {
1136                                        // Send as sync. frame.
1137                                        fc |= FC_SYNC_BIT;
1138                                }
1139                        }
1140                }
1141#endif                          // ESS
1142                frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1143
1144                if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1145                        // Unable to send the frame.
1146
1147                        if ((frame_status & RING_DOWN) != 0) {
1148                                // Ring is down.
1149                                pr_debug("Tx attempt while ring down.\n");
1150                        } else if ((frame_status & OUT_OF_TXD) != 0) {
1151                                pr_debug("%s: out of TXDs.\n", bp->dev->name);
1152                        } else {
1153                                pr_debug("%s: out of transmit resources",
1154                                        bp->dev->name);
1155                        }
1156
1157                        // Note: We will retry the operation as soon as
1158                        // transmit resources become available.
1159                        skb_queue_head(&bp->SendSkbQueue, skb);
1160                        spin_unlock_irqrestore(&bp->DriverLock, Flags);
1161                        return; // Packet has been queued.
1162
1163                }               // if (unable to send frame)
1164
1165                bp->QueueSkb++; // one packet less in local queue
1166
1167                // source address in packet ?
1168                CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1169
1170                txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1171
1172                dma_address = pci_map_single(&bp->pdev, skb->data,
1173                                             skb->len, PCI_DMA_TODEVICE);
1174                if (frame_status & LAN_TX) {
1175                        txd->txd_os.skb = skb;                  // save skb
1176                        txd->txd_os.dma_addr = dma_address;     // save dma mapping
1177                }
1178                hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1179                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1180
1181                if (!(frame_status & LAN_TX)) {         // local only frame
1182                        pci_unmap_single(&bp->pdev, dma_address,
1183                                         skb->len, PCI_DMA_TODEVICE);
1184                        dev_kfree_skb_irq(skb);
1185                }
1186                spin_unlock_irqrestore(&bp->DriverLock, Flags);
1187        }                       // for
1188
1189        return;                 // never reached
1190
1191}                               // send_queued_packets
1192
1193
1194/************************
1195 * 
1196 * CheckSourceAddress
1197 *
1198 * Verify if the source address is set. Insert it if necessary.
1199 *
1200 ************************/
1201static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1202{
1203        unsigned char SRBit;
1204
1205        if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1206
1207                return;
1208        if ((unsigned short) frame[1 + 10] != 0)
1209                return;
1210        SRBit = frame[1 + 6] & 0x01;
1211        memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1212        frame[8] |= SRBit;
1213}                               // CheckSourceAddress
1214
1215
1216/************************
1217 *
1218 *      ResetAdapter
1219 *
1220 *      Reset the adapter and bring it back to operational mode.
1221 * Args
1222 *      smc - A pointer to the SMT context struct.
1223 * Out
1224 *      Nothing.
1225 *
1226 ************************/
1227static void ResetAdapter(struct s_smc *smc)
1228{
1229
1230        pr_debug("[fddi: ResetAdapter]\n");
1231
1232        // Stop the adapter.
1233
1234        card_stop(smc);         // Stop all activity.
1235
1236        // Clear the transmit and receive descriptor queues.
1237        mac_drv_clear_tx_queue(smc);
1238        mac_drv_clear_rx_queue(smc);
1239
1240        // Restart the adapter.
1241
1242        smt_reset_defaults(smc, 1);     // Initialize the SMT module.
1243
1244        init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1245
1246        smt_online(smc, 1);     // Insert into the ring again.
1247        STI_FBI();
1248
1249        // Restore original receive mode (multicasts, promiscuous, etc.).
1250        skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1251}                               // ResetAdapter
1252
1253
1254//--------------- functions called by hardware module ----------------
1255
1256/************************
1257 *
1258 *      llc_restart_tx
1259 *
1260 *      The hardware driver calls this routine when the transmit complete
1261 *      interrupt bits (end of frame) for the synchronous or asynchronous
1262 *      queue is set.
1263 *
1264 * NOTE The hardware driver calls this function also if no packets are queued.
1265 *      The routine must be able to handle this case.
1266 * Args
1267 *      smc - A pointer to the SMT context struct.
1268 * Out
1269 *      Nothing.
1270 *
1271 ************************/
1272void llc_restart_tx(struct s_smc *smc)
1273{
1274        skfddi_priv *bp = &smc->os;
1275
1276        pr_debug("[llc_restart_tx]\n");
1277
1278        // Try to send queued packets
1279        spin_unlock(&bp->DriverLock);
1280        send_queued_packets(smc);
1281        spin_lock(&bp->DriverLock);
1282        netif_start_queue(bp->dev);// system may send again if it was blocked
1283
1284}                               // llc_restart_tx
1285
1286
1287/************************
1288 *
1289 *      mac_drv_get_space
1290 *
1291 *      The hardware module calls this function to allocate the memory
1292 *      for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1293 * Args
1294 *      smc - A pointer to the SMT context struct.
1295 *
1296 *      size - Size of memory in bytes to allocate.
1297 * Out
1298 *      != 0    A pointer to the virtual address of the allocated memory.
1299 *      == 0    Allocation error.
1300 *
1301 ************************/
1302void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1303{
1304        void *virt;
1305
1306        pr_debug("mac_drv_get_space (%d bytes), ", size);
1307        virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1308
1309        if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1310                printk("Unexpected SMT memory size requested: %d\n", size);
1311                return NULL;
1312        }
1313        smc->os.SharedMemHeap += size;  // Move heap pointer.
1314
1315        pr_debug("mac_drv_get_space end\n");
1316        pr_debug("virt addr: %lx\n", (ulong) virt);
1317        pr_debug("bus  addr: %lx\n", (ulong)
1318               (smc->os.SharedMemDMA +
1319                ((char *) virt - (char *)smc->os.SharedMemAddr)));
1320        return virt;
1321}                               // mac_drv_get_space
1322
1323
1324/************************
1325 *
1326 *      mac_drv_get_desc_mem
1327 *
1328 *      This function is called by the hardware dependent module.
1329 *      It allocates the memory for the RxD and TxD descriptors.
1330 *
1331 *      This memory must be non-cached, non-movable and non-swappable.
1332 *      This memory should start at a physical page boundary.
1333 * Args
1334 *      smc - A pointer to the SMT context struct.
1335 *
1336 *      size - Size of memory in bytes to allocate.
1337 * Out
1338 *      != 0    A pointer to the virtual address of the allocated memory.
1339 *      == 0    Allocation error.
1340 *
1341 ************************/
1342void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1343{
1344
1345        char *virt;
1346
1347        pr_debug("mac_drv_get_desc_mem\n");
1348
1349        // Descriptor memory must be aligned on 16-byte boundary.
1350
1351        virt = mac_drv_get_space(smc, size);
1352
1353        size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1354        size = size % 16;
1355
1356        pr_debug("Allocate %u bytes alignment gap ", size);
1357        pr_debug("for descriptor memory.\n");
1358
1359        if (!mac_drv_get_space(smc, size)) {
1360                printk("fddi: Unable to align descriptor memory.\n");
1361                return NULL;
1362        }
1363        return virt + size;
1364}                               // mac_drv_get_desc_mem
1365
1366
1367/************************
1368 *
1369 *      mac_drv_virt2phys
1370 *
1371 *      Get the physical address of a given virtual address.
1372 * Args
1373 *      smc - A pointer to the SMT context struct.
1374 *
1375 *      virt - A (virtual) pointer into our 'shared' memory area.
1376 * Out
1377 *      Physical address of the given virtual address.
1378 *
1379 ************************/
1380unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1381{
1382        return smc->os.SharedMemDMA +
1383                ((char *) virt - (char *)smc->os.SharedMemAddr);
1384}                               // mac_drv_virt2phys
1385
1386
1387/************************
1388 *
1389 *      dma_master
1390 *
1391 *      The HWM calls this function, when the driver leads through a DMA
1392 *      transfer. If the OS-specific module must prepare the system hardware
1393 *      for the DMA transfer, it should do it in this function.
1394 *
1395 *      The hardware module calls this dma_master if it wants to send an SMT
1396 *      frame.  This means that the virt address passed in here is part of
1397 *      the 'shared' memory area.
1398 * Args
1399 *      smc - A pointer to the SMT context struct.
1400 *
1401 *      virt - The virtual address of the data.
1402 *
1403 *      len - The length in bytes of the data.
1404 *
1405 *      flag - Indicates the transmit direction and the buffer type:
1406 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1407 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1408 *              SMT_BUF (0x80)  SMT buffer
1409 *
1410 *      >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1411 * Out
1412 *      Returns the pyhsical address for the DMA transfer.
1413 *
1414 ************************/
1415u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1416{
1417        return smc->os.SharedMemDMA +
1418                ((char *) virt - (char *)smc->os.SharedMemAddr);
1419}                               // dma_master
1420
1421
1422/************************
1423 *
1424 *      dma_complete
1425 *
1426 *      The hardware module calls this routine when it has completed a DMA
1427 *      transfer. If the operating system dependent module has set up the DMA
1428 *      channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1429 *      the DMA channel.
1430 * Args
1431 *      smc - A pointer to the SMT context struct.
1432 *
1433 *      descr - A pointer to a TxD or RxD, respectively.
1434 *
1435 *      flag - Indicates the DMA transfer direction / SMT buffer:
1436 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1437 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1438 *              SMT_BUF (0x80)  SMT buffer (managed by HWM)
1439 * Out
1440 *      Nothing.
1441 *
1442 ************************/
1443void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1444{
1445        /* For TX buffers, there are two cases.  If it is an SMT transmit
1446         * buffer, there is nothing to do since we use consistent memory
1447         * for the 'shared' memory area.  The other case is for normal
1448         * transmit packets given to us by the networking stack, and in
1449         * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1450         * below.
1451         *
1452         * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1453         * because the hardware module is about to potentially look at
1454         * the contents of the buffer.  If we did not call the PCI DMA
1455         * unmap first, the hardware module could read inconsistent data.
1456         */
1457        if (flag & DMA_WR) {
1458                skfddi_priv *bp = &smc->os;
1459                volatile struct s_smt_fp_rxd *r = &descr->r;
1460
1461                /* If SKB is NULL, we used the local buffer. */
1462                if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1463                        int MaxFrameSize = bp->MaxFrameSize;
1464
1465                        pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1466                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1467                        r->rxd_os.dma_addr = 0;
1468                }
1469        }
1470}                               // dma_complete
1471
1472
1473/************************
1474 *
1475 *      mac_drv_tx_complete
1476 *
1477 *      Transmit of a packet is complete. Release the tx staging buffer.
1478 *
1479 * Args
1480 *      smc - A pointer to the SMT context struct.
1481 *
1482 *      txd - A pointer to the last TxD which is used by the frame.
1483 * Out
1484 *      Returns nothing.
1485 *
1486 ************************/
1487void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1488{
1489        struct sk_buff *skb;
1490
1491        pr_debug("entering mac_drv_tx_complete\n");
1492        // Check if this TxD points to a skb
1493
1494        if (!(skb = txd->txd_os.skb)) {
1495                pr_debug("TXD with no skb assigned.\n");
1496                return;
1497        }
1498        txd->txd_os.skb = NULL;
1499
1500        // release the DMA mapping
1501        pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1502                         skb->len, PCI_DMA_TODEVICE);
1503        txd->txd_os.dma_addr = 0;
1504
1505        smc->os.MacStat.gen.tx_packets++;       // Count transmitted packets.
1506        smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1507
1508        // free the skb
1509        dev_kfree_skb_irq(skb);
1510
1511        pr_debug("leaving mac_drv_tx_complete\n");
1512}                               // mac_drv_tx_complete
1513
1514
1515/************************
1516 *
1517 * dump packets to logfile
1518 *
1519 ************************/
1520#ifdef DUMPPACKETS
1521void dump_data(unsigned char *Data, int length)
1522{
1523        int i, j;
1524        unsigned char s[255], sh[10];
1525        if (length > 64) {
1526                length = 64;
1527        }
1528        printk(KERN_INFO "---Packet start---\n");
1529        for (i = 0, j = 0; i < length / 8; i++, j += 8)
1530                printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1531                       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1532                       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1533        strcpy(s, "");
1534        for (i = 0; i < length % 8; i++) {
1535                sprintf(sh, "%02x ", Data[j + i]);
1536                strcat(s, sh);
1537        }
1538        printk(KERN_INFO "%s\n", s);
1539        printk(KERN_INFO "------------------\n");
1540}                               // dump_data
1541#else
1542#define dump_data(data,len)
1543#endif                          // DUMPPACKETS
1544
1545/************************
1546 *
1547 *      mac_drv_rx_complete
1548 *
1549 *      The hardware module calls this function if an LLC frame is received
1550 *      in a receive buffer. Also the SMT, NSA, and directed beacon frames
1551 *      from the network will be passed to the LLC layer by this function
1552 *      if passing is enabled.
1553 *
1554 *      mac_drv_rx_complete forwards the frame to the LLC layer if it should
1555 *      be received. It also fills the RxD ring with new receive buffers if
1556 *      some can be queued.
1557 * Args
1558 *      smc - A pointer to the SMT context struct.
1559 *
1560 *      rxd - A pointer to the first RxD which is used by the receive frame.
1561 *
1562 *      frag_count - Count of RxDs used by the received frame.
1563 *
1564 *      len - Frame length.
1565 * Out
1566 *      Nothing.
1567 *
1568 ************************/
1569void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1570                         int frag_count, int len)
1571{
1572        skfddi_priv *bp = &smc->os;
1573        struct sk_buff *skb;
1574        unsigned char *virt, *cp;
1575        unsigned short ri;
1576        u_int RifLength;
1577
1578        pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1579        if (frag_count != 1) {  // This is not allowed to happen.
1580
1581                printk("fddi: Multi-fragment receive!\n");
1582                goto RequeueRxd;        // Re-use the given RXD(s).
1583
1584        }
1585        skb = rxd->rxd_os.skb;
1586        if (!skb) {
1587                pr_debug("No skb in rxd\n");
1588                smc->os.MacStat.gen.rx_errors++;
1589                goto RequeueRxd;
1590        }
1591        virt = skb->data;
1592
1593        // The DMA mapping was released in dma_complete above.
1594
1595        dump_data(skb->data, len);
1596
1597        /*
1598         * FDDI Frame format:
1599         * +-------+-------+-------+------------+--------+------------+
1600         * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1601         * +-------+-------+-------+------------+--------+------------+
1602         *
1603         * FC = Frame Control
1604         * DA = Destination Address
1605         * SA = Source Address
1606         * RIF = Routing Information Field
1607         * LLC = Logical Link Control
1608         */
1609
1610        // Remove Routing Information Field (RIF), if present.
1611
1612        if ((virt[1 + 6] & FDDI_RII) == 0)
1613                RifLength = 0;
1614        else {
1615                int n;
1616// goos: RIF removal has still to be tested
1617                pr_debug("RIF found\n");
1618                // Get RIF length from Routing Control (RC) field.
1619                cp = virt + FDDI_MAC_HDR_LEN;   // Point behind MAC header.
1620
1621                ri = ntohs(*((__be16 *) cp));
1622                RifLength = ri & FDDI_RCF_LEN_MASK;
1623                if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1624                        printk("fddi: Invalid RIF.\n");
1625                        goto RequeueRxd;        // Discard the frame.
1626
1627                }
1628                virt[1 + 6] &= ~FDDI_RII;       // Clear RII bit.
1629                // regions overlap
1630
1631                virt = cp + RifLength;
1632                for (n = FDDI_MAC_HDR_LEN; n; n--)
1633                        *--virt = *--cp;
1634                // adjust sbd->data pointer
1635                skb_pull(skb, RifLength);
1636                len -= RifLength;
1637                RifLength = 0;
1638        }
1639
1640        // Count statistics.
1641        smc->os.MacStat.gen.rx_packets++;       // Count indicated receive
1642                                                // packets.
1643        smc->os.MacStat.gen.rx_bytes+=len;      // Count bytes.
1644
1645        // virt points to header again
1646        if (virt[1] & 0x01) {   // Check group (multicast) bit.
1647
1648                smc->os.MacStat.gen.multicast++;
1649        }
1650
1651        // deliver frame to system
1652        rxd->rxd_os.skb = NULL;
1653        skb_trim(skb, len);
1654        skb->protocol = fddi_type_trans(skb, bp->dev);
1655
1656        netif_rx(skb);
1657
1658        HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1659        return;
1660
1661      RequeueRxd:
1662        pr_debug("Rx: re-queue RXD.\n");
1663        mac_drv_requeue_rxd(smc, rxd, frag_count);
1664        smc->os.MacStat.gen.rx_errors++;        // Count receive packets
1665                                                // not indicated.
1666
1667}                               // mac_drv_rx_complete
1668
1669
1670/************************
1671 *
1672 *      mac_drv_requeue_rxd
1673 *
1674 *      The hardware module calls this function to request the OS-specific
1675 *      module to queue the receive buffer(s) represented by the pointer
1676 *      to the RxD and the frag_count into the receive queue again. This
1677 *      buffer was filled with an invalid frame or an SMT frame.
1678 * Args
1679 *      smc - A pointer to the SMT context struct.
1680 *
1681 *      rxd - A pointer to the first RxD which is used by the receive frame.
1682 *
1683 *      frag_count - Count of RxDs used by the received frame.
1684 * Out
1685 *      Nothing.
1686 *
1687 ************************/
1688void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1689                         int frag_count)
1690{
1691        volatile struct s_smt_fp_rxd *next_rxd;
1692        volatile struct s_smt_fp_rxd *src_rxd;
1693        struct sk_buff *skb;
1694        int MaxFrameSize;
1695        unsigned char *v_addr;
1696        dma_addr_t b_addr;
1697
1698        if (frag_count != 1)    // This is not allowed to happen.
1699
1700                printk("fddi: Multi-fragment requeue!\n");
1701
1702        MaxFrameSize = smc->os.MaxFrameSize;
1703        src_rxd = rxd;
1704        for (; frag_count > 0; frag_count--) {
1705                next_rxd = src_rxd->rxd_next;
1706                rxd = HWM_GET_CURR_RXD(smc);
1707
1708                skb = src_rxd->rxd_os.skb;
1709                if (skb == NULL) {      // this should not happen
1710
1711                        pr_debug("Requeue with no skb in rxd!\n");
1712                        skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1713                        if (skb) {
1714                                // we got a skb
1715                                rxd->rxd_os.skb = skb;
1716                                skb_reserve(skb, 3);
1717                                skb_put(skb, MaxFrameSize);
1718                                v_addr = skb->data;
1719                                b_addr = pci_map_single(&smc->os.pdev,
1720                                                        v_addr,
1721                                                        MaxFrameSize,
1722                                                        PCI_DMA_FROMDEVICE);
1723                                rxd->rxd_os.dma_addr = b_addr;
1724                        } else {
1725                                // no skb available, use local buffer
1726                                pr_debug("Queueing invalid buffer!\n");
1727                                rxd->rxd_os.skb = NULL;
1728                                v_addr = smc->os.LocalRxBuffer;
1729                                b_addr = smc->os.LocalRxBufferDMA;
1730                        }
1731                } else {
1732                        // we use skb from old rxd
1733                        rxd->rxd_os.skb = skb;
1734                        v_addr = skb->data;
1735                        b_addr = pci_map_single(&smc->os.pdev,
1736                                                v_addr,
1737                                                MaxFrameSize,
1738                                                PCI_DMA_FROMDEVICE);
1739                        rxd->rxd_os.dma_addr = b_addr;
1740                }
1741                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1742                            FIRST_FRAG | LAST_FRAG);
1743
1744                src_rxd = next_rxd;
1745        }
1746}                               // mac_drv_requeue_rxd
1747
1748
1749/************************
1750 *
1751 *      mac_drv_fill_rxd
1752 *
1753 *      The hardware module calls this function at initialization time
1754 *      to fill the RxD ring with receive buffers. It is also called by
1755 *      mac_drv_rx_complete if rx_free is large enough to queue some new
1756 *      receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1757 *      receive buffers as long as enough RxDs and receive buffers are
1758 *      available.
1759 * Args
1760 *      smc - A pointer to the SMT context struct.
1761 * Out
1762 *      Nothing.
1763 *
1764 ************************/
1765void mac_drv_fill_rxd(struct s_smc *smc)
1766{
1767        int MaxFrameSize;
1768        unsigned char *v_addr;
1769        unsigned long b_addr;
1770        struct sk_buff *skb;
1771        volatile struct s_smt_fp_rxd *rxd;
1772
1773        pr_debug("entering mac_drv_fill_rxd\n");
1774
1775        // Walk through the list of free receive buffers, passing receive
1776        // buffers to the HWM as long as RXDs are available.
1777
1778        MaxFrameSize = smc->os.MaxFrameSize;
1779        // Check if there is any RXD left.
1780        while (HWM_GET_RX_FREE(smc) > 0) {
1781                pr_debug(".\n");
1782
1783                rxd = HWM_GET_CURR_RXD(smc);
1784                skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1785                if (skb) {
1786                        // we got a skb
1787                        skb_reserve(skb, 3);
1788                        skb_put(skb, MaxFrameSize);
1789                        v_addr = skb->data;
1790                        b_addr = pci_map_single(&smc->os.pdev,
1791                                                v_addr,
1792                                                MaxFrameSize,
1793                                                PCI_DMA_FROMDEVICE);
1794                        rxd->rxd_os.dma_addr = b_addr;
1795                } else {
1796                        // no skb available, use local buffer
1797                        // System has run out of buffer memory, but we want to
1798                        // keep the receiver running in hope of better times.
1799                        // Multiple descriptors may point to this local buffer,
1800                        // so data in it must be considered invalid.
1801                        pr_debug("Queueing invalid buffer!\n");
1802                        v_addr = smc->os.LocalRxBuffer;
1803                        b_addr = smc->os.LocalRxBufferDMA;
1804                }
1805
1806                rxd->rxd_os.skb = skb;
1807
1808                // Pass receive buffer to HWM.
1809                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1810                            FIRST_FRAG | LAST_FRAG);
1811        }
1812        pr_debug("leaving mac_drv_fill_rxd\n");
1813}                               // mac_drv_fill_rxd
1814
1815
1816/************************
1817 *
1818 *      mac_drv_clear_rxd
1819 *
1820 *      The hardware module calls this function to release unused
1821 *      receive buffers.
1822 * Args
1823 *      smc - A pointer to the SMT context struct.
1824 *
1825 *      rxd - A pointer to the first RxD which is used by the receive buffer.
1826 *
1827 *      frag_count - Count of RxDs used by the receive buffer.
1828 * Out
1829 *      Nothing.
1830 *
1831 ************************/
1832void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1833                       int frag_count)
1834{
1835
1836        struct sk_buff *skb;
1837
1838        pr_debug("entering mac_drv_clear_rxd\n");
1839
1840        if (frag_count != 1)    // This is not allowed to happen.
1841
1842                printk("fddi: Multi-fragment clear!\n");
1843
1844        for (; frag_count > 0; frag_count--) {
1845                skb = rxd->rxd_os.skb;
1846                if (skb != NULL) {
1847                        skfddi_priv *bp = &smc->os;
1848                        int MaxFrameSize = bp->MaxFrameSize;
1849
1850                        pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1851                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1852
1853                        dev_kfree_skb(skb);
1854                        rxd->rxd_os.skb = NULL;
1855                }
1856                rxd = rxd->rxd_next;    // Next RXD.
1857
1858        }
1859}                               // mac_drv_clear_rxd
1860
1861
1862/************************
1863 *
1864 *      mac_drv_rx_init
1865 *
1866 *      The hardware module calls this routine when an SMT or NSA frame of the
1867 *      local SMT should be delivered to the LLC layer.
1868 *
1869 *      It is necessary to have this function, because there is no other way to
1870 *      copy the contents of SMT MBufs into receive buffers.
1871 *
1872 *      mac_drv_rx_init allocates the required target memory for this frame,
1873 *      and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1874 * Args
1875 *      smc - A pointer to the SMT context struct.
1876 *
1877 *      len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1878 *
1879 *      fc - The Frame Control field of the received frame.
1880 *
1881 *      look_ahead - A pointer to the lookahead data buffer (may be NULL).
1882 *
1883 *      la_len - The length of the lookahead data stored in the lookahead
1884 *      buffer (may be zero).
1885 * Out
1886 *      Always returns zero (0).
1887 *
1888 ************************/
1889int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1890                    char *look_ahead, int la_len)
1891{
1892        struct sk_buff *skb;
1893
1894        pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1895
1896        // "Received" a SMT or NSA frame of the local SMT.
1897
1898        if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1899                pr_debug("fddi: Discard invalid local SMT frame\n");
1900                pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1901                       len, la_len, (unsigned long) look_ahead);
1902                return 0;
1903        }
1904        skb = alloc_skb(len + 3, GFP_ATOMIC);
1905        if (!skb) {
1906                pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1907                return 0;
1908        }
1909        skb_reserve(skb, 3);
1910        skb_put(skb, len);
1911        skb_copy_to_linear_data(skb, look_ahead, len);
1912
1913        // deliver frame to system
1914        skb->protocol = fddi_type_trans(skb, smc->os.dev);
1915        netif_rx(skb);
1916
1917        return 0;
1918}                               // mac_drv_rx_init
1919
1920
1921/************************
1922 *
1923 *      smt_timer_poll
1924 *
1925 *      This routine is called periodically by the SMT module to clean up the
1926 *      driver.
1927 *
1928 *      Return any queued frames back to the upper protocol layers if the ring
1929 *      is down.
1930 * Args
1931 *      smc - A pointer to the SMT context struct.
1932 * Out
1933 *      Nothing.
1934 *
1935 ************************/
1936void smt_timer_poll(struct s_smc *smc)
1937{
1938}                               // smt_timer_poll
1939
1940
1941/************************
1942 *
1943 *      ring_status_indication
1944 *
1945 *      This function indicates a change of the ring state.
1946 * Args
1947 *      smc - A pointer to the SMT context struct.
1948 *
1949 *      status - The current ring status.
1950 * Out
1951 *      Nothing.
1952 *
1953 ************************/
1954void ring_status_indication(struct s_smc *smc, u_long status)
1955{
1956        pr_debug("ring_status_indication( ");
1957        if (status & RS_RES15)
1958                pr_debug("RS_RES15 ");
1959        if (status & RS_HARDERROR)
1960                pr_debug("RS_HARDERROR ");
1961        if (status & RS_SOFTERROR)
1962                pr_debug("RS_SOFTERROR ");
1963        if (status & RS_BEACON)
1964                pr_debug("RS_BEACON ");
1965        if (status & RS_PATHTEST)
1966                pr_debug("RS_PATHTEST ");
1967        if (status & RS_SELFTEST)
1968                pr_debug("RS_SELFTEST ");
1969        if (status & RS_RES9)
1970                pr_debug("RS_RES9 ");
1971        if (status & RS_DISCONNECT)
1972                pr_debug("RS_DISCONNECT ");
1973        if (status & RS_RES7)
1974                pr_debug("RS_RES7 ");
1975        if (status & RS_DUPADDR)
1976                pr_debug("RS_DUPADDR ");
1977        if (status & RS_NORINGOP)
1978                pr_debug("RS_NORINGOP ");
1979        if (status & RS_VERSION)
1980                pr_debug("RS_VERSION ");
1981        if (status & RS_STUCKBYPASSS)
1982                pr_debug("RS_STUCKBYPASSS ");
1983        if (status & RS_EVENT)
1984                pr_debug("RS_EVENT ");
1985        if (status & RS_RINGOPCHANGE)
1986                pr_debug("RS_RINGOPCHANGE ");
1987        if (status & RS_RES0)
1988                pr_debug("RS_RES0 ");
1989        pr_debug("]\n");
1990}                               // ring_status_indication
1991
1992
1993/************************
1994 *
1995 *      smt_get_time
1996 *
1997 *      Gets the current time from the system.
1998 * Args
1999 *      None.
2000 * Out
2001 *      The current time in TICKS_PER_SECOND.
2002 *
2003 *      TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2004 *      defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2005 *      to the time returned by smt_get_time().
2006 *
2007 ************************/
2008unsigned long smt_get_time(void)
2009{
2010        return jiffies;
2011}                               // smt_get_time
2012
2013
2014/************************
2015 *
2016 *      smt_stat_counter
2017 *
2018 *      Status counter update (ring_op, fifo full).
2019 * Args
2020 *      smc - A pointer to the SMT context struct.
2021 *
2022 *      stat -  = 0: A ring operational change occurred.
2023 *              = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2024 * Out
2025 *      Nothing.
2026 *
2027 ************************/
2028void smt_stat_counter(struct s_smc *smc, int stat)
2029{
2030//      BOOLEAN RingIsUp ;
2031
2032        pr_debug("smt_stat_counter\n");
2033        switch (stat) {
2034        case 0:
2035                pr_debug("Ring operational change.\n");
2036                break;
2037        case 1:
2038                pr_debug("Receive fifo overflow.\n");
2039                smc->os.MacStat.gen.rx_errors++;
2040                break;
2041        default:
2042                pr_debug("Unknown status (%d).\n", stat);
2043                break;
2044        }
2045}                               // smt_stat_counter
2046
2047
2048/************************
2049 *
2050 *      cfm_state_change
2051 *
2052 *      Sets CFM state in custom statistics.
2053 * Args
2054 *      smc - A pointer to the SMT context struct.
2055 *
2056 *      c_state - Possible values are:
2057 *
2058 *              EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2059 *              EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2060 * Out
2061 *      Nothing.
2062 *
2063 ************************/
2064void cfm_state_change(struct s_smc *smc, int c_state)
2065{
2066#ifdef DRIVERDEBUG
2067        char *s;
2068
2069        switch (c_state) {
2070        case SC0_ISOLATED:
2071                s = "SC0_ISOLATED";
2072                break;
2073        case SC1_WRAP_A:
2074                s = "SC1_WRAP_A";
2075                break;
2076        case SC2_WRAP_B:
2077                s = "SC2_WRAP_B";
2078                break;
2079        case SC4_THRU_A:
2080                s = "SC4_THRU_A";
2081                break;
2082        case SC5_THRU_B:
2083                s = "SC5_THRU_B";
2084                break;
2085        case SC7_WRAP_S:
2086                s = "SC7_WRAP_S";
2087                break;
2088        case SC9_C_WRAP_A:
2089                s = "SC9_C_WRAP_A";
2090                break;
2091        case SC10_C_WRAP_B:
2092                s = "SC10_C_WRAP_B";
2093                break;
2094        case SC11_C_WRAP_S:
2095                s = "SC11_C_WRAP_S";
2096                break;
2097        default:
2098                pr_debug("cfm_state_change: unknown %d\n", c_state);
2099                return;
2100        }
2101        pr_debug("cfm_state_change: %s\n", s);
2102#endif                          // DRIVERDEBUG
2103}                               // cfm_state_change
2104
2105
2106/************************
2107 *
2108 *      ecm_state_change
2109 *
2110 *      Sets ECM state in custom statistics.
2111 * Args
2112 *      smc - A pointer to the SMT context struct.
2113 *
2114 *      e_state - Possible values are:
2115 *
2116 *              SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2117 *              SC5_THRU_B (7), SC7_WRAP_S (8)
2118 * Out
2119 *      Nothing.
2120 *
2121 ************************/
2122void ecm_state_change(struct s_smc *smc, int e_state)
2123{
2124#ifdef DRIVERDEBUG
2125        char *s;
2126
2127        switch (e_state) {
2128        case EC0_OUT:
2129                s = "EC0_OUT";
2130                break;
2131        case EC1_IN:
2132                s = "EC1_IN";
2133                break;
2134        case EC2_TRACE:
2135                s = "EC2_TRACE";
2136                break;
2137        case EC3_LEAVE:
2138                s = "EC3_LEAVE";
2139                break;
2140        case EC4_PATH_TEST:
2141                s = "EC4_PATH_TEST";
2142                break;
2143        case EC5_INSERT:
2144                s = "EC5_INSERT";
2145                break;
2146        case EC6_CHECK:
2147                s = "EC6_CHECK";
2148                break;
2149        case EC7_DEINSERT:
2150                s = "EC7_DEINSERT";
2151                break;
2152        default:
2153                s = "unknown";
2154                break;
2155        }
2156        pr_debug("ecm_state_change: %s\n", s);
2157#endif                          //DRIVERDEBUG
2158}                               // ecm_state_change
2159
2160
2161/************************
2162 *
2163 *      rmt_state_change
2164 *
2165 *      Sets RMT state in custom statistics.
2166 * Args
2167 *      smc - A pointer to the SMT context struct.
2168 *
2169 *      r_state - Possible values are:
2170 *
2171 *              RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2172 *              RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2173 * Out
2174 *      Nothing.
2175 *
2176 ************************/
2177void rmt_state_change(struct s_smc *smc, int r_state)
2178{
2179#ifdef DRIVERDEBUG
2180        char *s;
2181
2182        switch (r_state) {
2183        case RM0_ISOLATED:
2184                s = "RM0_ISOLATED";
2185                break;
2186        case RM1_NON_OP:
2187                s = "RM1_NON_OP - not operational";
2188                break;
2189        case RM2_RING_OP:
2190                s = "RM2_RING_OP - ring operational";
2191                break;
2192        case RM3_DETECT:
2193                s = "RM3_DETECT - detect dupl addresses";
2194                break;
2195        case RM4_NON_OP_DUP:
2196                s = "RM4_NON_OP_DUP - dupl. addr detected";
2197                break;
2198        case RM5_RING_OP_DUP:
2199                s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2200                break;
2201        case RM6_DIRECTED:
2202                s = "RM6_DIRECTED - sending directed beacons";
2203                break;
2204        case RM7_TRACE:
2205                s = "RM7_TRACE - trace initiated";
2206                break;
2207        default:
2208                s = "unknown";
2209                break;
2210        }
2211        pr_debug("[rmt_state_change: %s]\n", s);
2212#endif                          // DRIVERDEBUG
2213}                               // rmt_state_change
2214
2215
2216/************************
2217 *
2218 *      drv_reset_indication
2219 *
2220 *      This function is called by the SMT when it has detected a severe
2221 *      hardware problem. The driver should perform a reset on the adapter
2222 *      as soon as possible, but not from within this function.
2223 * Args
2224 *      smc - A pointer to the SMT context struct.
2225 * Out
2226 *      Nothing.
2227 *
2228 ************************/
2229void drv_reset_indication(struct s_smc *smc)
2230{
2231        pr_debug("entering drv_reset_indication\n");
2232
2233        smc->os.ResetRequested = TRUE;  // Set flag.
2234
2235}                               // drv_reset_indication
2236
2237static struct pci_driver skfddi_pci_driver = {
2238        .name           = "skfddi",
2239        .id_table       = skfddi_pci_tbl,
2240        .probe          = skfp_init_one,
2241        .remove         = skfp_remove_one,
2242};
2243
2244module_pci_driver(skfddi_pci_driver);
2245