linux/drivers/net/hamradio/6pack.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * 6pack.c      This module implements the 6pack protocol for kernel-based
   4 *              devices like TTY. It interfaces between a raw TTY and the
   5 *              kernel's AX.25 protocol layers.
   6 *
   7 * Authors:     Andreas Könsgen <ajk@comnets.uni-bremen.de>
   8 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   9 *
  10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  11 *
  12 *              Laurence Culhane, <loz@holmes.demon.co.uk>
  13 *              Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/bitops.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/interrupt.h>
  22#include <linux/in.h>
  23#include <linux/tty.h>
  24#include <linux/errno.h>
  25#include <linux/netdevice.h>
  26#include <linux/timer.h>
  27#include <linux/slab.h>
  28#include <net/ax25.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/rtnetlink.h>
  32#include <linux/spinlock.h>
  33#include <linux/if_arp.h>
  34#include <linux/init.h>
  35#include <linux/ip.h>
  36#include <linux/tcp.h>
  37#include <linux/semaphore.h>
  38#include <linux/refcount.h>
  39
  40#define SIXPACK_VERSION    "Revision: 0.3.0"
  41
  42/* sixpack priority commands */
  43#define SIXP_SEOF               0x40    /* start and end of a 6pack frame */
  44#define SIXP_TX_URUN            0x48    /* transmit overrun */
  45#define SIXP_RX_ORUN            0x50    /* receive overrun */
  46#define SIXP_RX_BUF_OVL         0x58    /* receive buffer overflow */
  47
  48#define SIXP_CHKSUM             0xFF    /* valid checksum of a 6pack frame */
  49
  50/* masks to get certain bits out of the status bytes sent by the TNC */
  51
  52#define SIXP_CMD_MASK           0xC0
  53#define SIXP_CHN_MASK           0x07
  54#define SIXP_PRIO_CMD_MASK      0x80
  55#define SIXP_STD_CMD_MASK       0x40
  56#define SIXP_PRIO_DATA_MASK     0x38
  57#define SIXP_TX_MASK            0x20
  58#define SIXP_RX_MASK            0x10
  59#define SIXP_RX_DCD_MASK        0x18
  60#define SIXP_LEDS_ON            0x78
  61#define SIXP_LEDS_OFF           0x60
  62#define SIXP_CON                0x08
  63#define SIXP_STA                0x10
  64
  65#define SIXP_FOUND_TNC          0xe9
  66#define SIXP_CON_ON             0x68
  67#define SIXP_DCD_MASK           0x08
  68#define SIXP_DAMA_OFF           0
  69
  70/* default level 2 parameters */
  71#define SIXP_TXDELAY                    (HZ/4)  /* in 1 s */
  72#define SIXP_PERSIST                    50      /* in 256ths */
  73#define SIXP_SLOTTIME                   (HZ/10) /* in 1 s */
  74#define SIXP_INIT_RESYNC_TIMEOUT        (3*HZ/2) /* in 1 s */
  75#define SIXP_RESYNC_TIMEOUT             5*HZ    /* in 1 s */
  76
  77/* 6pack configuration. */
  78#define SIXP_NRUNIT                     31      /* MAX number of 6pack channels */
  79#define SIXP_MTU                        256     /* Default MTU */
  80
  81enum sixpack_flags {
  82        SIXPF_ERROR,    /* Parity, etc. error   */
  83};
  84
  85struct sixpack {
  86        /* Various fields. */
  87        struct tty_struct       *tty;           /* ptr to TTY structure */
  88        struct net_device       *dev;           /* easy for intr handling  */
  89
  90        /* These are pointers to the malloc()ed frame buffers. */
  91        unsigned char           *rbuff;         /* receiver buffer      */
  92        int                     rcount;         /* received chars counter  */
  93        unsigned char           *xbuff;         /* transmitter buffer   */
  94        unsigned char           *xhead;         /* next byte to XMIT */
  95        int                     xleft;          /* bytes left in XMIT queue  */
  96
  97        unsigned char           raw_buf[4];
  98        unsigned char           cooked_buf[400];
  99
 100        unsigned int            rx_count;
 101        unsigned int            rx_count_cooked;
 102
 103        int                     mtu;            /* Our mtu (to spot changes!) */
 104        int                     buffsize;       /* Max buffers sizes */
 105
 106        unsigned long           flags;          /* Flag values/ mode etc */
 107        unsigned char           mode;           /* 6pack mode */
 108
 109        /* 6pack stuff */
 110        unsigned char           tx_delay;
 111        unsigned char           persistence;
 112        unsigned char           slottime;
 113        unsigned char           duplex;
 114        unsigned char           led_state;
 115        unsigned char           status;
 116        unsigned char           status1;
 117        unsigned char           status2;
 118        unsigned char           tx_enable;
 119        unsigned char           tnc_state;
 120
 121        struct timer_list       tx_t;
 122        struct timer_list       resync_t;
 123        refcount_t              refcnt;
 124        struct completion       dead;
 125        spinlock_t              lock;
 126};
 127
 128#define AX25_6PACK_HEADER_LEN 0
 129
 130static void sixpack_decode(struct sixpack *, const unsigned char[], int);
 131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 132
 133/*
 134 * Perform the persistence/slottime algorithm for CSMA access. If the
 135 * persistence check was successful, write the data to the serial driver.
 136 * Note that in case of DAMA operation, the data is not sent here.
 137 */
 138
 139static void sp_xmit_on_air(struct timer_list *t)
 140{
 141        struct sixpack *sp = from_timer(sp, t, tx_t);
 142        int actual, when = sp->slottime;
 143        static unsigned char random;
 144
 145        random = random * 17 + 41;
 146
 147        if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 148                sp->led_state = 0x70;
 149                sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 150                sp->tx_enable = 1;
 151                actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 152                sp->xleft -= actual;
 153                sp->xhead += actual;
 154                sp->led_state = 0x60;
 155                sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 156                sp->status2 = 0;
 157        } else
 158                mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 159}
 160
 161/* ----> 6pack timer interrupt handler and friends. <---- */
 162
 163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 165{
 166        unsigned char *msg, *p = icp;
 167        int actual, count;
 168
 169        if (len > sp->mtu) {    /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 170                msg = "oversized transmit packet!";
 171                goto out_drop;
 172        }
 173
 174        if (len > sp->mtu) {    /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 175                msg = "oversized transmit packet!";
 176                goto out_drop;
 177        }
 178
 179        if (p[0] > 5) {
 180                msg = "invalid KISS command";
 181                goto out_drop;
 182        }
 183
 184        if ((p[0] != 0) && (len > 2)) {
 185                msg = "KISS control packet too long";
 186                goto out_drop;
 187        }
 188
 189        if ((p[0] == 0) && (len < 15)) {
 190                msg = "bad AX.25 packet to transmit";
 191                goto out_drop;
 192        }
 193
 194        count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 195        set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 196
 197        switch (p[0]) {
 198        case 1: sp->tx_delay = p[1];
 199                return;
 200        case 2: sp->persistence = p[1];
 201                return;
 202        case 3: sp->slottime = p[1];
 203                return;
 204        case 4: /* ignored */
 205                return;
 206        case 5: sp->duplex = p[1];
 207                return;
 208        }
 209
 210        if (p[0] != 0)
 211                return;
 212
 213        /*
 214         * In case of fullduplex or DAMA operation, we don't take care about the
 215         * state of the DCD or of any timers, as the determination of the
 216         * correct time to send is the job of the AX.25 layer. We send
 217         * immediately after data has arrived.
 218         */
 219        if (sp->duplex == 1) {
 220                sp->led_state = 0x70;
 221                sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 222                sp->tx_enable = 1;
 223                actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 224                sp->xleft = count - actual;
 225                sp->xhead = sp->xbuff + actual;
 226                sp->led_state = 0x60;
 227                sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 228        } else {
 229                sp->xleft = count;
 230                sp->xhead = sp->xbuff;
 231                sp->status2 = count;
 232                sp_xmit_on_air(&sp->tx_t);
 233        }
 234
 235        return;
 236
 237out_drop:
 238        sp->dev->stats.tx_dropped++;
 239        netif_start_queue(sp->dev);
 240        if (net_ratelimit())
 241                printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 242}
 243
 244/* Encapsulate an IP datagram and kick it into a TTY queue. */
 245
 246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 247{
 248        struct sixpack *sp = netdev_priv(dev);
 249
 250        if (skb->protocol == htons(ETH_P_IP))
 251                return ax25_ip_xmit(skb);
 252
 253        spin_lock_bh(&sp->lock);
 254        /* We were not busy, so we are now... :-) */
 255        netif_stop_queue(dev);
 256        dev->stats.tx_bytes += skb->len;
 257        sp_encaps(sp, skb->data, skb->len);
 258        spin_unlock_bh(&sp->lock);
 259
 260        dev_kfree_skb(skb);
 261
 262        return NETDEV_TX_OK;
 263}
 264
 265static int sp_open_dev(struct net_device *dev)
 266{
 267        struct sixpack *sp = netdev_priv(dev);
 268
 269        if (sp->tty == NULL)
 270                return -ENODEV;
 271        return 0;
 272}
 273
 274/* Close the low-level part of the 6pack channel. */
 275static int sp_close(struct net_device *dev)
 276{
 277        struct sixpack *sp = netdev_priv(dev);
 278
 279        spin_lock_bh(&sp->lock);
 280        if (sp->tty) {
 281                /* TTY discipline is running. */
 282                clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 283        }
 284        netif_stop_queue(dev);
 285        spin_unlock_bh(&sp->lock);
 286
 287        return 0;
 288}
 289
 290static int sp_set_mac_address(struct net_device *dev, void *addr)
 291{
 292        struct sockaddr_ax25 *sa = addr;
 293
 294        netif_tx_lock_bh(dev);
 295        netif_addr_lock(dev);
 296        memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 297        netif_addr_unlock(dev);
 298        netif_tx_unlock_bh(dev);
 299
 300        return 0;
 301}
 302
 303static const struct net_device_ops sp_netdev_ops = {
 304        .ndo_open               = sp_open_dev,
 305        .ndo_stop               = sp_close,
 306        .ndo_start_xmit         = sp_xmit,
 307        .ndo_set_mac_address    = sp_set_mac_address,
 308};
 309
 310static void sp_setup(struct net_device *dev)
 311{
 312        /* Finish setting up the DEVICE info. */
 313        dev->netdev_ops         = &sp_netdev_ops;
 314        dev->needs_free_netdev  = true;
 315        dev->mtu                = SIXP_MTU;
 316        dev->hard_header_len    = AX25_MAX_HEADER_LEN;
 317        dev->header_ops         = &ax25_header_ops;
 318
 319        dev->addr_len           = AX25_ADDR_LEN;
 320        dev->type               = ARPHRD_AX25;
 321        dev->tx_queue_len       = 10;
 322
 323        /* Only activated in AX.25 mode */
 324        memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 325        memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 326
 327        dev->flags              = 0;
 328}
 329
 330/* Send one completely decapsulated IP datagram to the IP layer. */
 331
 332/*
 333 * This is the routine that sends the received data to the kernel AX.25.
 334 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 335 */
 336
 337static void sp_bump(struct sixpack *sp, char cmd)
 338{
 339        struct sk_buff *skb;
 340        int count;
 341        unsigned char *ptr;
 342
 343        count = sp->rcount + 1;
 344
 345        sp->dev->stats.rx_bytes += count;
 346
 347        if ((skb = dev_alloc_skb(count + 1)) == NULL)
 348                goto out_mem;
 349
 350        ptr = skb_put(skb, count + 1);
 351        *ptr++ = cmd;   /* KISS command */
 352
 353        memcpy(ptr, sp->cooked_buf + 1, count);
 354        skb->protocol = ax25_type_trans(skb, sp->dev);
 355        netif_rx(skb);
 356        sp->dev->stats.rx_packets++;
 357
 358        return;
 359
 360out_mem:
 361        sp->dev->stats.rx_dropped++;
 362}
 363
 364
 365/* ----------------------------------------------------------------------- */
 366
 367/*
 368 * We have a potential race on dereferencing tty->disc_data, because the tty
 369 * layer provides no locking at all - thus one cpu could be running
 370 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 371 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 372 * best way to fix this is to use a rwlock in the tty struct, but for now we
 373 * use a single global rwlock for all ttys in ppp line discipline.
 374 */
 375static DEFINE_RWLOCK(disc_data_lock);
 376                                                                                
 377static struct sixpack *sp_get(struct tty_struct *tty)
 378{
 379        struct sixpack *sp;
 380
 381        read_lock(&disc_data_lock);
 382        sp = tty->disc_data;
 383        if (sp)
 384                refcount_inc(&sp->refcnt);
 385        read_unlock(&disc_data_lock);
 386
 387        return sp;
 388}
 389
 390static void sp_put(struct sixpack *sp)
 391{
 392        if (refcount_dec_and_test(&sp->refcnt))
 393                complete(&sp->dead);
 394}
 395
 396/*
 397 * Called by the TTY driver when there's room for more data.  If we have
 398 * more packets to send, we send them here.
 399 */
 400static void sixpack_write_wakeup(struct tty_struct *tty)
 401{
 402        struct sixpack *sp = sp_get(tty);
 403        int actual;
 404
 405        if (!sp)
 406                return;
 407        if (sp->xleft <= 0)  {
 408                /* Now serial buffer is almost free & we can start
 409                 * transmission of another packet */
 410                sp->dev->stats.tx_packets++;
 411                clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 412                sp->tx_enable = 0;
 413                netif_wake_queue(sp->dev);
 414                goto out;
 415        }
 416
 417        if (sp->tx_enable) {
 418                actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 419                sp->xleft -= actual;
 420                sp->xhead += actual;
 421        }
 422
 423out:
 424        sp_put(sp);
 425}
 426
 427/* ----------------------------------------------------------------------- */
 428
 429/*
 430 * Handle the 'receiver data ready' interrupt.
 431 * This function is called by the tty module in the kernel when
 432 * a block of 6pack data has been received, which can now be decapsulated
 433 * and sent on to some IP layer for further processing.
 434 */
 435static void sixpack_receive_buf(struct tty_struct *tty,
 436        const unsigned char *cp, char *fp, int count)
 437{
 438        struct sixpack *sp;
 439        int count1;
 440
 441        if (!count)
 442                return;
 443
 444        sp = sp_get(tty);
 445        if (!sp)
 446                return;
 447
 448        /* Read the characters out of the buffer */
 449        count1 = count;
 450        while (count) {
 451                count--;
 452                if (fp && *fp++) {
 453                        if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 454                                sp->dev->stats.rx_errors++;
 455                        continue;
 456                }
 457        }
 458        sixpack_decode(sp, cp, count1);
 459
 460        sp_put(sp);
 461        tty_unthrottle(tty);
 462}
 463
 464/*
 465 * Try to resync the TNC. Called by the resync timer defined in
 466 * decode_prio_command
 467 */
 468
 469#define TNC_UNINITIALIZED       0
 470#define TNC_UNSYNC_STARTUP      1
 471#define TNC_UNSYNCED            2
 472#define TNC_IN_SYNC             3
 473
 474static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 475{
 476        char *msg;
 477
 478        switch (new_tnc_state) {
 479        default:                        /* gcc oh piece-o-crap ... */
 480        case TNC_UNSYNC_STARTUP:
 481                msg = "Synchronizing with TNC";
 482                break;
 483        case TNC_UNSYNCED:
 484                msg = "Lost synchronization with TNC\n";
 485                break;
 486        case TNC_IN_SYNC:
 487                msg = "Found TNC";
 488                break;
 489        }
 490
 491        sp->tnc_state = new_tnc_state;
 492        printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 493}
 494
 495static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 496{
 497        int old_tnc_state = sp->tnc_state;
 498
 499        if (old_tnc_state != new_tnc_state)
 500                __tnc_set_sync_state(sp, new_tnc_state);
 501}
 502
 503static void resync_tnc(struct timer_list *t)
 504{
 505        struct sixpack *sp = from_timer(sp, t, resync_t);
 506        static char resync_cmd = 0xe8;
 507
 508        /* clear any data that might have been received */
 509
 510        sp->rx_count = 0;
 511        sp->rx_count_cooked = 0;
 512
 513        /* reset state machine */
 514
 515        sp->status = 1;
 516        sp->status1 = 1;
 517        sp->status2 = 0;
 518
 519        /* resync the TNC */
 520
 521        sp->led_state = 0x60;
 522        sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 523        sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 524
 525
 526        /* Start resync timer again -- the TNC might be still absent */
 527        mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 528}
 529
 530static inline int tnc_init(struct sixpack *sp)
 531{
 532        unsigned char inbyte = 0xe8;
 533
 534        tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 535
 536        sp->tty->ops->write(sp->tty, &inbyte, 1);
 537
 538        mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 539
 540        return 0;
 541}
 542
 543/*
 544 * Open the high-level part of the 6pack channel.
 545 * This function is called by the TTY module when the
 546 * 6pack line discipline is called for.  Because we are
 547 * sure the tty line exists, we only have to link it to
 548 * a free 6pcack channel...
 549 */
 550static int sixpack_open(struct tty_struct *tty)
 551{
 552        char *rbuff = NULL, *xbuff = NULL;
 553        struct net_device *dev;
 554        struct sixpack *sp;
 555        unsigned long len;
 556        int err = 0;
 557
 558        if (!capable(CAP_NET_ADMIN))
 559                return -EPERM;
 560        if (tty->ops->write == NULL)
 561                return -EOPNOTSUPP;
 562
 563        dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
 564                           sp_setup);
 565        if (!dev) {
 566                err = -ENOMEM;
 567                goto out;
 568        }
 569
 570        sp = netdev_priv(dev);
 571        sp->dev = dev;
 572
 573        spin_lock_init(&sp->lock);
 574        refcount_set(&sp->refcnt, 1);
 575        init_completion(&sp->dead);
 576
 577        /* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 578
 579        len = dev->mtu * 2;
 580
 581        rbuff = kmalloc(len + 4, GFP_KERNEL);
 582        xbuff = kmalloc(len + 4, GFP_KERNEL);
 583
 584        if (rbuff == NULL || xbuff == NULL) {
 585                err = -ENOBUFS;
 586                goto out_free;
 587        }
 588
 589        spin_lock_bh(&sp->lock);
 590
 591        sp->tty = tty;
 592
 593        sp->rbuff       = rbuff;
 594        sp->xbuff       = xbuff;
 595
 596        sp->mtu         = AX25_MTU + 73;
 597        sp->buffsize    = len;
 598        sp->rcount      = 0;
 599        sp->rx_count    = 0;
 600        sp->rx_count_cooked = 0;
 601        sp->xleft       = 0;
 602
 603        sp->flags       = 0;            /* Clear ESCAPE & ERROR flags */
 604
 605        sp->duplex      = 0;
 606        sp->tx_delay    = SIXP_TXDELAY;
 607        sp->persistence = SIXP_PERSIST;
 608        sp->slottime    = SIXP_SLOTTIME;
 609        sp->led_state   = 0x60;
 610        sp->status      = 1;
 611        sp->status1     = 1;
 612        sp->status2     = 0;
 613        sp->tx_enable   = 0;
 614
 615        netif_start_queue(dev);
 616
 617        timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
 618
 619        timer_setup(&sp->resync_t, resync_tnc, 0);
 620
 621        spin_unlock_bh(&sp->lock);
 622
 623        /* Done.  We have linked the TTY line to a channel. */
 624        tty->disc_data = sp;
 625        tty->receive_room = 65536;
 626
 627        /* Now we're ready to register. */
 628        err = register_netdev(dev);
 629        if (err)
 630                goto out_free;
 631
 632        tnc_init(sp);
 633
 634        return 0;
 635
 636out_free:
 637        kfree(xbuff);
 638        kfree(rbuff);
 639
 640        free_netdev(dev);
 641
 642out:
 643        return err;
 644}
 645
 646
 647/*
 648 * Close down a 6pack channel.
 649 * This means flushing out any pending queues, and then restoring the
 650 * TTY line discipline to what it was before it got hooked to 6pack
 651 * (which usually is TTY again).
 652 */
 653static void sixpack_close(struct tty_struct *tty)
 654{
 655        struct sixpack *sp;
 656
 657        write_lock_bh(&disc_data_lock);
 658        sp = tty->disc_data;
 659        tty->disc_data = NULL;
 660        write_unlock_bh(&disc_data_lock);
 661        if (!sp)
 662                return;
 663
 664        /*
 665         * We have now ensured that nobody can start using ap from now on, but
 666         * we have to wait for all existing users to finish.
 667         */
 668        if (!refcount_dec_and_test(&sp->refcnt))
 669                wait_for_completion(&sp->dead);
 670
 671        /* We must stop the queue to avoid potentially scribbling
 672         * on the free buffers. The sp->dead completion is not sufficient
 673         * to protect us from sp->xbuff access.
 674         */
 675        netif_stop_queue(sp->dev);
 676
 677        del_timer_sync(&sp->tx_t);
 678        del_timer_sync(&sp->resync_t);
 679
 680        /* Free all 6pack frame buffers. */
 681        kfree(sp->rbuff);
 682        kfree(sp->xbuff);
 683
 684        unregister_netdev(sp->dev);
 685}
 686
 687/* Perform I/O control on an active 6pack channel. */
 688static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 689        unsigned int cmd, unsigned long arg)
 690{
 691        struct sixpack *sp = sp_get(tty);
 692        struct net_device *dev;
 693        unsigned int tmp, err;
 694
 695        if (!sp)
 696                return -ENXIO;
 697        dev = sp->dev;
 698
 699        switch(cmd) {
 700        case SIOCGIFNAME:
 701                err = copy_to_user((void __user *) arg, dev->name,
 702                                   strlen(dev->name) + 1) ? -EFAULT : 0;
 703                break;
 704
 705        case SIOCGIFENCAP:
 706                err = put_user(0, (int __user *) arg);
 707                break;
 708
 709        case SIOCSIFENCAP:
 710                if (get_user(tmp, (int __user *) arg)) {
 711                        err = -EFAULT;
 712                        break;
 713                }
 714
 715                sp->mode = tmp;
 716                dev->addr_len        = AX25_ADDR_LEN;
 717                dev->hard_header_len = AX25_KISS_HEADER_LEN +
 718                                       AX25_MAX_HEADER_LEN + 3;
 719                dev->type            = ARPHRD_AX25;
 720
 721                err = 0;
 722                break;
 723
 724         case SIOCSIFHWADDR: {
 725                char addr[AX25_ADDR_LEN];
 726
 727                if (copy_from_user(&addr,
 728                                   (void __user *) arg, AX25_ADDR_LEN)) {
 729                                err = -EFAULT;
 730                                break;
 731                        }
 732
 733                        netif_tx_lock_bh(dev);
 734                        memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 735                        netif_tx_unlock_bh(dev);
 736
 737                        err = 0;
 738                        break;
 739                }
 740
 741        default:
 742                err = tty_mode_ioctl(tty, file, cmd, arg);
 743        }
 744
 745        sp_put(sp);
 746
 747        return err;
 748}
 749
 750static struct tty_ldisc_ops sp_ldisc = {
 751        .owner          = THIS_MODULE,
 752        .magic          = TTY_LDISC_MAGIC,
 753        .name           = "6pack",
 754        .open           = sixpack_open,
 755        .close          = sixpack_close,
 756        .ioctl          = sixpack_ioctl,
 757        .receive_buf    = sixpack_receive_buf,
 758        .write_wakeup   = sixpack_write_wakeup,
 759};
 760
 761/* Initialize 6pack control device -- register 6pack line discipline */
 762
 763static const char msg_banner[]  __initconst = KERN_INFO \
 764        "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 765static const char msg_regfail[] __initconst = KERN_ERR  \
 766        "6pack: can't register line discipline (err = %d)\n";
 767
 768static int __init sixpack_init_driver(void)
 769{
 770        int status;
 771
 772        printk(msg_banner);
 773
 774        /* Register the provided line protocol discipline */
 775        if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 776                printk(msg_regfail, status);
 777
 778        return status;
 779}
 780
 781static const char msg_unregfail[] = KERN_ERR \
 782        "6pack: can't unregister line discipline (err = %d)\n";
 783
 784static void __exit sixpack_exit_driver(void)
 785{
 786        int ret;
 787
 788        if ((ret = tty_unregister_ldisc(N_6PACK)))
 789                printk(msg_unregfail, ret);
 790}
 791
 792/* encode an AX.25 packet into 6pack */
 793
 794static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 795        int length, unsigned char tx_delay)
 796{
 797        int count = 0;
 798        unsigned char checksum = 0, buf[400];
 799        int raw_count = 0;
 800
 801        tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 802        tx_buf_raw[raw_count++] = SIXP_SEOF;
 803
 804        buf[0] = tx_delay;
 805        for (count = 1; count < length; count++)
 806                buf[count] = tx_buf[count];
 807
 808        for (count = 0; count < length; count++)
 809                checksum += buf[count];
 810        buf[length] = (unsigned char) 0xff - checksum;
 811
 812        for (count = 0; count <= length; count++) {
 813                if ((count % 3) == 0) {
 814                        tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 815                        tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 816                } else if ((count % 3) == 1) {
 817                        tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 818                        tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
 819                } else {
 820                        tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 821                        tx_buf_raw[raw_count++] = (buf[count] >> 2);
 822                }
 823        }
 824        if ((length % 3) != 2)
 825                raw_count++;
 826        tx_buf_raw[raw_count++] = SIXP_SEOF;
 827        return raw_count;
 828}
 829
 830/* decode 4 sixpack-encoded bytes into 3 data bytes */
 831
 832static void decode_data(struct sixpack *sp, unsigned char inbyte)
 833{
 834        unsigned char *buf;
 835
 836        if (sp->rx_count != 3) {
 837                sp->raw_buf[sp->rx_count++] = inbyte;
 838
 839                return;
 840        }
 841
 842        buf = sp->raw_buf;
 843        sp->cooked_buf[sp->rx_count_cooked++] =
 844                buf[0] | ((buf[1] << 2) & 0xc0);
 845        sp->cooked_buf[sp->rx_count_cooked++] =
 846                (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 847        sp->cooked_buf[sp->rx_count_cooked++] =
 848                (buf[2] & 0x03) | (inbyte << 2);
 849        sp->rx_count = 0;
 850}
 851
 852/* identify and execute a 6pack priority command byte */
 853
 854static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 855{
 856        int actual;
 857
 858        if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 859
 860        /* RX and DCD flags can only be set in the same prio command,
 861           if the DCD flag has been set without the RX flag in the previous
 862           prio command. If DCD has not been set before, something in the
 863           transmission has gone wrong. In this case, RX and DCD are
 864           cleared in order to prevent the decode_data routine from
 865           reading further data that might be corrupt. */
 866
 867                if (((sp->status & SIXP_DCD_MASK) == 0) &&
 868                        ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 869                                if (sp->status != 1)
 870                                        printk(KERN_DEBUG "6pack: protocol violation\n");
 871                                else
 872                                        sp->status = 0;
 873                                cmd &= ~SIXP_RX_DCD_MASK;
 874                }
 875                sp->status = cmd & SIXP_PRIO_DATA_MASK;
 876        } else { /* output watchdog char if idle */
 877                if ((sp->status2 != 0) && (sp->duplex == 1)) {
 878                        sp->led_state = 0x70;
 879                        sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 880                        sp->tx_enable = 1;
 881                        actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 882                        sp->xleft -= actual;
 883                        sp->xhead += actual;
 884                        sp->led_state = 0x60;
 885                        sp->status2 = 0;
 886
 887                }
 888        }
 889
 890        /* needed to trigger the TNC watchdog */
 891        sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 892
 893        /* if the state byte has been received, the TNC is present,
 894           so the resync timer can be reset. */
 895
 896        if (sp->tnc_state == TNC_IN_SYNC)
 897                mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
 898
 899        sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 900}
 901
 902/* identify and execute a standard 6pack command byte */
 903
 904static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 905{
 906        unsigned char checksum = 0, rest = 0;
 907        short i;
 908
 909        switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 910        case SIXP_SEOF:
 911                if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 912                        if ((sp->status & SIXP_RX_DCD_MASK) ==
 913                                SIXP_RX_DCD_MASK) {
 914                                sp->led_state = 0x68;
 915                                sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 916                        }
 917                } else {
 918                        sp->led_state = 0x60;
 919                        /* fill trailing bytes with zeroes */
 920                        sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 921                        rest = sp->rx_count;
 922                        if (rest != 0)
 923                                 for (i = rest; i <= 3; i++)
 924                                        decode_data(sp, 0);
 925                        if (rest == 2)
 926                                sp->rx_count_cooked -= 2;
 927                        else if (rest == 3)
 928                                sp->rx_count_cooked -= 1;
 929                        for (i = 0; i < sp->rx_count_cooked; i++)
 930                                checksum += sp->cooked_buf[i];
 931                        if (checksum != SIXP_CHKSUM) {
 932                                printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 933                        } else {
 934                                sp->rcount = sp->rx_count_cooked-2;
 935                                sp_bump(sp, 0);
 936                        }
 937                        sp->rx_count_cooked = 0;
 938                }
 939                break;
 940        case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
 941                break;
 942        case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
 943                break;
 944        case SIXP_RX_BUF_OVL:
 945                printk(KERN_DEBUG "6pack: RX buffer overflow\n");
 946        }
 947}
 948
 949/* decode a 6pack packet */
 950
 951static void
 952sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
 953{
 954        unsigned char inbyte;
 955        int count1;
 956
 957        for (count1 = 0; count1 < count; count1++) {
 958                inbyte = pre_rbuff[count1];
 959                if (inbyte == SIXP_FOUND_TNC) {
 960                        tnc_set_sync_state(sp, TNC_IN_SYNC);
 961                        del_timer(&sp->resync_t);
 962                }
 963                if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
 964                        decode_prio_command(sp, inbyte);
 965                else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
 966                        decode_std_command(sp, inbyte);
 967                else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
 968                        decode_data(sp, inbyte);
 969        }
 970}
 971
 972MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
 973MODULE_DESCRIPTION("6pack driver for AX.25");
 974MODULE_LICENSE("GPL");
 975MODULE_ALIAS_LDISC(N_6PACK);
 976
 977module_init(sixpack_init_driver);
 978module_exit(sixpack_exit_driver);
 979