linux/drivers/net/hyperv/netvsc_drv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/delay.h>
  18#include <linux/netdevice.h>
  19#include <linux/inetdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/pci.h>
  22#include <linux/skbuff.h>
  23#include <linux/if_vlan.h>
  24#include <linux/in.h>
  25#include <linux/slab.h>
  26#include <linux/rtnetlink.h>
  27#include <linux/netpoll.h>
  28
  29#include <net/arp.h>
  30#include <net/route.h>
  31#include <net/sock.h>
  32#include <net/pkt_sched.h>
  33#include <net/checksum.h>
  34#include <net/ip6_checksum.h>
  35
  36#include "hyperv_net.h"
  37
  38#define RING_SIZE_MIN   64
  39#define RETRY_US_LO     5000
  40#define RETRY_US_HI     10000
  41#define RETRY_MAX       2000    /* >10 sec */
  42
  43#define LINKCHANGE_INT (2 * HZ)
  44#define VF_TAKEOVER_INT (HZ / 10)
  45
  46static unsigned int ring_size __ro_after_init = 128;
  47module_param(ring_size, uint, 0444);
  48MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  49unsigned int netvsc_ring_bytes __ro_after_init;
  50
  51static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  52                                NETIF_MSG_LINK | NETIF_MSG_IFUP |
  53                                NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  54                                NETIF_MSG_TX_ERR;
  55
  56static int debug = -1;
  57module_param(debug, int, 0444);
  58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  59
  60static LIST_HEAD(netvsc_dev_list);
  61
  62static void netvsc_change_rx_flags(struct net_device *net, int change)
  63{
  64        struct net_device_context *ndev_ctx = netdev_priv(net);
  65        struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  66        int inc;
  67
  68        if (!vf_netdev)
  69                return;
  70
  71        if (change & IFF_PROMISC) {
  72                inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  73                dev_set_promiscuity(vf_netdev, inc);
  74        }
  75
  76        if (change & IFF_ALLMULTI) {
  77                inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  78                dev_set_allmulti(vf_netdev, inc);
  79        }
  80}
  81
  82static void netvsc_set_rx_mode(struct net_device *net)
  83{
  84        struct net_device_context *ndev_ctx = netdev_priv(net);
  85        struct net_device *vf_netdev;
  86        struct netvsc_device *nvdev;
  87
  88        rcu_read_lock();
  89        vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  90        if (vf_netdev) {
  91                dev_uc_sync(vf_netdev, net);
  92                dev_mc_sync(vf_netdev, net);
  93        }
  94
  95        nvdev = rcu_dereference(ndev_ctx->nvdev);
  96        if (nvdev)
  97                rndis_filter_update(nvdev);
  98        rcu_read_unlock();
  99}
 100
 101static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 102                             struct net_device *ndev)
 103{
 104        nvscdev->tx_disable = false;
 105        virt_wmb(); /* ensure queue wake up mechanism is on */
 106
 107        netif_tx_wake_all_queues(ndev);
 108}
 109
 110static int netvsc_open(struct net_device *net)
 111{
 112        struct net_device_context *ndev_ctx = netdev_priv(net);
 113        struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 114        struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 115        struct rndis_device *rdev;
 116        int ret = 0;
 117
 118        netif_carrier_off(net);
 119
 120        /* Open up the device */
 121        ret = rndis_filter_open(nvdev);
 122        if (ret != 0) {
 123                netdev_err(net, "unable to open device (ret %d).\n", ret);
 124                return ret;
 125        }
 126
 127        rdev = nvdev->extension;
 128        if (!rdev->link_state) {
 129                netif_carrier_on(net);
 130                netvsc_tx_enable(nvdev, net);
 131        }
 132
 133        if (vf_netdev) {
 134                /* Setting synthetic device up transparently sets
 135                 * slave as up. If open fails, then slave will be
 136                 * still be offline (and not used).
 137                 */
 138                ret = dev_open(vf_netdev, NULL);
 139                if (ret)
 140                        netdev_warn(net,
 141                                    "unable to open slave: %s: %d\n",
 142                                    vf_netdev->name, ret);
 143        }
 144        return 0;
 145}
 146
 147static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 148{
 149        unsigned int retry = 0;
 150        int i;
 151
 152        /* Ensure pending bytes in ring are read */
 153        for (;;) {
 154                u32 aread = 0;
 155
 156                for (i = 0; i < nvdev->num_chn; i++) {
 157                        struct vmbus_channel *chn
 158                                = nvdev->chan_table[i].channel;
 159
 160                        if (!chn)
 161                                continue;
 162
 163                        /* make sure receive not running now */
 164                        napi_synchronize(&nvdev->chan_table[i].napi);
 165
 166                        aread = hv_get_bytes_to_read(&chn->inbound);
 167                        if (aread)
 168                                break;
 169
 170                        aread = hv_get_bytes_to_read(&chn->outbound);
 171                        if (aread)
 172                                break;
 173                }
 174
 175                if (aread == 0)
 176                        return 0;
 177
 178                if (++retry > RETRY_MAX)
 179                        return -ETIMEDOUT;
 180
 181                usleep_range(RETRY_US_LO, RETRY_US_HI);
 182        }
 183}
 184
 185static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 186                              struct net_device *ndev)
 187{
 188        if (nvscdev) {
 189                nvscdev->tx_disable = true;
 190                virt_wmb(); /* ensure txq will not wake up after stop */
 191        }
 192
 193        netif_tx_disable(ndev);
 194}
 195
 196static int netvsc_close(struct net_device *net)
 197{
 198        struct net_device_context *net_device_ctx = netdev_priv(net);
 199        struct net_device *vf_netdev
 200                = rtnl_dereference(net_device_ctx->vf_netdev);
 201        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 202        int ret;
 203
 204        netvsc_tx_disable(nvdev, net);
 205
 206        /* No need to close rndis filter if it is removed already */
 207        if (!nvdev)
 208                return 0;
 209
 210        ret = rndis_filter_close(nvdev);
 211        if (ret != 0) {
 212                netdev_err(net, "unable to close device (ret %d).\n", ret);
 213                return ret;
 214        }
 215
 216        ret = netvsc_wait_until_empty(nvdev);
 217        if (ret)
 218                netdev_err(net, "Ring buffer not empty after closing rndis\n");
 219
 220        if (vf_netdev)
 221                dev_close(vf_netdev);
 222
 223        return ret;
 224}
 225
 226static inline void *init_ppi_data(struct rndis_message *msg,
 227                                  u32 ppi_size, u32 pkt_type)
 228{
 229        struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 230        struct rndis_per_packet_info *ppi;
 231
 232        rndis_pkt->data_offset += ppi_size;
 233        ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 234                + rndis_pkt->per_pkt_info_len;
 235
 236        ppi->size = ppi_size;
 237        ppi->type = pkt_type;
 238        ppi->internal = 0;
 239        ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 240
 241        rndis_pkt->per_pkt_info_len += ppi_size;
 242
 243        return ppi + 1;
 244}
 245
 246/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 247 * packets. We can use ethtool to change UDP hash level when necessary.
 248 */
 249static inline u32 netvsc_get_hash(
 250        struct sk_buff *skb,
 251        const struct net_device_context *ndc)
 252{
 253        struct flow_keys flow;
 254        u32 hash, pkt_proto = 0;
 255        static u32 hashrnd __read_mostly;
 256
 257        net_get_random_once(&hashrnd, sizeof(hashrnd));
 258
 259        if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 260                return 0;
 261
 262        switch (flow.basic.ip_proto) {
 263        case IPPROTO_TCP:
 264                if (flow.basic.n_proto == htons(ETH_P_IP))
 265                        pkt_proto = HV_TCP4_L4HASH;
 266                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 267                        pkt_proto = HV_TCP6_L4HASH;
 268
 269                break;
 270
 271        case IPPROTO_UDP:
 272                if (flow.basic.n_proto == htons(ETH_P_IP))
 273                        pkt_proto = HV_UDP4_L4HASH;
 274                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 275                        pkt_proto = HV_UDP6_L4HASH;
 276
 277                break;
 278        }
 279
 280        if (pkt_proto & ndc->l4_hash) {
 281                return skb_get_hash(skb);
 282        } else {
 283                if (flow.basic.n_proto == htons(ETH_P_IP))
 284                        hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 285                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 286                        hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 287                else
 288                        hash = 0;
 289
 290                skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
 291        }
 292
 293        return hash;
 294}
 295
 296static inline int netvsc_get_tx_queue(struct net_device *ndev,
 297                                      struct sk_buff *skb, int old_idx)
 298{
 299        const struct net_device_context *ndc = netdev_priv(ndev);
 300        struct sock *sk = skb->sk;
 301        int q_idx;
 302
 303        q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 304                              (VRSS_SEND_TAB_SIZE - 1)];
 305
 306        /* If queue index changed record the new value */
 307        if (q_idx != old_idx &&
 308            sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 309                sk_tx_queue_set(sk, q_idx);
 310
 311        return q_idx;
 312}
 313
 314/*
 315 * Select queue for transmit.
 316 *
 317 * If a valid queue has already been assigned, then use that.
 318 * Otherwise compute tx queue based on hash and the send table.
 319 *
 320 * This is basically similar to default (netdev_pick_tx) with the added step
 321 * of using the host send_table when no other queue has been assigned.
 322 *
 323 * TODO support XPS - but get_xps_queue not exported
 324 */
 325static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 326{
 327        int q_idx = sk_tx_queue_get(skb->sk);
 328
 329        if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 330                /* If forwarding a packet, we use the recorded queue when
 331                 * available for better cache locality.
 332                 */
 333                if (skb_rx_queue_recorded(skb))
 334                        q_idx = skb_get_rx_queue(skb);
 335                else
 336                        q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 337        }
 338
 339        return q_idx;
 340}
 341
 342static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 343                               struct net_device *sb_dev)
 344{
 345        struct net_device_context *ndc = netdev_priv(ndev);
 346        struct net_device *vf_netdev;
 347        u16 txq;
 348
 349        rcu_read_lock();
 350        vf_netdev = rcu_dereference(ndc->vf_netdev);
 351        if (vf_netdev) {
 352                const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 353
 354                if (vf_ops->ndo_select_queue)
 355                        txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 356                else
 357                        txq = netdev_pick_tx(vf_netdev, skb, NULL);
 358
 359                /* Record the queue selected by VF so that it can be
 360                 * used for common case where VF has more queues than
 361                 * the synthetic device.
 362                 */
 363                qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 364        } else {
 365                txq = netvsc_pick_tx(ndev, skb);
 366        }
 367        rcu_read_unlock();
 368
 369        while (unlikely(txq >= ndev->real_num_tx_queues))
 370                txq -= ndev->real_num_tx_queues;
 371
 372        return txq;
 373}
 374
 375static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
 376                       struct hv_page_buffer *pb)
 377{
 378        int j = 0;
 379
 380        /* Deal with compound pages by ignoring unused part
 381         * of the page.
 382         */
 383        page += (offset >> PAGE_SHIFT);
 384        offset &= ~PAGE_MASK;
 385
 386        while (len > 0) {
 387                unsigned long bytes;
 388
 389                bytes = PAGE_SIZE - offset;
 390                if (bytes > len)
 391                        bytes = len;
 392                pb[j].pfn = page_to_pfn(page);
 393                pb[j].offset = offset;
 394                pb[j].len = bytes;
 395
 396                offset += bytes;
 397                len -= bytes;
 398
 399                if (offset == PAGE_SIZE && len) {
 400                        page++;
 401                        offset = 0;
 402                        j++;
 403                }
 404        }
 405
 406        return j + 1;
 407}
 408
 409static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 410                           struct hv_netvsc_packet *packet,
 411                           struct hv_page_buffer *pb)
 412{
 413        u32 slots_used = 0;
 414        char *data = skb->data;
 415        int frags = skb_shinfo(skb)->nr_frags;
 416        int i;
 417
 418        /* The packet is laid out thus:
 419         * 1. hdr: RNDIS header and PPI
 420         * 2. skb linear data
 421         * 3. skb fragment data
 422         */
 423        slots_used += fill_pg_buf(virt_to_page(hdr),
 424                                  offset_in_page(hdr),
 425                                  len, &pb[slots_used]);
 426
 427        packet->rmsg_size = len;
 428        packet->rmsg_pgcnt = slots_used;
 429
 430        slots_used += fill_pg_buf(virt_to_page(data),
 431                                offset_in_page(data),
 432                                skb_headlen(skb), &pb[slots_used]);
 433
 434        for (i = 0; i < frags; i++) {
 435                skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 436
 437                slots_used += fill_pg_buf(skb_frag_page(frag),
 438                                        frag->page_offset,
 439                                        skb_frag_size(frag), &pb[slots_used]);
 440        }
 441        return slots_used;
 442}
 443
 444static int count_skb_frag_slots(struct sk_buff *skb)
 445{
 446        int i, frags = skb_shinfo(skb)->nr_frags;
 447        int pages = 0;
 448
 449        for (i = 0; i < frags; i++) {
 450                skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 451                unsigned long size = skb_frag_size(frag);
 452                unsigned long offset = frag->page_offset;
 453
 454                /* Skip unused frames from start of page */
 455                offset &= ~PAGE_MASK;
 456                pages += PFN_UP(offset + size);
 457        }
 458        return pages;
 459}
 460
 461static int netvsc_get_slots(struct sk_buff *skb)
 462{
 463        char *data = skb->data;
 464        unsigned int offset = offset_in_page(data);
 465        unsigned int len = skb_headlen(skb);
 466        int slots;
 467        int frag_slots;
 468
 469        slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
 470        frag_slots = count_skb_frag_slots(skb);
 471        return slots + frag_slots;
 472}
 473
 474static u32 net_checksum_info(struct sk_buff *skb)
 475{
 476        if (skb->protocol == htons(ETH_P_IP)) {
 477                struct iphdr *ip = ip_hdr(skb);
 478
 479                if (ip->protocol == IPPROTO_TCP)
 480                        return TRANSPORT_INFO_IPV4_TCP;
 481                else if (ip->protocol == IPPROTO_UDP)
 482                        return TRANSPORT_INFO_IPV4_UDP;
 483        } else {
 484                struct ipv6hdr *ip6 = ipv6_hdr(skb);
 485
 486                if (ip6->nexthdr == IPPROTO_TCP)
 487                        return TRANSPORT_INFO_IPV6_TCP;
 488                else if (ip6->nexthdr == IPPROTO_UDP)
 489                        return TRANSPORT_INFO_IPV6_UDP;
 490        }
 491
 492        return TRANSPORT_INFO_NOT_IP;
 493}
 494
 495/* Send skb on the slave VF device. */
 496static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 497                          struct sk_buff *skb)
 498{
 499        struct net_device_context *ndev_ctx = netdev_priv(net);
 500        unsigned int len = skb->len;
 501        int rc;
 502
 503        skb->dev = vf_netdev;
 504        skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
 505
 506        rc = dev_queue_xmit(skb);
 507        if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 508                struct netvsc_vf_pcpu_stats *pcpu_stats
 509                        = this_cpu_ptr(ndev_ctx->vf_stats);
 510
 511                u64_stats_update_begin(&pcpu_stats->syncp);
 512                pcpu_stats->tx_packets++;
 513                pcpu_stats->tx_bytes += len;
 514                u64_stats_update_end(&pcpu_stats->syncp);
 515        } else {
 516                this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 517        }
 518
 519        return rc;
 520}
 521
 522static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
 523{
 524        struct net_device_context *net_device_ctx = netdev_priv(net);
 525        struct hv_netvsc_packet *packet = NULL;
 526        int ret;
 527        unsigned int num_data_pgs;
 528        struct rndis_message *rndis_msg;
 529        struct net_device *vf_netdev;
 530        u32 rndis_msg_size;
 531        u32 hash;
 532        struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 533
 534        /* if VF is present and up then redirect packets
 535         * already called with rcu_read_lock_bh
 536         */
 537        vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 538        if (vf_netdev && netif_running(vf_netdev) &&
 539            !netpoll_tx_running(net))
 540                return netvsc_vf_xmit(net, vf_netdev, skb);
 541
 542        /* We will atmost need two pages to describe the rndis
 543         * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 544         * of pages in a single packet. If skb is scattered around
 545         * more pages we try linearizing it.
 546         */
 547
 548        num_data_pgs = netvsc_get_slots(skb) + 2;
 549
 550        if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 551                ++net_device_ctx->eth_stats.tx_scattered;
 552
 553                if (skb_linearize(skb))
 554                        goto no_memory;
 555
 556                num_data_pgs = netvsc_get_slots(skb) + 2;
 557                if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 558                        ++net_device_ctx->eth_stats.tx_too_big;
 559                        goto drop;
 560                }
 561        }
 562
 563        /*
 564         * Place the rndis header in the skb head room and
 565         * the skb->cb will be used for hv_netvsc_packet
 566         * structure.
 567         */
 568        ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 569        if (ret)
 570                goto no_memory;
 571
 572        /* Use the skb control buffer for building up the packet */
 573        BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 574                        FIELD_SIZEOF(struct sk_buff, cb));
 575        packet = (struct hv_netvsc_packet *)skb->cb;
 576
 577        packet->q_idx = skb_get_queue_mapping(skb);
 578
 579        packet->total_data_buflen = skb->len;
 580        packet->total_bytes = skb->len;
 581        packet->total_packets = 1;
 582
 583        rndis_msg = (struct rndis_message *)skb->head;
 584
 585        /* Add the rndis header */
 586        rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 587        rndis_msg->msg_len = packet->total_data_buflen;
 588
 589        rndis_msg->msg.pkt = (struct rndis_packet) {
 590                .data_offset = sizeof(struct rndis_packet),
 591                .data_len = packet->total_data_buflen,
 592                .per_pkt_info_offset = sizeof(struct rndis_packet),
 593        };
 594
 595        rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 596
 597        hash = skb_get_hash_raw(skb);
 598        if (hash != 0 && net->real_num_tx_queues > 1) {
 599                u32 *hash_info;
 600
 601                rndis_msg_size += NDIS_HASH_PPI_SIZE;
 602                hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 603                                          NBL_HASH_VALUE);
 604                *hash_info = hash;
 605        }
 606
 607        if (skb_vlan_tag_present(skb)) {
 608                struct ndis_pkt_8021q_info *vlan;
 609
 610                rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 611                vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 612                                     IEEE_8021Q_INFO);
 613
 614                vlan->value = 0;
 615                vlan->vlanid = skb_vlan_tag_get_id(skb);
 616                vlan->cfi = skb_vlan_tag_get_cfi(skb);
 617                vlan->pri = skb_vlan_tag_get_prio(skb);
 618        }
 619
 620        if (skb_is_gso(skb)) {
 621                struct ndis_tcp_lso_info *lso_info;
 622
 623                rndis_msg_size += NDIS_LSO_PPI_SIZE;
 624                lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 625                                         TCP_LARGESEND_PKTINFO);
 626
 627                lso_info->value = 0;
 628                lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 629                if (skb->protocol == htons(ETH_P_IP)) {
 630                        lso_info->lso_v2_transmit.ip_version =
 631                                NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 632                        ip_hdr(skb)->tot_len = 0;
 633                        ip_hdr(skb)->check = 0;
 634                        tcp_hdr(skb)->check =
 635                                ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 636                                                   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 637                } else {
 638                        lso_info->lso_v2_transmit.ip_version =
 639                                NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 640                        ipv6_hdr(skb)->payload_len = 0;
 641                        tcp_hdr(skb)->check =
 642                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 643                                                 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 644                }
 645                lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 646                lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 647        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 648                if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 649                        struct ndis_tcp_ip_checksum_info *csum_info;
 650
 651                        rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 652                        csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 653                                                  TCPIP_CHKSUM_PKTINFO);
 654
 655                        csum_info->value = 0;
 656                        csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 657
 658                        if (skb->protocol == htons(ETH_P_IP)) {
 659                                csum_info->transmit.is_ipv4 = 1;
 660
 661                                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 662                                        csum_info->transmit.tcp_checksum = 1;
 663                                else
 664                                        csum_info->transmit.udp_checksum = 1;
 665                        } else {
 666                                csum_info->transmit.is_ipv6 = 1;
 667
 668                                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 669                                        csum_info->transmit.tcp_checksum = 1;
 670                                else
 671                                        csum_info->transmit.udp_checksum = 1;
 672                        }
 673                } else {
 674                        /* Can't do offload of this type of checksum */
 675                        if (skb_checksum_help(skb))
 676                                goto drop;
 677                }
 678        }
 679
 680        /* Start filling in the page buffers with the rndis hdr */
 681        rndis_msg->msg_len += rndis_msg_size;
 682        packet->total_data_buflen = rndis_msg->msg_len;
 683        packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 684                                               skb, packet, pb);
 685
 686        /* timestamp packet in software */
 687        skb_tx_timestamp(skb);
 688
 689        ret = netvsc_send(net, packet, rndis_msg, pb, skb);
 690        if (likely(ret == 0))
 691                return NETDEV_TX_OK;
 692
 693        if (ret == -EAGAIN) {
 694                ++net_device_ctx->eth_stats.tx_busy;
 695                return NETDEV_TX_BUSY;
 696        }
 697
 698        if (ret == -ENOSPC)
 699                ++net_device_ctx->eth_stats.tx_no_space;
 700
 701drop:
 702        dev_kfree_skb_any(skb);
 703        net->stats.tx_dropped++;
 704
 705        return NETDEV_TX_OK;
 706
 707no_memory:
 708        ++net_device_ctx->eth_stats.tx_no_memory;
 709        goto drop;
 710}
 711
 712/*
 713 * netvsc_linkstatus_callback - Link up/down notification
 714 */
 715void netvsc_linkstatus_callback(struct net_device *net,
 716                                struct rndis_message *resp)
 717{
 718        struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 719        struct net_device_context *ndev_ctx = netdev_priv(net);
 720        struct netvsc_reconfig *event;
 721        unsigned long flags;
 722
 723        /* Update the physical link speed when changing to another vSwitch */
 724        if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 725                u32 speed;
 726
 727                speed = *(u32 *)((void *)indicate
 728                                 + indicate->status_buf_offset) / 10000;
 729                ndev_ctx->speed = speed;
 730                return;
 731        }
 732
 733        /* Handle these link change statuses below */
 734        if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 735            indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 736            indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 737                return;
 738
 739        if (net->reg_state != NETREG_REGISTERED)
 740                return;
 741
 742        event = kzalloc(sizeof(*event), GFP_ATOMIC);
 743        if (!event)
 744                return;
 745        event->event = indicate->status;
 746
 747        spin_lock_irqsave(&ndev_ctx->lock, flags);
 748        list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 749        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 750
 751        schedule_delayed_work(&ndev_ctx->dwork, 0);
 752}
 753
 754static void netvsc_comp_ipcsum(struct sk_buff *skb)
 755{
 756        struct iphdr *iph = (struct iphdr *)skb->data;
 757
 758        iph->check = 0;
 759        iph->check = ip_fast_csum(iph, iph->ihl);
 760}
 761
 762static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 763                                             struct netvsc_channel *nvchan)
 764{
 765        struct napi_struct *napi = &nvchan->napi;
 766        const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
 767        const struct ndis_tcp_ip_checksum_info *csum_info =
 768                                                nvchan->rsc.csum_info;
 769        struct sk_buff *skb;
 770        int i;
 771
 772        skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 773        if (!skb)
 774                return skb;
 775
 776        /*
 777         * Copy to skb. This copy is needed here since the memory pointed by
 778         * hv_netvsc_packet cannot be deallocated
 779         */
 780        for (i = 0; i < nvchan->rsc.cnt; i++)
 781                skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
 782
 783        skb->protocol = eth_type_trans(skb, net);
 784
 785        /* skb is already created with CHECKSUM_NONE */
 786        skb_checksum_none_assert(skb);
 787
 788        /* Incoming packets may have IP header checksum verified by the host.
 789         * They may not have IP header checksum computed after coalescing.
 790         * We compute it here if the flags are set, because on Linux, the IP
 791         * checksum is always checked.
 792         */
 793        if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
 794            csum_info->receive.ip_checksum_succeeded &&
 795            skb->protocol == htons(ETH_P_IP))
 796                netvsc_comp_ipcsum(skb);
 797
 798        /* Do L4 checksum offload if enabled and present.
 799         */
 800        if (csum_info && (net->features & NETIF_F_RXCSUM)) {
 801                if (csum_info->receive.tcp_checksum_succeeded ||
 802                    csum_info->receive.udp_checksum_succeeded)
 803                        skb->ip_summed = CHECKSUM_UNNECESSARY;
 804        }
 805
 806        if (vlan) {
 807                u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 808                        (vlan->cfi ? VLAN_CFI_MASK : 0);
 809
 810                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 811                                       vlan_tci);
 812        }
 813
 814        return skb;
 815}
 816
 817/*
 818 * netvsc_recv_callback -  Callback when we receive a packet from the
 819 * "wire" on the specified device.
 820 */
 821int netvsc_recv_callback(struct net_device *net,
 822                         struct netvsc_device *net_device,
 823                         struct netvsc_channel *nvchan)
 824{
 825        struct net_device_context *net_device_ctx = netdev_priv(net);
 826        struct vmbus_channel *channel = nvchan->channel;
 827        u16 q_idx = channel->offermsg.offer.sub_channel_index;
 828        struct sk_buff *skb;
 829        struct netvsc_stats *rx_stats;
 830
 831        if (net->reg_state != NETREG_REGISTERED)
 832                return NVSP_STAT_FAIL;
 833
 834        /* Allocate a skb - TODO direct I/O to pages? */
 835        skb = netvsc_alloc_recv_skb(net, nvchan);
 836
 837        if (unlikely(!skb)) {
 838                ++net_device_ctx->eth_stats.rx_no_memory;
 839                return NVSP_STAT_FAIL;
 840        }
 841
 842        skb_record_rx_queue(skb, q_idx);
 843
 844        /*
 845         * Even if injecting the packet, record the statistics
 846         * on the synthetic device because modifying the VF device
 847         * statistics will not work correctly.
 848         */
 849        rx_stats = &nvchan->rx_stats;
 850        u64_stats_update_begin(&rx_stats->syncp);
 851        rx_stats->packets++;
 852        rx_stats->bytes += nvchan->rsc.pktlen;
 853
 854        if (skb->pkt_type == PACKET_BROADCAST)
 855                ++rx_stats->broadcast;
 856        else if (skb->pkt_type == PACKET_MULTICAST)
 857                ++rx_stats->multicast;
 858        u64_stats_update_end(&rx_stats->syncp);
 859
 860        napi_gro_receive(&nvchan->napi, skb);
 861        return NVSP_STAT_SUCCESS;
 862}
 863
 864static void netvsc_get_drvinfo(struct net_device *net,
 865                               struct ethtool_drvinfo *info)
 866{
 867        strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 868        strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 869}
 870
 871static void netvsc_get_channels(struct net_device *net,
 872                                struct ethtool_channels *channel)
 873{
 874        struct net_device_context *net_device_ctx = netdev_priv(net);
 875        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 876
 877        if (nvdev) {
 878                channel->max_combined   = nvdev->max_chn;
 879                channel->combined_count = nvdev->num_chn;
 880        }
 881}
 882
 883/* Alloc struct netvsc_device_info, and initialize it from either existing
 884 * struct netvsc_device, or from default values.
 885 */
 886static struct netvsc_device_info *netvsc_devinfo_get
 887                        (struct netvsc_device *nvdev)
 888{
 889        struct netvsc_device_info *dev_info;
 890
 891        dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 892
 893        if (!dev_info)
 894                return NULL;
 895
 896        if (nvdev) {
 897                dev_info->num_chn = nvdev->num_chn;
 898                dev_info->send_sections = nvdev->send_section_cnt;
 899                dev_info->send_section_size = nvdev->send_section_size;
 900                dev_info->recv_sections = nvdev->recv_section_cnt;
 901                dev_info->recv_section_size = nvdev->recv_section_size;
 902
 903                memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 904                       NETVSC_HASH_KEYLEN);
 905        } else {
 906                dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
 907                dev_info->send_sections = NETVSC_DEFAULT_TX;
 908                dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 909                dev_info->recv_sections = NETVSC_DEFAULT_RX;
 910                dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 911        }
 912
 913        return dev_info;
 914}
 915
 916static int netvsc_detach(struct net_device *ndev,
 917                         struct netvsc_device *nvdev)
 918{
 919        struct net_device_context *ndev_ctx = netdev_priv(ndev);
 920        struct hv_device *hdev = ndev_ctx->device_ctx;
 921        int ret;
 922
 923        /* Don't try continuing to try and setup sub channels */
 924        if (cancel_work_sync(&nvdev->subchan_work))
 925                nvdev->num_chn = 1;
 926
 927        /* If device was up (receiving) then shutdown */
 928        if (netif_running(ndev)) {
 929                netvsc_tx_disable(nvdev, ndev);
 930
 931                ret = rndis_filter_close(nvdev);
 932                if (ret) {
 933                        netdev_err(ndev,
 934                                   "unable to close device (ret %d).\n", ret);
 935                        return ret;
 936                }
 937
 938                ret = netvsc_wait_until_empty(nvdev);
 939                if (ret) {
 940                        netdev_err(ndev,
 941                                   "Ring buffer not empty after closing rndis\n");
 942                        return ret;
 943                }
 944        }
 945
 946        netif_device_detach(ndev);
 947
 948        rndis_filter_device_remove(hdev, nvdev);
 949
 950        return 0;
 951}
 952
 953static int netvsc_attach(struct net_device *ndev,
 954                         struct netvsc_device_info *dev_info)
 955{
 956        struct net_device_context *ndev_ctx = netdev_priv(ndev);
 957        struct hv_device *hdev = ndev_ctx->device_ctx;
 958        struct netvsc_device *nvdev;
 959        struct rndis_device *rdev;
 960        int ret;
 961
 962        nvdev = rndis_filter_device_add(hdev, dev_info);
 963        if (IS_ERR(nvdev))
 964                return PTR_ERR(nvdev);
 965
 966        if (nvdev->num_chn > 1) {
 967                ret = rndis_set_subchannel(ndev, nvdev, dev_info);
 968
 969                /* if unavailable, just proceed with one queue */
 970                if (ret) {
 971                        nvdev->max_chn = 1;
 972                        nvdev->num_chn = 1;
 973                }
 974        }
 975
 976        /* In any case device is now ready */
 977        netif_device_attach(ndev);
 978
 979        /* Note: enable and attach happen when sub-channels setup */
 980        netif_carrier_off(ndev);
 981
 982        if (netif_running(ndev)) {
 983                ret = rndis_filter_open(nvdev);
 984                if (ret)
 985                        return ret;
 986
 987                rdev = nvdev->extension;
 988                if (!rdev->link_state)
 989                        netif_carrier_on(ndev);
 990        }
 991
 992        return 0;
 993}
 994
 995static int netvsc_set_channels(struct net_device *net,
 996                               struct ethtool_channels *channels)
 997{
 998        struct net_device_context *net_device_ctx = netdev_priv(net);
 999        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1000        unsigned int orig, count = channels->combined_count;
1001        struct netvsc_device_info *device_info;
1002        int ret;
1003
1004        /* We do not support separate count for rx, tx, or other */
1005        if (count == 0 ||
1006            channels->rx_count || channels->tx_count || channels->other_count)
1007                return -EINVAL;
1008
1009        if (!nvdev || nvdev->destroy)
1010                return -ENODEV;
1011
1012        if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1013                return -EINVAL;
1014
1015        if (count > nvdev->max_chn)
1016                return -EINVAL;
1017
1018        orig = nvdev->num_chn;
1019
1020        device_info = netvsc_devinfo_get(nvdev);
1021
1022        if (!device_info)
1023                return -ENOMEM;
1024
1025        device_info->num_chn = count;
1026
1027        ret = netvsc_detach(net, nvdev);
1028        if (ret)
1029                goto out;
1030
1031        ret = netvsc_attach(net, device_info);
1032        if (ret) {
1033                device_info->num_chn = orig;
1034                if (netvsc_attach(net, device_info))
1035                        netdev_err(net, "restoring channel setting failed\n");
1036        }
1037
1038out:
1039        kfree(device_info);
1040        return ret;
1041}
1042
1043static bool
1044netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1045{
1046        struct ethtool_link_ksettings diff1 = *cmd;
1047        struct ethtool_link_ksettings diff2 = {};
1048
1049        diff1.base.speed = 0;
1050        diff1.base.duplex = 0;
1051        /* advertising and cmd are usually set */
1052        ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1053        diff1.base.cmd = 0;
1054        /* We set port to PORT_OTHER */
1055        diff2.base.port = PORT_OTHER;
1056
1057        return !memcmp(&diff1, &diff2, sizeof(diff1));
1058}
1059
1060static void netvsc_init_settings(struct net_device *dev)
1061{
1062        struct net_device_context *ndc = netdev_priv(dev);
1063
1064        ndc->l4_hash = HV_DEFAULT_L4HASH;
1065
1066        ndc->speed = SPEED_UNKNOWN;
1067        ndc->duplex = DUPLEX_FULL;
1068
1069        dev->features = NETIF_F_LRO;
1070}
1071
1072static int netvsc_get_link_ksettings(struct net_device *dev,
1073                                     struct ethtool_link_ksettings *cmd)
1074{
1075        struct net_device_context *ndc = netdev_priv(dev);
1076
1077        cmd->base.speed = ndc->speed;
1078        cmd->base.duplex = ndc->duplex;
1079        cmd->base.port = PORT_OTHER;
1080
1081        return 0;
1082}
1083
1084static int netvsc_set_link_ksettings(struct net_device *dev,
1085                                     const struct ethtool_link_ksettings *cmd)
1086{
1087        struct net_device_context *ndc = netdev_priv(dev);
1088        u32 speed;
1089
1090        speed = cmd->base.speed;
1091        if (!ethtool_validate_speed(speed) ||
1092            !ethtool_validate_duplex(cmd->base.duplex) ||
1093            !netvsc_validate_ethtool_ss_cmd(cmd))
1094                return -EINVAL;
1095
1096        ndc->speed = speed;
1097        ndc->duplex = cmd->base.duplex;
1098
1099        return 0;
1100}
1101
1102static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1103{
1104        struct net_device_context *ndevctx = netdev_priv(ndev);
1105        struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1106        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1107        int orig_mtu = ndev->mtu;
1108        struct netvsc_device_info *device_info;
1109        int ret = 0;
1110
1111        if (!nvdev || nvdev->destroy)
1112                return -ENODEV;
1113
1114        device_info = netvsc_devinfo_get(nvdev);
1115
1116        if (!device_info)
1117                return -ENOMEM;
1118
1119        /* Change MTU of underlying VF netdev first. */
1120        if (vf_netdev) {
1121                ret = dev_set_mtu(vf_netdev, mtu);
1122                if (ret)
1123                        goto out;
1124        }
1125
1126        ret = netvsc_detach(ndev, nvdev);
1127        if (ret)
1128                goto rollback_vf;
1129
1130        ndev->mtu = mtu;
1131
1132        ret = netvsc_attach(ndev, device_info);
1133        if (!ret)
1134                goto out;
1135
1136        /* Attempt rollback to original MTU */
1137        ndev->mtu = orig_mtu;
1138
1139        if (netvsc_attach(ndev, device_info))
1140                netdev_err(ndev, "restoring mtu failed\n");
1141rollback_vf:
1142        if (vf_netdev)
1143                dev_set_mtu(vf_netdev, orig_mtu);
1144
1145out:
1146        kfree(device_info);
1147        return ret;
1148}
1149
1150static void netvsc_get_vf_stats(struct net_device *net,
1151                                struct netvsc_vf_pcpu_stats *tot)
1152{
1153        struct net_device_context *ndev_ctx = netdev_priv(net);
1154        int i;
1155
1156        memset(tot, 0, sizeof(*tot));
1157
1158        for_each_possible_cpu(i) {
1159                const struct netvsc_vf_pcpu_stats *stats
1160                        = per_cpu_ptr(ndev_ctx->vf_stats, i);
1161                u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1162                unsigned int start;
1163
1164                do {
1165                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1166                        rx_packets = stats->rx_packets;
1167                        tx_packets = stats->tx_packets;
1168                        rx_bytes = stats->rx_bytes;
1169                        tx_bytes = stats->tx_bytes;
1170                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1171
1172                tot->rx_packets += rx_packets;
1173                tot->tx_packets += tx_packets;
1174                tot->rx_bytes   += rx_bytes;
1175                tot->tx_bytes   += tx_bytes;
1176                tot->tx_dropped += stats->tx_dropped;
1177        }
1178}
1179
1180static void netvsc_get_pcpu_stats(struct net_device *net,
1181                                  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1182{
1183        struct net_device_context *ndev_ctx = netdev_priv(net);
1184        struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1185        int i;
1186
1187        /* fetch percpu stats of vf */
1188        for_each_possible_cpu(i) {
1189                const struct netvsc_vf_pcpu_stats *stats =
1190                        per_cpu_ptr(ndev_ctx->vf_stats, i);
1191                struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1192                unsigned int start;
1193
1194                do {
1195                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1196                        this_tot->vf_rx_packets = stats->rx_packets;
1197                        this_tot->vf_tx_packets = stats->tx_packets;
1198                        this_tot->vf_rx_bytes = stats->rx_bytes;
1199                        this_tot->vf_tx_bytes = stats->tx_bytes;
1200                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1201                this_tot->rx_packets = this_tot->vf_rx_packets;
1202                this_tot->tx_packets = this_tot->vf_tx_packets;
1203                this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1204                this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1205        }
1206
1207        /* fetch percpu stats of netvsc */
1208        for (i = 0; i < nvdev->num_chn; i++) {
1209                const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1210                const struct netvsc_stats *stats;
1211                struct netvsc_ethtool_pcpu_stats *this_tot =
1212                        &pcpu_tot[nvchan->channel->target_cpu];
1213                u64 packets, bytes;
1214                unsigned int start;
1215
1216                stats = &nvchan->tx_stats;
1217                do {
1218                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1219                        packets = stats->packets;
1220                        bytes = stats->bytes;
1221                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1222
1223                this_tot->tx_bytes      += bytes;
1224                this_tot->tx_packets    += packets;
1225
1226                stats = &nvchan->rx_stats;
1227                do {
1228                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1229                        packets = stats->packets;
1230                        bytes = stats->bytes;
1231                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1232
1233                this_tot->rx_bytes      += bytes;
1234                this_tot->rx_packets    += packets;
1235        }
1236}
1237
1238static void netvsc_get_stats64(struct net_device *net,
1239                               struct rtnl_link_stats64 *t)
1240{
1241        struct net_device_context *ndev_ctx = netdev_priv(net);
1242        struct netvsc_device *nvdev;
1243        struct netvsc_vf_pcpu_stats vf_tot;
1244        int i;
1245
1246        rcu_read_lock();
1247
1248        nvdev = rcu_dereference(ndev_ctx->nvdev);
1249        if (!nvdev)
1250                goto out;
1251
1252        netdev_stats_to_stats64(t, &net->stats);
1253
1254        netvsc_get_vf_stats(net, &vf_tot);
1255        t->rx_packets += vf_tot.rx_packets;
1256        t->tx_packets += vf_tot.tx_packets;
1257        t->rx_bytes   += vf_tot.rx_bytes;
1258        t->tx_bytes   += vf_tot.tx_bytes;
1259        t->tx_dropped += vf_tot.tx_dropped;
1260
1261        for (i = 0; i < nvdev->num_chn; i++) {
1262                const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1263                const struct netvsc_stats *stats;
1264                u64 packets, bytes, multicast;
1265                unsigned int start;
1266
1267                stats = &nvchan->tx_stats;
1268                do {
1269                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1270                        packets = stats->packets;
1271                        bytes = stats->bytes;
1272                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1273
1274                t->tx_bytes     += bytes;
1275                t->tx_packets   += packets;
1276
1277                stats = &nvchan->rx_stats;
1278                do {
1279                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1280                        packets = stats->packets;
1281                        bytes = stats->bytes;
1282                        multicast = stats->multicast + stats->broadcast;
1283                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1284
1285                t->rx_bytes     += bytes;
1286                t->rx_packets   += packets;
1287                t->multicast    += multicast;
1288        }
1289out:
1290        rcu_read_unlock();
1291}
1292
1293static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1294{
1295        struct net_device_context *ndc = netdev_priv(ndev);
1296        struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1297        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1298        struct sockaddr *addr = p;
1299        int err;
1300
1301        err = eth_prepare_mac_addr_change(ndev, p);
1302        if (err)
1303                return err;
1304
1305        if (!nvdev)
1306                return -ENODEV;
1307
1308        if (vf_netdev) {
1309                err = dev_set_mac_address(vf_netdev, addr, NULL);
1310                if (err)
1311                        return err;
1312        }
1313
1314        err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1315        if (!err) {
1316                eth_commit_mac_addr_change(ndev, p);
1317        } else if (vf_netdev) {
1318                /* rollback change on VF */
1319                memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1320                dev_set_mac_address(vf_netdev, addr, NULL);
1321        }
1322
1323        return err;
1324}
1325
1326static const struct {
1327        char name[ETH_GSTRING_LEN];
1328        u16 offset;
1329} netvsc_stats[] = {
1330        { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1331        { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1332        { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1333        { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1334        { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1335        { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1336        { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1337        { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1338        { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1339        { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1340}, pcpu_stats[] = {
1341        { "cpu%u_rx_packets",
1342                offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1343        { "cpu%u_rx_bytes",
1344                offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1345        { "cpu%u_tx_packets",
1346                offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1347        { "cpu%u_tx_bytes",
1348                offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1349        { "cpu%u_vf_rx_packets",
1350                offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1351        { "cpu%u_vf_rx_bytes",
1352                offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1353        { "cpu%u_vf_tx_packets",
1354                offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1355        { "cpu%u_vf_tx_bytes",
1356                offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1357}, vf_stats[] = {
1358        { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1359        { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1360        { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1361        { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1362        { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1363};
1364
1365#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1366#define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1367
1368/* statistics per queue (rx/tx packets/bytes) */
1369#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1370
1371/* 4 statistics per queue (rx/tx packets/bytes) */
1372#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1373
1374static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1375{
1376        struct net_device_context *ndc = netdev_priv(dev);
1377        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1378
1379        if (!nvdev)
1380                return -ENODEV;
1381
1382        switch (string_set) {
1383        case ETH_SS_STATS:
1384                return NETVSC_GLOBAL_STATS_LEN
1385                        + NETVSC_VF_STATS_LEN
1386                        + NETVSC_QUEUE_STATS_LEN(nvdev)
1387                        + NETVSC_PCPU_STATS_LEN;
1388        default:
1389                return -EINVAL;
1390        }
1391}
1392
1393static void netvsc_get_ethtool_stats(struct net_device *dev,
1394                                     struct ethtool_stats *stats, u64 *data)
1395{
1396        struct net_device_context *ndc = netdev_priv(dev);
1397        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1398        const void *nds = &ndc->eth_stats;
1399        const struct netvsc_stats *qstats;
1400        struct netvsc_vf_pcpu_stats sum;
1401        struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1402        unsigned int start;
1403        u64 packets, bytes;
1404        int i, j, cpu;
1405
1406        if (!nvdev)
1407                return;
1408
1409        for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1410                data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1411
1412        netvsc_get_vf_stats(dev, &sum);
1413        for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1414                data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1415
1416        for (j = 0; j < nvdev->num_chn; j++) {
1417                qstats = &nvdev->chan_table[j].tx_stats;
1418
1419                do {
1420                        start = u64_stats_fetch_begin_irq(&qstats->syncp);
1421                        packets = qstats->packets;
1422                        bytes = qstats->bytes;
1423                } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1424                data[i++] = packets;
1425                data[i++] = bytes;
1426
1427                qstats = &nvdev->chan_table[j].rx_stats;
1428                do {
1429                        start = u64_stats_fetch_begin_irq(&qstats->syncp);
1430                        packets = qstats->packets;
1431                        bytes = qstats->bytes;
1432                } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1433                data[i++] = packets;
1434                data[i++] = bytes;
1435        }
1436
1437        pcpu_sum = kvmalloc_array(num_possible_cpus(),
1438                                  sizeof(struct netvsc_ethtool_pcpu_stats),
1439                                  GFP_KERNEL);
1440        netvsc_get_pcpu_stats(dev, pcpu_sum);
1441        for_each_present_cpu(cpu) {
1442                struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1443
1444                for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1445                        data[i++] = *(u64 *)((void *)this_sum
1446                                             + pcpu_stats[j].offset);
1447        }
1448        kvfree(pcpu_sum);
1449}
1450
1451static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1452{
1453        struct net_device_context *ndc = netdev_priv(dev);
1454        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1455        u8 *p = data;
1456        int i, cpu;
1457
1458        if (!nvdev)
1459                return;
1460
1461        switch (stringset) {
1462        case ETH_SS_STATS:
1463                for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1464                        memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1465                        p += ETH_GSTRING_LEN;
1466                }
1467
1468                for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1469                        memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1470                        p += ETH_GSTRING_LEN;
1471                }
1472
1473                for (i = 0; i < nvdev->num_chn; i++) {
1474                        sprintf(p, "tx_queue_%u_packets", i);
1475                        p += ETH_GSTRING_LEN;
1476                        sprintf(p, "tx_queue_%u_bytes", i);
1477                        p += ETH_GSTRING_LEN;
1478                        sprintf(p, "rx_queue_%u_packets", i);
1479                        p += ETH_GSTRING_LEN;
1480                        sprintf(p, "rx_queue_%u_bytes", i);
1481                        p += ETH_GSTRING_LEN;
1482                }
1483
1484                for_each_present_cpu(cpu) {
1485                        for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1486                                sprintf(p, pcpu_stats[i].name, cpu);
1487                                p += ETH_GSTRING_LEN;
1488                        }
1489                }
1490
1491                break;
1492        }
1493}
1494
1495static int
1496netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1497                         struct ethtool_rxnfc *info)
1498{
1499        const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1500
1501        info->data = RXH_IP_SRC | RXH_IP_DST;
1502
1503        switch (info->flow_type) {
1504        case TCP_V4_FLOW:
1505                if (ndc->l4_hash & HV_TCP4_L4HASH)
1506                        info->data |= l4_flag;
1507
1508                break;
1509
1510        case TCP_V6_FLOW:
1511                if (ndc->l4_hash & HV_TCP6_L4HASH)
1512                        info->data |= l4_flag;
1513
1514                break;
1515
1516        case UDP_V4_FLOW:
1517                if (ndc->l4_hash & HV_UDP4_L4HASH)
1518                        info->data |= l4_flag;
1519
1520                break;
1521
1522        case UDP_V6_FLOW:
1523                if (ndc->l4_hash & HV_UDP6_L4HASH)
1524                        info->data |= l4_flag;
1525
1526                break;
1527
1528        case IPV4_FLOW:
1529        case IPV6_FLOW:
1530                break;
1531        default:
1532                info->data = 0;
1533                break;
1534        }
1535
1536        return 0;
1537}
1538
1539static int
1540netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1541                 u32 *rules)
1542{
1543        struct net_device_context *ndc = netdev_priv(dev);
1544        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1545
1546        if (!nvdev)
1547                return -ENODEV;
1548
1549        switch (info->cmd) {
1550        case ETHTOOL_GRXRINGS:
1551                info->data = nvdev->num_chn;
1552                return 0;
1553
1554        case ETHTOOL_GRXFH:
1555                return netvsc_get_rss_hash_opts(ndc, info);
1556        }
1557        return -EOPNOTSUPP;
1558}
1559
1560static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1561                                    struct ethtool_rxnfc *info)
1562{
1563        if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1564                           RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1565                switch (info->flow_type) {
1566                case TCP_V4_FLOW:
1567                        ndc->l4_hash |= HV_TCP4_L4HASH;
1568                        break;
1569
1570                case TCP_V6_FLOW:
1571                        ndc->l4_hash |= HV_TCP6_L4HASH;
1572                        break;
1573
1574                case UDP_V4_FLOW:
1575                        ndc->l4_hash |= HV_UDP4_L4HASH;
1576                        break;
1577
1578                case UDP_V6_FLOW:
1579                        ndc->l4_hash |= HV_UDP6_L4HASH;
1580                        break;
1581
1582                default:
1583                        return -EOPNOTSUPP;
1584                }
1585
1586                return 0;
1587        }
1588
1589        if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1590                switch (info->flow_type) {
1591                case TCP_V4_FLOW:
1592                        ndc->l4_hash &= ~HV_TCP4_L4HASH;
1593                        break;
1594
1595                case TCP_V6_FLOW:
1596                        ndc->l4_hash &= ~HV_TCP6_L4HASH;
1597                        break;
1598
1599                case UDP_V4_FLOW:
1600                        ndc->l4_hash &= ~HV_UDP4_L4HASH;
1601                        break;
1602
1603                case UDP_V6_FLOW:
1604                        ndc->l4_hash &= ~HV_UDP6_L4HASH;
1605                        break;
1606
1607                default:
1608                        return -EOPNOTSUPP;
1609                }
1610
1611                return 0;
1612        }
1613
1614        return -EOPNOTSUPP;
1615}
1616
1617static int
1618netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1619{
1620        struct net_device_context *ndc = netdev_priv(ndev);
1621
1622        if (info->cmd == ETHTOOL_SRXFH)
1623                return netvsc_set_rss_hash_opts(ndc, info);
1624
1625        return -EOPNOTSUPP;
1626}
1627
1628static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1629{
1630        return NETVSC_HASH_KEYLEN;
1631}
1632
1633static u32 netvsc_rss_indir_size(struct net_device *dev)
1634{
1635        return ITAB_NUM;
1636}
1637
1638static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1639                           u8 *hfunc)
1640{
1641        struct net_device_context *ndc = netdev_priv(dev);
1642        struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1643        struct rndis_device *rndis_dev;
1644        int i;
1645
1646        if (!ndev)
1647                return -ENODEV;
1648
1649        if (hfunc)
1650                *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1651
1652        rndis_dev = ndev->extension;
1653        if (indir) {
1654                for (i = 0; i < ITAB_NUM; i++)
1655                        indir[i] = rndis_dev->rx_table[i];
1656        }
1657
1658        if (key)
1659                memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1660
1661        return 0;
1662}
1663
1664static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1665                           const u8 *key, const u8 hfunc)
1666{
1667        struct net_device_context *ndc = netdev_priv(dev);
1668        struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1669        struct rndis_device *rndis_dev;
1670        int i;
1671
1672        if (!ndev)
1673                return -ENODEV;
1674
1675        if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1676                return -EOPNOTSUPP;
1677
1678        rndis_dev = ndev->extension;
1679        if (indir) {
1680                for (i = 0; i < ITAB_NUM; i++)
1681                        if (indir[i] >= ndev->num_chn)
1682                                return -EINVAL;
1683
1684                for (i = 0; i < ITAB_NUM; i++)
1685                        rndis_dev->rx_table[i] = indir[i];
1686        }
1687
1688        if (!key) {
1689                if (!indir)
1690                        return 0;
1691
1692                key = rndis_dev->rss_key;
1693        }
1694
1695        return rndis_filter_set_rss_param(rndis_dev, key);
1696}
1697
1698/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1699 * It does have pre-allocated receive area which is divided into sections.
1700 */
1701static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1702                                   struct ethtool_ringparam *ring)
1703{
1704        u32 max_buf_size;
1705
1706        ring->rx_pending = nvdev->recv_section_cnt;
1707        ring->tx_pending = nvdev->send_section_cnt;
1708
1709        if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1710                max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1711        else
1712                max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1713
1714        ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1715        ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1716                / nvdev->send_section_size;
1717}
1718
1719static void netvsc_get_ringparam(struct net_device *ndev,
1720                                 struct ethtool_ringparam *ring)
1721{
1722        struct net_device_context *ndevctx = netdev_priv(ndev);
1723        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1724
1725        if (!nvdev)
1726                return;
1727
1728        __netvsc_get_ringparam(nvdev, ring);
1729}
1730
1731static int netvsc_set_ringparam(struct net_device *ndev,
1732                                struct ethtool_ringparam *ring)
1733{
1734        struct net_device_context *ndevctx = netdev_priv(ndev);
1735        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1736        struct netvsc_device_info *device_info;
1737        struct ethtool_ringparam orig;
1738        u32 new_tx, new_rx;
1739        int ret = 0;
1740
1741        if (!nvdev || nvdev->destroy)
1742                return -ENODEV;
1743
1744        memset(&orig, 0, sizeof(orig));
1745        __netvsc_get_ringparam(nvdev, &orig);
1746
1747        new_tx = clamp_t(u32, ring->tx_pending,
1748                         NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1749        new_rx = clamp_t(u32, ring->rx_pending,
1750                         NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1751
1752        if (new_tx == orig.tx_pending &&
1753            new_rx == orig.rx_pending)
1754                return 0;        /* no change */
1755
1756        device_info = netvsc_devinfo_get(nvdev);
1757
1758        if (!device_info)
1759                return -ENOMEM;
1760
1761        device_info->send_sections = new_tx;
1762        device_info->recv_sections = new_rx;
1763
1764        ret = netvsc_detach(ndev, nvdev);
1765        if (ret)
1766                goto out;
1767
1768        ret = netvsc_attach(ndev, device_info);
1769        if (ret) {
1770                device_info->send_sections = orig.tx_pending;
1771                device_info->recv_sections = orig.rx_pending;
1772
1773                if (netvsc_attach(ndev, device_info))
1774                        netdev_err(ndev, "restoring ringparam failed");
1775        }
1776
1777out:
1778        kfree(device_info);
1779        return ret;
1780}
1781
1782static int netvsc_set_features(struct net_device *ndev,
1783                               netdev_features_t features)
1784{
1785        netdev_features_t change = features ^ ndev->features;
1786        struct net_device_context *ndevctx = netdev_priv(ndev);
1787        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1788        struct ndis_offload_params offloads;
1789
1790        if (!nvdev || nvdev->destroy)
1791                return -ENODEV;
1792
1793        if (!(change & NETIF_F_LRO))
1794                return 0;
1795
1796        memset(&offloads, 0, sizeof(struct ndis_offload_params));
1797
1798        if (features & NETIF_F_LRO) {
1799                offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1800                offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1801        } else {
1802                offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1803                offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1804        }
1805
1806        return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1807}
1808
1809static u32 netvsc_get_msglevel(struct net_device *ndev)
1810{
1811        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1812
1813        return ndev_ctx->msg_enable;
1814}
1815
1816static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1817{
1818        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1819
1820        ndev_ctx->msg_enable = val;
1821}
1822
1823static const struct ethtool_ops ethtool_ops = {
1824        .get_drvinfo    = netvsc_get_drvinfo,
1825        .get_msglevel   = netvsc_get_msglevel,
1826        .set_msglevel   = netvsc_set_msglevel,
1827        .get_link       = ethtool_op_get_link,
1828        .get_ethtool_stats = netvsc_get_ethtool_stats,
1829        .get_sset_count = netvsc_get_sset_count,
1830        .get_strings    = netvsc_get_strings,
1831        .get_channels   = netvsc_get_channels,
1832        .set_channels   = netvsc_set_channels,
1833        .get_ts_info    = ethtool_op_get_ts_info,
1834        .get_rxnfc      = netvsc_get_rxnfc,
1835        .set_rxnfc      = netvsc_set_rxnfc,
1836        .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1837        .get_rxfh_indir_size = netvsc_rss_indir_size,
1838        .get_rxfh       = netvsc_get_rxfh,
1839        .set_rxfh       = netvsc_set_rxfh,
1840        .get_link_ksettings = netvsc_get_link_ksettings,
1841        .set_link_ksettings = netvsc_set_link_ksettings,
1842        .get_ringparam  = netvsc_get_ringparam,
1843        .set_ringparam  = netvsc_set_ringparam,
1844};
1845
1846static const struct net_device_ops device_ops = {
1847        .ndo_open =                     netvsc_open,
1848        .ndo_stop =                     netvsc_close,
1849        .ndo_start_xmit =               netvsc_start_xmit,
1850        .ndo_change_rx_flags =          netvsc_change_rx_flags,
1851        .ndo_set_rx_mode =              netvsc_set_rx_mode,
1852        .ndo_set_features =             netvsc_set_features,
1853        .ndo_change_mtu =               netvsc_change_mtu,
1854        .ndo_validate_addr =            eth_validate_addr,
1855        .ndo_set_mac_address =          netvsc_set_mac_addr,
1856        .ndo_select_queue =             netvsc_select_queue,
1857        .ndo_get_stats64 =              netvsc_get_stats64,
1858};
1859
1860/*
1861 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1862 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1863 * present send GARP packet to network peers with netif_notify_peers().
1864 */
1865static void netvsc_link_change(struct work_struct *w)
1866{
1867        struct net_device_context *ndev_ctx =
1868                container_of(w, struct net_device_context, dwork.work);
1869        struct hv_device *device_obj = ndev_ctx->device_ctx;
1870        struct net_device *net = hv_get_drvdata(device_obj);
1871        struct netvsc_device *net_device;
1872        struct rndis_device *rdev;
1873        struct netvsc_reconfig *event = NULL;
1874        bool notify = false, reschedule = false;
1875        unsigned long flags, next_reconfig, delay;
1876
1877        /* if changes are happening, comeback later */
1878        if (!rtnl_trylock()) {
1879                schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1880                return;
1881        }
1882
1883        net_device = rtnl_dereference(ndev_ctx->nvdev);
1884        if (!net_device)
1885                goto out_unlock;
1886
1887        rdev = net_device->extension;
1888
1889        next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1890        if (time_is_after_jiffies(next_reconfig)) {
1891                /* link_watch only sends one notification with current state
1892                 * per second, avoid doing reconfig more frequently. Handle
1893                 * wrap around.
1894                 */
1895                delay = next_reconfig - jiffies;
1896                delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1897                schedule_delayed_work(&ndev_ctx->dwork, delay);
1898                goto out_unlock;
1899        }
1900        ndev_ctx->last_reconfig = jiffies;
1901
1902        spin_lock_irqsave(&ndev_ctx->lock, flags);
1903        if (!list_empty(&ndev_ctx->reconfig_events)) {
1904                event = list_first_entry(&ndev_ctx->reconfig_events,
1905                                         struct netvsc_reconfig, list);
1906                list_del(&event->list);
1907                reschedule = !list_empty(&ndev_ctx->reconfig_events);
1908        }
1909        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1910
1911        if (!event)
1912                goto out_unlock;
1913
1914        switch (event->event) {
1915                /* Only the following events are possible due to the check in
1916                 * netvsc_linkstatus_callback()
1917                 */
1918        case RNDIS_STATUS_MEDIA_CONNECT:
1919                if (rdev->link_state) {
1920                        rdev->link_state = false;
1921                        netif_carrier_on(net);
1922                        netvsc_tx_enable(net_device, net);
1923                } else {
1924                        notify = true;
1925                }
1926                kfree(event);
1927                break;
1928        case RNDIS_STATUS_MEDIA_DISCONNECT:
1929                if (!rdev->link_state) {
1930                        rdev->link_state = true;
1931                        netif_carrier_off(net);
1932                        netvsc_tx_disable(net_device, net);
1933                }
1934                kfree(event);
1935                break;
1936        case RNDIS_STATUS_NETWORK_CHANGE:
1937                /* Only makes sense if carrier is present */
1938                if (!rdev->link_state) {
1939                        rdev->link_state = true;
1940                        netif_carrier_off(net);
1941                        netvsc_tx_disable(net_device, net);
1942                        event->event = RNDIS_STATUS_MEDIA_CONNECT;
1943                        spin_lock_irqsave(&ndev_ctx->lock, flags);
1944                        list_add(&event->list, &ndev_ctx->reconfig_events);
1945                        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1946                        reschedule = true;
1947                }
1948                break;
1949        }
1950
1951        rtnl_unlock();
1952
1953        if (notify)
1954                netdev_notify_peers(net);
1955
1956        /* link_watch only sends one notification with current state per
1957         * second, handle next reconfig event in 2 seconds.
1958         */
1959        if (reschedule)
1960                schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1961
1962        return;
1963
1964out_unlock:
1965        rtnl_unlock();
1966}
1967
1968static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1969{
1970        struct net_device_context *net_device_ctx;
1971        struct net_device *dev;
1972
1973        dev = netdev_master_upper_dev_get(vf_netdev);
1974        if (!dev || dev->netdev_ops != &device_ops)
1975                return NULL;    /* not a netvsc device */
1976
1977        net_device_ctx = netdev_priv(dev);
1978        if (!rtnl_dereference(net_device_ctx->nvdev))
1979                return NULL;    /* device is removed */
1980
1981        return dev;
1982}
1983
1984/* Called when VF is injecting data into network stack.
1985 * Change the associated network device from VF to netvsc.
1986 * note: already called with rcu_read_lock
1987 */
1988static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1989{
1990        struct sk_buff *skb = *pskb;
1991        struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1992        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1993        struct netvsc_vf_pcpu_stats *pcpu_stats
1994                 = this_cpu_ptr(ndev_ctx->vf_stats);
1995
1996        skb = skb_share_check(skb, GFP_ATOMIC);
1997        if (unlikely(!skb))
1998                return RX_HANDLER_CONSUMED;
1999
2000        *pskb = skb;
2001
2002        skb->dev = ndev;
2003
2004        u64_stats_update_begin(&pcpu_stats->syncp);
2005        pcpu_stats->rx_packets++;
2006        pcpu_stats->rx_bytes += skb->len;
2007        u64_stats_update_end(&pcpu_stats->syncp);
2008
2009        return RX_HANDLER_ANOTHER;
2010}
2011
2012static int netvsc_vf_join(struct net_device *vf_netdev,
2013                          struct net_device *ndev)
2014{
2015        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016        int ret;
2017
2018        ret = netdev_rx_handler_register(vf_netdev,
2019                                         netvsc_vf_handle_frame, ndev);
2020        if (ret != 0) {
2021                netdev_err(vf_netdev,
2022                           "can not register netvsc VF receive handler (err = %d)\n",
2023                           ret);
2024                goto rx_handler_failed;
2025        }
2026
2027        ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2028                                           NULL, NULL, NULL);
2029        if (ret != 0) {
2030                netdev_err(vf_netdev,
2031                           "can not set master device %s (err = %d)\n",
2032                           ndev->name, ret);
2033                goto upper_link_failed;
2034        }
2035
2036        /* set slave flag before open to prevent IPv6 addrconf */
2037        vf_netdev->flags |= IFF_SLAVE;
2038
2039        schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2040
2041        call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2042
2043        netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2044        return 0;
2045
2046upper_link_failed:
2047        netdev_rx_handler_unregister(vf_netdev);
2048rx_handler_failed:
2049        return ret;
2050}
2051
2052static void __netvsc_vf_setup(struct net_device *ndev,
2053                              struct net_device *vf_netdev)
2054{
2055        int ret;
2056
2057        /* Align MTU of VF with master */
2058        ret = dev_set_mtu(vf_netdev, ndev->mtu);
2059        if (ret)
2060                netdev_warn(vf_netdev,
2061                            "unable to change mtu to %u\n", ndev->mtu);
2062
2063        /* set multicast etc flags on VF */
2064        dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2065
2066        /* sync address list from ndev to VF */
2067        netif_addr_lock_bh(ndev);
2068        dev_uc_sync(vf_netdev, ndev);
2069        dev_mc_sync(vf_netdev, ndev);
2070        netif_addr_unlock_bh(ndev);
2071
2072        if (netif_running(ndev)) {
2073                ret = dev_open(vf_netdev, NULL);
2074                if (ret)
2075                        netdev_warn(vf_netdev,
2076                                    "unable to open: %d\n", ret);
2077        }
2078}
2079
2080/* Setup VF as slave of the synthetic device.
2081 * Runs in workqueue to avoid recursion in netlink callbacks.
2082 */
2083static void netvsc_vf_setup(struct work_struct *w)
2084{
2085        struct net_device_context *ndev_ctx
2086                = container_of(w, struct net_device_context, vf_takeover.work);
2087        struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2088        struct net_device *vf_netdev;
2089
2090        if (!rtnl_trylock()) {
2091                schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2092                return;
2093        }
2094
2095        vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2096        if (vf_netdev)
2097                __netvsc_vf_setup(ndev, vf_netdev);
2098
2099        rtnl_unlock();
2100}
2101
2102/* Find netvsc by VF serial number.
2103 * The PCI hyperv controller records the serial number as the slot kobj name.
2104 */
2105static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2106{
2107        struct device *parent = vf_netdev->dev.parent;
2108        struct net_device_context *ndev_ctx;
2109        struct pci_dev *pdev;
2110        u32 serial;
2111
2112        if (!parent || !dev_is_pci(parent))
2113                return NULL; /* not a PCI device */
2114
2115        pdev = to_pci_dev(parent);
2116        if (!pdev->slot) {
2117                netdev_notice(vf_netdev, "no PCI slot information\n");
2118                return NULL;
2119        }
2120
2121        if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2122                netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2123                              pci_slot_name(pdev->slot));
2124                return NULL;
2125        }
2126
2127        list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2128                if (!ndev_ctx->vf_alloc)
2129                        continue;
2130
2131                if (ndev_ctx->vf_serial == serial)
2132                        return hv_get_drvdata(ndev_ctx->device_ctx);
2133        }
2134
2135        netdev_notice(vf_netdev,
2136                      "no netdev found for vf serial:%u\n", serial);
2137        return NULL;
2138}
2139
2140static int netvsc_register_vf(struct net_device *vf_netdev)
2141{
2142        struct net_device_context *net_device_ctx;
2143        struct netvsc_device *netvsc_dev;
2144        struct net_device *ndev;
2145        int ret;
2146
2147        if (vf_netdev->addr_len != ETH_ALEN)
2148                return NOTIFY_DONE;
2149
2150        ndev = get_netvsc_byslot(vf_netdev);
2151        if (!ndev)
2152                return NOTIFY_DONE;
2153
2154        net_device_ctx = netdev_priv(ndev);
2155        netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2156        if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2157                return NOTIFY_DONE;
2158
2159        /* if synthetic interface is a different namespace,
2160         * then move the VF to that namespace; join will be
2161         * done again in that context.
2162         */
2163        if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2164                ret = dev_change_net_namespace(vf_netdev,
2165                                               dev_net(ndev), "eth%d");
2166                if (ret)
2167                        netdev_err(vf_netdev,
2168                                   "could not move to same namespace as %s: %d\n",
2169                                   ndev->name, ret);
2170                else
2171                        netdev_info(vf_netdev,
2172                                    "VF moved to namespace with: %s\n",
2173                                    ndev->name);
2174                return NOTIFY_DONE;
2175        }
2176
2177        netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2178
2179        if (netvsc_vf_join(vf_netdev, ndev) != 0)
2180                return NOTIFY_DONE;
2181
2182        dev_hold(vf_netdev);
2183        rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2184        return NOTIFY_OK;
2185}
2186
2187/* VF up/down change detected, schedule to change data path */
2188static int netvsc_vf_changed(struct net_device *vf_netdev)
2189{
2190        struct net_device_context *net_device_ctx;
2191        struct netvsc_device *netvsc_dev;
2192        struct net_device *ndev;
2193        bool vf_is_up = netif_running(vf_netdev);
2194
2195        ndev = get_netvsc_byref(vf_netdev);
2196        if (!ndev)
2197                return NOTIFY_DONE;
2198
2199        net_device_ctx = netdev_priv(ndev);
2200        netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2201        if (!netvsc_dev)
2202                return NOTIFY_DONE;
2203
2204        netvsc_switch_datapath(ndev, vf_is_up);
2205        netdev_info(ndev, "Data path switched %s VF: %s\n",
2206                    vf_is_up ? "to" : "from", vf_netdev->name);
2207
2208        return NOTIFY_OK;
2209}
2210
2211static int netvsc_unregister_vf(struct net_device *vf_netdev)
2212{
2213        struct net_device *ndev;
2214        struct net_device_context *net_device_ctx;
2215
2216        ndev = get_netvsc_byref(vf_netdev);
2217        if (!ndev)
2218                return NOTIFY_DONE;
2219
2220        net_device_ctx = netdev_priv(ndev);
2221        cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2222
2223        netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2224
2225        netdev_rx_handler_unregister(vf_netdev);
2226        netdev_upper_dev_unlink(vf_netdev, ndev);
2227        RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2228        dev_put(vf_netdev);
2229
2230        return NOTIFY_OK;
2231}
2232
2233static int netvsc_probe(struct hv_device *dev,
2234                        const struct hv_vmbus_device_id *dev_id)
2235{
2236        struct net_device *net = NULL;
2237        struct net_device_context *net_device_ctx;
2238        struct netvsc_device_info *device_info = NULL;
2239        struct netvsc_device *nvdev;
2240        int ret = -ENOMEM;
2241
2242        net = alloc_etherdev_mq(sizeof(struct net_device_context),
2243                                VRSS_CHANNEL_MAX);
2244        if (!net)
2245                goto no_net;
2246
2247        netif_carrier_off(net);
2248
2249        netvsc_init_settings(net);
2250
2251        net_device_ctx = netdev_priv(net);
2252        net_device_ctx->device_ctx = dev;
2253        net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2254        if (netif_msg_probe(net_device_ctx))
2255                netdev_dbg(net, "netvsc msg_enable: %d\n",
2256                           net_device_ctx->msg_enable);
2257
2258        hv_set_drvdata(dev, net);
2259
2260        INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2261
2262        spin_lock_init(&net_device_ctx->lock);
2263        INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2264        INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2265
2266        net_device_ctx->vf_stats
2267                = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2268        if (!net_device_ctx->vf_stats)
2269                goto no_stats;
2270
2271        net->netdev_ops = &device_ops;
2272        net->ethtool_ops = &ethtool_ops;
2273        SET_NETDEV_DEV(net, &dev->device);
2274
2275        /* We always need headroom for rndis header */
2276        net->needed_headroom = RNDIS_AND_PPI_SIZE;
2277
2278        /* Initialize the number of queues to be 1, we may change it if more
2279         * channels are offered later.
2280         */
2281        netif_set_real_num_tx_queues(net, 1);
2282        netif_set_real_num_rx_queues(net, 1);
2283
2284        /* Notify the netvsc driver of the new device */
2285        device_info = netvsc_devinfo_get(NULL);
2286
2287        if (!device_info) {
2288                ret = -ENOMEM;
2289                goto devinfo_failed;
2290        }
2291
2292        nvdev = rndis_filter_device_add(dev, device_info);
2293        if (IS_ERR(nvdev)) {
2294                ret = PTR_ERR(nvdev);
2295                netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2296                goto rndis_failed;
2297        }
2298
2299        memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2300
2301        /* We must get rtnl lock before scheduling nvdev->subchan_work,
2302         * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2303         * all subchannels to show up, but that may not happen because
2304         * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2305         * -> ... -> device_add() -> ... -> __device_attach() can't get
2306         * the device lock, so all the subchannels can't be processed --
2307         * finally netvsc_subchan_work() hangs forever.
2308         */
2309        rtnl_lock();
2310
2311        if (nvdev->num_chn > 1)
2312                schedule_work(&nvdev->subchan_work);
2313
2314        /* hw_features computed in rndis_netdev_set_hwcaps() */
2315        net->features = net->hw_features |
2316                NETIF_F_HIGHDMA | NETIF_F_SG |
2317                NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2318        net->vlan_features = net->features;
2319
2320        netdev_lockdep_set_classes(net);
2321
2322        /* MTU range: 68 - 1500 or 65521 */
2323        net->min_mtu = NETVSC_MTU_MIN;
2324        if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2325                net->max_mtu = NETVSC_MTU - ETH_HLEN;
2326        else
2327                net->max_mtu = ETH_DATA_LEN;
2328
2329        ret = register_netdevice(net);
2330        if (ret != 0) {
2331                pr_err("Unable to register netdev.\n");
2332                goto register_failed;
2333        }
2334
2335        list_add(&net_device_ctx->list, &netvsc_dev_list);
2336        rtnl_unlock();
2337
2338        kfree(device_info);
2339        return 0;
2340
2341register_failed:
2342        rtnl_unlock();
2343        rndis_filter_device_remove(dev, nvdev);
2344rndis_failed:
2345        kfree(device_info);
2346devinfo_failed:
2347        free_percpu(net_device_ctx->vf_stats);
2348no_stats:
2349        hv_set_drvdata(dev, NULL);
2350        free_netdev(net);
2351no_net:
2352        return ret;
2353}
2354
2355static int netvsc_remove(struct hv_device *dev)
2356{
2357        struct net_device_context *ndev_ctx;
2358        struct net_device *vf_netdev, *net;
2359        struct netvsc_device *nvdev;
2360
2361        net = hv_get_drvdata(dev);
2362        if (net == NULL) {
2363                dev_err(&dev->device, "No net device to remove\n");
2364                return 0;
2365        }
2366
2367        ndev_ctx = netdev_priv(net);
2368
2369        cancel_delayed_work_sync(&ndev_ctx->dwork);
2370
2371        rtnl_lock();
2372        nvdev = rtnl_dereference(ndev_ctx->nvdev);
2373        if (nvdev)
2374                cancel_work_sync(&nvdev->subchan_work);
2375
2376        /*
2377         * Call to the vsc driver to let it know that the device is being
2378         * removed. Also blocks mtu and channel changes.
2379         */
2380        vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2381        if (vf_netdev)
2382                netvsc_unregister_vf(vf_netdev);
2383
2384        if (nvdev)
2385                rndis_filter_device_remove(dev, nvdev);
2386
2387        unregister_netdevice(net);
2388        list_del(&ndev_ctx->list);
2389
2390        rtnl_unlock();
2391
2392        hv_set_drvdata(dev, NULL);
2393
2394        free_percpu(ndev_ctx->vf_stats);
2395        free_netdev(net);
2396        return 0;
2397}
2398
2399static const struct hv_vmbus_device_id id_table[] = {
2400        /* Network guid */
2401        { HV_NIC_GUID, },
2402        { },
2403};
2404
2405MODULE_DEVICE_TABLE(vmbus, id_table);
2406
2407/* The one and only one */
2408static struct  hv_driver netvsc_drv = {
2409        .name = KBUILD_MODNAME,
2410        .id_table = id_table,
2411        .probe = netvsc_probe,
2412        .remove = netvsc_remove,
2413        .driver = {
2414                .probe_type = PROBE_FORCE_SYNCHRONOUS,
2415        },
2416};
2417
2418/*
2419 * On Hyper-V, every VF interface is matched with a corresponding
2420 * synthetic interface. The synthetic interface is presented first
2421 * to the guest. When the corresponding VF instance is registered,
2422 * we will take care of switching the data path.
2423 */
2424static int netvsc_netdev_event(struct notifier_block *this,
2425                               unsigned long event, void *ptr)
2426{
2427        struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2428
2429        /* Skip our own events */
2430        if (event_dev->netdev_ops == &device_ops)
2431                return NOTIFY_DONE;
2432
2433        /* Avoid non-Ethernet type devices */
2434        if (event_dev->type != ARPHRD_ETHER)
2435                return NOTIFY_DONE;
2436
2437        /* Avoid Vlan dev with same MAC registering as VF */
2438        if (is_vlan_dev(event_dev))
2439                return NOTIFY_DONE;
2440
2441        /* Avoid Bonding master dev with same MAC registering as VF */
2442        if ((event_dev->priv_flags & IFF_BONDING) &&
2443            (event_dev->flags & IFF_MASTER))
2444                return NOTIFY_DONE;
2445
2446        switch (event) {
2447        case NETDEV_REGISTER:
2448                return netvsc_register_vf(event_dev);
2449        case NETDEV_UNREGISTER:
2450                return netvsc_unregister_vf(event_dev);
2451        case NETDEV_UP:
2452        case NETDEV_DOWN:
2453                return netvsc_vf_changed(event_dev);
2454        default:
2455                return NOTIFY_DONE;
2456        }
2457}
2458
2459static struct notifier_block netvsc_netdev_notifier = {
2460        .notifier_call = netvsc_netdev_event,
2461};
2462
2463static void __exit netvsc_drv_exit(void)
2464{
2465        unregister_netdevice_notifier(&netvsc_netdev_notifier);
2466        vmbus_driver_unregister(&netvsc_drv);
2467}
2468
2469static int __init netvsc_drv_init(void)
2470{
2471        int ret;
2472
2473        if (ring_size < RING_SIZE_MIN) {
2474                ring_size = RING_SIZE_MIN;
2475                pr_info("Increased ring_size to %u (min allowed)\n",
2476                        ring_size);
2477        }
2478        netvsc_ring_bytes = ring_size * PAGE_SIZE;
2479
2480        ret = vmbus_driver_register(&netvsc_drv);
2481        if (ret)
2482                return ret;
2483
2484        register_netdevice_notifier(&netvsc_netdev_notifier);
2485        return 0;
2486}
2487
2488MODULE_LICENSE("GPL");
2489MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2490
2491module_init(netvsc_drv_init);
2492module_exit(netvsc_drv_exit);
2493