1
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/delay.h>
5#include <linux/gpio/consumer.h>
6#include <linux/hwmon.h>
7#include <linux/i2c.h>
8#include <linux/interrupt.h>
9#include <linux/jiffies.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "mdio-i2c.h"
20#include "sfp.h"
21#include "swphy.h"
22
23enum {
24 GPIO_MODDEF0,
25 GPIO_LOS,
26 GPIO_TX_FAULT,
27 GPIO_TX_DISABLE,
28 GPIO_RATE_SELECT,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37 SFP_E_INSERT = 0,
38 SFP_E_REMOVE,
39 SFP_E_DEV_DOWN,
40 SFP_E_DEV_UP,
41 SFP_E_TX_FAULT,
42 SFP_E_TX_CLEAR,
43 SFP_E_LOS_HIGH,
44 SFP_E_LOS_LOW,
45 SFP_E_TIMEOUT,
46
47 SFP_MOD_EMPTY = 0,
48 SFP_MOD_PROBE,
49 SFP_MOD_HPOWER,
50 SFP_MOD_PRESENT,
51 SFP_MOD_ERROR,
52
53 SFP_DEV_DOWN = 0,
54 SFP_DEV_UP,
55
56 SFP_S_DOWN = 0,
57 SFP_S_INIT,
58 SFP_S_WAIT_LOS,
59 SFP_S_LINK_UP,
60 SFP_S_TX_FAULT,
61 SFP_S_REINIT,
62 SFP_S_TX_DISABLE,
63};
64
65static const char * const mod_state_strings[] = {
66 [SFP_MOD_EMPTY] = "empty",
67 [SFP_MOD_PROBE] = "probe",
68 [SFP_MOD_HPOWER] = "hpower",
69 [SFP_MOD_PRESENT] = "present",
70 [SFP_MOD_ERROR] = "error",
71};
72
73static const char *mod_state_to_str(unsigned short mod_state)
74{
75 if (mod_state >= ARRAY_SIZE(mod_state_strings))
76 return "Unknown module state";
77 return mod_state_strings[mod_state];
78}
79
80static const char * const dev_state_strings[] = {
81 [SFP_DEV_DOWN] = "down",
82 [SFP_DEV_UP] = "up",
83};
84
85static const char *dev_state_to_str(unsigned short dev_state)
86{
87 if (dev_state >= ARRAY_SIZE(dev_state_strings))
88 return "Unknown device state";
89 return dev_state_strings[dev_state];
90}
91
92static const char * const event_strings[] = {
93 [SFP_E_INSERT] = "insert",
94 [SFP_E_REMOVE] = "remove",
95 [SFP_E_DEV_DOWN] = "dev_down",
96 [SFP_E_DEV_UP] = "dev_up",
97 [SFP_E_TX_FAULT] = "tx_fault",
98 [SFP_E_TX_CLEAR] = "tx_clear",
99 [SFP_E_LOS_HIGH] = "los_high",
100 [SFP_E_LOS_LOW] = "los_low",
101 [SFP_E_TIMEOUT] = "timeout",
102};
103
104static const char *event_to_str(unsigned short event)
105{
106 if (event >= ARRAY_SIZE(event_strings))
107 return "Unknown event";
108 return event_strings[event];
109}
110
111static const char * const sm_state_strings[] = {
112 [SFP_S_DOWN] = "down",
113 [SFP_S_INIT] = "init",
114 [SFP_S_WAIT_LOS] = "wait_los",
115 [SFP_S_LINK_UP] = "link_up",
116 [SFP_S_TX_FAULT] = "tx_fault",
117 [SFP_S_REINIT] = "reinit",
118 [SFP_S_TX_DISABLE] = "rx_disable",
119};
120
121static const char *sm_state_to_str(unsigned short sm_state)
122{
123 if (sm_state >= ARRAY_SIZE(sm_state_strings))
124 return "Unknown state";
125 return sm_state_strings[sm_state];
126}
127
128static const char *gpio_of_names[] = {
129 "mod-def0",
130 "los",
131 "tx-fault",
132 "tx-disable",
133 "rate-select0",
134};
135
136static const enum gpiod_flags gpio_flags[] = {
137 GPIOD_IN,
138 GPIOD_IN,
139 GPIOD_IN,
140 GPIOD_ASIS,
141 GPIOD_ASIS,
142};
143
144#define T_INIT_JIFFIES msecs_to_jiffies(300)
145#define T_RESET_US 10
146#define T_FAULT_RECOVER msecs_to_jiffies(1000)
147
148
149
150
151
152
153
154
155
156#define T_PROBE_INIT msecs_to_jiffies(300)
157#define T_HPOWER_LEVEL msecs_to_jiffies(300)
158#define T_PROBE_RETRY msecs_to_jiffies(100)
159
160
161
162
163#define SFP_PHY_ADDR 22
164
165
166#define T_PHY_RESET_MS 50
167
168struct sff_data {
169 unsigned int gpios;
170 bool (*module_supported)(const struct sfp_eeprom_id *id);
171};
172
173struct sfp {
174 struct device *dev;
175 struct i2c_adapter *i2c;
176 struct mii_bus *i2c_mii;
177 struct sfp_bus *sfp_bus;
178 struct phy_device *mod_phy;
179 const struct sff_data *type;
180 u32 max_power_mW;
181
182 unsigned int (*get_state)(struct sfp *);
183 void (*set_state)(struct sfp *, unsigned int);
184 int (*read)(struct sfp *, bool, u8, void *, size_t);
185 int (*write)(struct sfp *, bool, u8, void *, size_t);
186
187 struct gpio_desc *gpio[GPIO_MAX];
188 int gpio_irq[GPIO_MAX];
189
190 bool attached;
191 struct mutex st_mutex;
192 unsigned int state;
193 struct delayed_work poll;
194 struct delayed_work timeout;
195 struct mutex sm_mutex;
196 unsigned char sm_mod_state;
197 unsigned char sm_dev_state;
198 unsigned short sm_state;
199 unsigned int sm_retries;
200
201 struct sfp_eeprom_id id;
202#if IS_ENABLED(CONFIG_HWMON)
203 struct sfp_diag diag;
204 struct device *hwmon_dev;
205 char *hwmon_name;
206#endif
207
208};
209
210static bool sff_module_supported(const struct sfp_eeprom_id *id)
211{
212 return id->base.phys_id == SFP_PHYS_ID_SFF &&
213 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
214}
215
216static const struct sff_data sff_data = {
217 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
218 .module_supported = sff_module_supported,
219};
220
221static bool sfp_module_supported(const struct sfp_eeprom_id *id)
222{
223 return id->base.phys_id == SFP_PHYS_ID_SFP &&
224 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
225}
226
227static const struct sff_data sfp_data = {
228 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
229 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
230 .module_supported = sfp_module_supported,
231};
232
233static const struct of_device_id sfp_of_match[] = {
234 { .compatible = "sff,sff", .data = &sff_data, },
235 { .compatible = "sff,sfp", .data = &sfp_data, },
236 { },
237};
238MODULE_DEVICE_TABLE(of, sfp_of_match);
239
240static unsigned long poll_jiffies;
241
242static unsigned int sfp_gpio_get_state(struct sfp *sfp)
243{
244 unsigned int i, state, v;
245
246 for (i = state = 0; i < GPIO_MAX; i++) {
247 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
248 continue;
249
250 v = gpiod_get_value_cansleep(sfp->gpio[i]);
251 if (v)
252 state |= BIT(i);
253 }
254
255 return state;
256}
257
258static unsigned int sff_gpio_get_state(struct sfp *sfp)
259{
260 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
261}
262
263static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
264{
265 if (state & SFP_F_PRESENT) {
266
267 if (sfp->gpio[GPIO_TX_DISABLE])
268 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
269 state & SFP_F_TX_DISABLE);
270 if (state & SFP_F_RATE_SELECT)
271 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
272 state & SFP_F_RATE_SELECT);
273 } else {
274
275 if (sfp->gpio[GPIO_TX_DISABLE])
276 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
277 if (state & SFP_F_RATE_SELECT)
278 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
279 }
280}
281
282static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
283 size_t len)
284{
285 struct i2c_msg msgs[2];
286 u8 bus_addr = a2 ? 0x51 : 0x50;
287 size_t this_len;
288 int ret;
289
290 msgs[0].addr = bus_addr;
291 msgs[0].flags = 0;
292 msgs[0].len = 1;
293 msgs[0].buf = &dev_addr;
294 msgs[1].addr = bus_addr;
295 msgs[1].flags = I2C_M_RD;
296 msgs[1].len = len;
297 msgs[1].buf = buf;
298
299 while (len) {
300 this_len = len;
301 if (this_len > 16)
302 this_len = 16;
303
304 msgs[1].len = this_len;
305
306 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
307 if (ret < 0)
308 return ret;
309
310 if (ret != ARRAY_SIZE(msgs))
311 break;
312
313 msgs[1].buf += this_len;
314 dev_addr += this_len;
315 len -= this_len;
316 }
317
318 return msgs[1].buf - (u8 *)buf;
319}
320
321static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
322 size_t len)
323{
324 struct i2c_msg msgs[1];
325 u8 bus_addr = a2 ? 0x51 : 0x50;
326 int ret;
327
328 msgs[0].addr = bus_addr;
329 msgs[0].flags = 0;
330 msgs[0].len = 1 + len;
331 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
332 if (!msgs[0].buf)
333 return -ENOMEM;
334
335 msgs[0].buf[0] = dev_addr;
336 memcpy(&msgs[0].buf[1], buf, len);
337
338 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
339
340 kfree(msgs[0].buf);
341
342 if (ret < 0)
343 return ret;
344
345 return ret == ARRAY_SIZE(msgs) ? len : 0;
346}
347
348static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
349{
350 struct mii_bus *i2c_mii;
351 int ret;
352
353 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
354 return -EINVAL;
355
356 sfp->i2c = i2c;
357 sfp->read = sfp_i2c_read;
358 sfp->write = sfp_i2c_write;
359
360 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
361 if (IS_ERR(i2c_mii))
362 return PTR_ERR(i2c_mii);
363
364 i2c_mii->name = "SFP I2C Bus";
365 i2c_mii->phy_mask = ~0;
366
367 ret = mdiobus_register(i2c_mii);
368 if (ret < 0) {
369 mdiobus_free(i2c_mii);
370 return ret;
371 }
372
373 sfp->i2c_mii = i2c_mii;
374
375 return 0;
376}
377
378
379static unsigned int sfp_get_state(struct sfp *sfp)
380{
381 return sfp->get_state(sfp);
382}
383
384static void sfp_set_state(struct sfp *sfp, unsigned int state)
385{
386 sfp->set_state(sfp, state);
387}
388
389static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
390{
391 return sfp->read(sfp, a2, addr, buf, len);
392}
393
394static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
395{
396 return sfp->write(sfp, a2, addr, buf, len);
397}
398
399static unsigned int sfp_check(void *buf, size_t len)
400{
401 u8 *p, check;
402
403 for (p = buf, check = 0; len; p++, len--)
404 check += *p;
405
406 return check;
407}
408
409
410#if IS_ENABLED(CONFIG_HWMON)
411static umode_t sfp_hwmon_is_visible(const void *data,
412 enum hwmon_sensor_types type,
413 u32 attr, int channel)
414{
415 const struct sfp *sfp = data;
416
417 switch (type) {
418 case hwmon_temp:
419 switch (attr) {
420 case hwmon_temp_min_alarm:
421 case hwmon_temp_max_alarm:
422 case hwmon_temp_lcrit_alarm:
423 case hwmon_temp_crit_alarm:
424 case hwmon_temp_min:
425 case hwmon_temp_max:
426 case hwmon_temp_lcrit:
427 case hwmon_temp_crit:
428 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
429 return 0;
430
431 case hwmon_temp_input:
432 return 0444;
433 default:
434 return 0;
435 }
436 case hwmon_in:
437 switch (attr) {
438 case hwmon_in_min_alarm:
439 case hwmon_in_max_alarm:
440 case hwmon_in_lcrit_alarm:
441 case hwmon_in_crit_alarm:
442 case hwmon_in_min:
443 case hwmon_in_max:
444 case hwmon_in_lcrit:
445 case hwmon_in_crit:
446 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
447 return 0;
448
449 case hwmon_in_input:
450 return 0444;
451 default:
452 return 0;
453 }
454 case hwmon_curr:
455 switch (attr) {
456 case hwmon_curr_min_alarm:
457 case hwmon_curr_max_alarm:
458 case hwmon_curr_lcrit_alarm:
459 case hwmon_curr_crit_alarm:
460 case hwmon_curr_min:
461 case hwmon_curr_max:
462 case hwmon_curr_lcrit:
463 case hwmon_curr_crit:
464 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
465 return 0;
466
467 case hwmon_curr_input:
468 return 0444;
469 default:
470 return 0;
471 }
472 case hwmon_power:
473
474
475
476
477
478
479 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
480 channel == 1)
481 return 0;
482 switch (attr) {
483 case hwmon_power_min_alarm:
484 case hwmon_power_max_alarm:
485 case hwmon_power_lcrit_alarm:
486 case hwmon_power_crit_alarm:
487 case hwmon_power_min:
488 case hwmon_power_max:
489 case hwmon_power_lcrit:
490 case hwmon_power_crit:
491 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
492 return 0;
493
494 case hwmon_power_input:
495 return 0444;
496 default:
497 return 0;
498 }
499 default:
500 return 0;
501 }
502}
503
504static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
505{
506 __be16 val;
507 int err;
508
509 err = sfp_read(sfp, true, reg, &val, sizeof(val));
510 if (err < 0)
511 return err;
512
513 *value = be16_to_cpu(val);
514
515 return 0;
516}
517
518static void sfp_hwmon_to_rx_power(long *value)
519{
520 *value = DIV_ROUND_CLOSEST(*value, 10);
521}
522
523static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
524 long *value)
525{
526 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
527 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
528}
529
530static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
531{
532 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
533 be16_to_cpu(sfp->diag.cal_t_offset), value);
534
535 if (*value >= 0x8000)
536 *value -= 0x10000;
537
538 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
539}
540
541static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
542{
543 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
544 be16_to_cpu(sfp->diag.cal_v_offset), value);
545
546 *value = DIV_ROUND_CLOSEST(*value, 10);
547}
548
549static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
550{
551 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
552 be16_to_cpu(sfp->diag.cal_txi_offset), value);
553
554 *value = DIV_ROUND_CLOSEST(*value, 500);
555}
556
557static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
558{
559 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
560 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
561
562 *value = DIV_ROUND_CLOSEST(*value, 10);
563}
564
565static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
566{
567 int err;
568
569 err = sfp_hwmon_read_sensor(sfp, reg, value);
570 if (err < 0)
571 return err;
572
573 sfp_hwmon_calibrate_temp(sfp, value);
574
575 return 0;
576}
577
578static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
579{
580 int err;
581
582 err = sfp_hwmon_read_sensor(sfp, reg, value);
583 if (err < 0)
584 return err;
585
586 sfp_hwmon_calibrate_vcc(sfp, value);
587
588 return 0;
589}
590
591static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
592{
593 int err;
594
595 err = sfp_hwmon_read_sensor(sfp, reg, value);
596 if (err < 0)
597 return err;
598
599 sfp_hwmon_calibrate_bias(sfp, value);
600
601 return 0;
602}
603
604static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
605{
606 int err;
607
608 err = sfp_hwmon_read_sensor(sfp, reg, value);
609 if (err < 0)
610 return err;
611
612 sfp_hwmon_calibrate_tx_power(sfp, value);
613
614 return 0;
615}
616
617static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
618{
619 int err;
620
621 err = sfp_hwmon_read_sensor(sfp, reg, value);
622 if (err < 0)
623 return err;
624
625 sfp_hwmon_to_rx_power(value);
626
627 return 0;
628}
629
630static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
631{
632 u8 status;
633 int err;
634
635 switch (attr) {
636 case hwmon_temp_input:
637 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
638
639 case hwmon_temp_lcrit:
640 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
641 sfp_hwmon_calibrate_temp(sfp, value);
642 return 0;
643
644 case hwmon_temp_min:
645 *value = be16_to_cpu(sfp->diag.temp_low_warn);
646 sfp_hwmon_calibrate_temp(sfp, value);
647 return 0;
648 case hwmon_temp_max:
649 *value = be16_to_cpu(sfp->diag.temp_high_warn);
650 sfp_hwmon_calibrate_temp(sfp, value);
651 return 0;
652
653 case hwmon_temp_crit:
654 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
655 sfp_hwmon_calibrate_temp(sfp, value);
656 return 0;
657
658 case hwmon_temp_lcrit_alarm:
659 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
660 if (err < 0)
661 return err;
662
663 *value = !!(status & SFP_ALARM0_TEMP_LOW);
664 return 0;
665
666 case hwmon_temp_min_alarm:
667 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
668 if (err < 0)
669 return err;
670
671 *value = !!(status & SFP_WARN0_TEMP_LOW);
672 return 0;
673
674 case hwmon_temp_max_alarm:
675 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
676 if (err < 0)
677 return err;
678
679 *value = !!(status & SFP_WARN0_TEMP_HIGH);
680 return 0;
681
682 case hwmon_temp_crit_alarm:
683 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
684 if (err < 0)
685 return err;
686
687 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
688 return 0;
689 default:
690 return -EOPNOTSUPP;
691 }
692
693 return -EOPNOTSUPP;
694}
695
696static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
697{
698 u8 status;
699 int err;
700
701 switch (attr) {
702 case hwmon_in_input:
703 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
704
705 case hwmon_in_lcrit:
706 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
707 sfp_hwmon_calibrate_vcc(sfp, value);
708 return 0;
709
710 case hwmon_in_min:
711 *value = be16_to_cpu(sfp->diag.volt_low_warn);
712 sfp_hwmon_calibrate_vcc(sfp, value);
713 return 0;
714
715 case hwmon_in_max:
716 *value = be16_to_cpu(sfp->diag.volt_high_warn);
717 sfp_hwmon_calibrate_vcc(sfp, value);
718 return 0;
719
720 case hwmon_in_crit:
721 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
722 sfp_hwmon_calibrate_vcc(sfp, value);
723 return 0;
724
725 case hwmon_in_lcrit_alarm:
726 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
727 if (err < 0)
728 return err;
729
730 *value = !!(status & SFP_ALARM0_VCC_LOW);
731 return 0;
732
733 case hwmon_in_min_alarm:
734 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
735 if (err < 0)
736 return err;
737
738 *value = !!(status & SFP_WARN0_VCC_LOW);
739 return 0;
740
741 case hwmon_in_max_alarm:
742 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
743 if (err < 0)
744 return err;
745
746 *value = !!(status & SFP_WARN0_VCC_HIGH);
747 return 0;
748
749 case hwmon_in_crit_alarm:
750 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
751 if (err < 0)
752 return err;
753
754 *value = !!(status & SFP_ALARM0_VCC_HIGH);
755 return 0;
756 default:
757 return -EOPNOTSUPP;
758 }
759
760 return -EOPNOTSUPP;
761}
762
763static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
764{
765 u8 status;
766 int err;
767
768 switch (attr) {
769 case hwmon_curr_input:
770 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
771
772 case hwmon_curr_lcrit:
773 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
774 sfp_hwmon_calibrate_bias(sfp, value);
775 return 0;
776
777 case hwmon_curr_min:
778 *value = be16_to_cpu(sfp->diag.bias_low_warn);
779 sfp_hwmon_calibrate_bias(sfp, value);
780 return 0;
781
782 case hwmon_curr_max:
783 *value = be16_to_cpu(sfp->diag.bias_high_warn);
784 sfp_hwmon_calibrate_bias(sfp, value);
785 return 0;
786
787 case hwmon_curr_crit:
788 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
789 sfp_hwmon_calibrate_bias(sfp, value);
790 return 0;
791
792 case hwmon_curr_lcrit_alarm:
793 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
794 if (err < 0)
795 return err;
796
797 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
798 return 0;
799
800 case hwmon_curr_min_alarm:
801 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
802 if (err < 0)
803 return err;
804
805 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
806 return 0;
807
808 case hwmon_curr_max_alarm:
809 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
810 if (err < 0)
811 return err;
812
813 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
814 return 0;
815
816 case hwmon_curr_crit_alarm:
817 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
818 if (err < 0)
819 return err;
820
821 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
822 return 0;
823 default:
824 return -EOPNOTSUPP;
825 }
826
827 return -EOPNOTSUPP;
828}
829
830static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
831{
832 u8 status;
833 int err;
834
835 switch (attr) {
836 case hwmon_power_input:
837 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
838
839 case hwmon_power_lcrit:
840 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
841 sfp_hwmon_calibrate_tx_power(sfp, value);
842 return 0;
843
844 case hwmon_power_min:
845 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
846 sfp_hwmon_calibrate_tx_power(sfp, value);
847 return 0;
848
849 case hwmon_power_max:
850 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
851 sfp_hwmon_calibrate_tx_power(sfp, value);
852 return 0;
853
854 case hwmon_power_crit:
855 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
856 sfp_hwmon_calibrate_tx_power(sfp, value);
857 return 0;
858
859 case hwmon_power_lcrit_alarm:
860 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
861 if (err < 0)
862 return err;
863
864 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
865 return 0;
866
867 case hwmon_power_min_alarm:
868 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
869 if (err < 0)
870 return err;
871
872 *value = !!(status & SFP_WARN0_TXPWR_LOW);
873 return 0;
874
875 case hwmon_power_max_alarm:
876 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
877 if (err < 0)
878 return err;
879
880 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
881 return 0;
882
883 case hwmon_power_crit_alarm:
884 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
885 if (err < 0)
886 return err;
887
888 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
889 return 0;
890 default:
891 return -EOPNOTSUPP;
892 }
893
894 return -EOPNOTSUPP;
895}
896
897static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
898{
899 u8 status;
900 int err;
901
902 switch (attr) {
903 case hwmon_power_input:
904 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
905
906 case hwmon_power_lcrit:
907 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
908 sfp_hwmon_to_rx_power(value);
909 return 0;
910
911 case hwmon_power_min:
912 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
913 sfp_hwmon_to_rx_power(value);
914 return 0;
915
916 case hwmon_power_max:
917 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
918 sfp_hwmon_to_rx_power(value);
919 return 0;
920
921 case hwmon_power_crit:
922 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
923 sfp_hwmon_to_rx_power(value);
924 return 0;
925
926 case hwmon_power_lcrit_alarm:
927 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
928 if (err < 0)
929 return err;
930
931 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
932 return 0;
933
934 case hwmon_power_min_alarm:
935 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
936 if (err < 0)
937 return err;
938
939 *value = !!(status & SFP_WARN1_RXPWR_LOW);
940 return 0;
941
942 case hwmon_power_max_alarm:
943 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
944 if (err < 0)
945 return err;
946
947 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
948 return 0;
949
950 case hwmon_power_crit_alarm:
951 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
952 if (err < 0)
953 return err;
954
955 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
956 return 0;
957 default:
958 return -EOPNOTSUPP;
959 }
960
961 return -EOPNOTSUPP;
962}
963
964static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
965 u32 attr, int channel, long *value)
966{
967 struct sfp *sfp = dev_get_drvdata(dev);
968
969 switch (type) {
970 case hwmon_temp:
971 return sfp_hwmon_temp(sfp, attr, value);
972 case hwmon_in:
973 return sfp_hwmon_vcc(sfp, attr, value);
974 case hwmon_curr:
975 return sfp_hwmon_bias(sfp, attr, value);
976 case hwmon_power:
977 switch (channel) {
978 case 0:
979 return sfp_hwmon_tx_power(sfp, attr, value);
980 case 1:
981 return sfp_hwmon_rx_power(sfp, attr, value);
982 default:
983 return -EOPNOTSUPP;
984 }
985 default:
986 return -EOPNOTSUPP;
987 }
988}
989
990static const struct hwmon_ops sfp_hwmon_ops = {
991 .is_visible = sfp_hwmon_is_visible,
992 .read = sfp_hwmon_read,
993};
994
995static u32 sfp_hwmon_chip_config[] = {
996 HWMON_C_REGISTER_TZ,
997 0,
998};
999
1000static const struct hwmon_channel_info sfp_hwmon_chip = {
1001 .type = hwmon_chip,
1002 .config = sfp_hwmon_chip_config,
1003};
1004
1005static u32 sfp_hwmon_temp_config[] = {
1006 HWMON_T_INPUT |
1007 HWMON_T_MAX | HWMON_T_MIN |
1008 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1009 HWMON_T_CRIT | HWMON_T_LCRIT |
1010 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
1011 0,
1012};
1013
1014static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1015 .type = hwmon_temp,
1016 .config = sfp_hwmon_temp_config,
1017};
1018
1019static u32 sfp_hwmon_vcc_config[] = {
1020 HWMON_I_INPUT |
1021 HWMON_I_MAX | HWMON_I_MIN |
1022 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1023 HWMON_I_CRIT | HWMON_I_LCRIT |
1024 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
1025 0,
1026};
1027
1028static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1029 .type = hwmon_in,
1030 .config = sfp_hwmon_vcc_config,
1031};
1032
1033static u32 sfp_hwmon_bias_config[] = {
1034 HWMON_C_INPUT |
1035 HWMON_C_MAX | HWMON_C_MIN |
1036 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1037 HWMON_C_CRIT | HWMON_C_LCRIT |
1038 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
1039 0,
1040};
1041
1042static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1043 .type = hwmon_curr,
1044 .config = sfp_hwmon_bias_config,
1045};
1046
1047static u32 sfp_hwmon_power_config[] = {
1048
1049 HWMON_P_INPUT |
1050 HWMON_P_MAX | HWMON_P_MIN |
1051 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1052 HWMON_P_CRIT | HWMON_P_LCRIT |
1053 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1054
1055 HWMON_P_INPUT |
1056 HWMON_P_MAX | HWMON_P_MIN |
1057 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1058 HWMON_P_CRIT | HWMON_P_LCRIT |
1059 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1060 0,
1061};
1062
1063static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1064 .type = hwmon_power,
1065 .config = sfp_hwmon_power_config,
1066};
1067
1068static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1069 &sfp_hwmon_chip,
1070 &sfp_hwmon_vcc_channel_info,
1071 &sfp_hwmon_temp_channel_info,
1072 &sfp_hwmon_bias_channel_info,
1073 &sfp_hwmon_power_channel_info,
1074 NULL,
1075};
1076
1077static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1078 .ops = &sfp_hwmon_ops,
1079 .info = sfp_hwmon_info,
1080};
1081
1082static int sfp_hwmon_insert(struct sfp *sfp)
1083{
1084 int err, i;
1085
1086 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1087 return 0;
1088
1089 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1090 return 0;
1091
1092 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1093
1094
1095
1096 return 0;
1097
1098 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1099 if (err < 0)
1100 return err;
1101
1102 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1103 if (!sfp->hwmon_name)
1104 return -ENODEV;
1105
1106 for (i = 0; sfp->hwmon_name[i]; i++)
1107 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1108 sfp->hwmon_name[i] = '_';
1109
1110 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1111 sfp->hwmon_name, sfp,
1112 &sfp_hwmon_chip_info,
1113 NULL);
1114
1115 return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1116}
1117
1118static void sfp_hwmon_remove(struct sfp *sfp)
1119{
1120 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1121 hwmon_device_unregister(sfp->hwmon_dev);
1122 sfp->hwmon_dev = NULL;
1123 kfree(sfp->hwmon_name);
1124 }
1125}
1126#else
1127static int sfp_hwmon_insert(struct sfp *sfp)
1128{
1129 return 0;
1130}
1131
1132static void sfp_hwmon_remove(struct sfp *sfp)
1133{
1134}
1135#endif
1136
1137
1138static void sfp_module_tx_disable(struct sfp *sfp)
1139{
1140 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1141 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1142 sfp->state |= SFP_F_TX_DISABLE;
1143 sfp_set_state(sfp, sfp->state);
1144}
1145
1146static void sfp_module_tx_enable(struct sfp *sfp)
1147{
1148 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1149 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1150 sfp->state &= ~SFP_F_TX_DISABLE;
1151 sfp_set_state(sfp, sfp->state);
1152}
1153
1154static void sfp_module_tx_fault_reset(struct sfp *sfp)
1155{
1156 unsigned int state = sfp->state;
1157
1158 if (state & SFP_F_TX_DISABLE)
1159 return;
1160
1161 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1162
1163 udelay(T_RESET_US);
1164
1165 sfp_set_state(sfp, state);
1166}
1167
1168
1169static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1170{
1171 if (timeout)
1172 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1173 timeout);
1174 else
1175 cancel_delayed_work(&sfp->timeout);
1176}
1177
1178static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1179 unsigned int timeout)
1180{
1181 sfp->sm_state = state;
1182 sfp_sm_set_timer(sfp, timeout);
1183}
1184
1185static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1186 unsigned int timeout)
1187{
1188 sfp->sm_mod_state = state;
1189 sfp_sm_set_timer(sfp, timeout);
1190}
1191
1192static void sfp_sm_phy_detach(struct sfp *sfp)
1193{
1194 phy_stop(sfp->mod_phy);
1195 sfp_remove_phy(sfp->sfp_bus);
1196 phy_device_remove(sfp->mod_phy);
1197 phy_device_free(sfp->mod_phy);
1198 sfp->mod_phy = NULL;
1199}
1200
1201static void sfp_sm_probe_phy(struct sfp *sfp)
1202{
1203 struct phy_device *phy;
1204 int err;
1205
1206 msleep(T_PHY_RESET_MS);
1207
1208 phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1209 if (phy == ERR_PTR(-ENODEV)) {
1210 dev_info(sfp->dev, "no PHY detected\n");
1211 return;
1212 }
1213 if (IS_ERR(phy)) {
1214 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1215 return;
1216 }
1217
1218 err = sfp_add_phy(sfp->sfp_bus, phy);
1219 if (err) {
1220 phy_device_remove(phy);
1221 phy_device_free(phy);
1222 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1223 return;
1224 }
1225
1226 sfp->mod_phy = phy;
1227 phy_start(phy);
1228}
1229
1230static void sfp_sm_link_up(struct sfp *sfp)
1231{
1232 sfp_link_up(sfp->sfp_bus);
1233 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1234}
1235
1236static void sfp_sm_link_down(struct sfp *sfp)
1237{
1238 sfp_link_down(sfp->sfp_bus);
1239}
1240
1241static void sfp_sm_link_check_los(struct sfp *sfp)
1242{
1243 unsigned int los = sfp->state & SFP_F_LOS;
1244
1245
1246
1247
1248 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1249 los ^= SFP_F_LOS;
1250 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1251 los = 0;
1252
1253 if (los)
1254 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1255 else
1256 sfp_sm_link_up(sfp);
1257}
1258
1259static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1260{
1261 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1262 event == SFP_E_LOS_LOW) ||
1263 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1264 event == SFP_E_LOS_HIGH);
1265}
1266
1267static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1268{
1269 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1270 event == SFP_E_LOS_HIGH) ||
1271 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1272 event == SFP_E_LOS_LOW);
1273}
1274
1275static void sfp_sm_fault(struct sfp *sfp, bool warn)
1276{
1277 if (sfp->sm_retries && !--sfp->sm_retries) {
1278 dev_err(sfp->dev,
1279 "module persistently indicates fault, disabling\n");
1280 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1281 } else {
1282 if (warn)
1283 dev_err(sfp->dev, "module transmit fault indicated\n");
1284
1285 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1286 }
1287}
1288
1289static void sfp_sm_mod_init(struct sfp *sfp)
1290{
1291 sfp_module_tx_enable(sfp);
1292
1293
1294
1295
1296
1297 sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1298 sfp->sm_retries = 5;
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309 if (sfp->id.base.e1000_base_t ||
1310 sfp->id.base.e100_base_lx ||
1311 sfp->id.base.e100_base_fx)
1312 sfp_sm_probe_phy(sfp);
1313}
1314
1315static int sfp_sm_mod_hpower(struct sfp *sfp)
1316{
1317 u32 power;
1318 u8 val;
1319 int err;
1320
1321 power = 1000;
1322 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1323 power = 1500;
1324 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1325 power = 2000;
1326
1327 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1328 (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1329 SFP_DIAGMON_DDM) {
1330
1331
1332
1333
1334 if (power > sfp->max_power_mW) {
1335 dev_err(sfp->dev,
1336 "Host does not support %u.%uW modules\n",
1337 power / 1000, (power / 100) % 10);
1338 return -EINVAL;
1339 }
1340 return 0;
1341 }
1342
1343 if (power > sfp->max_power_mW) {
1344 dev_warn(sfp->dev,
1345 "Host does not support %u.%uW modules, module left in power mode 1\n",
1346 power / 1000, (power / 100) % 10);
1347 return 0;
1348 }
1349
1350 if (power <= 1000)
1351 return 0;
1352
1353 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1354 if (err != sizeof(val)) {
1355 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1356 err = -EAGAIN;
1357 goto err;
1358 }
1359
1360 val |= BIT(0);
1361
1362 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1363 if (err != sizeof(val)) {
1364 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1365 err = -EAGAIN;
1366 goto err;
1367 }
1368
1369 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1370 power / 1000, (power / 100) % 10);
1371 return T_HPOWER_LEVEL;
1372
1373err:
1374 return err;
1375}
1376
1377static int sfp_sm_mod_probe(struct sfp *sfp)
1378{
1379
1380 struct sfp_eeprom_id id;
1381 bool cotsworks;
1382 u8 check;
1383 int ret;
1384
1385 ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1386 if (ret < 0) {
1387 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1388 return -EAGAIN;
1389 }
1390
1391 if (ret != sizeof(id)) {
1392 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1393 return -EAGAIN;
1394 }
1395
1396
1397
1398
1399
1400 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1401
1402
1403 check = sfp_check(&id.base, sizeof(id.base) - 1);
1404 if (check != id.base.cc_base) {
1405 if (cotsworks) {
1406 dev_warn(sfp->dev,
1407 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1408 check, id.base.cc_base);
1409 } else {
1410 dev_err(sfp->dev,
1411 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1412 check, id.base.cc_base);
1413 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1414 16, 1, &id, sizeof(id), true);
1415 return -EINVAL;
1416 }
1417 }
1418
1419 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1420 if (check != id.ext.cc_ext) {
1421 if (cotsworks) {
1422 dev_warn(sfp->dev,
1423 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1424 check, id.ext.cc_ext);
1425 } else {
1426 dev_err(sfp->dev,
1427 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1428 check, id.ext.cc_ext);
1429 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1430 16, 1, &id, sizeof(id), true);
1431 memset(&id.ext, 0, sizeof(id.ext));
1432 }
1433 }
1434
1435 sfp->id = id;
1436
1437 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1438 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1439 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1440 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1441 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1442 (int)sizeof(id.ext.datecode), id.ext.datecode);
1443
1444
1445 if (!sfp->type->module_supported(&sfp->id)) {
1446 dev_err(sfp->dev,
1447 "module is not supported - phys id 0x%02x 0x%02x\n",
1448 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1449 return -EINVAL;
1450 }
1451
1452
1453 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1454 dev_warn(sfp->dev,
1455 "module address swap to access page 0xA2 is not supported.\n");
1456
1457 ret = sfp_hwmon_insert(sfp);
1458 if (ret < 0)
1459 return ret;
1460
1461 ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1462 if (ret < 0)
1463 return ret;
1464
1465 return sfp_sm_mod_hpower(sfp);
1466}
1467
1468static void sfp_sm_mod_remove(struct sfp *sfp)
1469{
1470 sfp_module_remove(sfp->sfp_bus);
1471
1472 sfp_hwmon_remove(sfp);
1473
1474 if (sfp->mod_phy)
1475 sfp_sm_phy_detach(sfp);
1476
1477 sfp_module_tx_disable(sfp);
1478
1479 memset(&sfp->id, 0, sizeof(sfp->id));
1480
1481 dev_info(sfp->dev, "module removed\n");
1482}
1483
1484static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1485{
1486 mutex_lock(&sfp->sm_mutex);
1487
1488 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1489 mod_state_to_str(sfp->sm_mod_state),
1490 dev_state_to_str(sfp->sm_dev_state),
1491 sm_state_to_str(sfp->sm_state),
1492 event_to_str(event));
1493
1494
1495
1496
1497 switch (sfp->sm_mod_state) {
1498 default:
1499 if (event == SFP_E_INSERT && sfp->attached) {
1500 sfp_module_tx_disable(sfp);
1501 sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1502 }
1503 break;
1504
1505 case SFP_MOD_PROBE:
1506 if (event == SFP_E_REMOVE) {
1507 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1508 } else if (event == SFP_E_TIMEOUT) {
1509 int val = sfp_sm_mod_probe(sfp);
1510
1511 if (val == 0)
1512 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1513 else if (val > 0)
1514 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1515 else if (val != -EAGAIN)
1516 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1517 else
1518 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1519 }
1520 break;
1521
1522 case SFP_MOD_HPOWER:
1523 if (event == SFP_E_TIMEOUT) {
1524 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1525 break;
1526 }
1527
1528 case SFP_MOD_PRESENT:
1529 case SFP_MOD_ERROR:
1530 if (event == SFP_E_REMOVE) {
1531 sfp_sm_mod_remove(sfp);
1532 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1533 }
1534 break;
1535 }
1536
1537
1538 switch (sfp->sm_dev_state) {
1539 default:
1540 if (event == SFP_E_DEV_UP)
1541 sfp->sm_dev_state = SFP_DEV_UP;
1542 break;
1543
1544 case SFP_DEV_UP:
1545 if (event == SFP_E_DEV_DOWN) {
1546
1547
1548
1549
1550 if (!sfp->mod_phy)
1551 sfp_module_tx_disable(sfp);
1552 sfp->sm_dev_state = SFP_DEV_DOWN;
1553 }
1554 break;
1555 }
1556
1557
1558 if (sfp->sm_state != SFP_S_DOWN &&
1559 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1560 sfp->sm_dev_state != SFP_DEV_UP)) {
1561 if (sfp->sm_state == SFP_S_LINK_UP &&
1562 sfp->sm_dev_state == SFP_DEV_UP)
1563 sfp_sm_link_down(sfp);
1564 if (sfp->mod_phy)
1565 sfp_sm_phy_detach(sfp);
1566 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1567 mutex_unlock(&sfp->sm_mutex);
1568 return;
1569 }
1570
1571
1572 switch (sfp->sm_state) {
1573 case SFP_S_DOWN:
1574 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1575 sfp->sm_dev_state == SFP_DEV_UP)
1576 sfp_sm_mod_init(sfp);
1577 break;
1578
1579 case SFP_S_INIT:
1580 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1581 sfp_sm_fault(sfp, true);
1582 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1583 sfp_sm_link_check_los(sfp);
1584 break;
1585
1586 case SFP_S_WAIT_LOS:
1587 if (event == SFP_E_TX_FAULT)
1588 sfp_sm_fault(sfp, true);
1589 else if (sfp_los_event_inactive(sfp, event))
1590 sfp_sm_link_up(sfp);
1591 break;
1592
1593 case SFP_S_LINK_UP:
1594 if (event == SFP_E_TX_FAULT) {
1595 sfp_sm_link_down(sfp);
1596 sfp_sm_fault(sfp, true);
1597 } else if (sfp_los_event_active(sfp, event)) {
1598 sfp_sm_link_down(sfp);
1599 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1600 }
1601 break;
1602
1603 case SFP_S_TX_FAULT:
1604 if (event == SFP_E_TIMEOUT) {
1605 sfp_module_tx_fault_reset(sfp);
1606 sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1607 }
1608 break;
1609
1610 case SFP_S_REINIT:
1611 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1612 sfp_sm_fault(sfp, false);
1613 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1614 dev_info(sfp->dev, "module transmit fault recovered\n");
1615 sfp_sm_link_check_los(sfp);
1616 }
1617 break;
1618
1619 case SFP_S_TX_DISABLE:
1620 break;
1621 }
1622
1623 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1624 mod_state_to_str(sfp->sm_mod_state),
1625 dev_state_to_str(sfp->sm_dev_state),
1626 sm_state_to_str(sfp->sm_state));
1627
1628 mutex_unlock(&sfp->sm_mutex);
1629}
1630
1631static void sfp_attach(struct sfp *sfp)
1632{
1633 sfp->attached = true;
1634 if (sfp->state & SFP_F_PRESENT)
1635 sfp_sm_event(sfp, SFP_E_INSERT);
1636}
1637
1638static void sfp_detach(struct sfp *sfp)
1639{
1640 sfp->attached = false;
1641 sfp_sm_event(sfp, SFP_E_REMOVE);
1642}
1643
1644static void sfp_start(struct sfp *sfp)
1645{
1646 sfp_sm_event(sfp, SFP_E_DEV_UP);
1647}
1648
1649static void sfp_stop(struct sfp *sfp)
1650{
1651 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1652}
1653
1654static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1655{
1656
1657
1658 if (sfp->id.ext.sff8472_compliance &&
1659 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1660 modinfo->type = ETH_MODULE_SFF_8472;
1661 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1662 } else {
1663 modinfo->type = ETH_MODULE_SFF_8079;
1664 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1665 }
1666 return 0;
1667}
1668
1669static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1670 u8 *data)
1671{
1672 unsigned int first, last, len;
1673 int ret;
1674
1675 if (ee->len == 0)
1676 return -EINVAL;
1677
1678 first = ee->offset;
1679 last = ee->offset + ee->len;
1680 if (first < ETH_MODULE_SFF_8079_LEN) {
1681 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1682 len -= first;
1683
1684 ret = sfp_read(sfp, false, first, data, len);
1685 if (ret < 0)
1686 return ret;
1687
1688 first += len;
1689 data += len;
1690 }
1691 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1692 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1693 len -= first;
1694 first -= ETH_MODULE_SFF_8079_LEN;
1695
1696 ret = sfp_read(sfp, true, first, data, len);
1697 if (ret < 0)
1698 return ret;
1699 }
1700 return 0;
1701}
1702
1703static const struct sfp_socket_ops sfp_module_ops = {
1704 .attach = sfp_attach,
1705 .detach = sfp_detach,
1706 .start = sfp_start,
1707 .stop = sfp_stop,
1708 .module_info = sfp_module_info,
1709 .module_eeprom = sfp_module_eeprom,
1710};
1711
1712static void sfp_timeout(struct work_struct *work)
1713{
1714 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1715
1716 rtnl_lock();
1717 sfp_sm_event(sfp, SFP_E_TIMEOUT);
1718 rtnl_unlock();
1719}
1720
1721static void sfp_check_state(struct sfp *sfp)
1722{
1723 unsigned int state, i, changed;
1724
1725 mutex_lock(&sfp->st_mutex);
1726 state = sfp_get_state(sfp);
1727 changed = state ^ sfp->state;
1728 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1729
1730 for (i = 0; i < GPIO_MAX; i++)
1731 if (changed & BIT(i))
1732 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1733 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
1734
1735 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1736 sfp->state = state;
1737
1738 rtnl_lock();
1739 if (changed & SFP_F_PRESENT)
1740 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1741 SFP_E_INSERT : SFP_E_REMOVE);
1742
1743 if (changed & SFP_F_TX_FAULT)
1744 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1745 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1746
1747 if (changed & SFP_F_LOS)
1748 sfp_sm_event(sfp, state & SFP_F_LOS ?
1749 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1750 rtnl_unlock();
1751 mutex_unlock(&sfp->st_mutex);
1752}
1753
1754static irqreturn_t sfp_irq(int irq, void *data)
1755{
1756 struct sfp *sfp = data;
1757
1758 sfp_check_state(sfp);
1759
1760 return IRQ_HANDLED;
1761}
1762
1763static void sfp_poll(struct work_struct *work)
1764{
1765 struct sfp *sfp = container_of(work, struct sfp, poll.work);
1766
1767 sfp_check_state(sfp);
1768 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1769}
1770
1771static struct sfp *sfp_alloc(struct device *dev)
1772{
1773 struct sfp *sfp;
1774
1775 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1776 if (!sfp)
1777 return ERR_PTR(-ENOMEM);
1778
1779 sfp->dev = dev;
1780
1781 mutex_init(&sfp->sm_mutex);
1782 mutex_init(&sfp->st_mutex);
1783 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1784 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1785
1786 return sfp;
1787}
1788
1789static void sfp_cleanup(void *data)
1790{
1791 struct sfp *sfp = data;
1792
1793 cancel_delayed_work_sync(&sfp->poll);
1794 cancel_delayed_work_sync(&sfp->timeout);
1795 if (sfp->i2c_mii) {
1796 mdiobus_unregister(sfp->i2c_mii);
1797 mdiobus_free(sfp->i2c_mii);
1798 }
1799 if (sfp->i2c)
1800 i2c_put_adapter(sfp->i2c);
1801 kfree(sfp);
1802}
1803
1804static int sfp_probe(struct platform_device *pdev)
1805{
1806 const struct sff_data *sff;
1807 struct i2c_adapter *i2c;
1808 struct sfp *sfp;
1809 bool poll = false;
1810 int err, i;
1811
1812 sfp = sfp_alloc(&pdev->dev);
1813 if (IS_ERR(sfp))
1814 return PTR_ERR(sfp);
1815
1816 platform_set_drvdata(pdev, sfp);
1817
1818 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1819 if (err < 0)
1820 return err;
1821
1822 sff = sfp->type = &sfp_data;
1823
1824 if (pdev->dev.of_node) {
1825 struct device_node *node = pdev->dev.of_node;
1826 const struct of_device_id *id;
1827 struct device_node *np;
1828
1829 id = of_match_node(sfp_of_match, node);
1830 if (WARN_ON(!id))
1831 return -EINVAL;
1832
1833 sff = sfp->type = id->data;
1834
1835 np = of_parse_phandle(node, "i2c-bus", 0);
1836 if (!np) {
1837 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1838 return -ENODEV;
1839 }
1840
1841 i2c = of_find_i2c_adapter_by_node(np);
1842 of_node_put(np);
1843 } else if (has_acpi_companion(&pdev->dev)) {
1844 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1845 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
1846 struct fwnode_reference_args args;
1847 struct acpi_handle *acpi_handle;
1848 int ret;
1849
1850 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
1851 if (ret || !is_acpi_device_node(args.fwnode)) {
1852 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
1853 return -ENODEV;
1854 }
1855
1856 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
1857 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
1858 } else {
1859 return -EINVAL;
1860 }
1861
1862 if (!i2c)
1863 return -EPROBE_DEFER;
1864
1865 err = sfp_i2c_configure(sfp, i2c);
1866 if (err < 0) {
1867 i2c_put_adapter(i2c);
1868 return err;
1869 }
1870
1871 for (i = 0; i < GPIO_MAX; i++)
1872 if (sff->gpios & BIT(i)) {
1873 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1874 gpio_of_names[i], gpio_flags[i]);
1875 if (IS_ERR(sfp->gpio[i]))
1876 return PTR_ERR(sfp->gpio[i]);
1877 }
1878
1879 sfp->get_state = sfp_gpio_get_state;
1880 sfp->set_state = sfp_gpio_set_state;
1881
1882
1883 if (!(sfp->gpio[GPIO_MODDEF0]))
1884 sfp->get_state = sff_gpio_get_state;
1885
1886 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1887 &sfp->max_power_mW);
1888 if (!sfp->max_power_mW)
1889 sfp->max_power_mW = 1000;
1890
1891 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1892 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1893
1894
1895
1896
1897 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1898
1899 if (sfp->gpio[GPIO_RATE_SELECT] &&
1900 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1901 sfp->state |= SFP_F_RATE_SELECT;
1902 sfp_set_state(sfp, sfp->state);
1903 sfp_module_tx_disable(sfp);
1904
1905 for (i = 0; i < GPIO_MAX; i++) {
1906 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1907 continue;
1908
1909 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
1910 if (!sfp->gpio_irq[i]) {
1911 poll = true;
1912 continue;
1913 }
1914
1915 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
1916 NULL, sfp_irq,
1917 IRQF_ONESHOT |
1918 IRQF_TRIGGER_RISING |
1919 IRQF_TRIGGER_FALLING,
1920 dev_name(sfp->dev), sfp);
1921 if (err) {
1922 sfp->gpio_irq[i] = 0;
1923 poll = true;
1924 }
1925 }
1926
1927 if (poll)
1928 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1929
1930
1931
1932
1933
1934
1935 if (!sfp->gpio[GPIO_TX_DISABLE])
1936 dev_warn(sfp->dev,
1937 "No tx_disable pin: SFP modules will always be emitting.\n");
1938
1939 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1940 if (!sfp->sfp_bus)
1941 return -ENOMEM;
1942
1943 return 0;
1944}
1945
1946static int sfp_remove(struct platform_device *pdev)
1947{
1948 struct sfp *sfp = platform_get_drvdata(pdev);
1949
1950 sfp_unregister_socket(sfp->sfp_bus);
1951
1952 return 0;
1953}
1954
1955static void sfp_shutdown(struct platform_device *pdev)
1956{
1957 struct sfp *sfp = platform_get_drvdata(pdev);
1958 int i;
1959
1960 for (i = 0; i < GPIO_MAX; i++) {
1961 if (!sfp->gpio_irq[i])
1962 continue;
1963
1964 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
1965 }
1966
1967 cancel_delayed_work_sync(&sfp->poll);
1968 cancel_delayed_work_sync(&sfp->timeout);
1969}
1970
1971static struct platform_driver sfp_driver = {
1972 .probe = sfp_probe,
1973 .remove = sfp_remove,
1974 .shutdown = sfp_shutdown,
1975 .driver = {
1976 .name = "sfp",
1977 .of_match_table = sfp_of_match,
1978 },
1979};
1980
1981static int sfp_init(void)
1982{
1983 poll_jiffies = msecs_to_jiffies(100);
1984
1985 return platform_driver_register(&sfp_driver);
1986}
1987module_init(sfp_init);
1988
1989static void sfp_exit(void)
1990{
1991 platform_driver_unregister(&sfp_driver);
1992}
1993module_exit(sfp_exit);
1994
1995MODULE_ALIAS("platform:sfp");
1996MODULE_AUTHOR("Russell King");
1997MODULE_LICENSE("GPL v2");
1998