linux/drivers/net/wireless/ath/wil6210/main.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
   3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/moduleparam.h>
  19#include <linux/if_arp.h>
  20#include <linux/etherdevice.h>
  21#include <linux/rtnetlink.h>
  22
  23#include "wil6210.h"
  24#include "txrx.h"
  25#include "txrx_edma.h"
  26#include "wmi.h"
  27#include "boot_loader.h"
  28
  29#define WAIT_FOR_HALP_VOTE_MS 100
  30#define WAIT_FOR_SCAN_ABORT_MS 1000
  31#define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
  32#define WIL_BOARD_FILE_MAX_NAMELEN 128
  33
  34bool debug_fw; /* = false; */
  35module_param(debug_fw, bool, 0444);
  36MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
  37
  38static u8 oob_mode;
  39module_param(oob_mode, byte, 0444);
  40MODULE_PARM_DESC(oob_mode,
  41                 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
  42
  43bool no_fw_recovery;
  44module_param(no_fw_recovery, bool, 0644);
  45MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
  46
  47/* if not set via modparam, will be set to default value of 1/8 of
  48 * rx ring size during init flow
  49 */
  50unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
  51module_param(rx_ring_overflow_thrsh, ushort, 0444);
  52MODULE_PARM_DESC(rx_ring_overflow_thrsh,
  53                 " RX ring overflow threshold in descriptors.");
  54
  55/* We allow allocation of more than 1 page buffers to support large packets.
  56 * It is suboptimal behavior performance wise in case MTU above page size.
  57 */
  58unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
  59static int mtu_max_set(const char *val, const struct kernel_param *kp)
  60{
  61        int ret;
  62
  63        /* sets mtu_max directly. no need to restore it in case of
  64         * illegal value since we assume this will fail insmod
  65         */
  66        ret = param_set_uint(val, kp);
  67        if (ret)
  68                return ret;
  69
  70        if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
  71                ret = -EINVAL;
  72
  73        return ret;
  74}
  75
  76static const struct kernel_param_ops mtu_max_ops = {
  77        .set = mtu_max_set,
  78        .get = param_get_uint,
  79};
  80
  81module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
  82MODULE_PARM_DESC(mtu_max, " Max MTU value.");
  83
  84static uint rx_ring_order;
  85static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
  86static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
  87
  88static int ring_order_set(const char *val, const struct kernel_param *kp)
  89{
  90        int ret;
  91        uint x;
  92
  93        ret = kstrtouint(val, 0, &x);
  94        if (ret)
  95                return ret;
  96
  97        if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
  98                return -EINVAL;
  99
 100        *((uint *)kp->arg) = x;
 101
 102        return 0;
 103}
 104
 105static const struct kernel_param_ops ring_order_ops = {
 106        .set = ring_order_set,
 107        .get = param_get_uint,
 108};
 109
 110module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
 111MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
 112module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
 113MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
 114module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
 115MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
 116
 117enum {
 118        WIL_BOOT_ERR,
 119        WIL_BOOT_VANILLA,
 120        WIL_BOOT_PRODUCTION,
 121        WIL_BOOT_DEVELOPMENT,
 122};
 123
 124enum {
 125        WIL_SIG_STATUS_VANILLA = 0x0,
 126        WIL_SIG_STATUS_DEVELOPMENT = 0x1,
 127        WIL_SIG_STATUS_PRODUCTION = 0x2,
 128        WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
 129};
 130
 131#define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
 132#define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
 133
 134#define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
 135
 136#define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
 137/* round up to be above 2 ms total */
 138#define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
 139
 140/*
 141 * Due to a hardware issue,
 142 * one has to read/write to/from NIC in 32-bit chunks;
 143 * regular memcpy_fromio and siblings will
 144 * not work on 64-bit platform - it uses 64-bit transactions
 145 *
 146 * Force 32-bit transactions to enable NIC on 64-bit platforms
 147 *
 148 * To avoid byte swap on big endian host, __raw_{read|write}l
 149 * should be used - {read|write}l would swap bytes to provide
 150 * little endian on PCI value in host endianness.
 151 */
 152void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
 153                          size_t count)
 154{
 155        u32 *d = dst;
 156        const volatile u32 __iomem *s = src;
 157
 158        for (; count >= 4; count -= 4)
 159                *d++ = __raw_readl(s++);
 160
 161        if (unlikely(count)) {
 162                /* count can be 1..3 */
 163                u32 tmp = __raw_readl(s);
 164
 165                memcpy(d, &tmp, count);
 166        }
 167}
 168
 169void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
 170                        size_t count)
 171{
 172        volatile u32 __iomem *d = dst;
 173        const u32 *s = src;
 174
 175        for (; count >= 4; count -= 4)
 176                __raw_writel(*s++, d++);
 177
 178        if (unlikely(count)) {
 179                /* count can be 1..3 */
 180                u32 tmp = 0;
 181
 182                memcpy(&tmp, s, count);
 183                __raw_writel(tmp, d);
 184        }
 185}
 186
 187/* Device memory access is prohibited while reset or suspend.
 188 * wil_mem_access_lock protects accessing device memory in these cases
 189 */
 190int wil_mem_access_lock(struct wil6210_priv *wil)
 191{
 192        if (!down_read_trylock(&wil->mem_lock))
 193                return -EBUSY;
 194
 195        if (test_bit(wil_status_suspending, wil->status) ||
 196            test_bit(wil_status_suspended, wil->status)) {
 197                up_read(&wil->mem_lock);
 198                return -EBUSY;
 199        }
 200
 201        return 0;
 202}
 203
 204void wil_mem_access_unlock(struct wil6210_priv *wil)
 205{
 206        up_read(&wil->mem_lock);
 207}
 208
 209static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
 210{
 211        struct wil_ring *ring = &wil->ring_tx[id];
 212        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
 213
 214        lockdep_assert_held(&wil->mutex);
 215
 216        if (!ring->va)
 217                return;
 218
 219        wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
 220
 221        spin_lock_bh(&txdata->lock);
 222        txdata->dot1x_open = false;
 223        txdata->mid = U8_MAX;
 224        txdata->enabled = 0; /* no Tx can be in progress or start anew */
 225        spin_unlock_bh(&txdata->lock);
 226        /* napi_synchronize waits for completion of the current NAPI but will
 227         * not prevent the next NAPI run.
 228         * Add a memory barrier to guarantee that txdata->enabled is zeroed
 229         * before napi_synchronize so that the next scheduled NAPI will not
 230         * handle this vring
 231         */
 232        wmb();
 233        /* make sure NAPI won't touch this vring */
 234        if (test_bit(wil_status_napi_en, wil->status))
 235                napi_synchronize(&wil->napi_tx);
 236
 237        wil->txrx_ops.ring_fini_tx(wil, ring);
 238}
 239
 240static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
 241{
 242        int i;
 243
 244        for (i = 0; i < wil->max_assoc_sta; i++) {
 245                if (wil->sta[i].mid == mid &&
 246                    wil->sta[i].status == wil_sta_connected)
 247                        return true;
 248        }
 249
 250        return false;
 251}
 252
 253static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
 254                                        u16 reason_code)
 255__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
 256{
 257        uint i;
 258        struct wil6210_priv *wil = vif_to_wil(vif);
 259        struct net_device *ndev = vif_to_ndev(vif);
 260        struct wireless_dev *wdev = vif_to_wdev(vif);
 261        struct wil_sta_info *sta = &wil->sta[cid];
 262        int min_ring_id = wil_get_min_tx_ring_id(wil);
 263
 264        might_sleep();
 265        wil_dbg_misc(wil,
 266                     "disconnect_cid_complete: CID %d, MID %d, status %d\n",
 267                     cid, sta->mid, sta->status);
 268        /* inform upper layers */
 269        if (sta->status != wil_sta_unused) {
 270                if (vif->mid != sta->mid) {
 271                        wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
 272                                vif->mid);
 273                }
 274
 275                switch (wdev->iftype) {
 276                case NL80211_IFTYPE_AP:
 277                case NL80211_IFTYPE_P2P_GO:
 278                        /* AP-like interface */
 279                        cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
 280                        break;
 281                default:
 282                        break;
 283                }
 284                sta->status = wil_sta_unused;
 285                sta->mid = U8_MAX;
 286        }
 287        /* reorder buffers */
 288        for (i = 0; i < WIL_STA_TID_NUM; i++) {
 289                struct wil_tid_ampdu_rx *r;
 290
 291                spin_lock_bh(&sta->tid_rx_lock);
 292
 293                r = sta->tid_rx[i];
 294                sta->tid_rx[i] = NULL;
 295                wil_tid_ampdu_rx_free(wil, r);
 296
 297                spin_unlock_bh(&sta->tid_rx_lock);
 298        }
 299        /* crypto context */
 300        memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
 301        memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
 302        /* release vrings */
 303        for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
 304                if (wil->ring2cid_tid[i][0] == cid)
 305                        wil_ring_fini_tx(wil, i);
 306        }
 307        /* statistics */
 308        memset(&sta->stats, 0, sizeof(sta->stats));
 309        sta->stats.tx_latency_min_us = U32_MAX;
 310}
 311
 312static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
 313                                         const u8 *bssid, u16 reason_code)
 314{
 315        struct wil6210_priv *wil = vif_to_wil(vif);
 316        int cid = -ENOENT;
 317        struct net_device *ndev;
 318        struct wireless_dev *wdev;
 319
 320        ndev = vif_to_ndev(vif);
 321        wdev = vif_to_wdev(vif);
 322
 323        might_sleep();
 324        wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
 325                 bssid, reason_code);
 326
 327        /* Cases are:
 328         * - disconnect single STA, still connected
 329         * - disconnect single STA, already disconnected
 330         * - disconnect all
 331         *
 332         * For "disconnect all", there are 3 options:
 333         * - bssid == NULL
 334         * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 335         * - bssid is our MAC address
 336         */
 337        if (bssid && !is_broadcast_ether_addr(bssid) &&
 338            !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 339                cid = wil_find_cid(wil, vif->mid, bssid);
 340                wil_dbg_misc(wil,
 341                             "Disconnect complete %pM, CID=%d, reason=%d\n",
 342                             bssid, cid, reason_code);
 343                if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 344                        wil_disconnect_cid_complete(vif, cid, reason_code);
 345        } else { /* all */
 346                wil_dbg_misc(wil, "Disconnect complete all\n");
 347                for (cid = 0; cid < wil->max_assoc_sta; cid++)
 348                        wil_disconnect_cid_complete(vif, cid, reason_code);
 349        }
 350
 351        /* link state */
 352        switch (wdev->iftype) {
 353        case NL80211_IFTYPE_STATION:
 354        case NL80211_IFTYPE_P2P_CLIENT:
 355                wil_bcast_fini(vif);
 356                wil_update_net_queues_bh(wil, vif, NULL, true);
 357                netif_carrier_off(ndev);
 358                if (!wil_has_other_active_ifaces(wil, ndev, false, true))
 359                        wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
 360
 361                if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
 362                        atomic_dec(&wil->connected_vifs);
 363                        cfg80211_disconnected(ndev, reason_code,
 364                                              NULL, 0,
 365                                              vif->locally_generated_disc,
 366                                              GFP_KERNEL);
 367                        vif->locally_generated_disc = false;
 368                } else if (test_bit(wil_vif_fwconnecting, vif->status)) {
 369                        cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
 370                                                WLAN_STATUS_UNSPECIFIED_FAILURE,
 371                                                GFP_KERNEL);
 372                        vif->bss = NULL;
 373                }
 374                clear_bit(wil_vif_fwconnecting, vif->status);
 375                clear_bit(wil_vif_ft_roam, vif->status);
 376
 377                break;
 378        case NL80211_IFTYPE_AP:
 379        case NL80211_IFTYPE_P2P_GO:
 380                if (!wil_vif_is_connected(wil, vif->mid)) {
 381                        wil_update_net_queues_bh(wil, vif, NULL, true);
 382                        if (test_and_clear_bit(wil_vif_fwconnected,
 383                                               vif->status))
 384                                atomic_dec(&wil->connected_vifs);
 385                } else {
 386                        wil_update_net_queues_bh(wil, vif, NULL, false);
 387                }
 388                break;
 389        default:
 390                break;
 391        }
 392}
 393
 394static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
 395                              u16 reason_code)
 396{
 397        struct wil6210_priv *wil = vif_to_wil(vif);
 398        struct wireless_dev *wdev = vif_to_wdev(vif);
 399        struct wil_sta_info *sta = &wil->sta[cid];
 400        bool del_sta = false;
 401
 402        might_sleep();
 403        wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
 404                     cid, sta->mid, sta->status);
 405
 406        if (sta->status == wil_sta_unused)
 407                return 0;
 408
 409        if (vif->mid != sta->mid) {
 410                wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
 411                return -EINVAL;
 412        }
 413
 414        /* inform lower layers */
 415        if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
 416                del_sta = true;
 417
 418        /* disconnect by sending command disconnect/del_sta and wait
 419         * synchronously for WMI_DISCONNECT_EVENTID event.
 420         */
 421        return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
 422}
 423
 424static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 425                                u16 reason_code)
 426{
 427        struct wil6210_priv *wil;
 428        struct net_device *ndev;
 429        int cid = -ENOENT;
 430
 431        if (unlikely(!vif))
 432                return;
 433
 434        wil = vif_to_wil(vif);
 435        ndev = vif_to_ndev(vif);
 436
 437        might_sleep();
 438        wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
 439
 440        /* Cases are:
 441         * - disconnect single STA, still connected
 442         * - disconnect single STA, already disconnected
 443         * - disconnect all
 444         *
 445         * For "disconnect all", there are 3 options:
 446         * - bssid == NULL
 447         * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 448         * - bssid is our MAC address
 449         */
 450        if (bssid && !is_broadcast_ether_addr(bssid) &&
 451            !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 452                cid = wil_find_cid(wil, vif->mid, bssid);
 453                wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
 454                             bssid, cid, reason_code);
 455                if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 456                        wil_disconnect_cid(vif, cid, reason_code);
 457        } else { /* all */
 458                wil_dbg_misc(wil, "Disconnect all\n");
 459                for (cid = 0; cid < wil->max_assoc_sta; cid++)
 460                        wil_disconnect_cid(vif, cid, reason_code);
 461        }
 462
 463        /* call event handler manually after processing wmi_call,
 464         * to avoid deadlock - disconnect event handler acquires
 465         * wil->mutex while it is already held here
 466         */
 467        _wil6210_disconnect_complete(vif, bssid, reason_code);
 468}
 469
 470void wil_disconnect_worker(struct work_struct *work)
 471{
 472        struct wil6210_vif *vif = container_of(work,
 473                        struct wil6210_vif, disconnect_worker);
 474        struct wil6210_priv *wil = vif_to_wil(vif);
 475        struct net_device *ndev = vif_to_ndev(vif);
 476        int rc;
 477        struct {
 478                struct wmi_cmd_hdr wmi;
 479                struct wmi_disconnect_event evt;
 480        } __packed reply;
 481
 482        if (test_bit(wil_vif_fwconnected, vif->status))
 483                /* connect succeeded after all */
 484                return;
 485
 486        if (!test_bit(wil_vif_fwconnecting, vif->status))
 487                /* already disconnected */
 488                return;
 489
 490        memset(&reply, 0, sizeof(reply));
 491
 492        rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
 493                      WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
 494                      WIL6210_DISCONNECT_TO_MS);
 495        if (rc) {
 496                wil_err(wil, "disconnect error %d\n", rc);
 497                return;
 498        }
 499
 500        wil_update_net_queues_bh(wil, vif, NULL, true);
 501        netif_carrier_off(ndev);
 502        cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
 503                                WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
 504        clear_bit(wil_vif_fwconnecting, vif->status);
 505}
 506
 507static int wil_wait_for_recovery(struct wil6210_priv *wil)
 508{
 509        if (wait_event_interruptible(wil->wq, wil->recovery_state !=
 510                                     fw_recovery_pending)) {
 511                wil_err(wil, "Interrupt, canceling recovery\n");
 512                return -ERESTARTSYS;
 513        }
 514        if (wil->recovery_state != fw_recovery_running) {
 515                wil_info(wil, "Recovery cancelled\n");
 516                return -EINTR;
 517        }
 518        wil_info(wil, "Proceed with recovery\n");
 519        return 0;
 520}
 521
 522void wil_set_recovery_state(struct wil6210_priv *wil, int state)
 523{
 524        wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
 525                     wil->recovery_state, state);
 526
 527        wil->recovery_state = state;
 528        wake_up_interruptible(&wil->wq);
 529}
 530
 531bool wil_is_recovery_blocked(struct wil6210_priv *wil)
 532{
 533        return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
 534}
 535
 536static void wil_fw_error_worker(struct work_struct *work)
 537{
 538        struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
 539                                                fw_error_worker);
 540        struct net_device *ndev = wil->main_ndev;
 541        struct wireless_dev *wdev;
 542
 543        wil_dbg_misc(wil, "fw error worker\n");
 544
 545        if (!ndev || !(ndev->flags & IFF_UP)) {
 546                wil_info(wil, "No recovery - interface is down\n");
 547                return;
 548        }
 549        wdev = ndev->ieee80211_ptr;
 550
 551        /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
 552         * passed since last recovery attempt
 553         */
 554        if (time_is_after_jiffies(wil->last_fw_recovery +
 555                                  WIL6210_FW_RECOVERY_TO))
 556                wil->recovery_count++;
 557        else
 558                wil->recovery_count = 1; /* fw was alive for a long time */
 559
 560        if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
 561                wil_err(wil, "too many recovery attempts (%d), giving up\n",
 562                        wil->recovery_count);
 563                return;
 564        }
 565
 566        wil->last_fw_recovery = jiffies;
 567
 568        wil_info(wil, "fw error recovery requested (try %d)...\n",
 569                 wil->recovery_count);
 570        if (!no_fw_recovery)
 571                wil->recovery_state = fw_recovery_running;
 572        if (wil_wait_for_recovery(wil) != 0)
 573                return;
 574
 575        rtnl_lock();
 576        mutex_lock(&wil->mutex);
 577        /* Needs adaptation for multiple VIFs
 578         * need to go over all VIFs and consider the appropriate
 579         * recovery because each one can have different iftype.
 580         */
 581        switch (wdev->iftype) {
 582        case NL80211_IFTYPE_STATION:
 583        case NL80211_IFTYPE_P2P_CLIENT:
 584        case NL80211_IFTYPE_MONITOR:
 585                /* silent recovery, upper layers will see disconnect */
 586                __wil_down(wil);
 587                __wil_up(wil);
 588                break;
 589        case NL80211_IFTYPE_AP:
 590        case NL80211_IFTYPE_P2P_GO:
 591                if (no_fw_recovery) /* upper layers do recovery */
 592                        break;
 593                /* silent recovery, upper layers will see disconnect */
 594                __wil_down(wil);
 595                __wil_up(wil);
 596                mutex_unlock(&wil->mutex);
 597                wil_cfg80211_ap_recovery(wil);
 598                mutex_lock(&wil->mutex);
 599                wil_info(wil, "... completed\n");
 600                break;
 601        default:
 602                wil_err(wil, "No recovery - unknown interface type %d\n",
 603                        wdev->iftype);
 604                break;
 605        }
 606
 607        mutex_unlock(&wil->mutex);
 608        rtnl_unlock();
 609}
 610
 611static int wil_find_free_ring(struct wil6210_priv *wil)
 612{
 613        int i;
 614        int min_ring_id = wil_get_min_tx_ring_id(wil);
 615
 616        for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
 617                if (!wil->ring_tx[i].va)
 618                        return i;
 619        }
 620        return -EINVAL;
 621}
 622
 623int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
 624{
 625        struct wil6210_priv *wil = vif_to_wil(vif);
 626        int rc = -EINVAL, ringid;
 627
 628        if (cid < 0) {
 629                wil_err(wil, "No connection pending\n");
 630                goto out;
 631        }
 632        ringid = wil_find_free_ring(wil);
 633        if (ringid < 0) {
 634                wil_err(wil, "No free vring found\n");
 635                goto out;
 636        }
 637
 638        wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
 639                    cid, vif->mid, ringid);
 640
 641        rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
 642                                        cid, 0);
 643        if (rc)
 644                wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
 645                        cid, vif->mid, ringid);
 646
 647out:
 648        return rc;
 649}
 650
 651int wil_bcast_init(struct wil6210_vif *vif)
 652{
 653        struct wil6210_priv *wil = vif_to_wil(vif);
 654        int ri = vif->bcast_ring, rc;
 655
 656        if (ri >= 0 && wil->ring_tx[ri].va)
 657                return 0;
 658
 659        ri = wil_find_free_ring(wil);
 660        if (ri < 0)
 661                return ri;
 662
 663        vif->bcast_ring = ri;
 664        rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
 665        if (rc)
 666                vif->bcast_ring = -1;
 667
 668        return rc;
 669}
 670
 671void wil_bcast_fini(struct wil6210_vif *vif)
 672{
 673        struct wil6210_priv *wil = vif_to_wil(vif);
 674        int ri = vif->bcast_ring;
 675
 676        if (ri < 0)
 677                return;
 678
 679        vif->bcast_ring = -1;
 680        wil_ring_fini_tx(wil, ri);
 681}
 682
 683void wil_bcast_fini_all(struct wil6210_priv *wil)
 684{
 685        int i;
 686        struct wil6210_vif *vif;
 687
 688        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
 689                vif = wil->vifs[i];
 690                if (vif)
 691                        wil_bcast_fini(vif);
 692        }
 693}
 694
 695int wil_priv_init(struct wil6210_priv *wil)
 696{
 697        uint i;
 698
 699        wil_dbg_misc(wil, "priv_init\n");
 700
 701        memset(wil->sta, 0, sizeof(wil->sta));
 702        for (i = 0; i < WIL6210_MAX_CID; i++) {
 703                spin_lock_init(&wil->sta[i].tid_rx_lock);
 704                wil->sta[i].mid = U8_MAX;
 705        }
 706
 707        for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
 708                spin_lock_init(&wil->ring_tx_data[i].lock);
 709                wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
 710        }
 711
 712        mutex_init(&wil->mutex);
 713        mutex_init(&wil->vif_mutex);
 714        mutex_init(&wil->wmi_mutex);
 715        mutex_init(&wil->halp.lock);
 716
 717        init_completion(&wil->wmi_ready);
 718        init_completion(&wil->wmi_call);
 719        init_completion(&wil->halp.comp);
 720
 721        INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
 722        INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
 723
 724        INIT_LIST_HEAD(&wil->pending_wmi_ev);
 725        spin_lock_init(&wil->wmi_ev_lock);
 726        spin_lock_init(&wil->net_queue_lock);
 727        init_waitqueue_head(&wil->wq);
 728        init_rwsem(&wil->mem_lock);
 729
 730        wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
 731        if (!wil->wmi_wq)
 732                return -EAGAIN;
 733
 734        wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
 735        if (!wil->wq_service)
 736                goto out_wmi_wq;
 737
 738        wil->last_fw_recovery = jiffies;
 739        wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
 740        wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
 741        wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
 742        wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
 743
 744        if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
 745                rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
 746
 747        wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
 748
 749        wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
 750                              WMI_WAKEUP_TRIGGER_BCAST;
 751        memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
 752        wil->ring_idle_trsh = 16;
 753
 754        wil->reply_mid = U8_MAX;
 755        wil->max_vifs = 1;
 756        wil->max_assoc_sta = max_assoc_sta;
 757
 758        /* edma configuration can be updated via debugfs before allocation */
 759        wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
 760        wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
 761
 762        /* Rx status ring size should be bigger than the number of RX buffers
 763         * in order to prevent backpressure on the status ring, which may
 764         * cause HW freeze.
 765         */
 766        wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
 767        /* Number of RX buffer IDs should be bigger than the RX descriptor
 768         * ring size as in HW reorder flow, the HW can consume additional
 769         * buffers before releasing the previous ones.
 770         */
 771        wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
 772
 773        wil->amsdu_en = 1;
 774
 775        return 0;
 776
 777out_wmi_wq:
 778        destroy_workqueue(wil->wmi_wq);
 779
 780        return -EAGAIN;
 781}
 782
 783void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
 784{
 785        if (wil->platform_ops.bus_request) {
 786                wil->bus_request_kbps = kbps;
 787                wil->platform_ops.bus_request(wil->platform_handle, kbps);
 788        }
 789}
 790
 791/**
 792 * wil6210_disconnect - disconnect one connection
 793 * @vif: virtual interface context
 794 * @bssid: peer to disconnect, NULL to disconnect all
 795 * @reason_code: Reason code for the Disassociation frame
 796 *
 797 * Disconnect and release associated resources. Issue WMI
 798 * command(s) to trigger MAC disconnect. When command was issued
 799 * successfully, call the wil6210_disconnect_complete function
 800 * to handle the event synchronously
 801 */
 802void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 803                        u16 reason_code)
 804{
 805        struct wil6210_priv *wil = vif_to_wil(vif);
 806
 807        wil_dbg_misc(wil, "disconnecting\n");
 808
 809        del_timer_sync(&vif->connect_timer);
 810        _wil6210_disconnect(vif, bssid, reason_code);
 811}
 812
 813/**
 814 * wil6210_disconnect_complete - handle disconnect event
 815 * @vif: virtual interface context
 816 * @bssid: peer to disconnect, NULL to disconnect all
 817 * @reason_code: Reason code for the Disassociation frame
 818 *
 819 * Release associated resources and indicate upper layers the
 820 * connection is terminated.
 821 */
 822void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
 823                                 u16 reason_code)
 824{
 825        struct wil6210_priv *wil = vif_to_wil(vif);
 826
 827        wil_dbg_misc(wil, "got disconnect\n");
 828
 829        del_timer_sync(&vif->connect_timer);
 830        _wil6210_disconnect_complete(vif, bssid, reason_code);
 831}
 832
 833void wil_priv_deinit(struct wil6210_priv *wil)
 834{
 835        wil_dbg_misc(wil, "priv_deinit\n");
 836
 837        wil_set_recovery_state(wil, fw_recovery_idle);
 838        cancel_work_sync(&wil->fw_error_worker);
 839        wmi_event_flush(wil);
 840        destroy_workqueue(wil->wq_service);
 841        destroy_workqueue(wil->wmi_wq);
 842        kfree(wil->brd_info);
 843}
 844
 845static void wil_shutdown_bl(struct wil6210_priv *wil)
 846{
 847        u32 val;
 848
 849        wil_s(wil, RGF_USER_BL +
 850              offsetof(struct bl_dedicated_registers_v1,
 851                       bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
 852
 853        usleep_range(100, 150);
 854
 855        val = wil_r(wil, RGF_USER_BL +
 856                    offsetof(struct bl_dedicated_registers_v1,
 857                             bl_shutdown_handshake));
 858        if (val & BL_SHUTDOWN_HS_RTD) {
 859                wil_dbg_misc(wil, "BL is ready for halt\n");
 860                return;
 861        }
 862
 863        wil_err(wil, "BL did not report ready for halt\n");
 864}
 865
 866/* this format is used by ARC embedded CPU for instruction memory */
 867static inline u32 ARC_me_imm32(u32 d)
 868{
 869        return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
 870}
 871
 872/* defines access to interrupt vectors for wil_freeze_bl */
 873#define ARC_IRQ_VECTOR_OFFSET(N)        ((N) * 8)
 874/* ARC long jump instruction */
 875#define ARC_JAL_INST                    (0x20200f80)
 876
 877static void wil_freeze_bl(struct wil6210_priv *wil)
 878{
 879        u32 jal, upc, saved;
 880        u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
 881
 882        jal = wil_r(wil, wil->iccm_base + ivt3);
 883        if (jal != ARC_me_imm32(ARC_JAL_INST)) {
 884                wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
 885                return;
 886        }
 887
 888        /* prevent the target from entering deep sleep
 889         * and disabling memory access
 890         */
 891        saved = wil_r(wil, RGF_USER_USAGE_8);
 892        wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
 893        usleep_range(20, 25); /* let the BL process the bit */
 894
 895        /* redirect to endless loop in the INT_L1 context and let it trap */
 896        wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
 897        usleep_range(20, 25); /* let the BL get into the trap */
 898
 899        /* verify the BL is frozen */
 900        upc = wil_r(wil, RGF_USER_CPU_PC);
 901        if (upc < ivt3 || (upc > (ivt3 + 8)))
 902                wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
 903
 904        wil_w(wil, RGF_USER_USAGE_8, saved);
 905}
 906
 907static void wil_bl_prepare_halt(struct wil6210_priv *wil)
 908{
 909        u32 tmp, ver;
 910
 911        /* before halting device CPU driver must make sure BL is not accessing
 912         * host memory. This is done differently depending on BL version:
 913         * 1. For very old BL versions the procedure is skipped
 914         * (not supported).
 915         * 2. For old BL version we use a special trick to freeze the BL
 916         * 3. For new BL versions we shutdown the BL using handshake procedure.
 917         */
 918        tmp = wil_r(wil, RGF_USER_BL +
 919                    offsetof(struct bl_dedicated_registers_v0,
 920                             boot_loader_struct_version));
 921        if (!tmp) {
 922                wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
 923                return;
 924        }
 925
 926        tmp = wil_r(wil, RGF_USER_BL +
 927                    offsetof(struct bl_dedicated_registers_v1,
 928                             bl_shutdown_handshake));
 929        ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
 930
 931        if (ver > 0)
 932                wil_shutdown_bl(wil);
 933        else
 934                wil_freeze_bl(wil);
 935}
 936
 937static inline void wil_halt_cpu(struct wil6210_priv *wil)
 938{
 939        if (wil->hw_version >= HW_VER_TALYN_MB) {
 940                wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
 941                      BIT_USER_USER_CPU_MAN_RST);
 942                wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
 943                      BIT_USER_MAC_CPU_MAN_RST);
 944        } else {
 945                wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
 946                wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
 947        }
 948}
 949
 950static inline void wil_release_cpu(struct wil6210_priv *wil)
 951{
 952        /* Start CPU */
 953        if (wil->hw_version >= HW_VER_TALYN_MB)
 954                wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
 955        else
 956                wil_w(wil, RGF_USER_USER_CPU_0, 1);
 957}
 958
 959static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
 960{
 961        wil_info(wil, "oob_mode to %d\n", mode);
 962        switch (mode) {
 963        case 0:
 964                wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
 965                      BIT_USER_OOB_R2_MODE);
 966                break;
 967        case 1:
 968                wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 969                wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 970                break;
 971        case 2:
 972                wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 973                wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 974                break;
 975        default:
 976                wil_err(wil, "invalid oob_mode: %d\n", mode);
 977        }
 978}
 979
 980static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
 981{
 982        int delay = 0;
 983        u32 x, x1 = 0;
 984
 985        /* wait until device ready. */
 986        if (no_flash) {
 987                msleep(PMU_READY_DELAY_MS);
 988
 989                wil_dbg_misc(wil, "Reset completed\n");
 990        } else {
 991                do {
 992                        msleep(RST_DELAY);
 993                        x = wil_r(wil, RGF_USER_BL +
 994                                  offsetof(struct bl_dedicated_registers_v0,
 995                                           boot_loader_ready));
 996                        if (x1 != x) {
 997                                wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
 998                                             x1, x);
 999                                x1 = x;
1000                        }
1001                        if (delay++ > RST_COUNT) {
1002                                wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
1003                                        x);
1004                                return -ETIME;
1005                        }
1006                } while (x != BL_READY);
1007
1008                wil_dbg_misc(wil, "Reset completed in %d ms\n",
1009                             delay * RST_DELAY);
1010        }
1011
1012        return 0;
1013}
1014
1015static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1016{
1017        u32 otp_hw;
1018        u8 signature_status;
1019        bool otp_signature_err;
1020        bool hw_section_done;
1021        u32 otp_qc_secured;
1022        int delay = 0;
1023
1024        /* Wait for OTP signature test to complete */
1025        usleep_range(2000, 2200);
1026
1027        wil->boot_config = WIL_BOOT_ERR;
1028
1029        /* Poll until OTP signature status is valid.
1030         * In vanilla and development modes, when signature test is complete
1031         * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1032         * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1033         * for signature status change to 2 or 3.
1034         */
1035        do {
1036                otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1037                signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1038                otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1039
1040                if (otp_signature_err &&
1041                    signature_status == WIL_SIG_STATUS_VANILLA) {
1042                        wil->boot_config = WIL_BOOT_VANILLA;
1043                        break;
1044                }
1045                if (otp_signature_err &&
1046                    signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1047                        wil->boot_config = WIL_BOOT_DEVELOPMENT;
1048                        break;
1049                }
1050                if (!otp_signature_err &&
1051                    signature_status == WIL_SIG_STATUS_PRODUCTION) {
1052                        wil->boot_config = WIL_BOOT_PRODUCTION;
1053                        break;
1054                }
1055                if  (!otp_signature_err &&
1056                     signature_status ==
1057                     WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1058                        /* Unrecognized OTP signature found. Possibly a
1059                         * corrupted production signature, access control
1060                         * is applied as in production mode, therefore
1061                         * do not fail
1062                         */
1063                        wil->boot_config = WIL_BOOT_PRODUCTION;
1064                        break;
1065                }
1066                if (delay++ > OTP_HW_COUNT)
1067                        break;
1068
1069                usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1070        } while (!otp_signature_err && signature_status == 0);
1071
1072        if (wil->boot_config == WIL_BOOT_ERR) {
1073                wil_err(wil,
1074                        "invalid boot config, signature_status %d otp_signature_err %d\n",
1075                        signature_status, otp_signature_err);
1076                return -ETIME;
1077        }
1078
1079        wil_dbg_misc(wil,
1080                     "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1081                     delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1082
1083        if (wil->boot_config == WIL_BOOT_VANILLA)
1084                /* Assuming not SPI boot (currently not supported) */
1085                goto out;
1086
1087        hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1088        delay = 0;
1089
1090        while (!hw_section_done) {
1091                msleep(RST_DELAY);
1092
1093                otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1094                hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1095
1096                if (delay++ > RST_COUNT) {
1097                        wil_err(wil, "TO waiting for hw_section_done\n");
1098                        return -ETIME;
1099                }
1100        }
1101
1102        wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1103
1104        otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1105        wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1106        wil_dbg_misc(wil, "secured boot is %sabled\n",
1107                     wil->secured_boot ? "en" : "dis");
1108
1109out:
1110        wil_dbg_misc(wil, "Reset completed\n");
1111
1112        return 0;
1113}
1114
1115static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1116{
1117        u32 x;
1118        int rc;
1119
1120        wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1121
1122        if (wil->hw_version < HW_VER_TALYN) {
1123                /* Clear MAC link up */
1124                wil_s(wil, RGF_HP_CTRL, BIT(15));
1125                wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1126                      BIT_HPAL_PERST_FROM_PAD);
1127                wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1128        }
1129
1130        wil_halt_cpu(wil);
1131
1132        if (!no_flash) {
1133                /* clear all boot loader "ready" bits */
1134                wil_w(wil, RGF_USER_BL +
1135                      offsetof(struct bl_dedicated_registers_v0,
1136                               boot_loader_ready), 0);
1137                /* this should be safe to write even with old BLs */
1138                wil_w(wil, RGF_USER_BL +
1139                      offsetof(struct bl_dedicated_registers_v1,
1140                               bl_shutdown_handshake), 0);
1141        }
1142        /* Clear Fw Download notification */
1143        wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1144
1145        wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1146        /* XTAL stabilization should take about 3ms */
1147        usleep_range(5000, 7000);
1148        x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1149        if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1150                wil_err(wil, "Xtal stabilization timeout\n"
1151                        "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1152                return -ETIME;
1153        }
1154        /* switch 10k to XTAL*/
1155        wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1156        /* 40 MHz */
1157        wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1158
1159        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1160        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1161
1162        if (wil->hw_version >= HW_VER_TALYN_MB) {
1163                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1164                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1165                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1166                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1167        } else {
1168                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1169                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1170                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1171                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1172        }
1173
1174        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1175        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1176
1177        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1178        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1179        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1180        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1181
1182        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1183        /* reset A2 PCIE AHB */
1184        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1185
1186        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1187
1188        if (wil->hw_version == HW_VER_TALYN_MB)
1189                rc = wil_wait_device_ready_talyn_mb(wil);
1190        else
1191                rc = wil_wait_device_ready(wil, no_flash);
1192        if (rc)
1193                return rc;
1194
1195        wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1196
1197        /* enable fix for HW bug related to the SA/DA swap in AP Rx */
1198        wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1199              BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1200
1201        if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1202                /* Reset OTP HW vectors to fit 40MHz */
1203                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1204                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1205                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1206                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1207                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1208                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1209                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1210                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1211                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1212                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1213                wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1214        }
1215
1216        return 0;
1217}
1218
1219static void wil_collect_fw_info(struct wil6210_priv *wil)
1220{
1221        struct wiphy *wiphy = wil_to_wiphy(wil);
1222        u8 retry_short;
1223        int rc;
1224
1225        wil_refresh_fw_capabilities(wil);
1226
1227        rc = wmi_get_mgmt_retry(wil, &retry_short);
1228        if (!rc) {
1229                wiphy->retry_short = retry_short;
1230                wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1231        }
1232}
1233
1234void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1235{
1236        struct wiphy *wiphy = wil_to_wiphy(wil);
1237        int features;
1238
1239        wil->keep_radio_on_during_sleep =
1240                test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1241                         wil->platform_capa) &&
1242                test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1243
1244        wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1245                 wil->keep_radio_on_during_sleep);
1246
1247        if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1248                wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1249        else
1250                wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1251
1252        if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1253                wiphy->max_sched_scan_reqs = 1;
1254                wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1255                wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1256                wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1257                wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1258        }
1259
1260        if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1261                wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1262
1263        if (wil->platform_ops.set_features) {
1264                features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1265                                     wil->fw_capabilities) &&
1266                            test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1267                                     wil->platform_capa)) ?
1268                        BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1269
1270                if (wil->n_msi == 3)
1271                        features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1272
1273                wil->platform_ops.set_features(wil->platform_handle, features);
1274        }
1275
1276        if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1277                     wil->fw_capabilities)) {
1278                wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1279                wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1280        } else {
1281                wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1282                wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1283        }
1284
1285        update_supported_bands(wil);
1286}
1287
1288void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1289{
1290        le32_to_cpus(&r->base);
1291        le16_to_cpus(&r->entry_size);
1292        le16_to_cpus(&r->size);
1293        le32_to_cpus(&r->tail);
1294        le32_to_cpus(&r->head);
1295}
1296
1297/* construct actual board file name to use */
1298void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1299{
1300        const char *board_file;
1301        const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1302                              WIL_FW_NAME_TALYN;
1303
1304        if (wil->board_file) {
1305                board_file = wil->board_file;
1306        } else {
1307                /* If specific FW file is used for Talyn,
1308                 * use specific board file
1309                 */
1310                if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1311                        board_file = WIL_BRD_NAME_TALYN;
1312                else
1313                        board_file = WIL_BOARD_FILE_NAME;
1314        }
1315
1316        strlcpy(buf, board_file, len);
1317}
1318
1319static int wil_get_bl_info(struct wil6210_priv *wil)
1320{
1321        struct net_device *ndev = wil->main_ndev;
1322        struct wiphy *wiphy = wil_to_wiphy(wil);
1323        union {
1324                struct bl_dedicated_registers_v0 bl0;
1325                struct bl_dedicated_registers_v1 bl1;
1326        } bl;
1327        u32 bl_ver;
1328        u8 *mac;
1329        u16 rf_status;
1330
1331        wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1332                             sizeof(bl));
1333        bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1334        mac = bl.bl0.mac_address;
1335
1336        if (bl_ver == 0) {
1337                le32_to_cpus(&bl.bl0.rf_type);
1338                le32_to_cpus(&bl.bl0.baseband_type);
1339                rf_status = 0; /* actually, unknown */
1340                wil_info(wil,
1341                         "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1342                         bl_ver, mac,
1343                         bl.bl0.rf_type, bl.bl0.baseband_type);
1344                wil_info(wil, "Boot Loader build unknown for struct v0\n");
1345        } else {
1346                le16_to_cpus(&bl.bl1.rf_type);
1347                rf_status = le16_to_cpu(bl.bl1.rf_status);
1348                le32_to_cpus(&bl.bl1.baseband_type);
1349                le16_to_cpus(&bl.bl1.bl_version_subminor);
1350                le16_to_cpus(&bl.bl1.bl_version_build);
1351                wil_info(wil,
1352                         "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1353                         bl_ver, mac,
1354                         bl.bl1.rf_type, rf_status,
1355                         bl.bl1.baseband_type);
1356                wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1357                         bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1358                         bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1359        }
1360
1361        if (!is_valid_ether_addr(mac)) {
1362                wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1363                return -EINVAL;
1364        }
1365
1366        ether_addr_copy(ndev->perm_addr, mac);
1367        ether_addr_copy(wiphy->perm_addr, mac);
1368        if (!is_valid_ether_addr(ndev->dev_addr))
1369                ether_addr_copy(ndev->dev_addr, mac);
1370
1371        if (rf_status) {/* bad RF cable? */
1372                wil_err(wil, "RF communication error 0x%04x",
1373                        rf_status);
1374                return -EAGAIN;
1375        }
1376
1377        return 0;
1378}
1379
1380static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1381{
1382        u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1383        u32 bl_ver = wil_r(wil, RGF_USER_BL +
1384                           offsetof(struct bl_dedicated_registers_v0,
1385                                    boot_loader_struct_version));
1386
1387        if (bl_ver < 2)
1388                return;
1389
1390        bl_assert_code = wil_r(wil, RGF_USER_BL +
1391                               offsetof(struct bl_dedicated_registers_v1,
1392                                        bl_assert_code));
1393        bl_assert_blink = wil_r(wil, RGF_USER_BL +
1394                                offsetof(struct bl_dedicated_registers_v1,
1395                                         bl_assert_blink));
1396        bl_magic_number = wil_r(wil, RGF_USER_BL +
1397                                offsetof(struct bl_dedicated_registers_v1,
1398                                         bl_magic_number));
1399
1400        if (is_err) {
1401                wil_err(wil,
1402                        "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1403                        bl_assert_code, bl_assert_blink, bl_magic_number);
1404        } else {
1405                wil_dbg_misc(wil,
1406                             "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1407                             bl_assert_code, bl_assert_blink, bl_magic_number);
1408        }
1409}
1410
1411static int wil_get_otp_info(struct wil6210_priv *wil)
1412{
1413        struct net_device *ndev = wil->main_ndev;
1414        struct wiphy *wiphy = wil_to_wiphy(wil);
1415        u8 mac[8];
1416        int mac_addr;
1417
1418        /* OEM MAC has precedence */
1419        mac_addr = RGF_OTP_OEM_MAC;
1420        wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1421
1422        if (is_valid_ether_addr(mac)) {
1423                wil_info(wil, "using OEM MAC %pM\n", mac);
1424        } else {
1425                if (wil->hw_version >= HW_VER_TALYN_MB)
1426                        mac_addr = RGF_OTP_MAC_TALYN_MB;
1427                else
1428                        mac_addr = RGF_OTP_MAC;
1429
1430                wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1431                                     sizeof(mac));
1432        }
1433
1434        if (!is_valid_ether_addr(mac)) {
1435                wil_err(wil, "Invalid MAC %pM\n", mac);
1436                return -EINVAL;
1437        }
1438
1439        ether_addr_copy(ndev->perm_addr, mac);
1440        ether_addr_copy(wiphy->perm_addr, mac);
1441        if (!is_valid_ether_addr(ndev->dev_addr))
1442                ether_addr_copy(ndev->dev_addr, mac);
1443
1444        return 0;
1445}
1446
1447static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1448{
1449        ulong to = msecs_to_jiffies(2000);
1450        ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1451
1452        if (0 == left) {
1453                wil_err(wil, "Firmware not ready\n");
1454                return -ETIME;
1455        } else {
1456                wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1457                         jiffies_to_msecs(to-left), wil->hw_version);
1458        }
1459        return 0;
1460}
1461
1462void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1463{
1464        struct wil6210_priv *wil = vif_to_wil(vif);
1465        int rc;
1466        struct cfg80211_scan_info info = {
1467                .aborted = true,
1468        };
1469
1470        lockdep_assert_held(&wil->vif_mutex);
1471
1472        if (!vif->scan_request)
1473                return;
1474
1475        wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1476        del_timer_sync(&vif->scan_timer);
1477        mutex_unlock(&wil->vif_mutex);
1478        rc = wmi_abort_scan(vif);
1479        if (!rc && sync)
1480                wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1481                                                 msecs_to_jiffies(
1482                                                 WAIT_FOR_SCAN_ABORT_MS));
1483
1484        mutex_lock(&wil->vif_mutex);
1485        if (vif->scan_request) {
1486                cfg80211_scan_done(vif->scan_request, &info);
1487                vif->scan_request = NULL;
1488        }
1489}
1490
1491void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1492{
1493        int i;
1494
1495        lockdep_assert_held(&wil->vif_mutex);
1496
1497        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1498                struct wil6210_vif *vif = wil->vifs[i];
1499
1500                if (vif)
1501                        wil_abort_scan(vif, sync);
1502        }
1503}
1504
1505int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1506{
1507        int rc;
1508
1509        if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1510                wil_err(wil, "set_power_mgmt not supported\n");
1511                return -EOPNOTSUPP;
1512        }
1513
1514        rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1515        if (rc)
1516                wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1517        else
1518                wil->ps_profile = ps_profile;
1519
1520        return rc;
1521}
1522
1523static void wil_pre_fw_config(struct wil6210_priv *wil)
1524{
1525        wil_clear_fw_log_addr(wil);
1526        /* Mark FW as loaded from host */
1527        wil_s(wil, RGF_USER_USAGE_6, 1);
1528
1529        /* clear any interrupts which on-card-firmware
1530         * may have set
1531         */
1532        wil6210_clear_irq(wil);
1533        /* CAF_ICR - clear and mask */
1534        /* it is W1C, clear by writing back same value */
1535        if (wil->hw_version < HW_VER_TALYN_MB) {
1536                wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1537                wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1538        }
1539        /* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1540         * In Talyn-MB host cannot access this register due to
1541         * access control, hence PAL_UNIT_ICR is cleared by the FW
1542         */
1543        if (wil->hw_version < HW_VER_TALYN_MB)
1544                wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1545                      0);
1546
1547        if (wil->fw_calib_result > 0) {
1548                __le32 val = cpu_to_le32(wil->fw_calib_result |
1549                                                (CALIB_RESULT_SIGNATURE << 8));
1550                wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1551        }
1552}
1553
1554static int wil_restore_vifs(struct wil6210_priv *wil)
1555{
1556        struct wil6210_vif *vif;
1557        struct net_device *ndev;
1558        struct wireless_dev *wdev;
1559        int i, rc;
1560
1561        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1562                vif = wil->vifs[i];
1563                if (!vif)
1564                        continue;
1565                vif->ap_isolate = 0;
1566                if (vif->mid) {
1567                        ndev = vif_to_ndev(vif);
1568                        wdev = vif_to_wdev(vif);
1569                        rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1570                                               wdev->iftype);
1571                        if (rc) {
1572                                wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1573                                        i, wdev->iftype, rc);
1574                                return rc;
1575                        }
1576                }
1577        }
1578
1579        return 0;
1580}
1581
1582/*
1583 * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1584 * driver clears the addresses before FW starts and FW initializes the address
1585 * when it is ready to send logs.
1586 */
1587void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1588{
1589        /* FW log addr */
1590        wil_w(wil, RGF_USER_USAGE_1, 0);
1591        /* ucode log addr */
1592        wil_w(wil, RGF_USER_USAGE_2, 0);
1593        wil_dbg_misc(wil, "Cleared FW and ucode log address");
1594}
1595
1596/*
1597 * We reset all the structures, and we reset the UMAC.
1598 * After calling this routine, you're expected to reload
1599 * the firmware.
1600 */
1601int wil_reset(struct wil6210_priv *wil, bool load_fw)
1602{
1603        int rc, i;
1604        unsigned long status_flags = BIT(wil_status_resetting);
1605        int no_flash;
1606        struct wil6210_vif *vif;
1607
1608        wil_dbg_misc(wil, "reset\n");
1609
1610        WARN_ON(!mutex_is_locked(&wil->mutex));
1611        WARN_ON(test_bit(wil_status_napi_en, wil->status));
1612
1613        if (debug_fw) {
1614                static const u8 mac[ETH_ALEN] = {
1615                        0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1616                };
1617                struct net_device *ndev = wil->main_ndev;
1618
1619                ether_addr_copy(ndev->perm_addr, mac);
1620                ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1621                return 0;
1622        }
1623
1624        if (wil->hw_version == HW_VER_UNKNOWN)
1625                return -ENODEV;
1626
1627        if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1628            wil->hw_version < HW_VER_TALYN_MB) {
1629                wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1630                wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1631        }
1632
1633        if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1634                wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1635                wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1636        }
1637
1638        if (wil->platform_ops.notify) {
1639                rc = wil->platform_ops.notify(wil->platform_handle,
1640                                              WIL_PLATFORM_EVT_PRE_RESET);
1641                if (rc)
1642                        wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1643                                rc);
1644        }
1645
1646        set_bit(wil_status_resetting, wil->status);
1647        mutex_lock(&wil->vif_mutex);
1648        wil_abort_scan_all_vifs(wil, false);
1649        mutex_unlock(&wil->vif_mutex);
1650
1651        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1652                vif = wil->vifs[i];
1653                if (vif) {
1654                        cancel_work_sync(&vif->disconnect_worker);
1655                        wil6210_disconnect(vif, NULL,
1656                                           WLAN_REASON_DEAUTH_LEAVING);
1657                }
1658        }
1659        wil_bcast_fini_all(wil);
1660
1661        /* Disable device led before reset*/
1662        wmi_led_cfg(wil, false);
1663
1664        /* prevent NAPI from being scheduled and prevent wmi commands */
1665        mutex_lock(&wil->wmi_mutex);
1666        if (test_bit(wil_status_suspending, wil->status))
1667                status_flags |= BIT(wil_status_suspending);
1668        bitmap_and(wil->status, wil->status, &status_flags,
1669                   wil_status_last);
1670        wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1671        mutex_unlock(&wil->wmi_mutex);
1672
1673        wil_mask_irq(wil);
1674
1675        wmi_event_flush(wil);
1676
1677        flush_workqueue(wil->wq_service);
1678        flush_workqueue(wil->wmi_wq);
1679
1680        no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1681        if (!no_flash)
1682                wil_bl_crash_info(wil, false);
1683        wil_disable_irq(wil);
1684        rc = wil_target_reset(wil, no_flash);
1685        wil6210_clear_irq(wil);
1686        wil_enable_irq(wil);
1687        wil->txrx_ops.rx_fini(wil);
1688        wil->txrx_ops.tx_fini(wil);
1689        if (rc) {
1690                if (!no_flash)
1691                        wil_bl_crash_info(wil, true);
1692                goto out;
1693        }
1694
1695        if (no_flash) {
1696                rc = wil_get_otp_info(wil);
1697        } else {
1698                rc = wil_get_bl_info(wil);
1699                if (rc == -EAGAIN && !load_fw)
1700                        /* ignore RF error if not going up */
1701                        rc = 0;
1702        }
1703        if (rc)
1704                goto out;
1705
1706        wil_set_oob_mode(wil, oob_mode);
1707        if (load_fw) {
1708                char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1709
1710                if  (wil->secured_boot) {
1711                        wil_err(wil, "secured boot is not supported\n");
1712                        return -ENOTSUPP;
1713                }
1714
1715                board_file[0] = '\0';
1716                wil_get_board_file(wil, board_file, sizeof(board_file));
1717                wil_info(wil, "Use firmware <%s> + board <%s>\n",
1718                         wil->wil_fw_name, board_file);
1719
1720                if (!no_flash)
1721                        wil_bl_prepare_halt(wil);
1722
1723                wil_halt_cpu(wil);
1724                memset(wil->fw_version, 0, sizeof(wil->fw_version));
1725                /* Loading f/w from the file */
1726                rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1727                if (rc)
1728                        goto out;
1729                if (wil->num_of_brd_entries)
1730                        rc = wil_request_board(wil, board_file);
1731                else
1732                        rc = wil_request_firmware(wil, board_file, true);
1733                if (rc)
1734                        goto out;
1735
1736                wil_pre_fw_config(wil);
1737                wil_release_cpu(wil);
1738        }
1739
1740        /* init after reset */
1741        reinit_completion(&wil->wmi_ready);
1742        reinit_completion(&wil->wmi_call);
1743        reinit_completion(&wil->halp.comp);
1744
1745        clear_bit(wil_status_resetting, wil->status);
1746
1747        if (load_fw) {
1748                wil_unmask_irq(wil);
1749
1750                /* we just started MAC, wait for FW ready */
1751                rc = wil_wait_for_fw_ready(wil);
1752                if (rc)
1753                        return rc;
1754
1755                /* check FW is responsive */
1756                rc = wmi_echo(wil);
1757                if (rc) {
1758                        wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1759                        return rc;
1760                }
1761
1762                wil->txrx_ops.configure_interrupt_moderation(wil);
1763
1764                /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1765                 * while there is back-pressure from Host during RX
1766                 */
1767                if (wil->hw_version >= HW_VER_TALYN_MB)
1768                        wil_s(wil, RGF_DMA_MISC_CTL,
1769                              BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1770
1771                rc = wil_restore_vifs(wil);
1772                if (rc) {
1773                        wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1774                        return rc;
1775                }
1776
1777                wil_collect_fw_info(wil);
1778
1779                if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1780                        wil_ps_update(wil, wil->ps_profile);
1781
1782                if (wil->platform_ops.notify) {
1783                        rc = wil->platform_ops.notify(wil->platform_handle,
1784                                                      WIL_PLATFORM_EVT_FW_RDY);
1785                        if (rc) {
1786                                wil_err(wil, "FW_RDY notify failed, rc %d\n",
1787                                        rc);
1788                                rc = 0;
1789                        }
1790                }
1791        }
1792
1793        return rc;
1794
1795out:
1796        clear_bit(wil_status_resetting, wil->status);
1797        return rc;
1798}
1799
1800void wil_fw_error_recovery(struct wil6210_priv *wil)
1801{
1802        wil_dbg_misc(wil, "starting fw error recovery\n");
1803
1804        if (test_bit(wil_status_resetting, wil->status)) {
1805                wil_info(wil, "Reset already in progress\n");
1806                return;
1807        }
1808
1809        wil->recovery_state = fw_recovery_pending;
1810        schedule_work(&wil->fw_error_worker);
1811}
1812
1813int __wil_up(struct wil6210_priv *wil)
1814{
1815        struct net_device *ndev = wil->main_ndev;
1816        struct wireless_dev *wdev = ndev->ieee80211_ptr;
1817        int rc;
1818
1819        WARN_ON(!mutex_is_locked(&wil->mutex));
1820
1821        down_write(&wil->mem_lock);
1822        rc = wil_reset(wil, true);
1823        up_write(&wil->mem_lock);
1824        if (rc)
1825                return rc;
1826
1827        /* Rx RING. After MAC and beacon */
1828        if (rx_ring_order == 0)
1829                rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1830                        WIL_RX_RING_SIZE_ORDER_DEFAULT :
1831                        WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1832
1833        rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1834        if (rc)
1835                return rc;
1836
1837        rc = wil->txrx_ops.tx_init(wil);
1838        if (rc)
1839                return rc;
1840
1841        switch (wdev->iftype) {
1842        case NL80211_IFTYPE_STATION:
1843                wil_dbg_misc(wil, "type: STATION\n");
1844                ndev->type = ARPHRD_ETHER;
1845                break;
1846        case NL80211_IFTYPE_AP:
1847                wil_dbg_misc(wil, "type: AP\n");
1848                ndev->type = ARPHRD_ETHER;
1849                break;
1850        case NL80211_IFTYPE_P2P_CLIENT:
1851                wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1852                ndev->type = ARPHRD_ETHER;
1853                break;
1854        case NL80211_IFTYPE_P2P_GO:
1855                wil_dbg_misc(wil, "type: P2P_GO\n");
1856                ndev->type = ARPHRD_ETHER;
1857                break;
1858        case NL80211_IFTYPE_MONITOR:
1859                wil_dbg_misc(wil, "type: Monitor\n");
1860                ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1861                /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1862                break;
1863        default:
1864                return -EOPNOTSUPP;
1865        }
1866
1867        /* MAC address - pre-requisite for other commands */
1868        wmi_set_mac_address(wil, ndev->dev_addr);
1869
1870        wil_dbg_misc(wil, "NAPI enable\n");
1871        napi_enable(&wil->napi_rx);
1872        napi_enable(&wil->napi_tx);
1873        set_bit(wil_status_napi_en, wil->status);
1874
1875        wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1876
1877        return 0;
1878}
1879
1880int wil_up(struct wil6210_priv *wil)
1881{
1882        int rc;
1883
1884        wil_dbg_misc(wil, "up\n");
1885
1886        mutex_lock(&wil->mutex);
1887        rc = __wil_up(wil);
1888        mutex_unlock(&wil->mutex);
1889
1890        return rc;
1891}
1892
1893int __wil_down(struct wil6210_priv *wil)
1894{
1895        int rc;
1896        WARN_ON(!mutex_is_locked(&wil->mutex));
1897
1898        set_bit(wil_status_resetting, wil->status);
1899
1900        wil6210_bus_request(wil, 0);
1901
1902        wil_disable_irq(wil);
1903        if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1904                napi_disable(&wil->napi_rx);
1905                napi_disable(&wil->napi_tx);
1906                wil_dbg_misc(wil, "NAPI disable\n");
1907        }
1908        wil_enable_irq(wil);
1909
1910        mutex_lock(&wil->vif_mutex);
1911        wil_p2p_stop_radio_operations(wil);
1912        wil_abort_scan_all_vifs(wil, false);
1913        mutex_unlock(&wil->vif_mutex);
1914
1915        down_write(&wil->mem_lock);
1916        rc = wil_reset(wil, false);
1917        up_write(&wil->mem_lock);
1918
1919        return rc;
1920}
1921
1922int wil_down(struct wil6210_priv *wil)
1923{
1924        int rc;
1925
1926        wil_dbg_misc(wil, "down\n");
1927
1928        wil_set_recovery_state(wil, fw_recovery_idle);
1929        mutex_lock(&wil->mutex);
1930        rc = __wil_down(wil);
1931        mutex_unlock(&wil->mutex);
1932
1933        return rc;
1934}
1935
1936int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1937{
1938        int i;
1939        int rc = -ENOENT;
1940
1941        for (i = 0; i < wil->max_assoc_sta; i++) {
1942                if (wil->sta[i].mid == mid &&
1943                    wil->sta[i].status != wil_sta_unused &&
1944                    ether_addr_equal(wil->sta[i].addr, mac)) {
1945                        rc = i;
1946                        break;
1947                }
1948        }
1949
1950        return rc;
1951}
1952
1953void wil_halp_vote(struct wil6210_priv *wil)
1954{
1955        unsigned long rc;
1956        unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1957
1958        if (wil->hw_version >= HW_VER_TALYN_MB)
1959                return;
1960
1961        mutex_lock(&wil->halp.lock);
1962
1963        wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1964                    wil->halp.ref_cnt);
1965
1966        if (++wil->halp.ref_cnt == 1) {
1967                reinit_completion(&wil->halp.comp);
1968                /* mark to IRQ context to handle HALP ICR */
1969                wil->halp.handle_icr = true;
1970                wil6210_set_halp(wil);
1971                rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1972                if (!rc) {
1973                        wil_err(wil, "HALP vote timed out\n");
1974                        /* Mask HALP as done in case the interrupt is raised */
1975                        wil->halp.handle_icr = false;
1976                        wil6210_mask_halp(wil);
1977                } else {
1978                        wil_dbg_irq(wil,
1979                                    "halp_vote: HALP vote completed after %d ms\n",
1980                                    jiffies_to_msecs(to_jiffies - rc));
1981                }
1982        }
1983
1984        wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1985                    wil->halp.ref_cnt);
1986
1987        mutex_unlock(&wil->halp.lock);
1988}
1989
1990void wil_halp_unvote(struct wil6210_priv *wil)
1991{
1992        if (wil->hw_version >= HW_VER_TALYN_MB)
1993                return;
1994
1995        WARN_ON(wil->halp.ref_cnt == 0);
1996
1997        mutex_lock(&wil->halp.lock);
1998
1999        wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
2000                    wil->halp.ref_cnt);
2001
2002        if (--wil->halp.ref_cnt == 0) {
2003                wil6210_clear_halp(wil);
2004                wil_dbg_irq(wil, "HALP unvote\n");
2005        }
2006
2007        wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2008                    wil->halp.ref_cnt);
2009
2010        mutex_unlock(&wil->halp.lock);
2011}
2012
2013void wil_init_txrx_ops(struct wil6210_priv *wil)
2014{
2015        if (wil->use_enhanced_dma_hw)
2016                wil_init_txrx_ops_edma(wil);
2017        else
2018                wil_init_txrx_ops_legacy_dma(wil);
2019}
2020