linux/drivers/net/wireless/ath/wil6210/txrx.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
   3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/etherdevice.h>
  19#include <net/ieee80211_radiotap.h>
  20#include <linux/if_arp.h>
  21#include <linux/moduleparam.h>
  22#include <linux/ip.h>
  23#include <linux/ipv6.h>
  24#include <net/ipv6.h>
  25#include <linux/prefetch.h>
  26
  27#include "wil6210.h"
  28#include "wmi.h"
  29#include "txrx.h"
  30#include "trace.h"
  31#include "txrx_edma.h"
  32
  33bool rx_align_2;
  34module_param(rx_align_2, bool, 0444);
  35MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
  36
  37bool rx_large_buf;
  38module_param(rx_large_buf, bool, 0444);
  39MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
  40
  41/* Drop Tx packets in case Tx ring is full */
  42bool drop_if_ring_full;
  43
  44static inline uint wil_rx_snaplen(void)
  45{
  46        return rx_align_2 ? 6 : 0;
  47}
  48
  49/* wil_ring_wmark_low - low watermark for available descriptor space */
  50static inline int wil_ring_wmark_low(struct wil_ring *ring)
  51{
  52        return ring->size / 8;
  53}
  54
  55/* wil_ring_wmark_high - high watermark for available descriptor space */
  56static inline int wil_ring_wmark_high(struct wil_ring *ring)
  57{
  58        return ring->size / 4;
  59}
  60
  61/* returns true if num avail descriptors is lower than wmark_low */
  62static inline int wil_ring_avail_low(struct wil_ring *ring)
  63{
  64        return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
  65}
  66
  67/* returns true if num avail descriptors is higher than wmark_high */
  68static inline int wil_ring_avail_high(struct wil_ring *ring)
  69{
  70        return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
  71}
  72
  73/* returns true when all tx vrings are empty */
  74bool wil_is_tx_idle(struct wil6210_priv *wil)
  75{
  76        int i;
  77        unsigned long data_comp_to;
  78        int min_ring_id = wil_get_min_tx_ring_id(wil);
  79
  80        for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
  81                struct wil_ring *vring = &wil->ring_tx[i];
  82                int vring_index = vring - wil->ring_tx;
  83                struct wil_ring_tx_data *txdata =
  84                        &wil->ring_tx_data[vring_index];
  85
  86                spin_lock(&txdata->lock);
  87
  88                if (!vring->va || !txdata->enabled) {
  89                        spin_unlock(&txdata->lock);
  90                        continue;
  91                }
  92
  93                data_comp_to = jiffies + msecs_to_jiffies(
  94                                        WIL_DATA_COMPLETION_TO_MS);
  95                if (test_bit(wil_status_napi_en, wil->status)) {
  96                        while (!wil_ring_is_empty(vring)) {
  97                                if (time_after(jiffies, data_comp_to)) {
  98                                        wil_dbg_pm(wil,
  99                                                   "TO waiting for idle tx\n");
 100                                        spin_unlock(&txdata->lock);
 101                                        return false;
 102                                }
 103                                wil_dbg_ratelimited(wil,
 104                                                    "tx vring is not empty -> NAPI\n");
 105                                spin_unlock(&txdata->lock);
 106                                napi_synchronize(&wil->napi_tx);
 107                                msleep(20);
 108                                spin_lock(&txdata->lock);
 109                                if (!vring->va || !txdata->enabled)
 110                                        break;
 111                        }
 112                }
 113
 114                spin_unlock(&txdata->lock);
 115        }
 116
 117        return true;
 118}
 119
 120static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
 121{
 122        struct device *dev = wil_to_dev(wil);
 123        size_t sz = vring->size * sizeof(vring->va[0]);
 124        uint i;
 125
 126        wil_dbg_misc(wil, "vring_alloc:\n");
 127
 128        BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
 129
 130        vring->swhead = 0;
 131        vring->swtail = 0;
 132        vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
 133        if (!vring->ctx) {
 134                vring->va = NULL;
 135                return -ENOMEM;
 136        }
 137
 138        /* vring->va should be aligned on its size rounded up to power of 2
 139         * This is granted by the dma_alloc_coherent.
 140         *
 141         * HW has limitation that all vrings addresses must share the same
 142         * upper 16 msb bits part of 48 bits address. To workaround that,
 143         * if we are using more than 32 bit addresses switch to 32 bit
 144         * allocation before allocating vring memory.
 145         *
 146         * There's no check for the return value of dma_set_mask_and_coherent,
 147         * since we assume if we were able to set the mask during
 148         * initialization in this system it will not fail if we set it again
 149         */
 150        if (wil->dma_addr_size > 32)
 151                dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
 152
 153        vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
 154        if (!vring->va) {
 155                kfree(vring->ctx);
 156                vring->ctx = NULL;
 157                return -ENOMEM;
 158        }
 159
 160        if (wil->dma_addr_size > 32)
 161                dma_set_mask_and_coherent(dev,
 162                                          DMA_BIT_MASK(wil->dma_addr_size));
 163
 164        /* initially, all descriptors are SW owned
 165         * For Tx and Rx, ownership bit is at the same location, thus
 166         * we can use any
 167         */
 168        for (i = 0; i < vring->size; i++) {
 169                volatile struct vring_tx_desc *_d =
 170                        &vring->va[i].tx.legacy;
 171
 172                _d->dma.status = TX_DMA_STATUS_DU;
 173        }
 174
 175        wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
 176                     vring->va, &vring->pa, vring->ctx);
 177
 178        return 0;
 179}
 180
 181static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
 182                             struct wil_ctx *ctx)
 183{
 184        struct vring_tx_desc *d = &desc->legacy;
 185        dma_addr_t pa = wil_desc_addr(&d->dma.addr);
 186        u16 dmalen = le16_to_cpu(d->dma.length);
 187
 188        switch (ctx->mapped_as) {
 189        case wil_mapped_as_single:
 190                dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
 191                break;
 192        case wil_mapped_as_page:
 193                dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
 194                break;
 195        default:
 196                break;
 197        }
 198}
 199
 200static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
 201{
 202        struct device *dev = wil_to_dev(wil);
 203        size_t sz = vring->size * sizeof(vring->va[0]);
 204
 205        lockdep_assert_held(&wil->mutex);
 206        if (!vring->is_rx) {
 207                int vring_index = vring - wil->ring_tx;
 208
 209                wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
 210                             vring_index, vring->size, vring->va,
 211                             &vring->pa, vring->ctx);
 212        } else {
 213                wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
 214                             vring->size, vring->va,
 215                             &vring->pa, vring->ctx);
 216        }
 217
 218        while (!wil_ring_is_empty(vring)) {
 219                dma_addr_t pa;
 220                u16 dmalen;
 221                struct wil_ctx *ctx;
 222
 223                if (!vring->is_rx) {
 224                        struct vring_tx_desc dd, *d = &dd;
 225                        volatile struct vring_tx_desc *_d =
 226                                        &vring->va[vring->swtail].tx.legacy;
 227
 228                        ctx = &vring->ctx[vring->swtail];
 229                        if (!ctx) {
 230                                wil_dbg_txrx(wil,
 231                                             "ctx(%d) was already completed\n",
 232                                             vring->swtail);
 233                                vring->swtail = wil_ring_next_tail(vring);
 234                                continue;
 235                        }
 236                        *d = *_d;
 237                        wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
 238                        if (ctx->skb)
 239                                dev_kfree_skb_any(ctx->skb);
 240                        vring->swtail = wil_ring_next_tail(vring);
 241                } else { /* rx */
 242                        struct vring_rx_desc dd, *d = &dd;
 243                        volatile struct vring_rx_desc *_d =
 244                                &vring->va[vring->swhead].rx.legacy;
 245
 246                        ctx = &vring->ctx[vring->swhead];
 247                        *d = *_d;
 248                        pa = wil_desc_addr(&d->dma.addr);
 249                        dmalen = le16_to_cpu(d->dma.length);
 250                        dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
 251                        kfree_skb(ctx->skb);
 252                        wil_ring_advance_head(vring, 1);
 253                }
 254        }
 255        dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
 256        kfree(vring->ctx);
 257        vring->pa = 0;
 258        vring->va = NULL;
 259        vring->ctx = NULL;
 260}
 261
 262/**
 263 * Allocate one skb for Rx VRING
 264 *
 265 * Safe to call from IRQ
 266 */
 267static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
 268                               u32 i, int headroom)
 269{
 270        struct device *dev = wil_to_dev(wil);
 271        unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
 272        struct vring_rx_desc dd, *d = &dd;
 273        volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
 274        dma_addr_t pa;
 275        struct sk_buff *skb = dev_alloc_skb(sz + headroom);
 276
 277        if (unlikely(!skb))
 278                return -ENOMEM;
 279
 280        skb_reserve(skb, headroom);
 281        skb_put(skb, sz);
 282
 283        /**
 284         * Make sure that the network stack calculates checksum for packets
 285         * which failed the HW checksum calculation
 286         */
 287        skb->ip_summed = CHECKSUM_NONE;
 288
 289        pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
 290        if (unlikely(dma_mapping_error(dev, pa))) {
 291                kfree_skb(skb);
 292                return -ENOMEM;
 293        }
 294
 295        d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
 296        wil_desc_addr_set(&d->dma.addr, pa);
 297        /* ip_length don't care */
 298        /* b11 don't care */
 299        /* error don't care */
 300        d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
 301        d->dma.length = cpu_to_le16(sz);
 302        *_d = *d;
 303        vring->ctx[i].skb = skb;
 304
 305        return 0;
 306}
 307
 308/**
 309 * Adds radiotap header
 310 *
 311 * Any error indicated as "Bad FCS"
 312 *
 313 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
 314 *  - Rx descriptor: 32 bytes
 315 *  - Phy info
 316 */
 317static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
 318                                       struct sk_buff *skb)
 319{
 320        struct wil6210_rtap {
 321                struct ieee80211_radiotap_header rthdr;
 322                /* fields should be in the order of bits in rthdr.it_present */
 323                /* flags */
 324                u8 flags;
 325                /* channel */
 326                __le16 chnl_freq __aligned(2);
 327                __le16 chnl_flags;
 328                /* MCS */
 329                u8 mcs_present;
 330                u8 mcs_flags;
 331                u8 mcs_index;
 332        } __packed;
 333        struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 334        struct wil6210_rtap *rtap;
 335        int rtap_len = sizeof(struct wil6210_rtap);
 336        struct ieee80211_channel *ch = wil->monitor_chandef.chan;
 337
 338        if (skb_headroom(skb) < rtap_len &&
 339            pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
 340                wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
 341                return;
 342        }
 343
 344        rtap = skb_push(skb, rtap_len);
 345        memset(rtap, 0, rtap_len);
 346
 347        rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
 348        rtap->rthdr.it_len = cpu_to_le16(rtap_len);
 349        rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
 350                        (1 << IEEE80211_RADIOTAP_CHANNEL) |
 351                        (1 << IEEE80211_RADIOTAP_MCS));
 352        if (d->dma.status & RX_DMA_STATUS_ERROR)
 353                rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
 354
 355        rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
 356        rtap->chnl_flags = cpu_to_le16(0);
 357
 358        rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
 359        rtap->mcs_flags = 0;
 360        rtap->mcs_index = wil_rxdesc_mcs(d);
 361}
 362
 363static bool wil_is_rx_idle(struct wil6210_priv *wil)
 364{
 365        struct vring_rx_desc *_d;
 366        struct wil_ring *ring = &wil->ring_rx;
 367
 368        _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
 369        if (_d->dma.status & RX_DMA_STATUS_DU)
 370                return false;
 371
 372        return true;
 373}
 374
 375static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
 376{
 377        struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 378        int mid = wil_rxdesc_mid(d);
 379        struct wil6210_vif *vif = wil->vifs[mid];
 380        /* cid from DMA descriptor is limited to 3 bits.
 381         * In case of cid>=8, the value would be cid modulo 8 and we need to
 382         * find real cid by locating the transmitter (ta) inside sta array
 383         */
 384        int cid = wil_rxdesc_cid(d);
 385        unsigned int snaplen = wil_rx_snaplen();
 386        struct ieee80211_hdr_3addr *hdr;
 387        int i;
 388        unsigned char *ta;
 389        u8 ftype;
 390
 391        /* in monitor mode there are no connections */
 392        if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
 393                return cid;
 394
 395        ftype = wil_rxdesc_ftype(d) << 2;
 396        if (likely(ftype == IEEE80211_FTYPE_DATA)) {
 397                if (unlikely(skb->len < ETH_HLEN + snaplen)) {
 398                        wil_err_ratelimited(wil,
 399                                            "Short data frame, len = %d\n",
 400                                            skb->len);
 401                        return -ENOENT;
 402                }
 403                ta = wil_skb_get_sa(skb);
 404        } else {
 405                if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
 406                        wil_err_ratelimited(wil, "Short frame, len = %d\n",
 407                                            skb->len);
 408                        return -ENOENT;
 409                }
 410                hdr = (void *)skb->data;
 411                ta = hdr->addr2;
 412        }
 413
 414        if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
 415                return cid;
 416
 417        /* assuming no concurrency between AP interfaces and STA interfaces.
 418         * multista is used only in P2P_GO or AP mode. In other modes return
 419         * cid from the rx descriptor
 420         */
 421        if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
 422            vif->wdev.iftype != NL80211_IFTYPE_AP)
 423                return cid;
 424
 425        /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
 426         * to find the real cid, compare transmitter address with the stored
 427         * stations mac address in the driver sta array
 428         */
 429        for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
 430                if (wil->sta[i].status != wil_sta_unused &&
 431                    ether_addr_equal(wil->sta[i].addr, ta)) {
 432                        cid = i;
 433                        break;
 434                }
 435        }
 436        if (i >= wil->max_assoc_sta) {
 437                wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
 438                                    ta, vif->wdev.iftype, ftype, skb->len);
 439                cid = -ENOENT;
 440        }
 441
 442        return cid;
 443}
 444
 445/**
 446 * reap 1 frame from @swhead
 447 *
 448 * Rx descriptor copied to skb->cb
 449 *
 450 * Safe to call from IRQ
 451 */
 452static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
 453                                         struct wil_ring *vring)
 454{
 455        struct device *dev = wil_to_dev(wil);
 456        struct wil6210_vif *vif;
 457        struct net_device *ndev;
 458        volatile struct vring_rx_desc *_d;
 459        struct vring_rx_desc *d;
 460        struct sk_buff *skb;
 461        dma_addr_t pa;
 462        unsigned int snaplen = wil_rx_snaplen();
 463        unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
 464        u16 dmalen;
 465        u8 ftype;
 466        int cid, mid;
 467        int i;
 468        struct wil_net_stats *stats;
 469
 470        BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
 471
 472again:
 473        if (unlikely(wil_ring_is_empty(vring)))
 474                return NULL;
 475
 476        i = (int)vring->swhead;
 477        _d = &vring->va[i].rx.legacy;
 478        if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
 479                /* it is not error, we just reached end of Rx done area */
 480                return NULL;
 481        }
 482
 483        skb = vring->ctx[i].skb;
 484        vring->ctx[i].skb = NULL;
 485        wil_ring_advance_head(vring, 1);
 486        if (!skb) {
 487                wil_err(wil, "No Rx skb at [%d]\n", i);
 488                goto again;
 489        }
 490        d = wil_skb_rxdesc(skb);
 491        *d = *_d;
 492        pa = wil_desc_addr(&d->dma.addr);
 493
 494        dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
 495        dmalen = le16_to_cpu(d->dma.length);
 496
 497        trace_wil6210_rx(i, d);
 498        wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
 499        wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
 500                          (const void *)d, sizeof(*d), false);
 501
 502        mid = wil_rxdesc_mid(d);
 503        vif = wil->vifs[mid];
 504
 505        if (unlikely(!vif)) {
 506                wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
 507                             mid);
 508                kfree_skb(skb);
 509                goto again;
 510        }
 511        ndev = vif_to_ndev(vif);
 512        if (unlikely(dmalen > sz)) {
 513                wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
 514                                    dmalen);
 515                kfree_skb(skb);
 516                goto again;
 517        }
 518        skb_trim(skb, dmalen);
 519
 520        prefetch(skb->data);
 521
 522        wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
 523                          skb->data, skb_headlen(skb), false);
 524
 525        cid = wil_rx_get_cid_by_skb(wil, skb);
 526        if (cid == -ENOENT) {
 527                kfree_skb(skb);
 528                goto again;
 529        }
 530        wil_skb_set_cid(skb, (u8)cid);
 531        stats = &wil->sta[cid].stats;
 532
 533        stats->last_mcs_rx = wil_rxdesc_mcs(d);
 534        if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
 535                stats->rx_per_mcs[stats->last_mcs_rx]++;
 536
 537        /* use radiotap header only if required */
 538        if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
 539                wil_rx_add_radiotap_header(wil, skb);
 540
 541        /* no extra checks if in sniffer mode */
 542        if (ndev->type != ARPHRD_ETHER)
 543                return skb;
 544        /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
 545         * Driver should recognize it by frame type, that is found
 546         * in Rx descriptor. If type is not data, it is 802.11 frame as is
 547         */
 548        ftype = wil_rxdesc_ftype(d) << 2;
 549        if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
 550                u8 fc1 = wil_rxdesc_fc1(d);
 551                int tid = wil_rxdesc_tid(d);
 552                u16 seq = wil_rxdesc_seq(d);
 553
 554                wil_dbg_txrx(wil,
 555                             "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
 556                             fc1, mid, cid, tid, seq);
 557                stats->rx_non_data_frame++;
 558                if (wil_is_back_req(fc1)) {
 559                        wil_dbg_txrx(wil,
 560                                     "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
 561                                     mid, cid, tid, seq);
 562                        wil_rx_bar(wil, vif, cid, tid, seq);
 563                } else {
 564                        /* print again all info. One can enable only this
 565                         * without overhead for printing every Rx frame
 566                         */
 567                        wil_dbg_txrx(wil,
 568                                     "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
 569                                     fc1, mid, cid, tid, seq);
 570                        wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
 571                                          (const void *)d, sizeof(*d), false);
 572                        wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
 573                                          skb->data, skb_headlen(skb), false);
 574                }
 575                kfree_skb(skb);
 576                goto again;
 577        }
 578
 579        /* L4 IDENT is on when HW calculated checksum, check status
 580         * and in case of error drop the packet
 581         * higher stack layers will handle retransmission (if required)
 582         */
 583        if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
 584                /* L4 protocol identified, csum calculated */
 585                if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
 586                        skb->ip_summed = CHECKSUM_UNNECESSARY;
 587                /* If HW reports bad checksum, let IP stack re-check it
 588                 * For example, HW don't understand Microsoft IP stack that
 589                 * mis-calculates TCP checksum - if it should be 0x0,
 590                 * it writes 0xffff in violation of RFC 1624
 591                 */
 592                else
 593                        stats->rx_csum_err++;
 594        }
 595
 596        if (snaplen) {
 597                /* Packet layout
 598                 * +-------+-------+---------+------------+------+
 599                 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
 600                 * +-------+-------+---------+------------+------+
 601                 * Need to remove SNAP, shifting SA and DA forward
 602                 */
 603                memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
 604                skb_pull(skb, snaplen);
 605        }
 606
 607        return skb;
 608}
 609
 610/**
 611 * allocate and fill up to @count buffers in rx ring
 612 * buffers posted at @swtail
 613 * Note: we have a single RX queue for servicing all VIFs, but we
 614 * allocate skbs with headroom according to main interface only. This
 615 * means it will not work with monitor interface together with other VIFs.
 616 * Currently we only support monitor interface on its own without other VIFs,
 617 * and we will need to fix this code once we add support.
 618 */
 619static int wil_rx_refill(struct wil6210_priv *wil, int count)
 620{
 621        struct net_device *ndev = wil->main_ndev;
 622        struct wil_ring *v = &wil->ring_rx;
 623        u32 next_tail;
 624        int rc = 0;
 625        int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
 626                        WIL6210_RTAP_SIZE : 0;
 627
 628        for (; next_tail = wil_ring_next_tail(v),
 629             (next_tail != v->swhead) && (count-- > 0);
 630             v->swtail = next_tail) {
 631                rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
 632                if (unlikely(rc)) {
 633                        wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
 634                                            rc, v->swtail);
 635                        break;
 636                }
 637        }
 638
 639        /* make sure all writes to descriptors (shared memory) are done before
 640         * committing them to HW
 641         */
 642        wmb();
 643
 644        wil_w(wil, v->hwtail, v->swtail);
 645
 646        return rc;
 647}
 648
 649/**
 650 * reverse_memcmp - Compare two areas of memory, in reverse order
 651 * @cs: One area of memory
 652 * @ct: Another area of memory
 653 * @count: The size of the area.
 654 *
 655 * Cut'n'paste from original memcmp (see lib/string.c)
 656 * with minimal modifications
 657 */
 658int reverse_memcmp(const void *cs, const void *ct, size_t count)
 659{
 660        const unsigned char *su1, *su2;
 661        int res = 0;
 662
 663        for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
 664             --su1, --su2, count--) {
 665                res = *su1 - *su2;
 666                if (res)
 667                        break;
 668        }
 669        return res;
 670}
 671
 672static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
 673{
 674        struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 675        int cid = wil_skb_get_cid(skb);
 676        int tid = wil_rxdesc_tid(d);
 677        int key_id = wil_rxdesc_key_id(d);
 678        int mc = wil_rxdesc_mcast(d);
 679        struct wil_sta_info *s = &wil->sta[cid];
 680        struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
 681                                      &s->tid_crypto_rx[tid];
 682        struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
 683        const u8 *pn = (u8 *)&d->mac.pn_15_0;
 684
 685        if (!cc->key_set) {
 686                wil_err_ratelimited(wil,
 687                                    "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
 688                                    cid, tid, mc, key_id);
 689                return -EINVAL;
 690        }
 691
 692        if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
 693                wil_err_ratelimited(wil,
 694                                    "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
 695                                    cid, tid, mc, key_id, pn, cc->pn);
 696                return -EINVAL;
 697        }
 698        memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
 699
 700        return 0;
 701}
 702
 703static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
 704                              struct wil_net_stats *stats)
 705{
 706        struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 707
 708        if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
 709            (d->dma.error & RX_DMA_ERROR_MIC)) {
 710                stats->rx_mic_error++;
 711                wil_dbg_txrx(wil, "MIC error, dropping packet\n");
 712                return -EFAULT;
 713        }
 714
 715        return 0;
 716}
 717
 718static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
 719                                    int *security)
 720{
 721        struct vring_rx_desc *d = wil_skb_rxdesc(skb);
 722
 723        *cid = wil_skb_get_cid(skb);
 724        *security = wil_rxdesc_security(d);
 725}
 726
 727/*
 728 * Pass Rx packet to the netif. Update statistics.
 729 * Called in softirq context (NAPI poll).
 730 */
 731void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
 732{
 733        gro_result_t rc = GRO_NORMAL;
 734        struct wil6210_vif *vif = ndev_to_vif(ndev);
 735        struct wil6210_priv *wil = ndev_to_wil(ndev);
 736        struct wireless_dev *wdev = vif_to_wdev(vif);
 737        unsigned int len = skb->len;
 738        int cid;
 739        int security;
 740        u8 *sa, *da = wil_skb_get_da(skb);
 741        /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
 742         * is not suitable, need to look at data
 743         */
 744        int mcast = is_multicast_ether_addr(da);
 745        struct wil_net_stats *stats;
 746        struct sk_buff *xmit_skb = NULL;
 747        static const char * const gro_res_str[] = {
 748                [GRO_MERGED]            = "GRO_MERGED",
 749                [GRO_MERGED_FREE]       = "GRO_MERGED_FREE",
 750                [GRO_HELD]              = "GRO_HELD",
 751                [GRO_NORMAL]            = "GRO_NORMAL",
 752                [GRO_DROP]              = "GRO_DROP",
 753                [GRO_CONSUMED]          = "GRO_CONSUMED",
 754        };
 755
 756        wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
 757
 758        stats = &wil->sta[cid].stats;
 759
 760        skb_orphan(skb);
 761
 762        if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
 763                rc = GRO_DROP;
 764                dev_kfree_skb(skb);
 765                stats->rx_replay++;
 766                goto stats;
 767        }
 768
 769        /* check errors reported by HW and update statistics */
 770        if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
 771                dev_kfree_skb(skb);
 772                return;
 773        }
 774
 775        if (wdev->iftype == NL80211_IFTYPE_STATION) {
 776                sa = wil_skb_get_sa(skb);
 777                if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
 778                        /* mcast packet looped back to us */
 779                        rc = GRO_DROP;
 780                        dev_kfree_skb(skb);
 781                        goto stats;
 782                }
 783        } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
 784                if (mcast) {
 785                        /* send multicast frames both to higher layers in
 786                         * local net stack and back to the wireless medium
 787                         */
 788                        xmit_skb = skb_copy(skb, GFP_ATOMIC);
 789                } else {
 790                        int xmit_cid = wil_find_cid(wil, vif->mid, da);
 791
 792                        if (xmit_cid >= 0) {
 793                                /* The destination station is associated to
 794                                 * this AP (in this VLAN), so send the frame
 795                                 * directly to it and do not pass it to local
 796                                 * net stack.
 797                                 */
 798                                xmit_skb = skb;
 799                                skb = NULL;
 800                        }
 801                }
 802        }
 803        if (xmit_skb) {
 804                /* Send to wireless media and increase priority by 256 to
 805                 * keep the received priority instead of reclassifying
 806                 * the frame (see cfg80211_classify8021d).
 807                 */
 808                xmit_skb->dev = ndev;
 809                xmit_skb->priority += 256;
 810                xmit_skb->protocol = htons(ETH_P_802_3);
 811                skb_reset_network_header(xmit_skb);
 812                skb_reset_mac_header(xmit_skb);
 813                wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
 814                dev_queue_xmit(xmit_skb);
 815        }
 816
 817        if (skb) { /* deliver to local stack */
 818                skb->protocol = eth_type_trans(skb, ndev);
 819                skb->dev = ndev;
 820                rc = napi_gro_receive(&wil->napi_rx, skb);
 821                wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
 822                             len, gro_res_str[rc]);
 823        }
 824stats:
 825        /* statistics. rc set to GRO_NORMAL for AP bridging */
 826        if (unlikely(rc == GRO_DROP)) {
 827                ndev->stats.rx_dropped++;
 828                stats->rx_dropped++;
 829                wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
 830        } else {
 831                ndev->stats.rx_packets++;
 832                stats->rx_packets++;
 833                ndev->stats.rx_bytes += len;
 834                stats->rx_bytes += len;
 835                if (mcast)
 836                        ndev->stats.multicast++;
 837        }
 838}
 839
 840/**
 841 * Proceed all completed skb's from Rx VRING
 842 *
 843 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
 844 */
 845void wil_rx_handle(struct wil6210_priv *wil, int *quota)
 846{
 847        struct net_device *ndev = wil->main_ndev;
 848        struct wireless_dev *wdev = ndev->ieee80211_ptr;
 849        struct wil_ring *v = &wil->ring_rx;
 850        struct sk_buff *skb;
 851
 852        if (unlikely(!v->va)) {
 853                wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
 854                return;
 855        }
 856        wil_dbg_txrx(wil, "rx_handle\n");
 857        while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
 858                (*quota)--;
 859
 860                /* monitor is currently supported on main interface only */
 861                if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
 862                        skb->dev = ndev;
 863                        skb_reset_mac_header(skb);
 864                        skb->ip_summed = CHECKSUM_UNNECESSARY;
 865                        skb->pkt_type = PACKET_OTHERHOST;
 866                        skb->protocol = htons(ETH_P_802_2);
 867                        wil_netif_rx_any(skb, ndev);
 868                } else {
 869                        wil_rx_reorder(wil, skb);
 870                }
 871        }
 872        wil_rx_refill(wil, v->size);
 873}
 874
 875static void wil_rx_buf_len_init(struct wil6210_priv *wil)
 876{
 877        wil->rx_buf_len = rx_large_buf ?
 878                WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
 879        if (mtu_max > wil->rx_buf_len) {
 880                /* do not allow RX buffers to be smaller than mtu_max, for
 881                 * backward compatibility (mtu_max parameter was also used
 882                 * to support receiving large packets)
 883                 */
 884                wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
 885                wil->rx_buf_len = mtu_max;
 886        }
 887}
 888
 889static int wil_rx_init(struct wil6210_priv *wil, uint order)
 890{
 891        struct wil_ring *vring = &wil->ring_rx;
 892        int rc;
 893
 894        wil_dbg_misc(wil, "rx_init\n");
 895
 896        if (vring->va) {
 897                wil_err(wil, "Rx ring already allocated\n");
 898                return -EINVAL;
 899        }
 900
 901        wil_rx_buf_len_init(wil);
 902
 903        vring->size = 1 << order;
 904        vring->is_rx = true;
 905        rc = wil_vring_alloc(wil, vring);
 906        if (rc)
 907                return rc;
 908
 909        rc = wmi_rx_chain_add(wil, vring);
 910        if (rc)
 911                goto err_free;
 912
 913        rc = wil_rx_refill(wil, vring->size);
 914        if (rc)
 915                goto err_free;
 916
 917        return 0;
 918 err_free:
 919        wil_vring_free(wil, vring);
 920
 921        return rc;
 922}
 923
 924static void wil_rx_fini(struct wil6210_priv *wil)
 925{
 926        struct wil_ring *vring = &wil->ring_rx;
 927
 928        wil_dbg_misc(wil, "rx_fini\n");
 929
 930        if (vring->va)
 931                wil_vring_free(wil, vring);
 932}
 933
 934static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
 935                           u32 len, int vring_index)
 936{
 937        struct vring_tx_desc *d = &desc->legacy;
 938
 939        wil_desc_addr_set(&d->dma.addr, pa);
 940        d->dma.ip_length = 0;
 941        /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
 942        d->dma.b11 = 0/*14 | BIT(7)*/;
 943        d->dma.error = 0;
 944        d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
 945        d->dma.length = cpu_to_le16((u16)len);
 946        d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
 947        d->mac.d[0] = 0;
 948        d->mac.d[1] = 0;
 949        d->mac.d[2] = 0;
 950        d->mac.ucode_cmd = 0;
 951        /* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
 952        d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
 953                      (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
 954
 955        return 0;
 956}
 957
 958void wil_tx_data_init(struct wil_ring_tx_data *txdata)
 959{
 960        spin_lock_bh(&txdata->lock);
 961        txdata->dot1x_open = 0;
 962        txdata->enabled = 0;
 963        txdata->idle = 0;
 964        txdata->last_idle = 0;
 965        txdata->begin = 0;
 966        txdata->agg_wsize = 0;
 967        txdata->agg_timeout = 0;
 968        txdata->agg_amsdu = 0;
 969        txdata->addba_in_progress = false;
 970        txdata->mid = U8_MAX;
 971        spin_unlock_bh(&txdata->lock);
 972}
 973
 974static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
 975                             int cid, int tid)
 976{
 977        struct wil6210_priv *wil = vif_to_wil(vif);
 978        int rc;
 979        struct wmi_vring_cfg_cmd cmd = {
 980                .action = cpu_to_le32(WMI_VRING_CMD_ADD),
 981                .vring_cfg = {
 982                        .tx_sw_ring = {
 983                                .max_mpdu_size =
 984                                        cpu_to_le16(wil_mtu2macbuf(mtu_max)),
 985                                .ring_size = cpu_to_le16(size),
 986                        },
 987                        .ringid = id,
 988                        .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
 989                        .mac_ctrl = 0,
 990                        .to_resolution = 0,
 991                        .agg_max_wsize = 0,
 992                        .schd_params = {
 993                                .priority = cpu_to_le16(0),
 994                                .timeslot_us = cpu_to_le16(0xfff),
 995                        },
 996                },
 997        };
 998        struct {
 999                struct wmi_cmd_hdr wmi;
1000                struct wmi_vring_cfg_done_event cmd;
1001        } __packed reply = {
1002                .cmd = {.status = WMI_FW_STATUS_FAILURE},
1003        };
1004        struct wil_ring *vring = &wil->ring_tx[id];
1005        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1006
1007        if (cid >= WIL6210_RX_DESC_MAX_CID) {
1008                cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1009                cmd.vring_cfg.cid = cid;
1010                cmd.vring_cfg.tid = tid;
1011        } else {
1012                cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1013        }
1014
1015        wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1016                     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1017        lockdep_assert_held(&wil->mutex);
1018
1019        if (vring->va) {
1020                wil_err(wil, "Tx ring [%d] already allocated\n", id);
1021                rc = -EINVAL;
1022                goto out;
1023        }
1024
1025        wil_tx_data_init(txdata);
1026        vring->is_rx = false;
1027        vring->size = size;
1028        rc = wil_vring_alloc(wil, vring);
1029        if (rc)
1030                goto out;
1031
1032        wil->ring2cid_tid[id][0] = cid;
1033        wil->ring2cid_tid[id][1] = tid;
1034
1035        cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1036
1037        if (!vif->privacy)
1038                txdata->dot1x_open = true;
1039        rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1040                      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1041                      WIL_WMI_CALL_GENERAL_TO_MS);
1042        if (rc)
1043                goto out_free;
1044
1045        if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1046                wil_err(wil, "Tx config failed, status 0x%02x\n",
1047                        reply.cmd.status);
1048                rc = -EINVAL;
1049                goto out_free;
1050        }
1051
1052        spin_lock_bh(&txdata->lock);
1053        vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1054        txdata->mid = vif->mid;
1055        txdata->enabled = 1;
1056        spin_unlock_bh(&txdata->lock);
1057
1058        if (txdata->dot1x_open && (agg_wsize >= 0))
1059                wil_addba_tx_request(wil, id, agg_wsize);
1060
1061        return 0;
1062 out_free:
1063        spin_lock_bh(&txdata->lock);
1064        txdata->dot1x_open = false;
1065        txdata->enabled = 0;
1066        spin_unlock_bh(&txdata->lock);
1067        wil_vring_free(wil, vring);
1068        wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
1069        wil->ring2cid_tid[id][1] = 0;
1070
1071 out:
1072
1073        return rc;
1074}
1075
1076static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1077                               int tid)
1078{
1079        struct wil6210_priv *wil = vif_to_wil(vif);
1080        int rc;
1081        struct wmi_vring_cfg_cmd cmd = {
1082                .action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1083                .vring_cfg = {
1084                        .tx_sw_ring = {
1085                                .max_mpdu_size =
1086                                        cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1087                                .ring_size = 0,
1088                        },
1089                        .ringid = ring_id,
1090                        .cidxtid = mk_cidxtid(cid, tid),
1091                        .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1092                        .mac_ctrl = 0,
1093                        .to_resolution = 0,
1094                        .agg_max_wsize = 0,
1095                        .schd_params = {
1096                                .priority = cpu_to_le16(0),
1097                                .timeslot_us = cpu_to_le16(0xfff),
1098                        },
1099                },
1100        };
1101        struct {
1102                struct wmi_cmd_hdr wmi;
1103                struct wmi_vring_cfg_done_event cmd;
1104        } __packed reply = {
1105                .cmd = {.status = WMI_FW_STATUS_FAILURE},
1106        };
1107        struct wil_ring *vring = &wil->ring_tx[ring_id];
1108        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1109
1110        wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1111                     cid, tid);
1112        lockdep_assert_held(&wil->mutex);
1113
1114        if (!vring->va) {
1115                wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1116                return -EINVAL;
1117        }
1118
1119        if (wil->ring2cid_tid[ring_id][0] != cid ||
1120            wil->ring2cid_tid[ring_id][1] != tid) {
1121                wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1122                        wil->ring2cid_tid[ring_id][0],
1123                        wil->ring2cid_tid[ring_id][1]);
1124        }
1125
1126        cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1127
1128        rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1129                      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1130                      WIL_WMI_CALL_GENERAL_TO_MS);
1131        if (rc)
1132                goto fail;
1133
1134        if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1135                wil_err(wil, "Tx modify failed, status 0x%02x\n",
1136                        reply.cmd.status);
1137                rc = -EINVAL;
1138                goto fail;
1139        }
1140
1141        /* set BA aggregation window size to 0 to force a new BA with the
1142         * new AP
1143         */
1144        txdata->agg_wsize = 0;
1145        if (txdata->dot1x_open && agg_wsize >= 0)
1146                wil_addba_tx_request(wil, ring_id, agg_wsize);
1147
1148        return 0;
1149fail:
1150        spin_lock_bh(&txdata->lock);
1151        txdata->dot1x_open = false;
1152        txdata->enabled = 0;
1153        spin_unlock_bh(&txdata->lock);
1154        wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
1155        wil->ring2cid_tid[ring_id][1] = 0;
1156        return rc;
1157}
1158
1159int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1160{
1161        struct wil6210_priv *wil = vif_to_wil(vif);
1162        int rc;
1163        struct wmi_bcast_vring_cfg_cmd cmd = {
1164                .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1165                .vring_cfg = {
1166                        .tx_sw_ring = {
1167                                .max_mpdu_size =
1168                                        cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1169                                .ring_size = cpu_to_le16(size),
1170                        },
1171                        .ringid = id,
1172                        .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1173                },
1174        };
1175        struct {
1176                struct wmi_cmd_hdr wmi;
1177                struct wmi_vring_cfg_done_event cmd;
1178        } __packed reply = {
1179                .cmd = {.status = WMI_FW_STATUS_FAILURE},
1180        };
1181        struct wil_ring *vring = &wil->ring_tx[id];
1182        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1183
1184        wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1185                     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1186        lockdep_assert_held(&wil->mutex);
1187
1188        if (vring->va) {
1189                wil_err(wil, "Tx ring [%d] already allocated\n", id);
1190                rc = -EINVAL;
1191                goto out;
1192        }
1193
1194        wil_tx_data_init(txdata);
1195        vring->is_rx = false;
1196        vring->size = size;
1197        rc = wil_vring_alloc(wil, vring);
1198        if (rc)
1199                goto out;
1200
1201        wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
1202        wil->ring2cid_tid[id][1] = 0; /* TID */
1203
1204        cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1205
1206        if (!vif->privacy)
1207                txdata->dot1x_open = true;
1208        rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1209                      &cmd, sizeof(cmd),
1210                      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1211                      WIL_WMI_CALL_GENERAL_TO_MS);
1212        if (rc)
1213                goto out_free;
1214
1215        if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1216                wil_err(wil, "Tx config failed, status 0x%02x\n",
1217                        reply.cmd.status);
1218                rc = -EINVAL;
1219                goto out_free;
1220        }
1221
1222        spin_lock_bh(&txdata->lock);
1223        vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1224        txdata->mid = vif->mid;
1225        txdata->enabled = 1;
1226        spin_unlock_bh(&txdata->lock);
1227
1228        return 0;
1229 out_free:
1230        spin_lock_bh(&txdata->lock);
1231        txdata->enabled = 0;
1232        txdata->dot1x_open = false;
1233        spin_unlock_bh(&txdata->lock);
1234        wil_vring_free(wil, vring);
1235 out:
1236
1237        return rc;
1238}
1239
1240static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1241                                          struct wil6210_vif *vif,
1242                                          struct sk_buff *skb)
1243{
1244        int i, cid;
1245        const u8 *da = wil_skb_get_da(skb);
1246        int min_ring_id = wil_get_min_tx_ring_id(wil);
1247
1248        cid = wil_find_cid(wil, vif->mid, da);
1249
1250        if (cid < 0 || cid >= wil->max_assoc_sta)
1251                return NULL;
1252
1253        /* TODO: fix for multiple TID */
1254        for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1255                if (!wil->ring_tx_data[i].dot1x_open &&
1256                    skb->protocol != cpu_to_be16(ETH_P_PAE))
1257                        continue;
1258                if (wil->ring2cid_tid[i][0] == cid) {
1259                        struct wil_ring *v = &wil->ring_tx[i];
1260                        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1261
1262                        wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1263                                     da, i);
1264                        if (v->va && txdata->enabled) {
1265                                return v;
1266                        } else {
1267                                wil_dbg_txrx(wil,
1268                                             "find_tx_ucast: vring[%d] not valid\n",
1269                                             i);
1270                                return NULL;
1271                        }
1272                }
1273        }
1274
1275        return NULL;
1276}
1277
1278static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1279                       struct wil_ring *ring, struct sk_buff *skb);
1280
1281static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1282                                             struct wil6210_vif *vif,
1283                                             struct sk_buff *skb)
1284{
1285        struct wil_ring *ring;
1286        int i;
1287        u8 cid;
1288        struct wil_ring_tx_data  *txdata;
1289        int min_ring_id = wil_get_min_tx_ring_id(wil);
1290
1291        /* In the STA mode, it is expected to have only 1 VRING
1292         * for the AP we connected to.
1293         * find 1-st vring eligible for this skb and use it.
1294         */
1295        for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1296                ring = &wil->ring_tx[i];
1297                txdata = &wil->ring_tx_data[i];
1298                if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1299                        continue;
1300
1301                cid = wil->ring2cid_tid[i][0];
1302                if (cid >= wil->max_assoc_sta) /* skip BCAST */
1303                        continue;
1304
1305                if (!wil->ring_tx_data[i].dot1x_open &&
1306                    skb->protocol != cpu_to_be16(ETH_P_PAE))
1307                        continue;
1308
1309                wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1310
1311                return ring;
1312        }
1313
1314        wil_dbg_txrx(wil, "Tx while no rings active?\n");
1315
1316        return NULL;
1317}
1318
1319/* Use one of 2 strategies:
1320 *
1321 * 1. New (real broadcast):
1322 *    use dedicated broadcast vring
1323 * 2. Old (pseudo-DMS):
1324 *    Find 1-st vring and return it;
1325 *    duplicate skb and send it to other active vrings;
1326 *    in all cases override dest address to unicast peer's address
1327 * Use old strategy when new is not supported yet:
1328 *  - for PBSS
1329 */
1330static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1331                                            struct wil6210_vif *vif,
1332                                            struct sk_buff *skb)
1333{
1334        struct wil_ring *v;
1335        struct wil_ring_tx_data *txdata;
1336        int i = vif->bcast_ring;
1337
1338        if (i < 0)
1339                return NULL;
1340        v = &wil->ring_tx[i];
1341        txdata = &wil->ring_tx_data[i];
1342        if (!v->va || !txdata->enabled)
1343                return NULL;
1344        if (!wil->ring_tx_data[i].dot1x_open &&
1345            skb->protocol != cpu_to_be16(ETH_P_PAE))
1346                return NULL;
1347
1348        return v;
1349}
1350
1351static void wil_set_da_for_vring(struct wil6210_priv *wil,
1352                                 struct sk_buff *skb, int vring_index)
1353{
1354        u8 *da = wil_skb_get_da(skb);
1355        int cid = wil->ring2cid_tid[vring_index][0];
1356
1357        ether_addr_copy(da, wil->sta[cid].addr);
1358}
1359
1360static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1361                                            struct wil6210_vif *vif,
1362                                            struct sk_buff *skb)
1363{
1364        struct wil_ring *v, *v2;
1365        struct sk_buff *skb2;
1366        int i;
1367        u8 cid;
1368        const u8 *src = wil_skb_get_sa(skb);
1369        struct wil_ring_tx_data *txdata, *txdata2;
1370        int min_ring_id = wil_get_min_tx_ring_id(wil);
1371
1372        /* find 1-st vring eligible for data */
1373        for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1374                v = &wil->ring_tx[i];
1375                txdata = &wil->ring_tx_data[i];
1376                if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1377                        continue;
1378
1379                cid = wil->ring2cid_tid[i][0];
1380                if (cid >= wil->max_assoc_sta) /* skip BCAST */
1381                        continue;
1382                if (!wil->ring_tx_data[i].dot1x_open &&
1383                    skb->protocol != cpu_to_be16(ETH_P_PAE))
1384                        continue;
1385
1386                /* don't Tx back to source when re-routing Rx->Tx at the AP */
1387                if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1388                        continue;
1389
1390                goto found;
1391        }
1392
1393        wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1394
1395        return NULL;
1396
1397found:
1398        wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1399        wil_set_da_for_vring(wil, skb, i);
1400
1401        /* find other active vrings and duplicate skb for each */
1402        for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1403                v2 = &wil->ring_tx[i];
1404                txdata2 = &wil->ring_tx_data[i];
1405                if (!v2->va || txdata2->mid != vif->mid)
1406                        continue;
1407                cid = wil->ring2cid_tid[i][0];
1408                if (cid >= wil->max_assoc_sta) /* skip BCAST */
1409                        continue;
1410                if (!wil->ring_tx_data[i].dot1x_open &&
1411                    skb->protocol != cpu_to_be16(ETH_P_PAE))
1412                        continue;
1413
1414                if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1415                        continue;
1416
1417                skb2 = skb_copy(skb, GFP_ATOMIC);
1418                if (skb2) {
1419                        wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1420                        wil_set_da_for_vring(wil, skb2, i);
1421                        wil_tx_ring(wil, vif, v2, skb2);
1422                        /* successful call to wil_tx_ring takes skb2 ref */
1423                        dev_kfree_skb_any(skb2);
1424                } else {
1425                        wil_err(wil, "skb_copy failed\n");
1426                }
1427        }
1428
1429        return v;
1430}
1431
1432static inline
1433void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1434{
1435        d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1436}
1437
1438/**
1439 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1440 * @skb is used to obtain the protocol and headers length.
1441 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1442 * 2 - middle, 3 - last descriptor.
1443 */
1444
1445static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1446                                          struct sk_buff *skb,
1447                                          int tso_desc_type, bool is_ipv4,
1448                                          int tcp_hdr_len, int skb_net_hdr_len)
1449{
1450        d->dma.b11 = ETH_HLEN; /* MAC header length */
1451        d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1452
1453        d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1454        /* L4 header len: TCP header length */
1455        d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1456
1457        /* Setup TSO: bit and desc type */
1458        d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1459                (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1460        d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1461
1462        d->dma.ip_length = skb_net_hdr_len;
1463        /* Enable TCP/UDP checksum */
1464        d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1465        /* Calculate pseudo-header */
1466        d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1467}
1468
1469/**
1470 * Sets the descriptor @d up for csum. The corresponding
1471 * @skb is used to obtain the protocol and headers length.
1472 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1473 * Note, if d==NULL, the function only returns the protocol result.
1474 *
1475 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1476 * is "if unrolling" to optimize the critical path.
1477 */
1478
1479static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1480                                     struct sk_buff *skb){
1481        int protocol;
1482
1483        if (skb->ip_summed != CHECKSUM_PARTIAL)
1484                return 0;
1485
1486        d->dma.b11 = ETH_HLEN; /* MAC header length */
1487
1488        switch (skb->protocol) {
1489        case cpu_to_be16(ETH_P_IP):
1490                protocol = ip_hdr(skb)->protocol;
1491                d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1492                break;
1493        case cpu_to_be16(ETH_P_IPV6):
1494                protocol = ipv6_hdr(skb)->nexthdr;
1495                break;
1496        default:
1497                return -EINVAL;
1498        }
1499
1500        switch (protocol) {
1501        case IPPROTO_TCP:
1502                d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1503                /* L4 header len: TCP header length */
1504                d->dma.d0 |=
1505                (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1506                break;
1507        case IPPROTO_UDP:
1508                /* L4 header len: UDP header length */
1509                d->dma.d0 |=
1510                (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1511                break;
1512        default:
1513                return -EINVAL;
1514        }
1515
1516        d->dma.ip_length = skb_network_header_len(skb);
1517        /* Enable TCP/UDP checksum */
1518        d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1519        /* Calculate pseudo-header */
1520        d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1521
1522        return 0;
1523}
1524
1525static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1526{
1527        d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1528              BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1529              BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1530}
1531
1532static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1533{
1534        d->dma.d0 |= wil_tso_type_lst <<
1535                  DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1536}
1537
1538static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1539                              struct wil_ring *vring, struct sk_buff *skb)
1540{
1541        struct device *dev = wil_to_dev(wil);
1542
1543        /* point to descriptors in shared memory */
1544        volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1545                                      *_first_desc = NULL;
1546
1547        /* pointers to shadow descriptors */
1548        struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1549                             *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1550                             *first_desc = &first_desc_mem;
1551
1552        /* pointer to shadow descriptors' context */
1553        struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1554
1555        int descs_used = 0; /* total number of used descriptors */
1556        int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1557
1558        u32 swhead = vring->swhead;
1559        int used, avail = wil_ring_avail_tx(vring);
1560        int nr_frags = skb_shinfo(skb)->nr_frags;
1561        int min_desc_required = nr_frags + 1;
1562        int mss = skb_shinfo(skb)->gso_size;    /* payload size w/o headers */
1563        int f, len, hdrlen, headlen;
1564        int vring_index = vring - wil->ring_tx;
1565        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1566        uint i = swhead;
1567        dma_addr_t pa;
1568        const skb_frag_t *frag = NULL;
1569        int rem_data = mss;
1570        int lenmss;
1571        int hdr_compensation_need = true;
1572        int desc_tso_type = wil_tso_type_first;
1573        bool is_ipv4;
1574        int tcp_hdr_len;
1575        int skb_net_hdr_len;
1576        int gso_type;
1577        int rc = -EINVAL;
1578
1579        wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1580                     vring_index);
1581
1582        if (unlikely(!txdata->enabled))
1583                return -EINVAL;
1584
1585        /* A typical page 4K is 3-4 payloads, we assume each fragment
1586         * is a full payload, that's how min_desc_required has been
1587         * calculated. In real we might need more or less descriptors,
1588         * this is the initial check only.
1589         */
1590        if (unlikely(avail < min_desc_required)) {
1591                wil_err_ratelimited(wil,
1592                                    "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1593                                    vring_index, min_desc_required);
1594                return -ENOMEM;
1595        }
1596
1597        /* Header Length = MAC header len + IP header len + TCP header len*/
1598        hdrlen = ETH_HLEN +
1599                (int)skb_network_header_len(skb) +
1600                tcp_hdrlen(skb);
1601
1602        gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1603        switch (gso_type) {
1604        case SKB_GSO_TCPV4:
1605                /* TCP v4, zero out the IP length and IPv4 checksum fields
1606                 * as required by the offloading doc
1607                 */
1608                ip_hdr(skb)->tot_len = 0;
1609                ip_hdr(skb)->check = 0;
1610                is_ipv4 = true;
1611                break;
1612        case SKB_GSO_TCPV6:
1613                /* TCP v6, zero out the payload length */
1614                ipv6_hdr(skb)->payload_len = 0;
1615                is_ipv4 = false;
1616                break;
1617        default:
1618                /* other than TCPv4 or TCPv6 types are not supported for TSO.
1619                 * It is also illegal for both to be set simultaneously
1620                 */
1621                return -EINVAL;
1622        }
1623
1624        if (skb->ip_summed != CHECKSUM_PARTIAL)
1625                return -EINVAL;
1626
1627        /* tcp header length and skb network header length are fixed for all
1628         * packet's descriptors - read then once here
1629         */
1630        tcp_hdr_len = tcp_hdrlen(skb);
1631        skb_net_hdr_len = skb_network_header_len(skb);
1632
1633        _hdr_desc = &vring->va[i].tx.legacy;
1634
1635        pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1636        if (unlikely(dma_mapping_error(dev, pa))) {
1637                wil_err(wil, "TSO: Skb head DMA map error\n");
1638                goto err_exit;
1639        }
1640
1641        wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1642                                  hdrlen, vring_index);
1643        wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1644                                      tcp_hdr_len, skb_net_hdr_len);
1645        wil_tx_last_desc(hdr_desc);
1646
1647        vring->ctx[i].mapped_as = wil_mapped_as_single;
1648        hdr_ctx = &vring->ctx[i];
1649
1650        descs_used++;
1651        headlen = skb_headlen(skb) - hdrlen;
1652
1653        for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1654                if (headlen) {
1655                        len = headlen;
1656                        wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1657                                     len);
1658                } else {
1659                        frag = &skb_shinfo(skb)->frags[f];
1660                        len = frag->size;
1661                        wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1662                }
1663
1664                while (len) {
1665                        wil_dbg_txrx(wil,
1666                                     "TSO: len %d, rem_data %d, descs_used %d\n",
1667                                     len, rem_data, descs_used);
1668
1669                        if (descs_used == avail)  {
1670                                wil_err_ratelimited(wil, "TSO: ring overflow\n");
1671                                rc = -ENOMEM;
1672                                goto mem_error;
1673                        }
1674
1675                        lenmss = min_t(int, rem_data, len);
1676                        i = (swhead + descs_used) % vring->size;
1677                        wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1678
1679                        if (!headlen) {
1680                                pa = skb_frag_dma_map(dev, frag,
1681                                                      frag->size - len, lenmss,
1682                                                      DMA_TO_DEVICE);
1683                                vring->ctx[i].mapped_as = wil_mapped_as_page;
1684                        } else {
1685                                pa = dma_map_single(dev,
1686                                                    skb->data +
1687                                                    skb_headlen(skb) - headlen,
1688                                                    lenmss,
1689                                                    DMA_TO_DEVICE);
1690                                vring->ctx[i].mapped_as = wil_mapped_as_single;
1691                                headlen -= lenmss;
1692                        }
1693
1694                        if (unlikely(dma_mapping_error(dev, pa))) {
1695                                wil_err(wil, "TSO: DMA map page error\n");
1696                                goto mem_error;
1697                        }
1698
1699                        _desc = &vring->va[i].tx.legacy;
1700
1701                        if (!_first_desc) {
1702                                _first_desc = _desc;
1703                                first_ctx = &vring->ctx[i];
1704                                d = first_desc;
1705                        } else {
1706                                d = &desc_mem;
1707                        }
1708
1709                        wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1710                                                  pa, lenmss, vring_index);
1711                        wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1712                                                      is_ipv4, tcp_hdr_len,
1713                                                      skb_net_hdr_len);
1714
1715                        /* use tso_type_first only once */
1716                        desc_tso_type = wil_tso_type_mid;
1717
1718                        descs_used++;  /* desc used so far */
1719                        sg_desc_cnt++; /* desc used for this segment */
1720                        len -= lenmss;
1721                        rem_data -= lenmss;
1722
1723                        wil_dbg_txrx(wil,
1724                                     "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1725                                     len, rem_data, descs_used, sg_desc_cnt);
1726
1727                        /* Close the segment if reached mss size or last frag*/
1728                        if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1729                                if (hdr_compensation_need) {
1730                                        /* first segment include hdr desc for
1731                                         * release
1732                                         */
1733                                        hdr_ctx->nr_frags = sg_desc_cnt;
1734                                        wil_tx_desc_set_nr_frags(first_desc,
1735                                                                 sg_desc_cnt +
1736                                                                 1);
1737                                        hdr_compensation_need = false;
1738                                } else {
1739                                        wil_tx_desc_set_nr_frags(first_desc,
1740                                                                 sg_desc_cnt);
1741                                }
1742                                first_ctx->nr_frags = sg_desc_cnt - 1;
1743
1744                                wil_tx_last_desc(d);
1745
1746                                /* first descriptor may also be the last
1747                                 * for this mss - make sure not to copy
1748                                 * it twice
1749                                 */
1750                                if (first_desc != d)
1751                                        *_first_desc = *first_desc;
1752
1753                                /*last descriptor will be copied at the end
1754                                 * of this TS processing
1755                                 */
1756                                if (f < nr_frags - 1 || len > 0)
1757                                        *_desc = *d;
1758
1759                                rem_data = mss;
1760                                _first_desc = NULL;
1761                                sg_desc_cnt = 0;
1762                        } else if (first_desc != d) /* update mid descriptor */
1763                                        *_desc = *d;
1764                }
1765        }
1766
1767        if (!_desc)
1768                goto mem_error;
1769
1770        /* first descriptor may also be the last.
1771         * in this case d pointer is invalid
1772         */
1773        if (_first_desc == _desc)
1774                d = first_desc;
1775
1776        /* Last data descriptor */
1777        wil_set_tx_desc_last_tso(d);
1778        *_desc = *d;
1779
1780        /* Fill the total number of descriptors in first desc (hdr)*/
1781        wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1782        *_hdr_desc = *hdr_desc;
1783
1784        /* hold reference to skb
1785         * to prevent skb release before accounting
1786         * in case of immediate "tx done"
1787         */
1788        vring->ctx[i].skb = skb_get(skb);
1789
1790        /* performance monitoring */
1791        used = wil_ring_used_tx(vring);
1792        if (wil_val_in_range(wil->ring_idle_trsh,
1793                             used, used + descs_used)) {
1794                txdata->idle += get_cycles() - txdata->last_idle;
1795                wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1796                             vring_index, used, used + descs_used);
1797        }
1798
1799        /* Make sure to advance the head only after descriptor update is done.
1800         * This will prevent a race condition where the completion thread
1801         * will see the DU bit set from previous run and will handle the
1802         * skb before it was completed.
1803         */
1804        wmb();
1805
1806        /* advance swhead */
1807        wil_ring_advance_head(vring, descs_used);
1808        wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1809
1810        /* make sure all writes to descriptors (shared memory) are done before
1811         * committing them to HW
1812         */
1813        wmb();
1814
1815        if (wil->tx_latency)
1816                *(ktime_t *)&skb->cb = ktime_get();
1817        else
1818                memset(skb->cb, 0, sizeof(ktime_t));
1819
1820        wil_w(wil, vring->hwtail, vring->swhead);
1821        return 0;
1822
1823mem_error:
1824        while (descs_used > 0) {
1825                struct wil_ctx *ctx;
1826
1827                i = (swhead + descs_used - 1) % vring->size;
1828                d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
1829                _desc = &vring->va[i].tx.legacy;
1830                *d = *_desc;
1831                _desc->dma.status = TX_DMA_STATUS_DU;
1832                ctx = &vring->ctx[i];
1833                wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
1834                memset(ctx, 0, sizeof(*ctx));
1835                descs_used--;
1836        }
1837err_exit:
1838        return rc;
1839}
1840
1841static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1842                         struct wil_ring *ring, struct sk_buff *skb)
1843{
1844        struct device *dev = wil_to_dev(wil);
1845        struct vring_tx_desc dd, *d = &dd;
1846        volatile struct vring_tx_desc *_d;
1847        u32 swhead = ring->swhead;
1848        int avail = wil_ring_avail_tx(ring);
1849        int nr_frags = skb_shinfo(skb)->nr_frags;
1850        uint f = 0;
1851        int ring_index = ring - wil->ring_tx;
1852        struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[ring_index];
1853        uint i = swhead;
1854        dma_addr_t pa;
1855        int used;
1856        bool mcast = (ring_index == vif->bcast_ring);
1857        uint len = skb_headlen(skb);
1858
1859        wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
1860                     skb->len, ring_index, nr_frags);
1861
1862        if (unlikely(!txdata->enabled))
1863                return -EINVAL;
1864
1865        if (unlikely(avail < 1 + nr_frags)) {
1866                wil_err_ratelimited(wil,
1867                                    "Tx ring[%2d] full. No space for %d fragments\n",
1868                                    ring_index, 1 + nr_frags);
1869                return -ENOMEM;
1870        }
1871        _d = &ring->va[i].tx.legacy;
1872
1873        pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1874
1875        wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
1876                     skb_headlen(skb), skb->data, &pa);
1877        wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1878                          skb->data, skb_headlen(skb), false);
1879
1880        if (unlikely(dma_mapping_error(dev, pa)))
1881                return -EINVAL;
1882        ring->ctx[i].mapped_as = wil_mapped_as_single;
1883        /* 1-st segment */
1884        wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
1885                                   ring_index);
1886        if (unlikely(mcast)) {
1887                d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1888                if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1889                        d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1890        }
1891        /* Process TCP/UDP checksum offloading */
1892        if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1893                wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1894                        ring_index);
1895                goto dma_error;
1896        }
1897
1898        ring->ctx[i].nr_frags = nr_frags;
1899        wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1900
1901        /* middle segments */
1902        for (; f < nr_frags; f++) {
1903                const struct skb_frag_struct *frag =
1904                                &skb_shinfo(skb)->frags[f];
1905                int len = skb_frag_size(frag);
1906
1907                *_d = *d;
1908                wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1909                wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1910                                  (const void *)d, sizeof(*d), false);
1911                i = (swhead + f + 1) % ring->size;
1912                _d = &ring->va[i].tx.legacy;
1913                pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1914                                      DMA_TO_DEVICE);
1915                if (unlikely(dma_mapping_error(dev, pa))) {
1916                        wil_err(wil, "Tx[%2d] failed to map fragment\n",
1917                                ring_index);
1918                        goto dma_error;
1919                }
1920                ring->ctx[i].mapped_as = wil_mapped_as_page;
1921                wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1922                                           pa, len, ring_index);
1923                /* no need to check return code -
1924                 * if it succeeded for 1-st descriptor,
1925                 * it will succeed here too
1926                 */
1927                wil_tx_desc_offload_setup(d, skb);
1928        }
1929        /* for the last seg only */
1930        d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1931        d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1932        d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1933        *_d = *d;
1934        wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1935        wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1936                          (const void *)d, sizeof(*d), false);
1937
1938        /* hold reference to skb
1939         * to prevent skb release before accounting
1940         * in case of immediate "tx done"
1941         */
1942        ring->ctx[i].skb = skb_get(skb);
1943
1944        /* performance monitoring */
1945        used = wil_ring_used_tx(ring);
1946        if (wil_val_in_range(wil->ring_idle_trsh,
1947                             used, used + nr_frags + 1)) {
1948                txdata->idle += get_cycles() - txdata->last_idle;
1949                wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1950                             ring_index, used, used + nr_frags + 1);
1951        }
1952
1953        /* Make sure to advance the head only after descriptor update is done.
1954         * This will prevent a race condition where the completion thread
1955         * will see the DU bit set from previous run and will handle the
1956         * skb before it was completed.
1957         */
1958        wmb();
1959
1960        /* advance swhead */
1961        wil_ring_advance_head(ring, nr_frags + 1);
1962        wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
1963                     ring->swhead);
1964        trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
1965
1966        /* make sure all writes to descriptors (shared memory) are done before
1967         * committing them to HW
1968         */
1969        wmb();
1970
1971        if (wil->tx_latency)
1972                *(ktime_t *)&skb->cb = ktime_get();
1973        else
1974                memset(skb->cb, 0, sizeof(ktime_t));
1975
1976        wil_w(wil, ring->hwtail, ring->swhead);
1977
1978        return 0;
1979 dma_error:
1980        /* unmap what we have mapped */
1981        nr_frags = f + 1; /* frags mapped + one for skb head */
1982        for (f = 0; f < nr_frags; f++) {
1983                struct wil_ctx *ctx;
1984
1985                i = (swhead + f) % ring->size;
1986                ctx = &ring->ctx[i];
1987                _d = &ring->va[i].tx.legacy;
1988                *d = *_d;
1989                _d->dma.status = TX_DMA_STATUS_DU;
1990                wil->txrx_ops.tx_desc_unmap(dev,
1991                                            (union wil_tx_desc *)d,
1992                                            ctx);
1993
1994                memset(ctx, 0, sizeof(*ctx));
1995        }
1996
1997        return -EINVAL;
1998}
1999
2000static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2001                       struct wil_ring *ring, struct sk_buff *skb)
2002{
2003        int ring_index = ring - wil->ring_tx;
2004        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2005        int rc;
2006
2007        spin_lock(&txdata->lock);
2008
2009        if (test_bit(wil_status_suspending, wil->status) ||
2010            test_bit(wil_status_suspended, wil->status) ||
2011            test_bit(wil_status_resuming, wil->status)) {
2012                wil_dbg_txrx(wil,
2013                             "suspend/resume in progress. drop packet\n");
2014                spin_unlock(&txdata->lock);
2015                return -EINVAL;
2016        }
2017
2018        rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2019             (wil, vif, ring, skb);
2020
2021        spin_unlock(&txdata->lock);
2022
2023        return rc;
2024}
2025
2026/**
2027 * Check status of tx vrings and stop/wake net queues if needed
2028 * It will start/stop net queues of a specific VIF net_device.
2029 *
2030 * This function does one of two checks:
2031 * In case check_stop is true, will check if net queues need to be stopped. If
2032 * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2033 * In case check_stop is false, will check if net queues need to be waked. If
2034 * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2035 * vring is the vring which is currently being modified by either adding
2036 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2037 * be null when irrelevant (e.g. connect/disconnect events).
2038 *
2039 * The implementation is to stop net queues if modified vring has low
2040 * descriptor availability. Wake if all vrings are not in low descriptor
2041 * availability and modified vring has high descriptor availability.
2042 */
2043static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2044                                           struct wil6210_vif *vif,
2045                                           struct wil_ring *ring,
2046                                           bool check_stop)
2047{
2048        int i;
2049        int min_ring_id = wil_get_min_tx_ring_id(wil);
2050
2051        if (unlikely(!vif))
2052                return;
2053
2054        if (ring)
2055                wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2056                             (int)(ring - wil->ring_tx), vif->mid, check_stop,
2057                             vif->net_queue_stopped);
2058        else
2059                wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2060                             check_stop, vif->mid, vif->net_queue_stopped);
2061
2062        if (ring && drop_if_ring_full)
2063                /* no need to stop/wake net queues */
2064                return;
2065
2066        if (check_stop == vif->net_queue_stopped)
2067                /* net queues already in desired state */
2068                return;
2069
2070        if (check_stop) {
2071                if (!ring || unlikely(wil_ring_avail_low(ring))) {
2072                        /* not enough room in the vring */
2073                        netif_tx_stop_all_queues(vif_to_ndev(vif));
2074                        vif->net_queue_stopped = true;
2075                        wil_dbg_txrx(wil, "netif_tx_stop called\n");
2076                }
2077                return;
2078        }
2079
2080        /* Do not wake the queues in suspend flow */
2081        if (test_bit(wil_status_suspending, wil->status) ||
2082            test_bit(wil_status_suspended, wil->status))
2083                return;
2084
2085        /* check wake */
2086        for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2087                struct wil_ring *cur_ring = &wil->ring_tx[i];
2088                struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[i];
2089
2090                if (txdata->mid != vif->mid || !cur_ring->va ||
2091                    !txdata->enabled || cur_ring == ring)
2092                        continue;
2093
2094                if (wil_ring_avail_low(cur_ring)) {
2095                        wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2096                                     (int)(cur_ring - wil->ring_tx));
2097                        return;
2098                }
2099        }
2100
2101        if (!ring || wil_ring_avail_high(ring)) {
2102                /* enough room in the ring */
2103                wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2104                netif_tx_wake_all_queues(vif_to_ndev(vif));
2105                vif->net_queue_stopped = false;
2106        }
2107}
2108
2109void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2110                           struct wil_ring *ring, bool check_stop)
2111{
2112        spin_lock(&wil->net_queue_lock);
2113        __wil_update_net_queues(wil, vif, ring, check_stop);
2114        spin_unlock(&wil->net_queue_lock);
2115}
2116
2117void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2118                              struct wil_ring *ring, bool check_stop)
2119{
2120        spin_lock_bh(&wil->net_queue_lock);
2121        __wil_update_net_queues(wil, vif, ring, check_stop);
2122        spin_unlock_bh(&wil->net_queue_lock);
2123}
2124
2125netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2126{
2127        struct wil6210_vif *vif = ndev_to_vif(ndev);
2128        struct wil6210_priv *wil = vif_to_wil(vif);
2129        const u8 *da = wil_skb_get_da(skb);
2130        bool bcast = is_multicast_ether_addr(da);
2131        struct wil_ring *ring;
2132        static bool pr_once_fw;
2133        int rc;
2134
2135        wil_dbg_txrx(wil, "start_xmit\n");
2136        if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2137                if (!pr_once_fw) {
2138                        wil_err(wil, "FW not ready\n");
2139                        pr_once_fw = true;
2140                }
2141                goto drop;
2142        }
2143        if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2144                wil_dbg_ratelimited(wil,
2145                                    "VIF not connected, packet dropped\n");
2146                goto drop;
2147        }
2148        if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2149                wil_err(wil, "Xmit in monitor mode not supported\n");
2150                goto drop;
2151        }
2152        pr_once_fw = false;
2153
2154        /* find vring */
2155        if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2156                /* in STA mode (ESS), all to same VRING (to AP) */
2157                ring = wil_find_tx_ring_sta(wil, vif, skb);
2158        } else if (bcast) {
2159                if (vif->pbss)
2160                        /* in pbss, no bcast VRING - duplicate skb in
2161                         * all stations VRINGs
2162                         */
2163                        ring = wil_find_tx_bcast_2(wil, vif, skb);
2164                else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2165                        /* AP has a dedicated bcast VRING */
2166                        ring = wil_find_tx_bcast_1(wil, vif, skb);
2167                else
2168                        /* unexpected combination, fallback to duplicating
2169                         * the skb in all stations VRINGs
2170                         */
2171                        ring = wil_find_tx_bcast_2(wil, vif, skb);
2172        } else {
2173                /* unicast, find specific VRING by dest. address */
2174                ring = wil_find_tx_ucast(wil, vif, skb);
2175        }
2176        if (unlikely(!ring)) {
2177                wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2178                goto drop;
2179        }
2180        /* set up vring entry */
2181        rc = wil_tx_ring(wil, vif, ring, skb);
2182
2183        switch (rc) {
2184        case 0:
2185                /* shall we stop net queues? */
2186                wil_update_net_queues_bh(wil, vif, ring, true);
2187                /* statistics will be updated on the tx_complete */
2188                dev_kfree_skb_any(skb);
2189                return NETDEV_TX_OK;
2190        case -ENOMEM:
2191                if (drop_if_ring_full)
2192                        goto drop;
2193                return NETDEV_TX_BUSY;
2194        default:
2195                break; /* goto drop; */
2196        }
2197 drop:
2198        ndev->stats.tx_dropped++;
2199        dev_kfree_skb_any(skb);
2200
2201        return NET_XMIT_DROP;
2202}
2203
2204void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2205                         struct wil_sta_info *sta)
2206{
2207        int skb_time_us;
2208        int bin;
2209
2210        if (!wil->tx_latency)
2211                return;
2212
2213        if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2214                return;
2215
2216        skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2217        bin = skb_time_us / wil->tx_latency_res;
2218        bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2219
2220        wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2221        sta->tx_latency_bins[bin]++;
2222        sta->stats.tx_latency_total_us += skb_time_us;
2223        if (skb_time_us < sta->stats.tx_latency_min_us)
2224                sta->stats.tx_latency_min_us = skb_time_us;
2225        if (skb_time_us > sta->stats.tx_latency_max_us)
2226                sta->stats.tx_latency_max_us = skb_time_us;
2227}
2228
2229/**
2230 * Clean up transmitted skb's from the Tx VRING
2231 *
2232 * Return number of descriptors cleared
2233 *
2234 * Safe to call from IRQ
2235 */
2236int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2237{
2238        struct wil6210_priv *wil = vif_to_wil(vif);
2239        struct net_device *ndev = vif_to_ndev(vif);
2240        struct device *dev = wil_to_dev(wil);
2241        struct wil_ring *vring = &wil->ring_tx[ringid];
2242        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2243        int done = 0;
2244        int cid = wil->ring2cid_tid[ringid][0];
2245        struct wil_net_stats *stats = NULL;
2246        volatile struct vring_tx_desc *_d;
2247        int used_before_complete;
2248        int used_new;
2249
2250        if (unlikely(!vring->va)) {
2251                wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2252                return 0;
2253        }
2254
2255        if (unlikely(!txdata->enabled)) {
2256                wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2257                return 0;
2258        }
2259
2260        wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2261
2262        used_before_complete = wil_ring_used_tx(vring);
2263
2264        if (cid < wil->max_assoc_sta)
2265                stats = &wil->sta[cid].stats;
2266
2267        while (!wil_ring_is_empty(vring)) {
2268                int new_swtail;
2269                struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2270                /**
2271                 * For the fragmented skb, HW will set DU bit only for the
2272                 * last fragment. look for it.
2273                 * In TSO the first DU will include hdr desc
2274                 */
2275                int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2276                /* TODO: check we are not past head */
2277
2278                _d = &vring->va[lf].tx.legacy;
2279                if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2280                        break;
2281
2282                new_swtail = (lf + 1) % vring->size;
2283                while (vring->swtail != new_swtail) {
2284                        struct vring_tx_desc dd, *d = &dd;
2285                        u16 dmalen;
2286                        struct sk_buff *skb;
2287
2288                        ctx = &vring->ctx[vring->swtail];
2289                        skb = ctx->skb;
2290                        _d = &vring->va[vring->swtail].tx.legacy;
2291
2292                        *d = *_d;
2293
2294                        dmalen = le16_to_cpu(d->dma.length);
2295                        trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2296                                              d->dma.error);
2297                        wil_dbg_txrx(wil,
2298                                     "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2299                                     ringid, vring->swtail, dmalen,
2300                                     d->dma.status, d->dma.error);
2301                        wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2302                                          (const void *)d, sizeof(*d), false);
2303
2304                        wil->txrx_ops.tx_desc_unmap(dev,
2305                                                    (union wil_tx_desc *)d,
2306                                                    ctx);
2307
2308                        if (skb) {
2309                                if (likely(d->dma.error == 0)) {
2310                                        ndev->stats.tx_packets++;
2311                                        ndev->stats.tx_bytes += skb->len;
2312                                        if (stats) {
2313                                                stats->tx_packets++;
2314                                                stats->tx_bytes += skb->len;
2315
2316                                                wil_tx_latency_calc(wil, skb,
2317                                                        &wil->sta[cid]);
2318                                        }
2319                                } else {
2320                                        ndev->stats.tx_errors++;
2321                                        if (stats)
2322                                                stats->tx_errors++;
2323                                }
2324                                wil_consume_skb(skb, d->dma.error == 0);
2325                        }
2326                        memset(ctx, 0, sizeof(*ctx));
2327                        /* Make sure the ctx is zeroed before updating the tail
2328                         * to prevent a case where wil_tx_ring will see
2329                         * this descriptor as used and handle it before ctx zero
2330                         * is completed.
2331                         */
2332                        wmb();
2333                        /* There is no need to touch HW descriptor:
2334                         * - ststus bit TX_DMA_STATUS_DU is set by design,
2335                         *   so hardware will not try to process this desc.,
2336                         * - rest of descriptor will be initialized on Tx.
2337                         */
2338                        vring->swtail = wil_ring_next_tail(vring);
2339                        done++;
2340                }
2341        }
2342
2343        /* performance monitoring */
2344        used_new = wil_ring_used_tx(vring);
2345        if (wil_val_in_range(wil->ring_idle_trsh,
2346                             used_new, used_before_complete)) {
2347                wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2348                             ringid, used_before_complete, used_new);
2349                txdata->last_idle = get_cycles();
2350        }
2351
2352        /* shall we wake net queues? */
2353        if (done)
2354                wil_update_net_queues(wil, vif, vring, false);
2355
2356        return done;
2357}
2358
2359static inline int wil_tx_init(struct wil6210_priv *wil)
2360{
2361        return 0;
2362}
2363
2364static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2365
2366static void wil_get_reorder_params(struct wil6210_priv *wil,
2367                                   struct sk_buff *skb, int *tid, int *cid,
2368                                   int *mid, u16 *seq, int *mcast, int *retry)
2369{
2370        struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2371
2372        *tid = wil_rxdesc_tid(d);
2373        *cid = wil_skb_get_cid(skb);
2374        *mid = wil_rxdesc_mid(d);
2375        *seq = wil_rxdesc_seq(d);
2376        *mcast = wil_rxdesc_mcast(d);
2377        *retry = wil_rxdesc_retry(d);
2378}
2379
2380void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2381{
2382        wil->txrx_ops.configure_interrupt_moderation =
2383                wil_configure_interrupt_moderation;
2384        /* TX ops */
2385        wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2386        wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2387        wil->txrx_ops.tx_ring_tso =  __wil_tx_vring_tso;
2388        wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2389        wil->txrx_ops.ring_fini_tx = wil_vring_free;
2390        wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2391        wil->txrx_ops.tx_init = wil_tx_init;
2392        wil->txrx_ops.tx_fini = wil_tx_fini;
2393        wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2394        /* RX ops */
2395        wil->txrx_ops.rx_init = wil_rx_init;
2396        wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2397        wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2398        wil->txrx_ops.get_netif_rx_params =
2399                wil_get_netif_rx_params;
2400        wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2401        wil->txrx_ops.rx_error_check = wil_rx_error_check;
2402        wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2403        wil->txrx_ops.rx_fini = wil_rx_fini;
2404}
2405