linux/drivers/net/wireless/realtek/rtw88/phy.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/* Copyright(c) 2018-2019  Realtek Corporation
   3 */
   4
   5#include <linux/bcd.h>
   6
   7#include "main.h"
   8#include "reg.h"
   9#include "fw.h"
  10#include "phy.h"
  11#include "debug.h"
  12
  13struct phy_cfg_pair {
  14        u32 addr;
  15        u32 data;
  16};
  17
  18union phy_table_tile {
  19        struct rtw_phy_cond cond;
  20        struct phy_cfg_pair cfg;
  21};
  22
  23struct phy_pg_cfg_pair {
  24        u32 band;
  25        u32 rf_path;
  26        u32 tx_num;
  27        u32 addr;
  28        u32 bitmask;
  29        u32 data;
  30};
  31
  32struct txpwr_lmt_cfg_pair {
  33        u8 regd;
  34        u8 band;
  35        u8 bw;
  36        u8 rs;
  37        u8 ch;
  38        s8 txpwr_lmt;
  39};
  40
  41static const u32 db_invert_table[12][8] = {
  42        {10,            13,             16,             20,
  43         25,            32,             40,             50},
  44        {64,            80,             101,            128,
  45         160,           201,            256,            318},
  46        {401,           505,            635,            800,
  47         1007,          1268,           1596,           2010},
  48        {316,           398,            501,            631,
  49         794,           1000,           1259,           1585},
  50        {1995,          2512,           3162,           3981,
  51         5012,          6310,           7943,           10000},
  52        {12589,         15849,          19953,          25119,
  53         31623,         39811,          50119,          63098},
  54        {79433,         100000,         125893,         158489,
  55         199526,        251189,         316228,         398107},
  56        {501187,        630957,         794328,         1000000,
  57         1258925,       1584893,        1995262,        2511886},
  58        {3162278,       3981072,        5011872,        6309573,
  59         7943282,       1000000,        12589254,       15848932},
  60        {19952623,      25118864,       31622777,       39810717,
  61         50118723,      63095734,       79432823,       100000000},
  62        {125892541,     158489319,      199526232,      251188643,
  63         316227766,     398107171,      501187234,      630957345},
  64        {794328235,     1000000000,     1258925412,     1584893192,
  65         1995262315,    2511886432U,    3162277660U,    3981071706U}
  66};
  67
  68u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
  69u8 rtw_ofdm_rates[] = {
  70        DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
  71        DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
  72        DESC_RATE48M, DESC_RATE54M
  73};
  74u8 rtw_ht_1s_rates[] = {
  75        DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
  76        DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
  77        DESC_RATEMCS6, DESC_RATEMCS7
  78};
  79u8 rtw_ht_2s_rates[] = {
  80        DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
  81        DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
  82        DESC_RATEMCS14, DESC_RATEMCS15
  83};
  84u8 rtw_vht_1s_rates[] = {
  85        DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
  86        DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
  87        DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
  88        DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
  89        DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
  90};
  91u8 rtw_vht_2s_rates[] = {
  92        DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
  93        DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
  94        DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
  95        DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
  96        DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
  97};
  98u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
  99        rtw_cck_rates, rtw_ofdm_rates,
 100        rtw_ht_1s_rates, rtw_ht_2s_rates,
 101        rtw_vht_1s_rates, rtw_vht_2s_rates
 102};
 103u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
 104        ARRAY_SIZE(rtw_cck_rates),
 105        ARRAY_SIZE(rtw_ofdm_rates),
 106        ARRAY_SIZE(rtw_ht_1s_rates),
 107        ARRAY_SIZE(rtw_ht_2s_rates),
 108        ARRAY_SIZE(rtw_vht_1s_rates),
 109        ARRAY_SIZE(rtw_vht_2s_rates)
 110};
 111static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
 112static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
 113static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
 114static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
 115static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
 116static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
 117
 118enum rtw_phy_band_type {
 119        PHY_BAND_2G     = 0,
 120        PHY_BAND_5G     = 1,
 121};
 122
 123void rtw_phy_init(struct rtw_dev *rtwdev)
 124{
 125        struct rtw_chip_info *chip = rtwdev->chip;
 126        struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 127        u32 addr, mask;
 128
 129        dm_info->fa_history[3] = 0;
 130        dm_info->fa_history[2] = 0;
 131        dm_info->fa_history[1] = 0;
 132        dm_info->fa_history[0] = 0;
 133        dm_info->igi_bitmap = 0;
 134        dm_info->igi_history[3] = 0;
 135        dm_info->igi_history[2] = 0;
 136        dm_info->igi_history[1] = 0;
 137
 138        addr = chip->dig[0].addr;
 139        mask = chip->dig[0].mask;
 140        dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
 141}
 142
 143void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
 144{
 145        struct rtw_chip_info *chip = rtwdev->chip;
 146        struct rtw_hal *hal = &rtwdev->hal;
 147        u32 addr, mask;
 148        u8 path;
 149
 150        for (path = 0; path < hal->rf_path_num; path++) {
 151                addr = chip->dig[path].addr;
 152                mask = chip->dig[path].mask;
 153                rtw_write32_mask(rtwdev, addr, mask, igi);
 154        }
 155}
 156
 157static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
 158{
 159        struct rtw_chip_info *chip = rtwdev->chip;
 160
 161        chip->ops->false_alarm_statistics(rtwdev);
 162}
 163
 164#define RA_FLOOR_TABLE_SIZE     7
 165#define RA_FLOOR_UP_GAP         3
 166
 167static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
 168{
 169        u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
 170        u8 new_level = 0;
 171        int i;
 172
 173        for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
 174                if (i >= old_level)
 175                        table[i] += RA_FLOOR_UP_GAP;
 176
 177        for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
 178                if (rssi < table[i]) {
 179                        new_level = i;
 180                        break;
 181                }
 182        }
 183
 184        return new_level;
 185}
 186
 187struct rtw_phy_stat_iter_data {
 188        struct rtw_dev *rtwdev;
 189        u8 min_rssi;
 190};
 191
 192static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
 193{
 194        struct rtw_phy_stat_iter_data *iter_data = data;
 195        struct rtw_dev *rtwdev = iter_data->rtwdev;
 196        struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
 197        u8 rssi;
 198
 199        rssi = ewma_rssi_read(&si->avg_rssi);
 200        si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
 201
 202        rtw_fw_send_rssi_info(rtwdev, si);
 203
 204        iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
 205}
 206
 207static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
 208{
 209        struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 210        struct rtw_phy_stat_iter_data data = {};
 211
 212        data.rtwdev = rtwdev;
 213        data.min_rssi = U8_MAX;
 214        rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
 215
 216        dm_info->pre_min_rssi = dm_info->min_rssi;
 217        dm_info->min_rssi = data.min_rssi;
 218}
 219
 220static void rtw_phy_statistics(struct rtw_dev *rtwdev)
 221{
 222        rtw_phy_stat_rssi(rtwdev);
 223        rtw_phy_stat_false_alarm(rtwdev);
 224}
 225
 226#define DIG_PERF_FA_TH_LOW                      250
 227#define DIG_PERF_FA_TH_HIGH                     500
 228#define DIG_PERF_FA_TH_EXTRA_HIGH               750
 229#define DIG_PERF_MAX                            0x5a
 230#define DIG_PERF_MID                            0x40
 231#define DIG_CVRG_FA_TH_LOW                      2000
 232#define DIG_CVRG_FA_TH_HIGH                     4000
 233#define DIG_CVRG_FA_TH_EXTRA_HIGH               5000
 234#define DIG_CVRG_MAX                            0x2a
 235#define DIG_CVRG_MID                            0x26
 236#define DIG_CVRG_MIN                            0x1c
 237#define DIG_RSSI_GAIN_OFFSET                    15
 238
 239static bool
 240rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
 241{
 242        u16 fa_lo = DIG_PERF_FA_TH_LOW;
 243        u16 fa_hi = DIG_PERF_FA_TH_HIGH;
 244        u16 *fa_history;
 245        u8 *igi_history;
 246        u8 damping_rssi;
 247        u8 min_rssi;
 248        u8 diff;
 249        u8 igi_bitmap;
 250        bool damping = false;
 251
 252        min_rssi = dm_info->min_rssi;
 253        if (dm_info->damping) {
 254                damping_rssi = dm_info->damping_rssi;
 255                diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
 256                                                 damping_rssi - min_rssi;
 257                if (diff > 3 || dm_info->damping_cnt++ > 20) {
 258                        dm_info->damping = false;
 259                        return false;
 260                }
 261
 262                return true;
 263        }
 264
 265        igi_history = dm_info->igi_history;
 266        fa_history = dm_info->fa_history;
 267        igi_bitmap = dm_info->igi_bitmap & 0xf;
 268        switch (igi_bitmap) {
 269        case 5:
 270                /* down -> up -> down -> up */
 271                if (igi_history[0] > igi_history[1] &&
 272                    igi_history[2] > igi_history[3] &&
 273                    igi_history[0] - igi_history[1] >= 2 &&
 274                    igi_history[2] - igi_history[3] >= 2 &&
 275                    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
 276                    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
 277                        damping = true;
 278                break;
 279        case 9:
 280                /* up -> down -> down -> up */
 281                if (igi_history[0] > igi_history[1] &&
 282                    igi_history[3] > igi_history[2] &&
 283                    igi_history[0] - igi_history[1] >= 4 &&
 284                    igi_history[3] - igi_history[2] >= 2 &&
 285                    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
 286                    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
 287                        damping = true;
 288                break;
 289        default:
 290                return false;
 291        }
 292
 293        if (damping) {
 294                dm_info->damping = true;
 295                dm_info->damping_cnt = 0;
 296                dm_info->damping_rssi = min_rssi;
 297        }
 298
 299        return damping;
 300}
 301
 302static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
 303                                     u8 *upper, u8 *lower, bool linked)
 304{
 305        u8 dig_max, dig_min, dig_mid;
 306        u8 min_rssi;
 307
 308        if (linked) {
 309                dig_max = DIG_PERF_MAX;
 310                dig_mid = DIG_PERF_MID;
 311                /* 22B=0x1c, 22C=0x20 */
 312                dig_min = 0x1c;
 313                min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
 314        } else {
 315                dig_max = DIG_CVRG_MAX;
 316                dig_mid = DIG_CVRG_MID;
 317                dig_min = DIG_CVRG_MIN;
 318                min_rssi = dig_min;
 319        }
 320
 321        /* DIG MAX should be bounded by minimum RSSI with offset +15 */
 322        dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
 323
 324        *lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
 325        *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
 326}
 327
 328static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
 329                                      u16 *fa_th, u8 *step, bool linked)
 330{
 331        u8 min_rssi, pre_min_rssi;
 332
 333        min_rssi = dm_info->min_rssi;
 334        pre_min_rssi = dm_info->pre_min_rssi;
 335        step[0] = 4;
 336        step[1] = 3;
 337        step[2] = 2;
 338
 339        if (linked) {
 340                fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
 341                fa_th[1] = DIG_PERF_FA_TH_HIGH;
 342                fa_th[2] = DIG_PERF_FA_TH_LOW;
 343                if (pre_min_rssi > min_rssi) {
 344                        step[0] = 6;
 345                        step[1] = 4;
 346                        step[2] = 2;
 347                }
 348        } else {
 349                fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
 350                fa_th[1] = DIG_CVRG_FA_TH_HIGH;
 351                fa_th[2] = DIG_CVRG_FA_TH_LOW;
 352        }
 353}
 354
 355static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
 356{
 357        u8 *igi_history;
 358        u16 *fa_history;
 359        u8 igi_bitmap;
 360        bool up;
 361
 362        igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
 363        igi_history = dm_info->igi_history;
 364        fa_history = dm_info->fa_history;
 365
 366        up = igi > igi_history[0];
 367        igi_bitmap |= up;
 368
 369        igi_history[3] = igi_history[2];
 370        igi_history[2] = igi_history[1];
 371        igi_history[1] = igi_history[0];
 372        igi_history[0] = igi;
 373
 374        fa_history[3] = fa_history[2];
 375        fa_history[2] = fa_history[1];
 376        fa_history[1] = fa_history[0];
 377        fa_history[0] = fa;
 378
 379        dm_info->igi_bitmap = igi_bitmap;
 380}
 381
 382static void rtw_phy_dig(struct rtw_dev *rtwdev)
 383{
 384        struct rtw_dm_info *dm_info = &rtwdev->dm_info;
 385        u8 upper_bound, lower_bound;
 386        u8 pre_igi, cur_igi;
 387        u16 fa_th[3], fa_cnt;
 388        u8 level;
 389        u8 step[3];
 390        bool linked;
 391
 392        if (rtw_flag_check(rtwdev, RTW_FLAG_DIG_DISABLE))
 393                return;
 394
 395        if (rtw_phy_dig_check_damping(dm_info))
 396                return;
 397
 398        linked = !!rtwdev->sta_cnt;
 399
 400        fa_cnt = dm_info->total_fa_cnt;
 401        pre_igi = dm_info->igi_history[0];
 402
 403        rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
 404
 405        /* test the false alarm count from the highest threshold level first,
 406         * and increase it by corresponding step size
 407         *
 408         * note that the step size is offset by -2, compensate it afterall
 409         */
 410        cur_igi = pre_igi;
 411        for (level = 0; level < 3; level++) {
 412                if (fa_cnt > fa_th[level]) {
 413                        cur_igi += step[level];
 414                        break;
 415                }
 416        }
 417        cur_igi -= 2;
 418
 419        /* calculate the upper/lower bound by the minimum rssi we have among
 420         * the peers connected with us, meanwhile make sure the igi value does
 421         * not beyond the hardware limitation
 422         */
 423        rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
 424        cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
 425
 426        /* record current igi value and false alarm statistics for further
 427         * damping checks, and record the trend of igi values
 428         */
 429        rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
 430
 431        if (cur_igi != pre_igi)
 432                rtw_phy_dig_write(rtwdev, cur_igi);
 433}
 434
 435static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
 436{
 437        struct rtw_dev *rtwdev = data;
 438        struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
 439
 440        rtw_update_sta_info(rtwdev, si);
 441}
 442
 443static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
 444{
 445        if (rtwdev->watch_dog_cnt & 0x3)
 446                return;
 447
 448        rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
 449}
 450
 451void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
 452{
 453        /* for further calculation */
 454        rtw_phy_statistics(rtwdev);
 455        rtw_phy_dig(rtwdev);
 456        rtw_phy_ra_info_update(rtwdev);
 457}
 458
 459#define FRAC_BITS 3
 460
 461static u8 rtw_phy_power_2_db(s8 power)
 462{
 463        if (power <= -100 || power >= 20)
 464                return 0;
 465        else if (power >= 0)
 466                return 100;
 467        else
 468                return 100 + power;
 469}
 470
 471static u64 rtw_phy_db_2_linear(u8 power_db)
 472{
 473        u8 i, j;
 474        u64 linear;
 475
 476        if (power_db > 96)
 477                power_db = 96;
 478        else if (power_db < 1)
 479                return 1;
 480
 481        /* 1dB ~ 96dB */
 482        i = (power_db - 1) >> 3;
 483        j = (power_db - 1) - (i << 3);
 484
 485        linear = db_invert_table[i][j];
 486        linear = i > 2 ? linear << FRAC_BITS : linear;
 487
 488        return linear;
 489}
 490
 491static u8 rtw_phy_linear_2_db(u64 linear)
 492{
 493        u8 i;
 494        u8 j;
 495        u32 dB;
 496
 497        if (linear >= db_invert_table[11][7])
 498                return 96; /* maximum 96 dB */
 499
 500        for (i = 0; i < 12; i++) {
 501                if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
 502                        break;
 503                else if (i > 2 && linear <= db_invert_table[i][7])
 504                        break;
 505        }
 506
 507        for (j = 0; j < 8; j++) {
 508                if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
 509                        break;
 510                else if (i > 2 && linear <= db_invert_table[i][j])
 511                        break;
 512        }
 513
 514        if (j == 0 && i == 0)
 515                goto end;
 516
 517        if (j == 0) {
 518                if (i != 3) {
 519                        if (db_invert_table[i][0] - linear >
 520                            linear - db_invert_table[i - 1][7]) {
 521                                i = i - 1;
 522                                j = 7;
 523                        }
 524                } else {
 525                        if (db_invert_table[3][0] - linear >
 526                            linear - db_invert_table[2][7]) {
 527                                i = 2;
 528                                j = 7;
 529                        }
 530                }
 531        } else {
 532                if (db_invert_table[i][j] - linear >
 533                    linear - db_invert_table[i][j - 1]) {
 534                        j = j - 1;
 535                }
 536        }
 537end:
 538        dB = (i << 3) + j + 1;
 539
 540        return dB;
 541}
 542
 543u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
 544{
 545        s8 power;
 546        u8 power_db;
 547        u64 linear;
 548        u64 sum = 0;
 549        u8 path;
 550
 551        for (path = 0; path < path_num; path++) {
 552                power = rf_power[path];
 553                power_db = rtw_phy_power_2_db(power);
 554                linear = rtw_phy_db_2_linear(power_db);
 555                sum += linear;
 556        }
 557
 558        sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
 559        switch (path_num) {
 560        case 2:
 561                sum >>= 1;
 562                break;
 563        case 3:
 564                sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
 565                break;
 566        case 4:
 567                sum >>= 2;
 568                break;
 569        default:
 570                break;
 571        }
 572
 573        return rtw_phy_linear_2_db(sum);
 574}
 575
 576u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 577                    u32 addr, u32 mask)
 578{
 579        struct rtw_hal *hal = &rtwdev->hal;
 580        struct rtw_chip_info *chip = rtwdev->chip;
 581        const u32 *base_addr = chip->rf_base_addr;
 582        u32 val, direct_addr;
 583
 584        if (rf_path >= hal->rf_path_num) {
 585                rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
 586                return INV_RF_DATA;
 587        }
 588
 589        addr &= 0xff;
 590        direct_addr = base_addr[rf_path] + (addr << 2);
 591        mask &= RFREG_MASK;
 592
 593        val = rtw_read32_mask(rtwdev, direct_addr, mask);
 594
 595        return val;
 596}
 597
 598bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 599                               u32 addr, u32 mask, u32 data)
 600{
 601        struct rtw_hal *hal = &rtwdev->hal;
 602        struct rtw_chip_info *chip = rtwdev->chip;
 603        u32 *sipi_addr = chip->rf_sipi_addr;
 604        u32 data_and_addr;
 605        u32 old_data = 0;
 606        u32 shift;
 607
 608        if (rf_path >= hal->rf_path_num) {
 609                rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
 610                return false;
 611        }
 612
 613        addr &= 0xff;
 614        mask &= RFREG_MASK;
 615
 616        if (mask != RFREG_MASK) {
 617                old_data = rtw_phy_read_rf(rtwdev, rf_path, addr, RFREG_MASK);
 618
 619                if (old_data == INV_RF_DATA) {
 620                        rtw_err(rtwdev, "Write fail, rf is disabled\n");
 621                        return false;
 622                }
 623
 624                shift = __ffs(mask);
 625                data = ((old_data) & (~mask)) | (data << shift);
 626        }
 627
 628        data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
 629
 630        rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
 631
 632        udelay(13);
 633
 634        return true;
 635}
 636
 637bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 638                          u32 addr, u32 mask, u32 data)
 639{
 640        struct rtw_hal *hal = &rtwdev->hal;
 641        struct rtw_chip_info *chip = rtwdev->chip;
 642        const u32 *base_addr = chip->rf_base_addr;
 643        u32 direct_addr;
 644
 645        if (rf_path >= hal->rf_path_num) {
 646                rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
 647                return false;
 648        }
 649
 650        addr &= 0xff;
 651        direct_addr = base_addr[rf_path] + (addr << 2);
 652        mask &= RFREG_MASK;
 653
 654        if (addr == RF_CFGCH) {
 655                rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, DISABLE_PI);
 656                rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, DISABLE_PI);
 657        }
 658
 659        rtw_write32_mask(rtwdev, direct_addr, mask, data);
 660
 661        udelay(1);
 662
 663        if (addr == RF_CFGCH) {
 664                rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, ENABLE_PI);
 665                rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, ENABLE_PI);
 666        }
 667
 668        return true;
 669}
 670
 671bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
 672                              u32 addr, u32 mask, u32 data)
 673{
 674        if (addr != 0x00)
 675                return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
 676
 677        return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
 678}
 679
 680void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
 681{
 682        struct rtw_hal *hal = &rtwdev->hal;
 683        struct rtw_efuse *efuse = &rtwdev->efuse;
 684        struct rtw_phy_cond cond = {0};
 685
 686        cond.cut = hal->cut_version ? hal->cut_version : 15;
 687        cond.pkg = pkg ? pkg : 15;
 688        cond.plat = 0x04;
 689        cond.rfe = efuse->rfe_option;
 690
 691        switch (rtw_hci_type(rtwdev)) {
 692        case RTW_HCI_TYPE_USB:
 693                cond.intf = INTF_USB;
 694                break;
 695        case RTW_HCI_TYPE_SDIO:
 696                cond.intf = INTF_SDIO;
 697                break;
 698        case RTW_HCI_TYPE_PCIE:
 699        default:
 700                cond.intf = INTF_PCIE;
 701                break;
 702        }
 703
 704        hal->phy_cond = cond;
 705
 706        rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
 707}
 708
 709static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
 710{
 711        struct rtw_hal *hal = &rtwdev->hal;
 712        struct rtw_phy_cond drv_cond = hal->phy_cond;
 713
 714        if (cond.cut && cond.cut != drv_cond.cut)
 715                return false;
 716
 717        if (cond.pkg && cond.pkg != drv_cond.pkg)
 718                return false;
 719
 720        if (cond.intf && cond.intf != drv_cond.intf)
 721                return false;
 722
 723        if (cond.rfe != drv_cond.rfe)
 724                return false;
 725
 726        return true;
 727}
 728
 729void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
 730{
 731        const union phy_table_tile *p = tbl->data;
 732        const union phy_table_tile *end = p + tbl->size / 2;
 733        struct rtw_phy_cond pos_cond = {0};
 734        bool is_matched = true, is_skipped = false;
 735
 736        BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
 737
 738        for (; p < end; p++) {
 739                if (p->cond.pos) {
 740                        switch (p->cond.branch) {
 741                        case BRANCH_ENDIF:
 742                                is_matched = true;
 743                                is_skipped = false;
 744                                break;
 745                        case BRANCH_ELSE:
 746                                is_matched = is_skipped ? false : true;
 747                                break;
 748                        case BRANCH_IF:
 749                        case BRANCH_ELIF:
 750                        default:
 751                                pos_cond = p->cond;
 752                                break;
 753                        }
 754                } else if (p->cond.neg) {
 755                        if (!is_skipped) {
 756                                if (check_positive(rtwdev, pos_cond)) {
 757                                        is_matched = true;
 758                                        is_skipped = true;
 759                                } else {
 760                                        is_matched = false;
 761                                        is_skipped = false;
 762                                }
 763                        } else {
 764                                is_matched = false;
 765                        }
 766                } else if (is_matched) {
 767                        (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
 768                }
 769        }
 770}
 771
 772#define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
 773
 774static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
 775{
 776        if (rtwdev->chip->is_pwr_by_rate_dec)
 777                return bcd_to_dec_pwr_by_rate(hex, i);
 778
 779        return (hex >> (i * 8)) & 0xFF;
 780}
 781
 782static void
 783rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
 784                                         u32 addr, u32 mask, u32 val, u8 *rate,
 785                                         u8 *pwr_by_rate, u8 *rate_num)
 786{
 787        int i;
 788
 789        switch (addr) {
 790        case 0xE00:
 791        case 0x830:
 792                rate[0] = DESC_RATE6M;
 793                rate[1] = DESC_RATE9M;
 794                rate[2] = DESC_RATE12M;
 795                rate[3] = DESC_RATE18M;
 796                for (i = 0; i < 4; ++i)
 797                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 798                *rate_num = 4;
 799                break;
 800        case 0xE04:
 801        case 0x834:
 802                rate[0] = DESC_RATE24M;
 803                rate[1] = DESC_RATE36M;
 804                rate[2] = DESC_RATE48M;
 805                rate[3] = DESC_RATE54M;
 806                for (i = 0; i < 4; ++i)
 807                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 808                *rate_num = 4;
 809                break;
 810        case 0xE08:
 811                rate[0] = DESC_RATE1M;
 812                pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
 813                *rate_num = 1;
 814                break;
 815        case 0x86C:
 816                if (mask == 0xffffff00) {
 817                        rate[0] = DESC_RATE2M;
 818                        rate[1] = DESC_RATE5_5M;
 819                        rate[2] = DESC_RATE11M;
 820                        for (i = 1; i < 4; ++i)
 821                                pwr_by_rate[i - 1] =
 822                                        tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 823                        *rate_num = 3;
 824                } else if (mask == 0x000000ff) {
 825                        rate[0] = DESC_RATE11M;
 826                        pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
 827                        *rate_num = 1;
 828                }
 829                break;
 830        case 0xE10:
 831        case 0x83C:
 832                rate[0] = DESC_RATEMCS0;
 833                rate[1] = DESC_RATEMCS1;
 834                rate[2] = DESC_RATEMCS2;
 835                rate[3] = DESC_RATEMCS3;
 836                for (i = 0; i < 4; ++i)
 837                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 838                *rate_num = 4;
 839                break;
 840        case 0xE14:
 841        case 0x848:
 842                rate[0] = DESC_RATEMCS4;
 843                rate[1] = DESC_RATEMCS5;
 844                rate[2] = DESC_RATEMCS6;
 845                rate[3] = DESC_RATEMCS7;
 846                for (i = 0; i < 4; ++i)
 847                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 848                *rate_num = 4;
 849                break;
 850        case 0xE18:
 851        case 0x84C:
 852                rate[0] = DESC_RATEMCS8;
 853                rate[1] = DESC_RATEMCS9;
 854                rate[2] = DESC_RATEMCS10;
 855                rate[3] = DESC_RATEMCS11;
 856                for (i = 0; i < 4; ++i)
 857                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 858                *rate_num = 4;
 859                break;
 860        case 0xE1C:
 861        case 0x868:
 862                rate[0] = DESC_RATEMCS12;
 863                rate[1] = DESC_RATEMCS13;
 864                rate[2] = DESC_RATEMCS14;
 865                rate[3] = DESC_RATEMCS15;
 866                for (i = 0; i < 4; ++i)
 867                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 868                *rate_num = 4;
 869                break;
 870        case 0x838:
 871                rate[0] = DESC_RATE1M;
 872                rate[1] = DESC_RATE2M;
 873                rate[2] = DESC_RATE5_5M;
 874                for (i = 1; i < 4; ++i)
 875                        pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
 876                                                                    val, i);
 877                *rate_num = 3;
 878                break;
 879        case 0xC20:
 880        case 0xE20:
 881        case 0x1820:
 882        case 0x1A20:
 883                rate[0] = DESC_RATE1M;
 884                rate[1] = DESC_RATE2M;
 885                rate[2] = DESC_RATE5_5M;
 886                rate[3] = DESC_RATE11M;
 887                for (i = 0; i < 4; ++i)
 888                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 889                *rate_num = 4;
 890                break;
 891        case 0xC24:
 892        case 0xE24:
 893        case 0x1824:
 894        case 0x1A24:
 895                rate[0] = DESC_RATE6M;
 896                rate[1] = DESC_RATE9M;
 897                rate[2] = DESC_RATE12M;
 898                rate[3] = DESC_RATE18M;
 899                for (i = 0; i < 4; ++i)
 900                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 901                *rate_num = 4;
 902                break;
 903        case 0xC28:
 904        case 0xE28:
 905        case 0x1828:
 906        case 0x1A28:
 907                rate[0] = DESC_RATE24M;
 908                rate[1] = DESC_RATE36M;
 909                rate[2] = DESC_RATE48M;
 910                rate[3] = DESC_RATE54M;
 911                for (i = 0; i < 4; ++i)
 912                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 913                *rate_num = 4;
 914                break;
 915        case 0xC2C:
 916        case 0xE2C:
 917        case 0x182C:
 918        case 0x1A2C:
 919                rate[0] = DESC_RATEMCS0;
 920                rate[1] = DESC_RATEMCS1;
 921                rate[2] = DESC_RATEMCS2;
 922                rate[3] = DESC_RATEMCS3;
 923                for (i = 0; i < 4; ++i)
 924                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 925                *rate_num = 4;
 926                break;
 927        case 0xC30:
 928        case 0xE30:
 929        case 0x1830:
 930        case 0x1A30:
 931                rate[0] = DESC_RATEMCS4;
 932                rate[1] = DESC_RATEMCS5;
 933                rate[2] = DESC_RATEMCS6;
 934                rate[3] = DESC_RATEMCS7;
 935                for (i = 0; i < 4; ++i)
 936                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 937                *rate_num = 4;
 938                break;
 939        case 0xC34:
 940        case 0xE34:
 941        case 0x1834:
 942        case 0x1A34:
 943                rate[0] = DESC_RATEMCS8;
 944                rate[1] = DESC_RATEMCS9;
 945                rate[2] = DESC_RATEMCS10;
 946                rate[3] = DESC_RATEMCS11;
 947                for (i = 0; i < 4; ++i)
 948                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 949                *rate_num = 4;
 950                break;
 951        case 0xC38:
 952        case 0xE38:
 953        case 0x1838:
 954        case 0x1A38:
 955                rate[0] = DESC_RATEMCS12;
 956                rate[1] = DESC_RATEMCS13;
 957                rate[2] = DESC_RATEMCS14;
 958                rate[3] = DESC_RATEMCS15;
 959                for (i = 0; i < 4; ++i)
 960                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 961                *rate_num = 4;
 962                break;
 963        case 0xC3C:
 964        case 0xE3C:
 965        case 0x183C:
 966        case 0x1A3C:
 967                rate[0] = DESC_RATEVHT1SS_MCS0;
 968                rate[1] = DESC_RATEVHT1SS_MCS1;
 969                rate[2] = DESC_RATEVHT1SS_MCS2;
 970                rate[3] = DESC_RATEVHT1SS_MCS3;
 971                for (i = 0; i < 4; ++i)
 972                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 973                *rate_num = 4;
 974                break;
 975        case 0xC40:
 976        case 0xE40:
 977        case 0x1840:
 978        case 0x1A40:
 979                rate[0] = DESC_RATEVHT1SS_MCS4;
 980                rate[1] = DESC_RATEVHT1SS_MCS5;
 981                rate[2] = DESC_RATEVHT1SS_MCS6;
 982                rate[3] = DESC_RATEVHT1SS_MCS7;
 983                for (i = 0; i < 4; ++i)
 984                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 985                *rate_num = 4;
 986                break;
 987        case 0xC44:
 988        case 0xE44:
 989        case 0x1844:
 990        case 0x1A44:
 991                rate[0] = DESC_RATEVHT1SS_MCS8;
 992                rate[1] = DESC_RATEVHT1SS_MCS9;
 993                rate[2] = DESC_RATEVHT2SS_MCS0;
 994                rate[3] = DESC_RATEVHT2SS_MCS1;
 995                for (i = 0; i < 4; ++i)
 996                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
 997                *rate_num = 4;
 998                break;
 999        case 0xC48:
1000        case 0xE48:
1001        case 0x1848:
1002        case 0x1A48:
1003                rate[0] = DESC_RATEVHT2SS_MCS2;
1004                rate[1] = DESC_RATEVHT2SS_MCS3;
1005                rate[2] = DESC_RATEVHT2SS_MCS4;
1006                rate[3] = DESC_RATEVHT2SS_MCS5;
1007                for (i = 0; i < 4; ++i)
1008                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1009                *rate_num = 4;
1010                break;
1011        case 0xC4C:
1012        case 0xE4C:
1013        case 0x184C:
1014        case 0x1A4C:
1015                rate[0] = DESC_RATEVHT2SS_MCS6;
1016                rate[1] = DESC_RATEVHT2SS_MCS7;
1017                rate[2] = DESC_RATEVHT2SS_MCS8;
1018                rate[3] = DESC_RATEVHT2SS_MCS9;
1019                for (i = 0; i < 4; ++i)
1020                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1021                *rate_num = 4;
1022                break;
1023        case 0xCD8:
1024        case 0xED8:
1025        case 0x18D8:
1026        case 0x1AD8:
1027                rate[0] = DESC_RATEMCS16;
1028                rate[1] = DESC_RATEMCS17;
1029                rate[2] = DESC_RATEMCS18;
1030                rate[3] = DESC_RATEMCS19;
1031                for (i = 0; i < 4; ++i)
1032                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1033                *rate_num = 4;
1034                break;
1035        case 0xCDC:
1036        case 0xEDC:
1037        case 0x18DC:
1038        case 0x1ADC:
1039                rate[0] = DESC_RATEMCS20;
1040                rate[1] = DESC_RATEMCS21;
1041                rate[2] = DESC_RATEMCS22;
1042                rate[3] = DESC_RATEMCS23;
1043                for (i = 0; i < 4; ++i)
1044                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1045                *rate_num = 4;
1046                break;
1047        case 0xCE0:
1048        case 0xEE0:
1049        case 0x18E0:
1050        case 0x1AE0:
1051                rate[0] = DESC_RATEVHT3SS_MCS0;
1052                rate[1] = DESC_RATEVHT3SS_MCS1;
1053                rate[2] = DESC_RATEVHT3SS_MCS2;
1054                rate[3] = DESC_RATEVHT3SS_MCS3;
1055                for (i = 0; i < 4; ++i)
1056                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1057                *rate_num = 4;
1058                break;
1059        case 0xCE4:
1060        case 0xEE4:
1061        case 0x18E4:
1062        case 0x1AE4:
1063                rate[0] = DESC_RATEVHT3SS_MCS4;
1064                rate[1] = DESC_RATEVHT3SS_MCS5;
1065                rate[2] = DESC_RATEVHT3SS_MCS6;
1066                rate[3] = DESC_RATEVHT3SS_MCS7;
1067                for (i = 0; i < 4; ++i)
1068                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1069                *rate_num = 4;
1070                break;
1071        case 0xCE8:
1072        case 0xEE8:
1073        case 0x18E8:
1074        case 0x1AE8:
1075                rate[0] = DESC_RATEVHT3SS_MCS8;
1076                rate[1] = DESC_RATEVHT3SS_MCS9;
1077                for (i = 0; i < 2; ++i)
1078                        pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1079                *rate_num = 2;
1080                break;
1081        default:
1082                rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1083                break;
1084        }
1085}
1086
1087static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1088                                           u32 band, u32 rfpath, u32 txnum,
1089                                           u32 regaddr, u32 bitmask, u32 data)
1090{
1091        struct rtw_hal *hal = &rtwdev->hal;
1092        u8 rate_num = 0;
1093        u8 rate;
1094        u8 rates[RTW_RF_PATH_MAX] = {0};
1095        s8 offset;
1096        s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1097        int i;
1098
1099        rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1100                                                 rates, pwr_by_rate, &rate_num);
1101
1102        if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1103                    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1104                    rate_num > RTW_RF_PATH_MAX))
1105                return;
1106
1107        for (i = 0; i < rate_num; i++) {
1108                offset = pwr_by_rate[i];
1109                rate = rates[i];
1110                if (band == PHY_BAND_2G)
1111                        hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1112                else if (band == PHY_BAND_5G)
1113                        hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1114                else
1115                        continue;
1116        }
1117}
1118
1119void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1120{
1121        const struct phy_pg_cfg_pair *p = tbl->data;
1122        const struct phy_pg_cfg_pair *end = p + tbl->size / 6;
1123
1124        BUILD_BUG_ON(sizeof(struct phy_pg_cfg_pair) != sizeof(u32) * 6);
1125
1126        for (; p < end; p++) {
1127                if (p->addr == 0xfe || p->addr == 0xffe) {
1128                        msleep(50);
1129                        continue;
1130                }
1131                rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1132                                               p->tx_num, p->addr, p->bitmask,
1133                                               p->data);
1134        }
1135}
1136
1137static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1138        36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1139        52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1140        100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1141        116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1142        132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1143        149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1144        165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1145
1146static int rtw_channel_to_idx(u8 band, u8 channel)
1147{
1148        int ch_idx;
1149        u8 n_channel;
1150
1151        if (band == PHY_BAND_2G) {
1152                ch_idx = channel - 1;
1153                n_channel = RTW_MAX_CHANNEL_NUM_2G;
1154        } else if (band == PHY_BAND_5G) {
1155                n_channel = RTW_MAX_CHANNEL_NUM_5G;
1156                for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1157                        if (rtw_channel_idx_5g[ch_idx] == channel)
1158                                break;
1159        } else {
1160                return -1;
1161        }
1162
1163        if (ch_idx >= n_channel)
1164                return -1;
1165
1166        return ch_idx;
1167}
1168
1169static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1170                                       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1171{
1172        struct rtw_hal *hal = &rtwdev->hal;
1173        u8 max_power_index = rtwdev->chip->max_power_index;
1174        s8 ww;
1175        int ch_idx;
1176
1177        pwr_limit = clamp_t(s8, pwr_limit,
1178                            -max_power_index, max_power_index);
1179        ch_idx = rtw_channel_to_idx(band, ch);
1180
1181        if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1182            rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1183                WARN(1,
1184                     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1185                     regd, band, bw, rs, ch_idx, pwr_limit);
1186                return;
1187        }
1188
1189        if (band == PHY_BAND_2G) {
1190                hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1191                ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1192                ww = min_t(s8, ww, pwr_limit);
1193                hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1194        } else if (band == PHY_BAND_5G) {
1195                hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1196                ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1197                ww = min_t(s8, ww, pwr_limit);
1198                hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1199        }
1200}
1201
1202/* cross-reference 5G power limits if values are not assigned */
1203static void
1204rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1205                      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1206{
1207        struct rtw_hal *hal = &rtwdev->hal;
1208        u8 max_power_index = rtwdev->chip->max_power_index;
1209        s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1210        s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1211
1212        if (lmt_ht == lmt_vht)
1213                return;
1214
1215        if (lmt_ht == max_power_index)
1216                hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1217
1218        else if (lmt_vht == max_power_index)
1219                hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1220}
1221
1222/* cross-reference power limits for ht and vht */
1223static void
1224rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1225{
1226        u8 rs_idx, rs_ht, rs_vht;
1227        u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1228                           {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1229
1230        for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1231                rs_ht = rs_cmp[rs_idx][0];
1232                rs_vht = rs_cmp[rs_idx][1];
1233
1234                rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1235        }
1236}
1237
1238/* cross-reference power limits for 5G channels */
1239static void
1240rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1241{
1242        u8 ch_idx;
1243
1244        for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1245                rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1246}
1247
1248/* cross-reference power limits for 20/40M bandwidth */
1249static void
1250rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1251{
1252        u8 bw;
1253
1254        for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1255                rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1256}
1257
1258/* cross-reference power limits */
1259static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1260{
1261        u8 regd;
1262
1263        for (regd = 0; regd < RTW_REGD_MAX; regd++)
1264                rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1265}
1266
1267void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1268                             const struct rtw_table *tbl)
1269{
1270        const struct txpwr_lmt_cfg_pair *p = tbl->data;
1271        const struct txpwr_lmt_cfg_pair *end = p + tbl->size / 6;
1272
1273        BUILD_BUG_ON(sizeof(struct txpwr_lmt_cfg_pair) != sizeof(u8) * 6);
1274
1275        for (; p < end; p++) {
1276                rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1277                                           p->bw, p->rs, p->ch, p->txpwr_lmt);
1278        }
1279
1280        rtw_xref_txpwr_lmt(rtwdev);
1281}
1282
1283void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1284                     u32 addr, u32 data)
1285{
1286        rtw_write8(rtwdev, addr, data);
1287}
1288
1289void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1290                     u32 addr, u32 data)
1291{
1292        rtw_write32(rtwdev, addr, data);
1293}
1294
1295void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1296                    u32 addr, u32 data)
1297{
1298        if (addr == 0xfe)
1299                msleep(50);
1300        else if (addr == 0xfd)
1301                mdelay(5);
1302        else if (addr == 0xfc)
1303                mdelay(1);
1304        else if (addr == 0xfb)
1305                usleep_range(50, 60);
1306        else if (addr == 0xfa)
1307                udelay(5);
1308        else if (addr == 0xf9)
1309                udelay(1);
1310        else
1311                rtw_write32(rtwdev, addr, data);
1312}
1313
1314void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1315                    u32 addr, u32 data)
1316{
1317        if (addr == 0xffe) {
1318                msleep(50);
1319        } else if (addr == 0xfe) {
1320                usleep_range(100, 110);
1321        } else {
1322                rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1323                udelay(1);
1324        }
1325}
1326
1327static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1328{
1329        struct rtw_chip_info *chip = rtwdev->chip;
1330
1331        if (!chip->rfk_init_tbl)
1332                return;
1333
1334        rtw_load_table(rtwdev, chip->rfk_init_tbl);
1335}
1336
1337void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1338{
1339        struct rtw_chip_info *chip = rtwdev->chip;
1340        u8 rf_path;
1341
1342        rtw_load_table(rtwdev, chip->mac_tbl);
1343        rtw_load_table(rtwdev, chip->bb_tbl);
1344        rtw_load_table(rtwdev, chip->agc_tbl);
1345        rtw_load_rfk_table(rtwdev);
1346
1347        for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1348                const struct rtw_table *tbl;
1349
1350                tbl = chip->rf_tbl[rf_path];
1351                rtw_load_table(rtwdev, tbl);
1352        }
1353}
1354
1355static u8 rtw_get_channel_group(u8 channel)
1356{
1357        switch (channel) {
1358        default:
1359                WARN_ON(1);
1360                /* fall through */
1361        case 1:
1362        case 2:
1363        case 36:
1364        case 38:
1365        case 40:
1366        case 42:
1367                return 0;
1368        case 3:
1369        case 4:
1370        case 5:
1371        case 44:
1372        case 46:
1373        case 48:
1374        case 50:
1375                return 1;
1376        case 6:
1377        case 7:
1378        case 8:
1379        case 52:
1380        case 54:
1381        case 56:
1382        case 58:
1383                return 2;
1384        case 9:
1385        case 10:
1386        case 11:
1387        case 60:
1388        case 62:
1389        case 64:
1390                return 3;
1391        case 12:
1392        case 13:
1393        case 100:
1394        case 102:
1395        case 104:
1396        case 106:
1397                return 4;
1398        case 14:
1399        case 108:
1400        case 110:
1401        case 112:
1402        case 114:
1403                return 5;
1404        case 116:
1405        case 118:
1406        case 120:
1407        case 122:
1408                return 6;
1409        case 124:
1410        case 126:
1411        case 128:
1412        case 130:
1413                return 7;
1414        case 132:
1415        case 134:
1416        case 136:
1417        case 138:
1418                return 8;
1419        case 140:
1420        case 142:
1421        case 144:
1422                return 9;
1423        case 149:
1424        case 151:
1425        case 153:
1426        case 155:
1427                return 10;
1428        case 157:
1429        case 159:
1430        case 161:
1431                return 11;
1432        case 165:
1433        case 167:
1434        case 169:
1435        case 171:
1436                return 12;
1437        case 173:
1438        case 175:
1439        case 177:
1440                return 13;
1441        }
1442}
1443
1444static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1445                                        struct rtw_2g_txpwr_idx *pwr_idx_2g,
1446                                        enum rtw_bandwidth bandwidth,
1447                                        u8 rate, u8 group)
1448{
1449        struct rtw_chip_info *chip = rtwdev->chip;
1450        u8 tx_power;
1451        bool mcs_rate;
1452        bool above_2ss;
1453        u8 factor = chip->txgi_factor;
1454
1455        if (rate <= DESC_RATE11M)
1456                tx_power = pwr_idx_2g->cck_base[group];
1457        else
1458                tx_power = pwr_idx_2g->bw40_base[group];
1459
1460        if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1461                tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1462
1463        mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1464                   (rate >= DESC_RATEVHT1SS_MCS0 &&
1465                    rate <= DESC_RATEVHT2SS_MCS9);
1466        above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1467                    (rate >= DESC_RATEVHT2SS_MCS0);
1468
1469        if (!mcs_rate)
1470                return tx_power;
1471
1472        switch (bandwidth) {
1473        default:
1474                WARN_ON(1);
1475                /* fall through */
1476        case RTW_CHANNEL_WIDTH_20:
1477                tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1478                if (above_2ss)
1479                        tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1480                break;
1481        case RTW_CHANNEL_WIDTH_40:
1482                /* bw40 is the base power */
1483                if (above_2ss)
1484                        tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1485                break;
1486        }
1487
1488        return tx_power;
1489}
1490
1491static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1492                                        struct rtw_5g_txpwr_idx *pwr_idx_5g,
1493                                        enum rtw_bandwidth bandwidth,
1494                                        u8 rate, u8 group)
1495{
1496        struct rtw_chip_info *chip = rtwdev->chip;
1497        u8 tx_power;
1498        u8 upper, lower;
1499        bool mcs_rate;
1500        bool above_2ss;
1501        u8 factor = chip->txgi_factor;
1502
1503        tx_power = pwr_idx_5g->bw40_base[group];
1504
1505        mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1506                   (rate >= DESC_RATEVHT1SS_MCS0 &&
1507                    rate <= DESC_RATEVHT2SS_MCS9);
1508        above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1509                    (rate >= DESC_RATEVHT2SS_MCS0);
1510
1511        if (!mcs_rate) {
1512                tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1513                return tx_power;
1514        }
1515
1516        switch (bandwidth) {
1517        default:
1518                WARN_ON(1);
1519                /* fall through */
1520        case RTW_CHANNEL_WIDTH_20:
1521                tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1522                if (above_2ss)
1523                        tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1524                break;
1525        case RTW_CHANNEL_WIDTH_40:
1526                /* bw40 is the base power */
1527                if (above_2ss)
1528                        tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1529                break;
1530        case RTW_CHANNEL_WIDTH_80:
1531                /* the base idx of bw80 is the average of bw40+/bw40- */
1532                lower = pwr_idx_5g->bw40_base[group];
1533                upper = pwr_idx_5g->bw40_base[group + 1];
1534
1535                tx_power = (lower + upper) / 2;
1536                tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1537                if (above_2ss)
1538                        tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1539                break;
1540        }
1541
1542        return tx_power;
1543}
1544
1545static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1546                                     enum rtw_bandwidth bw, u8 rf_path,
1547                                     u8 rate, u8 channel, u8 regd)
1548{
1549        struct rtw_hal *hal = &rtwdev->hal;
1550        u8 *cch_by_bw = hal->cch_by_bw;
1551        s8 power_limit = (s8)rtwdev->chip->max_power_index;
1552        u8 rs;
1553        int ch_idx;
1554        u8 cur_bw, cur_ch;
1555        s8 cur_lmt;
1556
1557        if (regd > RTW_REGD_WW)
1558                return power_limit;
1559
1560        if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1561                rs = RTW_RATE_SECTION_CCK;
1562        else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1563                rs = RTW_RATE_SECTION_OFDM;
1564        else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1565                rs = RTW_RATE_SECTION_HT_1S;
1566        else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1567                rs = RTW_RATE_SECTION_HT_2S;
1568        else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1569                rs = RTW_RATE_SECTION_VHT_1S;
1570        else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1571                rs = RTW_RATE_SECTION_VHT_2S;
1572        else
1573                goto err;
1574
1575        /* only 20M BW with cck and ofdm */
1576        if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1577                bw = RTW_CHANNEL_WIDTH_20;
1578
1579        /* only 20/40M BW with ht */
1580        if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1581                bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1582
1583        /* select min power limit among [20M BW ~ current BW] */
1584        for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1585                cur_ch = cch_by_bw[cur_bw];
1586
1587                ch_idx = rtw_channel_to_idx(band, cur_ch);
1588                if (ch_idx < 0)
1589                        goto err;
1590
1591                cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1592                        hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1593                        hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1594
1595                power_limit = min_t(s8, cur_lmt, power_limit);
1596        }
1597
1598        return power_limit;
1599
1600err:
1601        WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1602             band, bw, rf_path, rate, channel);
1603        return (s8)rtwdev->chip->max_power_index;
1604}
1605
1606void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1607                             u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1608{
1609        struct rtw_hal *hal = &rtwdev->hal;
1610        struct rtw_txpwr_idx *pwr_idx;
1611        u8 group, band;
1612        u8 *base = &pwr_param->pwr_base;
1613        s8 *offset = &pwr_param->pwr_offset;
1614        s8 *limit = &pwr_param->pwr_limit;
1615
1616        pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1617        group = rtw_get_channel_group(ch);
1618
1619        /* base power index for 2.4G/5G */
1620        if (ch <= 14) {
1621                band = PHY_BAND_2G;
1622                *base = rtw_phy_get_2g_tx_power_index(rtwdev,
1623                                                      &pwr_idx->pwr_idx_2g,
1624                                                      bw, rate, group);
1625                *offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1626        } else {
1627                band = PHY_BAND_5G;
1628                *base = rtw_phy_get_5g_tx_power_index(rtwdev,
1629                                                      &pwr_idx->pwr_idx_5g,
1630                                                      bw, rate, group);
1631                *offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1632        }
1633
1634        *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1635                                            rate, ch, regd);
1636}
1637
1638u8
1639rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1640                           enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1641{
1642        struct rtw_power_params pwr_param = {0};
1643        u8 tx_power;
1644        s8 offset;
1645
1646        rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1647                                channel, regd, &pwr_param);
1648
1649        tx_power = pwr_param.pwr_base;
1650        offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1651
1652        tx_power += offset;
1653
1654        if (tx_power > rtwdev->chip->max_power_index)
1655                tx_power = rtwdev->chip->max_power_index;
1656
1657        return tx_power;
1658}
1659
1660static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1661                                             u8 ch, u8 path, u8 rs)
1662{
1663        struct rtw_hal *hal = &rtwdev->hal;
1664        u8 regd = rtwdev->regd.txpwr_regd;
1665        u8 *rates;
1666        u8 size;
1667        u8 rate;
1668        u8 pwr_idx;
1669        u8 bw;
1670        int i;
1671
1672        if (rs >= RTW_RATE_SECTION_MAX)
1673                return;
1674
1675        rates = rtw_rate_section[rs];
1676        size = rtw_rate_size[rs];
1677        bw = hal->current_band_width;
1678        for (i = 0; i < size; i++) {
1679                rate = rates[i];
1680                pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1681                                                     bw, ch, regd);
1682                hal->tx_pwr_tbl[path][rate] = pwr_idx;
1683        }
1684}
1685
1686/* set tx power level by path for each rates, note that the order of the rates
1687 * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1688 * power index into a four-byte power index register, and calls set_tx_agc to
1689 * write these values into hardware
1690 */
1691static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1692                                               u8 ch, u8 path)
1693{
1694        struct rtw_hal *hal = &rtwdev->hal;
1695        u8 rs;
1696
1697        /* do not need cck rates if we are not in 2.4G */
1698        if (hal->current_band_type == RTW_BAND_2G)
1699                rs = RTW_RATE_SECTION_CCK;
1700        else
1701                rs = RTW_RATE_SECTION_OFDM;
1702
1703        for (; rs < RTW_RATE_SECTION_MAX; rs++)
1704                rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1705}
1706
1707void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1708{
1709        struct rtw_chip_info *chip = rtwdev->chip;
1710        struct rtw_hal *hal = &rtwdev->hal;
1711        u8 path;
1712
1713        mutex_lock(&hal->tx_power_mutex);
1714
1715        for (path = 0; path < hal->rf_path_num; path++)
1716                rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1717
1718        chip->ops->set_tx_power_index(rtwdev);
1719        mutex_unlock(&hal->tx_power_mutex);
1720}
1721
1722static void
1723rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1724                                        u8 rs, u8 size, u8 *rates)
1725{
1726        u8 rate;
1727        u8 base_idx, rate_idx;
1728        s8 base_2g, base_5g;
1729
1730        if (rs >= RTW_RATE_SECTION_VHT_1S)
1731                base_idx = rates[size - 3];
1732        else
1733                base_idx = rates[size - 1];
1734        base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1735        base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1736        hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1737        hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1738        for (rate = 0; rate < size; rate++) {
1739                rate_idx = rates[rate];
1740                hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1741                hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1742        }
1743}
1744
1745void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1746{
1747        u8 path;
1748
1749        for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1750                rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1751                                RTW_RATE_SECTION_CCK,
1752                                rtw_cck_size, rtw_cck_rates);
1753                rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1754                                RTW_RATE_SECTION_OFDM,
1755                                rtw_ofdm_size, rtw_ofdm_rates);
1756                rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1757                                RTW_RATE_SECTION_HT_1S,
1758                                rtw_ht_1s_size, rtw_ht_1s_rates);
1759                rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1760                                RTW_RATE_SECTION_HT_2S,
1761                                rtw_ht_2s_size, rtw_ht_2s_rates);
1762                rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1763                                RTW_RATE_SECTION_VHT_1S,
1764                                rtw_vht_1s_size, rtw_vht_1s_rates);
1765                rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1766                                RTW_RATE_SECTION_VHT_2S,
1767                                rtw_vht_2s_size, rtw_vht_2s_rates);
1768        }
1769}
1770
1771static void
1772__rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1773{
1774        s8 base;
1775        u8 ch;
1776
1777        for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1778                base = hal->tx_pwr_by_rate_base_2g[0][rs];
1779                hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1780        }
1781
1782        for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1783                base = hal->tx_pwr_by_rate_base_5g[0][rs];
1784                hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1785        }
1786}
1787
1788void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1789{
1790        u8 regd, bw, rs;
1791
1792        /* default at channel 1 */
1793        hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
1794
1795        for (regd = 0; regd < RTW_REGD_MAX; regd++)
1796                for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1797                        for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1798                                __rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
1799}
1800
1801static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
1802                                        u8 regd, u8 bw, u8 rs)
1803{
1804        struct rtw_hal *hal = &rtwdev->hal;
1805        s8 max_power_index = (s8)rtwdev->chip->max_power_index;
1806        u8 ch;
1807
1808        /* 2.4G channels */
1809        for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1810                hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
1811
1812        /* 5G channels */
1813        for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1814                hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
1815}
1816
1817void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
1818{
1819        struct rtw_hal *hal = &rtwdev->hal;
1820        u8 regd, path, rate, rs, bw;
1821
1822        /* init tx power by rate offset */
1823        for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1824                for (rate = 0; rate < DESC_RATE_MAX; rate++) {
1825                        hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
1826                        hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
1827                }
1828        }
1829
1830        /* init tx power limit */
1831        for (regd = 0; regd < RTW_REGD_MAX; regd++)
1832                for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1833                        for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1834                                rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
1835                                                            rs);
1836}
1837