linux/drivers/net/wireless/rsi/rsi_91x_mgmt.c
<<
>>
Prefs
   1/**
   2 * Copyright (c) 2014 Redpine Signals Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/etherdevice.h>
  18#include <linux/timer.h>
  19#include "rsi_mgmt.h"
  20#include "rsi_common.h"
  21#include "rsi_ps.h"
  22#include "rsi_hal.h"
  23
  24static struct bootup_params boot_params_20 = {
  25        .magic_number = cpu_to_le16(0x5aa5),
  26        .crystal_good_time = 0x0,
  27        .valid = cpu_to_le32(VALID_20),
  28        .reserved_for_valids = 0x0,
  29        .bootup_mode_info = 0x0,
  30        .digital_loop_back_params = 0x0,
  31        .rtls_timestamp_en = 0x0,
  32        .host_spi_intr_cfg = 0x0,
  33        .device_clk_info = {{
  34                .pll_config_g = {
  35                        .tapll_info_g = {
  36                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
  37                                              (TA_PLL_M_VAL_20)),
  38                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
  39                        },
  40                        .pll960_info_g = {
  41                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
  42                                                         (PLL960_N_VAL_20)),
  43                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
  44                                .pll_reg_3 = 0x0,
  45                        },
  46                        .afepll_info_g = {
  47                                .pll_reg = cpu_to_le16(0x9f0),
  48                        }
  49                },
  50                .switch_clk_g = {
  51                        .switch_clk_info = cpu_to_le16(0xb),
  52                        .bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
  53                        .umac_clock_reg_config = cpu_to_le16(0x48),
  54                        .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
  55                }
  56        },
  57        {
  58                .pll_config_g = {
  59                        .tapll_info_g = {
  60                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
  61                                                         (TA_PLL_M_VAL_20)),
  62                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
  63                        },
  64                        .pll960_info_g = {
  65                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
  66                                                         (PLL960_N_VAL_20)),
  67                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
  68                                .pll_reg_3 = 0x0,
  69                        },
  70                        .afepll_info_g = {
  71                                .pll_reg = cpu_to_le16(0x9f0),
  72                        }
  73                },
  74                .switch_clk_g = {
  75                        .switch_clk_info = 0x0,
  76                        .bbp_lmac_clk_reg_val = 0x0,
  77                        .umac_clock_reg_config = 0x0,
  78                        .qspi_uart_clock_reg_config = 0x0
  79                }
  80        },
  81        {
  82                .pll_config_g = {
  83                        .tapll_info_g = {
  84                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
  85                                                         (TA_PLL_M_VAL_20)),
  86                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
  87                        },
  88                        .pll960_info_g = {
  89                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
  90                                                         (PLL960_N_VAL_20)),
  91                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
  92                                .pll_reg_3 = 0x0,
  93                        },
  94                        .afepll_info_g = {
  95                                .pll_reg = cpu_to_le16(0x9f0),
  96                        }
  97                },
  98                .switch_clk_g = {
  99                        .switch_clk_info = 0x0,
 100                        .bbp_lmac_clk_reg_val = 0x0,
 101                        .umac_clock_reg_config = 0x0,
 102                        .qspi_uart_clock_reg_config = 0x0
 103                }
 104        } },
 105        .buckboost_wakeup_cnt = 0x0,
 106        .pmu_wakeup_wait = 0x0,
 107        .shutdown_wait_time = 0x0,
 108        .pmu_slp_clkout_sel = 0x0,
 109        .wdt_prog_value = 0x0,
 110        .wdt_soc_rst_delay = 0x0,
 111        .dcdc_operation_mode = 0x0,
 112        .soc_reset_wait_cnt = 0x0,
 113        .waiting_time_at_fresh_sleep = 0x0,
 114        .max_threshold_to_avoid_sleep = 0x0,
 115        .beacon_resedue_alg_en = 0,
 116};
 117
 118static struct bootup_params boot_params_40 = {
 119        .magic_number = cpu_to_le16(0x5aa5),
 120        .crystal_good_time = 0x0,
 121        .valid = cpu_to_le32(VALID_40),
 122        .reserved_for_valids = 0x0,
 123        .bootup_mode_info = 0x0,
 124        .digital_loop_back_params = 0x0,
 125        .rtls_timestamp_en = 0x0,
 126        .host_spi_intr_cfg = 0x0,
 127        .device_clk_info = {{
 128                .pll_config_g = {
 129                        .tapll_info_g = {
 130                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
 131                                                         (TA_PLL_M_VAL_40)),
 132                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
 133                        },
 134                        .pll960_info_g = {
 135                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
 136                                                         (PLL960_N_VAL_40)),
 137                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
 138                                .pll_reg_3 = 0x0,
 139                        },
 140                        .afepll_info_g = {
 141                                .pll_reg = cpu_to_le16(0x9f0),
 142                        }
 143                },
 144                .switch_clk_g = {
 145                        .switch_clk_info = cpu_to_le16(0x09),
 146                        .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
 147                        .umac_clock_reg_config = cpu_to_le16(0x48),
 148                        .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
 149                }
 150        },
 151        {
 152                .pll_config_g = {
 153                        .tapll_info_g = {
 154                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
 155                                                         (TA_PLL_M_VAL_40)),
 156                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
 157                        },
 158                        .pll960_info_g = {
 159                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
 160                                                         (PLL960_N_VAL_40)),
 161                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
 162                                .pll_reg_3 = 0x0,
 163                        },
 164                        .afepll_info_g = {
 165                                .pll_reg = cpu_to_le16(0x9f0),
 166                        }
 167                },
 168                .switch_clk_g = {
 169                        .switch_clk_info = 0x0,
 170                        .bbp_lmac_clk_reg_val = 0x0,
 171                        .umac_clock_reg_config = 0x0,
 172                        .qspi_uart_clock_reg_config = 0x0
 173                }
 174        },
 175        {
 176                .pll_config_g = {
 177                        .tapll_info_g = {
 178                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
 179                                                         (TA_PLL_M_VAL_40)),
 180                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
 181                        },
 182                        .pll960_info_g = {
 183                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
 184                                                         (PLL960_N_VAL_40)),
 185                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
 186                                .pll_reg_3 = 0x0,
 187                        },
 188                        .afepll_info_g = {
 189                                .pll_reg = cpu_to_le16(0x9f0),
 190                        }
 191                },
 192                .switch_clk_g = {
 193                        .switch_clk_info = 0x0,
 194                        .bbp_lmac_clk_reg_val = 0x0,
 195                        .umac_clock_reg_config = 0x0,
 196                        .qspi_uart_clock_reg_config = 0x0
 197                }
 198        } },
 199        .buckboost_wakeup_cnt = 0x0,
 200        .pmu_wakeup_wait = 0x0,
 201        .shutdown_wait_time = 0x0,
 202        .pmu_slp_clkout_sel = 0x0,
 203        .wdt_prog_value = 0x0,
 204        .wdt_soc_rst_delay = 0x0,
 205        .dcdc_operation_mode = 0x0,
 206        .soc_reset_wait_cnt = 0x0,
 207        .waiting_time_at_fresh_sleep = 0x0,
 208        .max_threshold_to_avoid_sleep = 0x0,
 209        .beacon_resedue_alg_en = 0,
 210};
 211
 212static struct bootup_params_9116 boot_params_9116_20 = {
 213        .magic_number = cpu_to_le16(LOADED_TOKEN),
 214        .valid = cpu_to_le32(VALID_20),
 215        .device_clk_info_9116 = {{
 216                .pll_config_9116_g = {
 217                        .pll_ctrl_set_reg = cpu_to_le16(0xd518),
 218                        .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
 219                        .pll_modem_conig_reg = cpu_to_le16(0x2000),
 220                        .soc_clk_config_reg = cpu_to_le16(0x0c18),
 221                        .adc_dac_strm1_config_reg = cpu_to_le16(0x1100),
 222                        .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
 223                },
 224                .switch_clk_9116_g = {
 225                        .switch_clk_info =
 226                                cpu_to_le32((RSI_SWITCH_TASS_CLK |
 227                                            RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
 228                                            RSI_SWITCH_BBP_LMAC_CLK_REG)),
 229                        .tass_clock_reg = cpu_to_le32(0x083C0503),
 230                        .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001),
 231                        .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001),
 232                        .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
 233                }
 234        },
 235        },
 236};
 237
 238static struct bootup_params_9116 boot_params_9116_40 = {
 239        .magic_number = cpu_to_le16(LOADED_TOKEN),
 240        .valid = cpu_to_le32(VALID_40),
 241        .device_clk_info_9116 = {{
 242                .pll_config_9116_g = {
 243                        .pll_ctrl_set_reg = cpu_to_le16(0xd518),
 244                        .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
 245                        .pll_modem_conig_reg = cpu_to_le16(0x3000),
 246                        .soc_clk_config_reg = cpu_to_le16(0x0c18),
 247                        .adc_dac_strm1_config_reg = cpu_to_le16(0x0000),
 248                        .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
 249                },
 250                .switch_clk_9116_g = {
 251                        .switch_clk_info =
 252                                cpu_to_le32((RSI_SWITCH_TASS_CLK |
 253                                            RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
 254                                            RSI_SWITCH_BBP_LMAC_CLK_REG |
 255                                            RSI_MODEM_CLK_160MHZ)),
 256                        .tass_clock_reg = cpu_to_le32(0x083C0503),
 257                        .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002),
 258                        .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002),
 259                        .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
 260                }
 261        },
 262        },
 263};
 264
 265static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
 266
 267/**
 268 * rsi_set_default_parameters() - This function sets default parameters.
 269 * @common: Pointer to the driver private structure.
 270 *
 271 * Return: none
 272 */
 273static void rsi_set_default_parameters(struct rsi_common *common)
 274{
 275        common->band = NL80211_BAND_2GHZ;
 276        common->channel_width = BW_20MHZ;
 277        common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
 278        common->channel = 1;
 279        common->min_rate = 0xffff;
 280        common->fsm_state = FSM_CARD_NOT_READY;
 281        common->iface_down = true;
 282        common->endpoint = EP_2GHZ_20MHZ;
 283        common->driver_mode = 1; /* End to end mode */
 284        common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
 285        common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
 286        common->rf_power_val = 0; /* Default 1.9V */
 287        common->wlan_rf_power_mode = 0;
 288        common->obm_ant_sel_val = 2;
 289        common->beacon_interval = RSI_BEACON_INTERVAL;
 290        common->dtim_cnt = RSI_DTIM_COUNT;
 291        common->w9116_features.pll_mode = 0x0;
 292        common->w9116_features.rf_type = 1;
 293        common->w9116_features.wireless_mode = 0;
 294        common->w9116_features.enable_ppe = 0;
 295        common->w9116_features.afe_type = 1;
 296        common->w9116_features.dpd = 0;
 297        common->w9116_features.sifs_tx_enable = 0;
 298        common->w9116_features.ps_options = 0;
 299}
 300
 301void init_bgscan_params(struct rsi_common *common)
 302{
 303        memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params));
 304        common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD;
 305        common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD;
 306        common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY;
 307        common->bgscan.num_bgscan_channels = 0;
 308        common->bgscan.two_probe = 1;
 309        common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME;
 310        common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME;
 311}
 312
 313/**
 314 * rsi_set_contention_vals() - This function sets the contention values for the
 315 *                             backoff procedure.
 316 * @common: Pointer to the driver private structure.
 317 *
 318 * Return: None.
 319 */
 320static void rsi_set_contention_vals(struct rsi_common *common)
 321{
 322        u8 ii = 0;
 323
 324        for (; ii < NUM_EDCA_QUEUES; ii++) {
 325                common->tx_qinfo[ii].wme_params =
 326                        (((common->edca_params[ii].cw_min / 2) +
 327                          (common->edca_params[ii].aifs)) *
 328                          WMM_SHORT_SLOT_TIME + SIFS_DURATION);
 329                common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
 330                common->tx_qinfo[ii].pkt_contended = 0;
 331        }
 332}
 333
 334/**
 335 * rsi_send_internal_mgmt_frame() - This function sends management frames to
 336 *                                  firmware.Also schedules packet to queue
 337 *                                  for transmission.
 338 * @common: Pointer to the driver private structure.
 339 * @skb: Pointer to the socket buffer structure.
 340 *
 341 * Return: 0 on success, -1 on failure.
 342 */
 343static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
 344                                        struct sk_buff *skb)
 345{
 346        struct skb_info *tx_params;
 347        struct rsi_cmd_desc *desc;
 348
 349        if (skb == NULL) {
 350                rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
 351                return -ENOMEM;
 352        }
 353        desc = (struct rsi_cmd_desc *)skb->data;
 354        desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
 355        skb->priority = MGMT_SOFT_Q;
 356        tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
 357        tx_params->flags |= INTERNAL_MGMT_PKT;
 358        skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
 359        rsi_set_event(&common->tx_thread.event);
 360        return 0;
 361}
 362
 363/**
 364 * rsi_load_radio_caps() - This function is used to send radio capabilities
 365 *                         values to firmware.
 366 * @common: Pointer to the driver private structure.
 367 *
 368 * Return: 0 on success, corresponding negative error code on failure.
 369 */
 370static int rsi_load_radio_caps(struct rsi_common *common)
 371{
 372        struct rsi_radio_caps *radio_caps;
 373        struct rsi_hw *adapter = common->priv;
 374        u16 inx = 0;
 375        u8 ii;
 376        u8 radio_id = 0;
 377        u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
 378                      0xf0, 0xf0, 0xf0, 0xf0,
 379                      0xf0, 0xf0, 0xf0, 0xf0,
 380                      0xf0, 0xf0, 0xf0, 0xf0,
 381                      0xf0, 0xf0, 0xf0, 0xf0};
 382        struct sk_buff *skb;
 383        u16 frame_len = sizeof(struct rsi_radio_caps);
 384
 385        rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
 386
 387        skb = dev_alloc_skb(frame_len);
 388
 389        if (!skb) {
 390                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 391                        __func__);
 392                return -ENOMEM;
 393        }
 394
 395        memset(skb->data, 0, frame_len);
 396        radio_caps = (struct rsi_radio_caps *)skb->data;
 397
 398        radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
 399        radio_caps->channel_num = common->channel;
 400        radio_caps->rf_model = RSI_RF_TYPE;
 401
 402        radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
 403        if (common->channel_width == BW_40MHZ) {
 404                radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
 405
 406                if (common->fsm_state == FSM_MAC_INIT_DONE) {
 407                        struct ieee80211_hw *hw = adapter->hw;
 408                        struct ieee80211_conf *conf = &hw->conf;
 409
 410                        if (conf_is_ht40_plus(conf)) {
 411                                radio_caps->ppe_ack_rate =
 412                                        cpu_to_le16(LOWER_20_ENABLE |
 413                                                    (LOWER_20_ENABLE >> 12));
 414                        } else if (conf_is_ht40_minus(conf)) {
 415                                radio_caps->ppe_ack_rate =
 416                                        cpu_to_le16(UPPER_20_ENABLE |
 417                                                    (UPPER_20_ENABLE >> 12));
 418                        } else {
 419                                radio_caps->ppe_ack_rate =
 420                                        cpu_to_le16((BW_40MHZ << 12) |
 421                                                    FULL40M_ENABLE);
 422                        }
 423                }
 424        }
 425        radio_caps->radio_info |= radio_id;
 426
 427        if (adapter->device_model == RSI_DEV_9116 &&
 428            common->channel_width == BW_20MHZ)
 429                radio_caps->radio_cfg_info &= ~0x3;
 430
 431        radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
 432        radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
 433        radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
 434        radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
 435        radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
 436        radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
 437
 438        for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
 439                radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
 440                radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
 441                radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
 442                radio_caps->qos_params[ii].txop_q = 0;
 443        }
 444
 445        for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
 446                if (common->edca_params[ii].cw_max > 0) {
 447                        radio_caps->qos_params[ii].cont_win_min_q =
 448                                cpu_to_le16(common->edca_params[ii].cw_min);
 449                        radio_caps->qos_params[ii].cont_win_max_q =
 450                                cpu_to_le16(common->edca_params[ii].cw_max);
 451                        radio_caps->qos_params[ii].aifsn_val_q =
 452                                cpu_to_le16(common->edca_params[ii].aifs << 8);
 453                        radio_caps->qos_params[ii].txop_q =
 454                                cpu_to_le16(common->edca_params[ii].txop);
 455                }
 456        }
 457
 458        radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
 459        radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
 460        radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
 461
 462        memcpy(&common->rate_pwr[0], &gc[0], 40);
 463        for (ii = 0; ii < 20; ii++)
 464                radio_caps->gcpd_per_rate[inx++] =
 465                        cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
 466
 467        rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
 468                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
 469
 470        skb_put(skb, frame_len);
 471
 472        return rsi_send_internal_mgmt_frame(common, skb);
 473}
 474
 475/**
 476 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
 477 * @common: Pointer to the driver private structure.
 478 * @msg: Pointer to received packet.
 479 * @msg_len: Length of the received packet.
 480 * @type: Type of received packet.
 481 *
 482 * Return: 0 on success, -1 on failure.
 483 */
 484static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
 485                                u8 *msg,
 486                                s32 msg_len)
 487{
 488        struct rsi_hw *adapter = common->priv;
 489        struct ieee80211_tx_info *info;
 490        struct skb_info *rx_params;
 491        u8 pad_bytes = msg[4];
 492        struct sk_buff *skb;
 493
 494        if (!adapter->sc_nvifs)
 495                return -ENOLINK;
 496
 497        msg_len -= pad_bytes;
 498        if (msg_len <= 0) {
 499                rsi_dbg(MGMT_RX_ZONE,
 500                        "%s: Invalid rx msg of len = %d\n",
 501                        __func__, msg_len);
 502                return -EINVAL;
 503        }
 504
 505        skb = dev_alloc_skb(msg_len);
 506        if (!skb)
 507                return -ENOMEM;
 508
 509        skb_put_data(skb,
 510                     (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
 511                     msg_len);
 512
 513        info = IEEE80211_SKB_CB(skb);
 514        rx_params = (struct skb_info *)info->driver_data;
 515        rx_params->rssi = rsi_get_rssi(msg);
 516        rx_params->channel = rsi_get_channel(msg);
 517        rsi_indicate_pkt_to_os(common, skb);
 518
 519        return 0;
 520}
 521
 522/**
 523 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
 524 *                                   frame to firmware.
 525 * @common: Pointer to the driver private structure.
 526 * @opmode: Operating mode of device.
 527 * @notify_event: Notification about station connection.
 528 * @bssid: bssid.
 529 * @qos_enable: Qos is enabled.
 530 * @aid: Aid (unique for all STA).
 531 *
 532 * Return: status: 0 on success, corresponding negative error code on failure.
 533 */
 534int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode,
 535                                  u8 notify_event, const unsigned char *bssid,
 536                                  u8 qos_enable, u16 aid, u16 sta_id,
 537                                  struct ieee80211_vif *vif)
 538{
 539        struct sk_buff *skb = NULL;
 540        struct rsi_peer_notify *peer_notify;
 541        u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
 542        int status;
 543        u16 frame_len = sizeof(struct rsi_peer_notify);
 544
 545        rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
 546
 547        skb = dev_alloc_skb(frame_len);
 548
 549        if (!skb) {
 550                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 551                        __func__);
 552                return -ENOMEM;
 553        }
 554
 555        memset(skb->data, 0, frame_len);
 556        peer_notify = (struct rsi_peer_notify *)skb->data;
 557
 558        if (opmode == RSI_OPMODE_STA)
 559                peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
 560        else if (opmode == RSI_OPMODE_AP)
 561                peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
 562
 563        switch (notify_event) {
 564        case STA_CONNECTED:
 565                peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
 566                break;
 567        case STA_DISCONNECTED:
 568                peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
 569                break;
 570        default:
 571                break;
 572        }
 573
 574        peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
 575        ether_addr_copy(peer_notify->mac_addr, bssid);
 576        peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
 577        peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
 578
 579        rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
 580                        (frame_len - FRAME_DESC_SZ),
 581                        RSI_WIFI_MGMT_Q);
 582        peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
 583        peer_notify->desc.desc_dword3.qid_tid = sta_id;
 584        peer_notify->desc.desc_dword3.sta_id = vap_id;
 585
 586        skb_put(skb, frame_len);
 587
 588        status = rsi_send_internal_mgmt_frame(common, skb);
 589
 590        if ((vif->type == NL80211_IFTYPE_STATION) &&
 591            (!status && qos_enable)) {
 592                rsi_set_contention_vals(common);
 593                status = rsi_load_radio_caps(common);
 594        }
 595        return status;
 596}
 597
 598/**
 599 * rsi_send_aggregation_params_frame() - This function sends the ampdu
 600 *                                       indication frame to firmware.
 601 * @common: Pointer to the driver private structure.
 602 * @tid: traffic identifier.
 603 * @ssn: ssn.
 604 * @buf_size: buffer size.
 605 * @event: notification about station connection.
 606 *
 607 * Return: 0 on success, corresponding negative error code on failure.
 608 */
 609int rsi_send_aggregation_params_frame(struct rsi_common *common,
 610                                      u16 tid,
 611                                      u16 ssn,
 612                                      u8 buf_size,
 613                                      u8 event,
 614                                      u8 sta_id)
 615{
 616        struct sk_buff *skb = NULL;
 617        struct rsi_aggr_params *aggr_params;
 618        u16 frame_len = sizeof(struct rsi_aggr_params);
 619
 620        skb = dev_alloc_skb(frame_len);
 621
 622        if (!skb) {
 623                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 624                        __func__);
 625                return -ENOMEM;
 626        }
 627
 628        memset(skb->data, 0, frame_len);
 629        aggr_params = (struct rsi_aggr_params *)skb->data;
 630
 631        rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
 632
 633        rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
 634        aggr_params->desc_dword0.frame_type = AMPDU_IND;
 635
 636        aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
 637        aggr_params->peer_id = sta_id;
 638        if (event == STA_TX_ADDBA_DONE) {
 639                aggr_params->seq_start = cpu_to_le16(ssn);
 640                aggr_params->baw_size = cpu_to_le16(buf_size);
 641                aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
 642        } else if (event == STA_RX_ADDBA_DONE) {
 643                aggr_params->seq_start = cpu_to_le16(ssn);
 644                aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
 645                                             RSI_AGGR_PARAMS_RX_AGGR);
 646        } else if (event == STA_RX_DELBA) {
 647                aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
 648        }
 649
 650        skb_put(skb, frame_len);
 651
 652        return rsi_send_internal_mgmt_frame(common, skb);
 653}
 654
 655/**
 656 * rsi_program_bb_rf() - This function starts base band and RF programming.
 657 *                       This is called after initial configurations are done.
 658 * @common: Pointer to the driver private structure.
 659 *
 660 * Return: 0 on success, corresponding negative error code on failure.
 661 */
 662static int rsi_program_bb_rf(struct rsi_common *common)
 663{
 664        struct sk_buff *skb;
 665        struct rsi_bb_rf_prog *bb_rf_prog;
 666        u16 frame_len = sizeof(struct rsi_bb_rf_prog);
 667
 668        rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
 669
 670        skb = dev_alloc_skb(frame_len);
 671        if (!skb) {
 672                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 673                        __func__);
 674                return -ENOMEM;
 675        }
 676
 677        memset(skb->data, 0, frame_len);
 678        bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
 679
 680        rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
 681        bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
 682        bb_rf_prog->endpoint = common->endpoint;
 683        bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
 684
 685        if (common->rf_reset) {
 686                bb_rf_prog->flags =  cpu_to_le16(RF_RESET_ENABLE);
 687                rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
 688                        __func__);
 689                common->rf_reset = 0;
 690        }
 691        common->bb_rf_prog_count = 1;
 692        bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
 693                                         (RSI_RF_TYPE << 4));
 694        skb_put(skb, frame_len);
 695
 696        return rsi_send_internal_mgmt_frame(common, skb);
 697}
 698
 699/**
 700 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
 701 * @common: Pointer to the driver private structure.
 702 * @opmode: Operating mode of device.
 703 *
 704 * Return: 0 on success, corresponding negative error code on failure.
 705 */
 706int rsi_set_vap_capabilities(struct rsi_common *common,
 707                             enum opmode mode,
 708                             u8 *mac_addr,
 709                             u8 vap_id,
 710                             u8 vap_status)
 711{
 712        struct sk_buff *skb = NULL;
 713        struct rsi_vap_caps *vap_caps;
 714        struct rsi_hw *adapter = common->priv;
 715        struct ieee80211_hw *hw = adapter->hw;
 716        struct ieee80211_conf *conf = &hw->conf;
 717        u16 frame_len = sizeof(struct rsi_vap_caps);
 718
 719        rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
 720
 721        skb = dev_alloc_skb(frame_len);
 722        if (!skb) {
 723                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 724                        __func__);
 725                return -ENOMEM;
 726        }
 727
 728        memset(skb->data, 0, frame_len);
 729        vap_caps = (struct rsi_vap_caps *)skb->data;
 730
 731        rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
 732                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
 733        vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
 734        vap_caps->status = vap_status;
 735        vap_caps->vif_type = mode;
 736        vap_caps->channel_bw = common->channel_width;
 737        vap_caps->vap_id = vap_id;
 738        vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
 739                                   (common->radio_id & 0xf);
 740
 741        memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
 742        vap_caps->keep_alive_period = cpu_to_le16(90);
 743        vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
 744
 745        vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
 746
 747        if (common->band == NL80211_BAND_5GHZ) {
 748                vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
 749                vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
 750        } else {
 751                vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
 752                vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
 753        }
 754        if (conf_is_ht40(conf)) {
 755                if (conf_is_ht40_minus(conf))
 756                        vap_caps->ctrl_rate_flags =
 757                                cpu_to_le16(UPPER_20_ENABLE);
 758                else if (conf_is_ht40_plus(conf))
 759                        vap_caps->ctrl_rate_flags =
 760                                cpu_to_le16(LOWER_20_ENABLE);
 761                else
 762                        vap_caps->ctrl_rate_flags =
 763                                cpu_to_le16(FULL40M_ENABLE);
 764        }
 765
 766        vap_caps->default_data_rate = 0;
 767        vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
 768        vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
 769
 770        skb_put(skb, frame_len);
 771
 772        return rsi_send_internal_mgmt_frame(common, skb);
 773}
 774
 775/**
 776 * rsi_hal_load_key() - This function is used to load keys within the firmware.
 777 * @common: Pointer to the driver private structure.
 778 * @data: Pointer to the key data.
 779 * @key_len: Key length to be loaded.
 780 * @key_type: Type of key: GROUP/PAIRWISE.
 781 * @key_id: Key index.
 782 * @cipher: Type of cipher used.
 783 *
 784 * Return: 0 on success, -1 on failure.
 785 */
 786int rsi_hal_load_key(struct rsi_common *common,
 787                     u8 *data,
 788                     u16 key_len,
 789                     u8 key_type,
 790                     u8 key_id,
 791                     u32 cipher,
 792                     s16 sta_id,
 793                     struct ieee80211_vif *vif)
 794{
 795        struct sk_buff *skb = NULL;
 796        struct rsi_set_key *set_key;
 797        u16 key_descriptor = 0;
 798        u16 frame_len = sizeof(struct rsi_set_key);
 799
 800        rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
 801
 802        skb = dev_alloc_skb(frame_len);
 803        if (!skb) {
 804                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 805                        __func__);
 806                return -ENOMEM;
 807        }
 808
 809        memset(skb->data, 0, frame_len);
 810        set_key = (struct rsi_set_key *)skb->data;
 811
 812        if (key_type == RSI_GROUP_KEY) {
 813                key_descriptor = RSI_KEY_TYPE_BROADCAST;
 814                if (vif->type == NL80211_IFTYPE_AP)
 815                        key_descriptor |= RSI_KEY_MODE_AP;
 816        }
 817        if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
 818            (cipher == WLAN_CIPHER_SUITE_WEP104)) {
 819                key_id = 0;
 820                key_descriptor |= RSI_WEP_KEY;
 821                if (key_len >= 13)
 822                        key_descriptor |= RSI_WEP_KEY_104;
 823        } else if (cipher != KEY_TYPE_CLEAR) {
 824                key_descriptor |= RSI_CIPHER_WPA;
 825                if (cipher == WLAN_CIPHER_SUITE_TKIP)
 826                        key_descriptor |= RSI_CIPHER_TKIP;
 827        }
 828        key_descriptor |= RSI_PROTECT_DATA_FRAMES;
 829        key_descriptor |= (key_id << RSI_KEY_ID_OFFSET);
 830
 831        rsi_set_len_qno(&set_key->desc_dword0.len_qno,
 832                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
 833        set_key->desc_dword0.frame_type = SET_KEY_REQ;
 834        set_key->key_desc = cpu_to_le16(key_descriptor);
 835        set_key->sta_id = sta_id;
 836
 837        if (data) {
 838                if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
 839                    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
 840                        memcpy(&set_key->key[key_id][1], data, key_len * 2);
 841                } else {
 842                        memcpy(&set_key->key[0][0], data, key_len);
 843                }
 844                memcpy(set_key->tx_mic_key, &data[16], 8);
 845                memcpy(set_key->rx_mic_key, &data[24], 8);
 846        } else {
 847                memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
 848        }
 849
 850        skb_put(skb, frame_len);
 851
 852        return rsi_send_internal_mgmt_frame(common, skb);
 853}
 854
 855/*
 856 * This function sends the common device configuration parameters to device.
 857 * This frame includes the useful information to make device works on
 858 * specific operating mode.
 859 */
 860static int rsi_send_common_dev_params(struct rsi_common *common)
 861{
 862        struct sk_buff *skb;
 863        u16 frame_len;
 864        struct rsi_config_vals *dev_cfgs;
 865
 866        frame_len = sizeof(struct rsi_config_vals);
 867
 868        rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
 869        skb = dev_alloc_skb(frame_len);
 870        if (!skb) {
 871                rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
 872                return -ENOMEM;
 873        }
 874
 875        memset(skb->data, 0, frame_len);
 876
 877        dev_cfgs = (struct rsi_config_vals *)skb->data;
 878        memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
 879
 880        rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
 881                        RSI_COEX_Q);
 882        dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
 883
 884        dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
 885        dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
 886
 887        dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
 888        dev_cfgs->unused_soc_gpio_bitmap =
 889                                cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
 890
 891        dev_cfgs->opermode = common->oper_mode;
 892        dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
 893        dev_cfgs->driver_mode = common->driver_mode;
 894        dev_cfgs->region_code = NL80211_DFS_FCC;
 895        dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
 896
 897        skb_put(skb, frame_len);
 898
 899        return rsi_send_internal_mgmt_frame(common, skb);
 900}
 901
 902/*
 903 * rsi_load_bootup_params() - This function send bootup params to the firmware.
 904 * @common: Pointer to the driver private structure.
 905 *
 906 * Return: 0 on success, corresponding error code on failure.
 907 */
 908static int rsi_load_bootup_params(struct rsi_common *common)
 909{
 910        struct sk_buff *skb;
 911        struct rsi_boot_params *boot_params;
 912
 913        rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
 914        skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
 915        if (!skb) {
 916                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 917                        __func__);
 918                return -ENOMEM;
 919        }
 920
 921        memset(skb->data, 0, sizeof(struct rsi_boot_params));
 922        boot_params = (struct rsi_boot_params *)skb->data;
 923
 924        rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
 925
 926        if (common->channel_width == BW_40MHZ) {
 927                memcpy(&boot_params->bootup_params,
 928                       &boot_params_40,
 929                       sizeof(struct bootup_params));
 930                rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
 931                        UMAC_CLK_40BW);
 932                boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
 933        } else {
 934                memcpy(&boot_params->bootup_params,
 935                       &boot_params_20,
 936                       sizeof(struct bootup_params));
 937                if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
 938                        boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
 939                        rsi_dbg(MGMT_TX_ZONE,
 940                                "%s: Packet 20MHZ <=== %d\n", __func__,
 941                                UMAC_CLK_20BW);
 942                } else {
 943                        boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
 944                        rsi_dbg(MGMT_TX_ZONE,
 945                                "%s: Packet 20MHZ <=== %d\n", __func__,
 946                                UMAC_CLK_40MHZ);
 947                }
 948        }
 949
 950        /**
 951         * Bit{0:11} indicates length of the Packet
 952         * Bit{12:15} indicates host queue number
 953         */
 954        boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
 955                                    (RSI_WIFI_MGMT_Q << 12));
 956        boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
 957
 958        skb_put(skb, sizeof(struct rsi_boot_params));
 959
 960        return rsi_send_internal_mgmt_frame(common, skb);
 961}
 962
 963static int rsi_load_9116_bootup_params(struct rsi_common *common)
 964{
 965        struct sk_buff *skb;
 966        struct rsi_boot_params_9116 *boot_params;
 967
 968        rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
 969
 970        skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116));
 971        if (!skb)
 972                return -ENOMEM;
 973        memset(skb->data, 0, sizeof(struct rsi_boot_params));
 974        boot_params = (struct rsi_boot_params_9116 *)skb->data;
 975
 976        if (common->channel_width == BW_40MHZ) {
 977                memcpy(&boot_params->bootup_params,
 978                       &boot_params_9116_40,
 979                       sizeof(struct bootup_params_9116));
 980                rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
 981                        UMAC_CLK_40BW);
 982                boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW);
 983        } else {
 984                memcpy(&boot_params->bootup_params,
 985                       &boot_params_9116_20,
 986                       sizeof(struct bootup_params_9116));
 987                if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
 988                        boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW);
 989                        rsi_dbg(MGMT_TX_ZONE,
 990                                "%s: Packet 20MHZ <=== %d\n", __func__,
 991                                UMAC_CLK_20BW);
 992                } else {
 993                        boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ);
 994                        rsi_dbg(MGMT_TX_ZONE,
 995                                "%s: Packet 20MHZ <=== %d\n", __func__,
 996                                UMAC_CLK_40MHZ);
 997                }
 998        }
 999        rsi_set_len_qno(&boot_params->desc_dword0.len_qno,
1000                        sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q);
1001        boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST;
1002        skb_put(skb, sizeof(struct rsi_boot_params_9116));
1003
1004        return rsi_send_internal_mgmt_frame(common, skb);
1005}
1006
1007/**
1008 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
1009 *                        internal management frame to indicate it to firmware.
1010 * @common: Pointer to the driver private structure.
1011 *
1012 * Return: 0 on success, corresponding error code on failure.
1013 */
1014static int rsi_send_reset_mac(struct rsi_common *common)
1015{
1016        struct sk_buff *skb;
1017        struct rsi_mac_frame *mgmt_frame;
1018
1019        rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
1020
1021        skb = dev_alloc_skb(FRAME_DESC_SZ);
1022        if (!skb) {
1023                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1024                        __func__);
1025                return -ENOMEM;
1026        }
1027
1028        memset(skb->data, 0, FRAME_DESC_SZ);
1029        mgmt_frame = (struct rsi_mac_frame *)skb->data;
1030
1031        mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1032        mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
1033        mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
1034
1035#define RSI_9116_DEF_TA_AGGR    3
1036        if (common->priv->device_model == RSI_DEV_9116)
1037                mgmt_frame->desc_word[3] |=
1038                        cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8);
1039
1040        skb_put(skb, FRAME_DESC_SZ);
1041
1042        return rsi_send_internal_mgmt_frame(common, skb);
1043}
1044
1045/**
1046 * rsi_band_check() - This function programs the band
1047 * @common: Pointer to the driver private structure.
1048 *
1049 * Return: 0 on success, corresponding error code on failure.
1050 */
1051int rsi_band_check(struct rsi_common *common,
1052                   struct ieee80211_channel *curchan)
1053{
1054        struct rsi_hw *adapter = common->priv;
1055        struct ieee80211_hw *hw = adapter->hw;
1056        u8 prev_bw = common->channel_width;
1057        u8 prev_ep = common->endpoint;
1058        int status = 0;
1059
1060        if (common->band != curchan->band) {
1061                common->rf_reset = 1;
1062                common->band = curchan->band;
1063        }
1064
1065        if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
1066            (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
1067                common->channel_width = BW_20MHZ;
1068        else
1069                common->channel_width = BW_40MHZ;
1070
1071        if (common->band == NL80211_BAND_2GHZ) {
1072                if (common->channel_width)
1073                        common->endpoint = EP_2GHZ_40MHZ;
1074                else
1075                        common->endpoint = EP_2GHZ_20MHZ;
1076        } else {
1077                if (common->channel_width)
1078                        common->endpoint = EP_5GHZ_40MHZ;
1079                else
1080                        common->endpoint = EP_5GHZ_20MHZ;
1081        }
1082
1083        if (common->endpoint != prev_ep) {
1084                status = rsi_program_bb_rf(common);
1085                if (status)
1086                        return status;
1087        }
1088
1089        if (common->channel_width != prev_bw) {
1090                if (adapter->device_model == RSI_DEV_9116)
1091                        status = rsi_load_9116_bootup_params(common);
1092                else
1093                        status = rsi_load_bootup_params(common);
1094                if (status)
1095                        return status;
1096
1097                status = rsi_load_radio_caps(common);
1098                if (status)
1099                        return status;
1100        }
1101
1102        return status;
1103}
1104
1105/**
1106 * rsi_set_channel() - This function programs the channel.
1107 * @common: Pointer to the driver private structure.
1108 * @channel: Channel value to be set.
1109 *
1110 * Return: 0 on success, corresponding error code on failure.
1111 */
1112int rsi_set_channel(struct rsi_common *common,
1113                    struct ieee80211_channel *channel)
1114{
1115        struct sk_buff *skb = NULL;
1116        struct rsi_chan_config *chan_cfg;
1117        u16 frame_len = sizeof(struct rsi_chan_config);
1118
1119        rsi_dbg(MGMT_TX_ZONE,
1120                "%s: Sending scan req frame\n", __func__);
1121
1122        skb = dev_alloc_skb(frame_len);
1123        if (!skb) {
1124                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1125                        __func__);
1126                return -ENOMEM;
1127        }
1128
1129        if (!channel) {
1130                dev_kfree_skb(skb);
1131                return 0;
1132        }
1133        memset(skb->data, 0, frame_len);
1134        chan_cfg = (struct rsi_chan_config *)skb->data;
1135
1136        rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1137        chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1138        chan_cfg->channel_number = channel->hw_value;
1139        chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1140        chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1141        chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1142
1143        if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1144            (channel->flags & IEEE80211_CHAN_RADAR)) {
1145                chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1146        } else {
1147                if (common->tx_power < channel->max_power)
1148                        chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1149                else
1150                        chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1151        }
1152        chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1153
1154        if (common->channel_width == BW_40MHZ)
1155                chan_cfg->channel_width = 0x1;
1156
1157        common->channel = channel->hw_value;
1158
1159        skb_put(skb, frame_len);
1160
1161        return rsi_send_internal_mgmt_frame(common, skb);
1162}
1163
1164/**
1165 * rsi_send_radio_params_update() - This function sends the radio
1166 *                              parameters update to device
1167 * @common: Pointer to the driver private structure.
1168 * @channel: Channel value to be set.
1169 *
1170 * Return: 0 on success, corresponding error code on failure.
1171 */
1172int rsi_send_radio_params_update(struct rsi_common *common)
1173{
1174        struct rsi_mac_frame *cmd_frame;
1175        struct sk_buff *skb = NULL;
1176
1177        rsi_dbg(MGMT_TX_ZONE,
1178                "%s: Sending Radio Params update frame\n", __func__);
1179
1180        skb = dev_alloc_skb(FRAME_DESC_SZ);
1181        if (!skb) {
1182                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1183                        __func__);
1184                return -ENOMEM;
1185        }
1186
1187        memset(skb->data, 0, FRAME_DESC_SZ);
1188        cmd_frame = (struct rsi_mac_frame *)skb->data;
1189
1190        cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1191        cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1192        cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1193
1194        cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1195
1196        skb_put(skb, FRAME_DESC_SZ);
1197
1198        return rsi_send_internal_mgmt_frame(common, skb);
1199}
1200
1201/* This function programs the threshold. */
1202int rsi_send_vap_dynamic_update(struct rsi_common *common)
1203{
1204        struct sk_buff *skb;
1205        struct rsi_dynamic_s *dynamic_frame;
1206
1207        rsi_dbg(MGMT_TX_ZONE,
1208                "%s: Sending vap update indication frame\n", __func__);
1209
1210        skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1211        if (!skb)
1212                return -ENOMEM;
1213
1214        memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1215        dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1216        rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1217                        sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1218
1219        dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1220        dynamic_frame->desc_dword2.pkt_info =
1221                                        cpu_to_le32(common->rts_threshold);
1222
1223        if (common->wow_flags & RSI_WOW_ENABLED) {
1224                /* Beacon miss threshold */
1225                dynamic_frame->desc_dword3.token =
1226                                        cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1227                dynamic_frame->frame_body.keep_alive_period =
1228                                        cpu_to_le16(RSI_WOW_KEEPALIVE);
1229        } else {
1230                dynamic_frame->frame_body.keep_alive_period =
1231                                        cpu_to_le16(RSI_DEF_KEEPALIVE);
1232        }
1233
1234        dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1235
1236        skb_put(skb, sizeof(struct rsi_dynamic_s));
1237
1238        return rsi_send_internal_mgmt_frame(common, skb);
1239}
1240
1241/**
1242 * rsi_compare() - This function is used to compare two integers
1243 * @a: pointer to the first integer
1244 * @b: pointer to the second integer
1245 *
1246 * Return: 0 if both are equal, -1 if the first is smaller, else 1
1247 */
1248static int rsi_compare(const void *a, const void *b)
1249{
1250        u16 _a = *(const u16 *)(a);
1251        u16 _b = *(const u16 *)(b);
1252
1253        if (_a > _b)
1254                return -1;
1255
1256        if (_a < _b)
1257                return 1;
1258
1259        return 0;
1260}
1261
1262/**
1263 * rsi_map_rates() - This function is used to map selected rates to hw rates.
1264 * @rate: The standard rate to be mapped.
1265 * @offset: Offset that will be returned.
1266 *
1267 * Return: 0 if it is a mcs rate, else 1
1268 */
1269static bool rsi_map_rates(u16 rate, int *offset)
1270{
1271        int kk;
1272        for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1273                if (rate == mcs[kk]) {
1274                        *offset = kk;
1275                        return false;
1276                }
1277        }
1278
1279        for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1280                if (rate == rsi_rates[kk].bitrate / 5) {
1281                        *offset = kk;
1282                        break;
1283                }
1284        }
1285        return true;
1286}
1287
1288/**
1289 * rsi_send_auto_rate_request() - This function is to set rates for connection
1290 *                                and send autorate request to firmware.
1291 * @common: Pointer to the driver private structure.
1292 *
1293 * Return: 0 on success, corresponding error code on failure.
1294 */
1295static int rsi_send_auto_rate_request(struct rsi_common *common,
1296                                      struct ieee80211_sta *sta,
1297                                      u16 sta_id,
1298                                      struct ieee80211_vif *vif)
1299{
1300        struct sk_buff *skb;
1301        struct rsi_auto_rate *auto_rate;
1302        int ii = 0, jj = 0, kk = 0;
1303        struct ieee80211_hw *hw = common->priv->hw;
1304        u8 band = hw->conf.chandef.chan->band;
1305        u8 num_supported_rates = 0;
1306        u8 rate_table_offset, rate_offset = 0;
1307        u32 rate_bitmap;
1308        u16 *selected_rates, min_rate;
1309        bool is_ht = false, is_sgi = false;
1310        u16 frame_len = sizeof(struct rsi_auto_rate);
1311
1312        rsi_dbg(MGMT_TX_ZONE,
1313                "%s: Sending auto rate request frame\n", __func__);
1314
1315        skb = dev_alloc_skb(frame_len);
1316        if (!skb) {
1317                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1318                        __func__);
1319                return -ENOMEM;
1320        }
1321
1322        memset(skb->data, 0, frame_len);
1323        selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1324        if (!selected_rates) {
1325                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1326                        __func__);
1327                dev_kfree_skb(skb);
1328                return -ENOMEM;
1329        }
1330
1331        auto_rate = (struct rsi_auto_rate *)skb->data;
1332
1333        auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1334        auto_rate->collision_tolerance = cpu_to_le16(3);
1335        auto_rate->failure_limit = cpu_to_le16(3);
1336        auto_rate->initial_boundary = cpu_to_le16(3);
1337        auto_rate->max_threshold_limt = cpu_to_le16(27);
1338
1339        auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1340
1341        if (common->channel_width == BW_40MHZ)
1342                auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1343        auto_rate->desc.desc_dword3.sta_id = sta_id;
1344
1345        if (vif->type == NL80211_IFTYPE_STATION) {
1346                rate_bitmap = common->bitrate_mask[band];
1347                is_ht = common->vif_info[0].is_ht;
1348                is_sgi = common->vif_info[0].sgi;
1349        } else {
1350                rate_bitmap = sta->supp_rates[band];
1351                is_ht = sta->ht_cap.ht_supported;
1352                if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1353                    (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1354                        is_sgi = true;
1355        }
1356
1357        if (band == NL80211_BAND_2GHZ) {
1358                if ((rate_bitmap == 0) && (is_ht))
1359                        min_rate = RSI_RATE_MCS0;
1360                else
1361                        min_rate = RSI_RATE_1;
1362                rate_table_offset = 0;
1363        } else {
1364                if ((rate_bitmap == 0) && (is_ht))
1365                        min_rate = RSI_RATE_MCS0;
1366                else
1367                        min_rate = RSI_RATE_6;
1368                rate_table_offset = 4;
1369        }
1370
1371        for (ii = 0, jj = 0;
1372             ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1373                if (rate_bitmap & BIT(ii)) {
1374                        selected_rates[jj++] =
1375                        (rsi_rates[ii + rate_table_offset].bitrate / 5);
1376                        rate_offset++;
1377                }
1378        }
1379        num_supported_rates = jj;
1380
1381        if (is_ht) {
1382                for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1383                        selected_rates[jj++] = mcs[ii];
1384                num_supported_rates += ARRAY_SIZE(mcs);
1385                rate_offset += ARRAY_SIZE(mcs);
1386        }
1387
1388        sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1389
1390        /* mapping the rates to RSI rates */
1391        for (ii = 0; ii < jj; ii++) {
1392                if (rsi_map_rates(selected_rates[ii], &kk)) {
1393                        auto_rate->supported_rates[ii] =
1394                                cpu_to_le16(rsi_rates[kk].hw_value);
1395                } else {
1396                        auto_rate->supported_rates[ii] =
1397                                cpu_to_le16(rsi_mcsrates[kk]);
1398                }
1399        }
1400
1401        /* loading HT rates in the bottom half of the auto rate table */
1402        if (is_ht) {
1403                for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1404                     ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1405                        if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1406                                auto_rate->supported_rates[ii++] =
1407                                        cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1408                        else
1409                                auto_rate->supported_rates[ii++] =
1410                                        cpu_to_le16(rsi_mcsrates[kk]);
1411                        auto_rate->supported_rates[ii] =
1412                                cpu_to_le16(rsi_mcsrates[kk--]);
1413                }
1414
1415                for (; ii < (RSI_TBL_SZ - 1); ii++) {
1416                        auto_rate->supported_rates[ii] =
1417                                cpu_to_le16(rsi_mcsrates[0]);
1418                }
1419        }
1420
1421        for (; ii < RSI_TBL_SZ; ii++)
1422                auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1423
1424        auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1425        auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1426        num_supported_rates *= 2;
1427
1428        rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1429                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1430
1431        skb_put(skb, frame_len);
1432        kfree(selected_rates);
1433
1434        return rsi_send_internal_mgmt_frame(common, skb);
1435}
1436
1437/**
1438 * rsi_inform_bss_status() - This function informs about bss status with the
1439 *                           help of sta notify params by sending an internal
1440 *                           management frame to firmware.
1441 * @common: Pointer to the driver private structure.
1442 * @status: Bss status type.
1443 * @bssid: Bssid.
1444 * @qos_enable: Qos is enabled.
1445 * @aid: Aid (unique for all STAs).
1446 *
1447 * Return: None.
1448 */
1449void rsi_inform_bss_status(struct rsi_common *common,
1450                           enum opmode opmode,
1451                           u8 status,
1452                           const u8 *addr,
1453                           u8 qos_enable,
1454                           u16 aid,
1455                           struct ieee80211_sta *sta,
1456                           u16 sta_id,
1457                           u16 assoc_cap,
1458                           struct ieee80211_vif *vif)
1459{
1460        if (status) {
1461                if (opmode == RSI_OPMODE_STA)
1462                        common->hw_data_qs_blocked = true;
1463                rsi_hal_send_sta_notify_frame(common,
1464                                              opmode,
1465                                              STA_CONNECTED,
1466                                              addr,
1467                                              qos_enable,
1468                                              aid, sta_id,
1469                                              vif);
1470                if (common->min_rate == 0xffff)
1471                        rsi_send_auto_rate_request(common, sta, sta_id, vif);
1472                if (opmode == RSI_OPMODE_STA &&
1473                    !(assoc_cap & WLAN_CAPABILITY_PRIVACY) &&
1474                    !rsi_send_block_unblock_frame(common, false))
1475                        common->hw_data_qs_blocked = false;
1476        } else {
1477                if (opmode == RSI_OPMODE_STA)
1478                        common->hw_data_qs_blocked = true;
1479
1480                if (!(common->wow_flags & RSI_WOW_ENABLED))
1481                        rsi_hal_send_sta_notify_frame(common, opmode,
1482                                                      STA_DISCONNECTED, addr,
1483                                                      qos_enable, aid, sta_id,
1484                                                      vif);
1485                if (opmode == RSI_OPMODE_STA)
1486                        rsi_send_block_unblock_frame(common, true);
1487        }
1488}
1489
1490/**
1491 * rsi_eeprom_read() - This function sends a frame to read the mac address
1492 *                     from the eeprom.
1493 * @common: Pointer to the driver private structure.
1494 *
1495 * Return: 0 on success, -1 on failure.
1496 */
1497static int rsi_eeprom_read(struct rsi_common *common)
1498{
1499        struct rsi_eeprom_read_frame *mgmt_frame;
1500        struct rsi_hw *adapter = common->priv;
1501        struct sk_buff *skb;
1502
1503        rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1504
1505        skb = dev_alloc_skb(FRAME_DESC_SZ);
1506        if (!skb) {
1507                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1508                        __func__);
1509                return -ENOMEM;
1510        }
1511
1512        memset(skb->data, 0, FRAME_DESC_SZ);
1513        mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1514
1515        /* FrameType */
1516        rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1517        mgmt_frame->pkt_type = EEPROM_READ;
1518
1519        /* Number of bytes to read */
1520        mgmt_frame->pkt_info =
1521                cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1522                            RSI_EEPROM_LEN_MASK);
1523        mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1524                                            RSI_EEPROM_HDR_SIZE_MASK);
1525
1526        /* Address to read */
1527        mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1528
1529        skb_put(skb, FRAME_DESC_SZ);
1530
1531        return rsi_send_internal_mgmt_frame(common, skb);
1532}
1533
1534/**
1535 * This function sends a frame to block/unblock
1536 * data queues in the firmware
1537 *
1538 * @param common Pointer to the driver private structure.
1539 * @param block event - block if true, unblock if false
1540 * @return 0 on success, -1 on failure.
1541 */
1542int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1543{
1544        struct rsi_block_unblock_data *mgmt_frame;
1545        struct sk_buff *skb;
1546
1547        rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1548
1549        skb = dev_alloc_skb(FRAME_DESC_SZ);
1550        if (!skb) {
1551                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1552                        __func__);
1553                return -ENOMEM;
1554        }
1555
1556        memset(skb->data, 0, FRAME_DESC_SZ);
1557        mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1558
1559        rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1560        mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1561        mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1562
1563        if (block_event) {
1564                rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1565                mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1566                mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1567        } else {
1568                rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1569                mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1570                mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1571        }
1572
1573        skb_put(skb, FRAME_DESC_SZ);
1574
1575        return rsi_send_internal_mgmt_frame(common, skb);
1576}
1577
1578/**
1579 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1580 *
1581 * @common: Pointer to the driver private structure.
1582 * @rx_filter_word: Flags of filter packets
1583 *
1584 * @Return: 0 on success, -1 on failure.
1585 */
1586int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1587{
1588        struct rsi_mac_frame *cmd_frame;
1589        struct sk_buff *skb;
1590
1591        rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1592
1593        skb = dev_alloc_skb(FRAME_DESC_SZ);
1594        if (!skb) {
1595                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1596                        __func__);
1597                return -ENOMEM;
1598        }
1599
1600        memset(skb->data, 0, FRAME_DESC_SZ);
1601        cmd_frame = (struct rsi_mac_frame *)skb->data;
1602
1603        cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1604        cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1605        cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1606
1607        skb_put(skb, FRAME_DESC_SZ);
1608
1609        return rsi_send_internal_mgmt_frame(common, skb);
1610}
1611
1612int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1613                        struct ieee80211_vif *vif)
1614{
1615        struct rsi_common *common = adapter->priv;
1616        struct ieee80211_bss_conf *bss = &vif->bss_conf;
1617        struct rsi_request_ps *ps;
1618        struct rsi_ps_info *ps_info;
1619        struct sk_buff *skb;
1620        int frame_len = sizeof(*ps);
1621
1622        skb = dev_alloc_skb(frame_len);
1623        if (!skb)
1624                return -ENOMEM;
1625        memset(skb->data, 0, frame_len);
1626
1627        ps = (struct rsi_request_ps *)skb->data;
1628        ps_info = &adapter->ps_info;
1629
1630        rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1631                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1632        ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1633        if (enable) {
1634                ps->ps_sleep.enable = RSI_PS_ENABLE;
1635                ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1636        } else {
1637                ps->ps_sleep.enable = RSI_PS_DISABLE;
1638                ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1639                ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1640        }
1641
1642        ps->ps_uapsd_acs = common->uapsd_bitmap;
1643
1644        ps->ps_sleep.sleep_type = ps_info->sleep_type;
1645        ps->ps_sleep.num_bcns_per_lis_int =
1646                cpu_to_le16(ps_info->num_bcns_per_lis_int);
1647        ps->ps_sleep.sleep_duration =
1648                cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1649
1650        if (bss->assoc)
1651                ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1652        else
1653                ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1654
1655        ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1656        ps->ps_dtim_interval_duration =
1657                cpu_to_le32(ps_info->dtim_interval_duration);
1658
1659        if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1660                ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1661
1662        ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1663        skb_put(skb, frame_len);
1664
1665        return rsi_send_internal_mgmt_frame(common, skb);
1666}
1667
1668static int rsi_send_w9116_features(struct rsi_common *common)
1669{
1670        struct rsi_wlan_9116_features *w9116_features;
1671        u16 frame_len = sizeof(struct rsi_wlan_9116_features);
1672        struct sk_buff *skb;
1673
1674        rsi_dbg(MGMT_TX_ZONE,
1675                "%s: Sending wlan 9116 features\n", __func__);
1676
1677        skb = dev_alloc_skb(frame_len);
1678        if (!skb)
1679                return -ENOMEM;
1680        memset(skb->data, 0, frame_len);
1681
1682        w9116_features = (struct rsi_wlan_9116_features *)skb->data;
1683
1684        w9116_features->pll_mode = common->w9116_features.pll_mode;
1685        w9116_features->rf_type = common->w9116_features.rf_type;
1686        w9116_features->wireless_mode = common->w9116_features.wireless_mode;
1687        w9116_features->enable_ppe = common->w9116_features.enable_ppe;
1688        w9116_features->afe_type = common->w9116_features.afe_type;
1689        if (common->w9116_features.dpd)
1690                w9116_features->feature_enable |= cpu_to_le32(RSI_DPD);
1691        if (common->w9116_features.sifs_tx_enable)
1692                w9116_features->feature_enable |=
1693                        cpu_to_le32(RSI_SIFS_TX_ENABLE);
1694        if (common->w9116_features.ps_options & RSI_DUTY_CYCLING)
1695                w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING);
1696        if (common->w9116_features.ps_options & RSI_END_OF_FRAME)
1697                w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME);
1698        w9116_features->feature_enable |=
1699                cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2);
1700
1701        rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno,
1702                        frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q);
1703        w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE;
1704        skb_put(skb, frame_len);
1705
1706        return rsi_send_internal_mgmt_frame(common, skb);
1707}
1708
1709/**
1710 * rsi_set_antenna() - This function send antenna configuration request
1711 *                     to device
1712 *
1713 * @common: Pointer to the driver private structure.
1714 * @antenna: bitmap for tx antenna selection
1715 *
1716 * Return: 0 on Success, negative error code on failure
1717 */
1718int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1719{
1720        struct rsi_ant_sel_frame *ant_sel_frame;
1721        struct sk_buff *skb;
1722
1723        skb = dev_alloc_skb(FRAME_DESC_SZ);
1724        if (!skb) {
1725                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1726                        __func__);
1727                return -ENOMEM;
1728        }
1729
1730        memset(skb->data, 0, FRAME_DESC_SZ);
1731
1732        ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1733        ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1734        ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1735        ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1736        rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1737                        0, RSI_WIFI_MGMT_Q);
1738        skb_put(skb, FRAME_DESC_SZ);
1739
1740        return rsi_send_internal_mgmt_frame(common, skb);
1741}
1742
1743static int rsi_send_beacon(struct rsi_common *common)
1744{
1745        struct sk_buff *skb = NULL;
1746        u8 dword_align_bytes = 0;
1747
1748        skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1749        if (!skb)
1750                return -ENOMEM;
1751
1752        memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1753
1754        dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1755        if (dword_align_bytes)
1756                skb_pull(skb, (64 - dword_align_bytes));
1757        if (rsi_prepare_beacon(common, skb)) {
1758                rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1759                return -EINVAL;
1760        }
1761        skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1762        rsi_set_event(&common->tx_thread.event);
1763        rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1764
1765        return 0;
1766}
1767
1768#ifdef CONFIG_PM
1769int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1770                            u16 sleep_status)
1771{
1772        struct rsi_wowlan_req *cmd_frame;
1773        struct sk_buff *skb;
1774        u8 length;
1775
1776        rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1777
1778        length = sizeof(*cmd_frame);
1779        skb = dev_alloc_skb(length);
1780        if (!skb)
1781                return -ENOMEM;
1782        memset(skb->data, 0, length);
1783        cmd_frame = (struct rsi_wowlan_req *)skb->data;
1784
1785        rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1786                        (length - FRAME_DESC_SZ),
1787                        RSI_WIFI_MGMT_Q);
1788        cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1789        cmd_frame->host_sleep_status = sleep_status;
1790        if (common->secinfo.security_enable &&
1791            common->secinfo.gtk_cipher)
1792                flags |= RSI_WOW_GTK_REKEY;
1793        if (sleep_status)
1794                cmd_frame->wow_flags = flags;
1795        rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1796                cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1797
1798        skb_put(skb, length);
1799
1800        return rsi_send_internal_mgmt_frame(common, skb);
1801}
1802#endif
1803
1804int rsi_send_bgscan_params(struct rsi_common *common, int enable)
1805{
1806        struct rsi_bgscan_params *params = &common->bgscan;
1807        struct cfg80211_scan_request *scan_req = common->hwscan;
1808        struct rsi_bgscan_config *bgscan;
1809        struct sk_buff *skb;
1810        u16 frame_len = sizeof(*bgscan);
1811        u8 i;
1812
1813        rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__);
1814
1815        skb = dev_alloc_skb(frame_len);
1816        if (!skb)
1817                return -ENOMEM;
1818        memset(skb->data, 0, frame_len);
1819
1820        bgscan = (struct rsi_bgscan_config *)skb->data;
1821        rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1822                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1823        bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS;
1824        bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold);
1825        bgscan->roam_threshold = cpu_to_le16(params->roam_threshold);
1826        if (enable)
1827                bgscan->bgscan_periodicity =
1828                        cpu_to_le16(params->bgscan_periodicity);
1829        bgscan->active_scan_duration =
1830                        cpu_to_le16(params->active_scan_duration);
1831        bgscan->passive_scan_duration =
1832                        cpu_to_le16(params->passive_scan_duration);
1833        bgscan->two_probe = params->two_probe;
1834
1835        bgscan->num_bgscan_channels = scan_req->n_channels;
1836        for (i = 0; i < bgscan->num_bgscan_channels; i++)
1837                bgscan->channels2scan[i] =
1838                        cpu_to_le16(scan_req->channels[i]->hw_value);
1839
1840        skb_put(skb, frame_len);
1841
1842        return rsi_send_internal_mgmt_frame(common, skb);
1843}
1844
1845/* This function sends the probe request to be used by firmware in
1846 * background scan
1847 */
1848int rsi_send_bgscan_probe_req(struct rsi_common *common,
1849                              struct ieee80211_vif *vif)
1850{
1851        struct cfg80211_scan_request *scan_req = common->hwscan;
1852        struct rsi_bgscan_probe *bgscan;
1853        struct sk_buff *skb;
1854        struct sk_buff *probereq_skb;
1855        u16 frame_len = sizeof(*bgscan);
1856        size_t ssid_len = 0;
1857        u8 *ssid = NULL;
1858
1859        rsi_dbg(MGMT_TX_ZONE,
1860                "%s: Sending bgscan probe req frame\n", __func__);
1861
1862        if (common->priv->sc_nvifs <= 0)
1863                return -ENODEV;
1864
1865        if (scan_req->n_ssids) {
1866                ssid = scan_req->ssids[0].ssid;
1867                ssid_len = scan_req->ssids[0].ssid_len;
1868        }
1869
1870        skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1871        if (!skb)
1872                return -ENOMEM;
1873        memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1874
1875        bgscan = (struct rsi_bgscan_probe *)skb->data;
1876        bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ;
1877        bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG);
1878        if (common->band == NL80211_BAND_5GHZ) {
1879                bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6);
1880                bgscan->def_chan = cpu_to_le16(40);
1881        } else {
1882                bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1);
1883                bgscan->def_chan = cpu_to_le16(11);
1884        }
1885        bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME);
1886
1887        probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid,
1888                                              ssid_len, scan_req->ie_len);
1889        if (!probereq_skb) {
1890                dev_kfree_skb(skb);
1891                return -ENOMEM;
1892        }
1893
1894        memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len);
1895
1896        bgscan->probe_req_length = cpu_to_le16(probereq_skb->len);
1897
1898        rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1899                        (frame_len - FRAME_DESC_SZ + probereq_skb->len),
1900                        RSI_WIFI_MGMT_Q);
1901
1902        skb_put(skb, frame_len + probereq_skb->len);
1903
1904        dev_kfree_skb(probereq_skb);
1905
1906        return rsi_send_internal_mgmt_frame(common, skb);
1907}
1908
1909/**
1910 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1911 * @common: Pointer to the driver private structure.
1912 * @msg: Pointer to received packet.
1913 *
1914 * Return: 0 on success, -1 on failure.
1915 */
1916static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1917                                      u8 *msg)
1918{
1919        struct rsi_hw *adapter = common->priv;
1920        u8 sub_type = (msg[15] & 0xff);
1921        u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1922        u8 offset;
1923
1924        switch (sub_type) {
1925        case BOOTUP_PARAMS_REQUEST:
1926                rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1927                        __func__);
1928                if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1929                        if (adapter->device_model == RSI_DEV_9116) {
1930                                common->band = NL80211_BAND_5GHZ;
1931                                common->num_supp_bands = 2;
1932
1933                                if (rsi_send_reset_mac(common))
1934                                        goto out;
1935                                else
1936                                        common->fsm_state = FSM_RESET_MAC_SENT;
1937                        } else {
1938                                adapter->eeprom.length =
1939                                        (IEEE80211_ADDR_LEN +
1940                                         WLAN_MAC_MAGIC_WORD_LEN +
1941                                         WLAN_HOST_MODE_LEN);
1942                                adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1943                                if (rsi_eeprom_read(common)) {
1944                                        common->fsm_state = FSM_CARD_NOT_READY;
1945                                        goto out;
1946                                }
1947                                common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1948                        }
1949                } else {
1950                        rsi_dbg(INFO_ZONE,
1951                                "%s: Received bootup params cfm in %d state\n",
1952                                 __func__, common->fsm_state);
1953                        return 0;
1954                }
1955                break;
1956
1957        case EEPROM_READ:
1958                rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1959                if (msg_len <= 0) {
1960                        rsi_dbg(FSM_ZONE,
1961                                "%s: [EEPROM_READ] Invalid len %d\n",
1962                                __func__, msg_len);
1963                        goto out;
1964                }
1965                if (msg[16] != MAGIC_WORD) {
1966                        rsi_dbg(FSM_ZONE,
1967                                "%s: [EEPROM_READ] Invalid token\n", __func__);
1968                        common->fsm_state = FSM_CARD_NOT_READY;
1969                        goto out;
1970                }
1971                if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1972                        offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1973                                  WLAN_MAC_MAGIC_WORD_LEN);
1974                        memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1975                        adapter->eeprom.length =
1976                                ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1977                        adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1978                        if (rsi_eeprom_read(common)) {
1979                                rsi_dbg(ERR_ZONE,
1980                                        "%s: Failed reading RF band\n",
1981                                        __func__);
1982                                common->fsm_state = FSM_CARD_NOT_READY;
1983                                goto out;
1984                        }
1985                        common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
1986                } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
1987                        if ((msg[17] & 0x3) == 0x3) {
1988                                rsi_dbg(INIT_ZONE, "Dual band supported\n");
1989                                common->band = NL80211_BAND_5GHZ;
1990                                common->num_supp_bands = 2;
1991                        } else if ((msg[17] & 0x3) == 0x1) {
1992                                rsi_dbg(INIT_ZONE,
1993                                        "Only 2.4Ghz band supported\n");
1994                                common->band = NL80211_BAND_2GHZ;
1995                                common->num_supp_bands = 1;
1996                        }
1997                        if (rsi_send_reset_mac(common))
1998                                goto out;
1999                        common->fsm_state = FSM_RESET_MAC_SENT;
2000                } else {
2001                        rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
2002                                __func__);
2003                        return 0;
2004                }
2005                break;
2006
2007        case RESET_MAC_REQ:
2008                if (common->fsm_state == FSM_RESET_MAC_SENT) {
2009                        rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
2010                                __func__);
2011
2012                        if (rsi_load_radio_caps(common))
2013                                goto out;
2014                        else
2015                                common->fsm_state = FSM_RADIO_CAPS_SENT;
2016                } else {
2017                        rsi_dbg(ERR_ZONE,
2018                                "%s: Received reset mac cfm in %d state\n",
2019                                 __func__, common->fsm_state);
2020                        return 0;
2021                }
2022                break;
2023
2024        case RADIO_CAPABILITIES:
2025                if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
2026                        common->rf_reset = 1;
2027                        if (adapter->device_model == RSI_DEV_9116 &&
2028                            rsi_send_w9116_features(common)) {
2029                                rsi_dbg(ERR_ZONE,
2030                                        "Failed to send 9116 features\n");
2031                                goto out;
2032                        }
2033                        if (rsi_program_bb_rf(common)) {
2034                                goto out;
2035                        } else {
2036                                common->fsm_state = FSM_BB_RF_PROG_SENT;
2037                                rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
2038                                        __func__);
2039                        }
2040                } else {
2041                        rsi_dbg(INFO_ZONE,
2042                                "%s: Received radio caps cfm in %d state\n",
2043                                 __func__, common->fsm_state);
2044                        return 0;
2045                }
2046                break;
2047
2048        case BB_PROG_VALUES_REQUEST:
2049        case RF_PROG_VALUES_REQUEST:
2050        case BBP_PROG_IN_TA:
2051                rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
2052                if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
2053                        common->bb_rf_prog_count--;
2054                        if (!common->bb_rf_prog_count) {
2055                                common->fsm_state = FSM_MAC_INIT_DONE;
2056                                if (common->reinit_hw) {
2057                                        complete(&common->wlan_init_completion);
2058                                } else {
2059                                        return rsi_mac80211_attach(common);
2060                                }
2061                        }
2062                } else {
2063                        rsi_dbg(INFO_ZONE,
2064                                "%s: Received bbb_rf cfm in %d state\n",
2065                                 __func__, common->fsm_state);
2066                        return 0;
2067                }
2068                break;
2069
2070        case SCAN_REQUEST:
2071                rsi_dbg(INFO_ZONE, "Set channel confirm\n");
2072                break;
2073
2074        case WAKEUP_SLEEP_REQUEST:
2075                rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
2076                return rsi_handle_ps_confirm(adapter, msg);
2077
2078        case BG_SCAN_PROBE_REQ:
2079                rsi_dbg(INFO_ZONE, "BG scan complete event\n");
2080                if (common->bgscan_en) {
2081                        struct cfg80211_scan_info info;
2082
2083                        if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN))
2084                                common->bgscan_en = 0;
2085                        info.aborted = false;
2086                        ieee80211_scan_completed(adapter->hw, &info);
2087                }
2088                rsi_dbg(INFO_ZONE, "Background scan completed\n");
2089                break;
2090
2091        default:
2092                rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
2093                        __func__);
2094                break;
2095        }
2096        return 0;
2097out:
2098        rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
2099                __func__);
2100        return -EINVAL;
2101}
2102
2103int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
2104{
2105        int status;
2106
2107        switch (common->fsm_state) {
2108        case FSM_CARD_NOT_READY:
2109                rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
2110                rsi_set_default_parameters(common);
2111                if (rsi_send_common_dev_params(common) < 0)
2112                        return -EINVAL;
2113                common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
2114                break;
2115        case FSM_COMMON_DEV_PARAMS_SENT:
2116                rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
2117
2118                if (common->priv->device_model == RSI_DEV_9116) {
2119                        if (msg[16] != MAGIC_WORD) {
2120                                rsi_dbg(FSM_ZONE,
2121                                        "%s: [EEPROM_READ] Invalid token\n",
2122                                        __func__);
2123                                common->fsm_state = FSM_CARD_NOT_READY;
2124                                return -EINVAL;
2125                        }
2126                        memcpy(common->mac_addr, &msg[20], ETH_ALEN);
2127                        rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr);
2128                }
2129                /* Get usb buffer status register address */
2130                common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
2131                rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
2132                        common->priv->usb_buffer_status_reg);
2133
2134                if (common->priv->device_model == RSI_DEV_9116)
2135                        status = rsi_load_9116_bootup_params(common);
2136                else
2137                        status = rsi_load_bootup_params(common);
2138                if (status < 0) {
2139                        common->fsm_state = FSM_CARD_NOT_READY;
2140                        return status;
2141                }
2142                common->fsm_state = FSM_BOOT_PARAMS_SENT;
2143                break;
2144        default:
2145                rsi_dbg(ERR_ZONE,
2146                        "%s: card ready indication in invalid state %d.\n",
2147                        __func__, common->fsm_state);
2148                return -EINVAL;
2149        }
2150
2151        return 0;
2152}
2153
2154/**
2155 * rsi_mgmt_pkt_recv() - This function processes the management packets
2156 *                       received from the hardware.
2157 * @common: Pointer to the driver private structure.
2158 * @msg: Pointer to the received packet.
2159 *
2160 * Return: 0 on success, -1 on failure.
2161 */
2162int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
2163{
2164        s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
2165        u16 msg_type = (msg[2]);
2166
2167        rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
2168                __func__, msg_len, msg_type);
2169
2170        switch (msg_type) {
2171        case TA_CONFIRM_TYPE:
2172                return rsi_handle_ta_confirm_type(common, msg);
2173        case CARD_READY_IND:
2174                common->hibernate_resume = false;
2175                rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
2176                        __func__);
2177                return rsi_handle_card_ready(common, msg);
2178        case TX_STATUS_IND:
2179                switch (msg[RSI_TX_STATUS_TYPE]) {
2180                case PROBEREQ_CONFIRM:
2181                        common->mgmt_q_block = false;
2182                        rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
2183                                __func__);
2184                        break;
2185                case EAPOL4_CONFIRM:
2186                        if (msg[RSI_TX_STATUS]) {
2187                                common->eapol4_confirm = true;
2188                                if (!rsi_send_block_unblock_frame(common,
2189                                                                  false))
2190                                        common->hw_data_qs_blocked = false;
2191                        }
2192                }
2193                break;
2194        case BEACON_EVENT_IND:
2195                rsi_dbg(INFO_ZONE, "Beacon event\n");
2196                if (common->fsm_state != FSM_MAC_INIT_DONE)
2197                        return -1;
2198                if (common->iface_down)
2199                        return -1;
2200                if (!common->beacon_enabled)
2201                        return -1;
2202                rsi_send_beacon(common);
2203                break;
2204        case WOWLAN_WAKEUP_REASON:
2205                rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]);
2206                switch (msg[15]) {
2207                case RSI_UNICAST_MAGIC_PKT:
2208                        rsi_dbg(ERR_ZONE,
2209                                "*** Wakeup for Unicast magic packet ***\n");
2210                        break;
2211                case RSI_BROADCAST_MAGICPKT:
2212                        rsi_dbg(ERR_ZONE,
2213                                "*** Wakeup for Broadcast magic packet ***\n");
2214                        break;
2215                case RSI_EAPOL_PKT:
2216                        rsi_dbg(ERR_ZONE,
2217                                "*** Wakeup for GTK renewal ***\n");
2218                        break;
2219                case RSI_DISCONNECT_PKT:
2220                        rsi_dbg(ERR_ZONE,
2221                                "*** Wakeup for Disconnect ***\n");
2222                        break;
2223                case RSI_HW_BMISS_PKT:
2224                        rsi_dbg(ERR_ZONE,
2225                                "*** Wakeup for HW Beacon miss ***\n");
2226                        break;
2227                default:
2228                        rsi_dbg(ERR_ZONE,
2229                                "##### Un-intentional Wakeup #####\n");
2230                        break;
2231        }
2232        break;
2233        case RX_DOT11_MGMT:
2234                return rsi_mgmt_pkt_to_core(common, msg, msg_len);
2235        default:
2236                rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
2237        }
2238        return 0;
2239}
2240