linux/drivers/net/wireless/zydas/zd1211rw/zd_chip.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* ZD1211 USB-WLAN driver for Linux
   3 *
   4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   6 */
   7
   8/* This file implements all the hardware specific functions for the ZD1211
   9 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
  10 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/errno.h>
  15#include <linux/slab.h>
  16
  17#include "zd_def.h"
  18#include "zd_chip.h"
  19#include "zd_mac.h"
  20#include "zd_rf.h"
  21
  22void zd_chip_init(struct zd_chip *chip,
  23                 struct ieee80211_hw *hw,
  24                 struct usb_interface *intf)
  25{
  26        memset(chip, 0, sizeof(*chip));
  27        mutex_init(&chip->mutex);
  28        zd_usb_init(&chip->usb, hw, intf);
  29        zd_rf_init(&chip->rf);
  30}
  31
  32void zd_chip_clear(struct zd_chip *chip)
  33{
  34        ZD_ASSERT(!mutex_is_locked(&chip->mutex));
  35        zd_usb_clear(&chip->usb);
  36        zd_rf_clear(&chip->rf);
  37        mutex_destroy(&chip->mutex);
  38        ZD_MEMCLEAR(chip, sizeof(*chip));
  39}
  40
  41static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
  42{
  43        u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
  44        return scnprintf(buffer, size, "%02x-%02x-%02x",
  45                         addr[0], addr[1], addr[2]);
  46}
  47
  48/* Prints an identifier line, which will support debugging. */
  49static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
  50{
  51        int i = 0;
  52
  53        i = scnprintf(buffer, size, "zd1211%s chip ",
  54                      zd_chip_is_zd1211b(chip) ? "b" : "");
  55        i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
  56        i += scnprintf(buffer+i, size-i, " ");
  57        i += scnprint_mac_oui(chip, buffer+i, size-i);
  58        i += scnprintf(buffer+i, size-i, " ");
  59        i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
  60        i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
  61                chip->patch_cck_gain ? 'g' : '-',
  62                chip->patch_cr157 ? '7' : '-',
  63                chip->patch_6m_band_edge ? '6' : '-',
  64                chip->new_phy_layout ? 'N' : '-',
  65                chip->al2230s_bit ? 'S' : '-');
  66        return i;
  67}
  68
  69static void print_id(struct zd_chip *chip)
  70{
  71        char buffer[80];
  72
  73        scnprint_id(chip, buffer, sizeof(buffer));
  74        buffer[sizeof(buffer)-1] = 0;
  75        dev_info(zd_chip_dev(chip), "%s\n", buffer);
  76}
  77
  78static zd_addr_t inc_addr(zd_addr_t addr)
  79{
  80        u16 a = (u16)addr;
  81        /* Control registers use byte addressing, but everything else uses word
  82         * addressing. */
  83        if ((a & 0xf000) == CR_START)
  84                a += 2;
  85        else
  86                a += 1;
  87        return (zd_addr_t)a;
  88}
  89
  90/* Read a variable number of 32-bit values. Parameter count is not allowed to
  91 * exceed USB_MAX_IOREAD32_COUNT.
  92 */
  93int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
  94                 unsigned int count)
  95{
  96        int r;
  97        int i;
  98        zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
  99        u16 v16[USB_MAX_IOREAD32_COUNT * 2];
 100        unsigned int count16;
 101
 102        if (count > USB_MAX_IOREAD32_COUNT)
 103                return -EINVAL;
 104
 105        /* Use stack for values and addresses. */
 106        count16 = 2 * count;
 107        BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
 108        BUG_ON(count16 * sizeof(u16) > sizeof(v16));
 109
 110        for (i = 0; i < count; i++) {
 111                int j = 2*i;
 112                /* We read the high word always first. */
 113                a16[j] = inc_addr(addr[i]);
 114                a16[j+1] = addr[i];
 115        }
 116
 117        r = zd_ioread16v_locked(chip, v16, a16, count16);
 118        if (r) {
 119                dev_dbg_f(zd_chip_dev(chip),
 120                          "error: %s. Error number %d\n", __func__, r);
 121                return r;
 122        }
 123
 124        for (i = 0; i < count; i++) {
 125                int j = 2*i;
 126                values[i] = (v16[j] << 16) | v16[j+1];
 127        }
 128
 129        return 0;
 130}
 131
 132static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
 133                                       const struct zd_ioreq32 *ioreqs,
 134                                       unsigned int count)
 135{
 136        int i, j, r;
 137        struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
 138        unsigned int count16;
 139
 140        /* Use stack for values and addresses. */
 141
 142        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 143
 144        if (count == 0)
 145                return 0;
 146        if (count > USB_MAX_IOWRITE32_COUNT)
 147                return -EINVAL;
 148
 149        count16 = 2 * count;
 150        BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
 151
 152        for (i = 0; i < count; i++) {
 153                j = 2*i;
 154                /* We write the high word always first. */
 155                ioreqs16[j].value   = ioreqs[i].value >> 16;
 156                ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
 157                ioreqs16[j+1].value = ioreqs[i].value;
 158                ioreqs16[j+1].addr  = ioreqs[i].addr;
 159        }
 160
 161        r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
 162#ifdef DEBUG
 163        if (r) {
 164                dev_dbg_f(zd_chip_dev(chip),
 165                          "error %d in zd_usb_write16v\n", r);
 166        }
 167#endif /* DEBUG */
 168        return r;
 169}
 170
 171int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 172                          unsigned int count)
 173{
 174        int r;
 175
 176        zd_usb_iowrite16v_async_start(&chip->usb);
 177        r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
 178        if (r) {
 179                zd_usb_iowrite16v_async_end(&chip->usb, 0);
 180                return r;
 181        }
 182        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 183}
 184
 185int zd_iowrite16a_locked(struct zd_chip *chip,
 186                  const struct zd_ioreq16 *ioreqs, unsigned int count)
 187{
 188        int r;
 189        unsigned int i, j, t, max;
 190
 191        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 192        zd_usb_iowrite16v_async_start(&chip->usb);
 193
 194        for (i = 0; i < count; i += j + t) {
 195                t = 0;
 196                max = count-i;
 197                if (max > USB_MAX_IOWRITE16_COUNT)
 198                        max = USB_MAX_IOWRITE16_COUNT;
 199                for (j = 0; j < max; j++) {
 200                        if (!ioreqs[i+j].addr) {
 201                                t = 1;
 202                                break;
 203                        }
 204                }
 205
 206                r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
 207                if (r) {
 208                        zd_usb_iowrite16v_async_end(&chip->usb, 0);
 209                        dev_dbg_f(zd_chip_dev(chip),
 210                                  "error zd_usb_iowrite16v. Error number %d\n",
 211                                  r);
 212                        return r;
 213                }
 214        }
 215
 216        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 217}
 218
 219/* Writes a variable number of 32 bit registers. The functions will split
 220 * that in several USB requests. A split can be forced by inserting an IO
 221 * request with an zero address field.
 222 */
 223int zd_iowrite32a_locked(struct zd_chip *chip,
 224                  const struct zd_ioreq32 *ioreqs, unsigned int count)
 225{
 226        int r;
 227        unsigned int i, j, t, max;
 228
 229        zd_usb_iowrite16v_async_start(&chip->usb);
 230
 231        for (i = 0; i < count; i += j + t) {
 232                t = 0;
 233                max = count-i;
 234                if (max > USB_MAX_IOWRITE32_COUNT)
 235                        max = USB_MAX_IOWRITE32_COUNT;
 236                for (j = 0; j < max; j++) {
 237                        if (!ioreqs[i+j].addr) {
 238                                t = 1;
 239                                break;
 240                        }
 241                }
 242
 243                r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
 244                if (r) {
 245                        zd_usb_iowrite16v_async_end(&chip->usb, 0);
 246                        dev_dbg_f(zd_chip_dev(chip),
 247                                "error _%s. Error number %d\n", __func__,
 248                                r);
 249                        return r;
 250                }
 251        }
 252
 253        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 254}
 255
 256int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
 257{
 258        int r;
 259
 260        mutex_lock(&chip->mutex);
 261        r = zd_ioread16_locked(chip, value, addr);
 262        mutex_unlock(&chip->mutex);
 263        return r;
 264}
 265
 266int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
 267{
 268        int r;
 269
 270        mutex_lock(&chip->mutex);
 271        r = zd_ioread32_locked(chip, value, addr);
 272        mutex_unlock(&chip->mutex);
 273        return r;
 274}
 275
 276int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
 277{
 278        int r;
 279
 280        mutex_lock(&chip->mutex);
 281        r = zd_iowrite16_locked(chip, value, addr);
 282        mutex_unlock(&chip->mutex);
 283        return r;
 284}
 285
 286int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
 287{
 288        int r;
 289
 290        mutex_lock(&chip->mutex);
 291        r = zd_iowrite32_locked(chip, value, addr);
 292        mutex_unlock(&chip->mutex);
 293        return r;
 294}
 295
 296int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
 297                  u32 *values, unsigned int count)
 298{
 299        int r;
 300
 301        mutex_lock(&chip->mutex);
 302        r = zd_ioread32v_locked(chip, values, addresses, count);
 303        mutex_unlock(&chip->mutex);
 304        return r;
 305}
 306
 307int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 308                  unsigned int count)
 309{
 310        int r;
 311
 312        mutex_lock(&chip->mutex);
 313        r = zd_iowrite32a_locked(chip, ioreqs, count);
 314        mutex_unlock(&chip->mutex);
 315        return r;
 316}
 317
 318static int read_pod(struct zd_chip *chip, u8 *rf_type)
 319{
 320        int r;
 321        u32 value;
 322
 323        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 324        r = zd_ioread32_locked(chip, &value, E2P_POD);
 325        if (r)
 326                goto error;
 327        dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
 328
 329        /* FIXME: AL2230 handling (Bit 7 in POD) */
 330        *rf_type = value & 0x0f;
 331        chip->pa_type = (value >> 16) & 0x0f;
 332        chip->patch_cck_gain = (value >> 8) & 0x1;
 333        chip->patch_cr157 = (value >> 13) & 0x1;
 334        chip->patch_6m_band_edge = (value >> 21) & 0x1;
 335        chip->new_phy_layout = (value >> 31) & 0x1;
 336        chip->al2230s_bit = (value >> 7) & 0x1;
 337        chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
 338        chip->supports_tx_led = 1;
 339        if (value & (1 << 24)) { /* LED scenario */
 340                if (value & (1 << 29))
 341                        chip->supports_tx_led = 0;
 342        }
 343
 344        dev_dbg_f(zd_chip_dev(chip),
 345                "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
 346                "patch 6M %d new PHY %d link LED%d tx led %d\n",
 347                zd_rf_name(*rf_type), *rf_type,
 348                chip->pa_type, chip->patch_cck_gain,
 349                chip->patch_cr157, chip->patch_6m_band_edge,
 350                chip->new_phy_layout,
 351                chip->link_led == LED1 ? 1 : 2,
 352                chip->supports_tx_led);
 353        return 0;
 354error:
 355        *rf_type = 0;
 356        chip->pa_type = 0;
 357        chip->patch_cck_gain = 0;
 358        chip->patch_cr157 = 0;
 359        chip->patch_6m_band_edge = 0;
 360        chip->new_phy_layout = 0;
 361        return r;
 362}
 363
 364static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
 365                                    const struct zd_ioreq32 *in_reqs,
 366                                    const char *type)
 367{
 368        int r;
 369        struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
 370
 371        if (mac_addr) {
 372                reqs[0].value = (mac_addr[3] << 24)
 373                              | (mac_addr[2] << 16)
 374                              | (mac_addr[1] <<  8)
 375                              |  mac_addr[0];
 376                reqs[1].value = (mac_addr[5] <<  8)
 377                              |  mac_addr[4];
 378                dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
 379        } else {
 380                dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
 381        }
 382
 383        mutex_lock(&chip->mutex);
 384        r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 385        mutex_unlock(&chip->mutex);
 386        return r;
 387}
 388
 389/* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
 390 *              CR_MAC_ADDR_P2 must be overwritten
 391 */
 392int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
 393{
 394        static const struct zd_ioreq32 reqs[2] = {
 395                [0] = { .addr = CR_MAC_ADDR_P1 },
 396                [1] = { .addr = CR_MAC_ADDR_P2 },
 397        };
 398
 399        return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
 400}
 401
 402int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
 403{
 404        static const struct zd_ioreq32 reqs[2] = {
 405                [0] = { .addr = CR_BSSID_P1 },
 406                [1] = { .addr = CR_BSSID_P2 },
 407        };
 408
 409        return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
 410}
 411
 412int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
 413{
 414        int r;
 415        u32 value;
 416
 417        mutex_lock(&chip->mutex);
 418        r = zd_ioread32_locked(chip, &value, E2P_SUBID);
 419        mutex_unlock(&chip->mutex);
 420        if (r)
 421                return r;
 422
 423        *regdomain = value >> 16;
 424        dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
 425
 426        return 0;
 427}
 428
 429static int read_values(struct zd_chip *chip, u8 *values, size_t count,
 430                       zd_addr_t e2p_addr, u32 guard)
 431{
 432        int r;
 433        int i;
 434        u32 v;
 435
 436        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 437        for (i = 0;;) {
 438                r = zd_ioread32_locked(chip, &v,
 439                                       (zd_addr_t)((u16)e2p_addr+i/2));
 440                if (r)
 441                        return r;
 442                v -= guard;
 443                if (i+4 < count) {
 444                        values[i++] = v;
 445                        values[i++] = v >>  8;
 446                        values[i++] = v >> 16;
 447                        values[i++] = v >> 24;
 448                        continue;
 449                }
 450                for (;i < count; i++)
 451                        values[i] = v >> (8*(i%3));
 452                return 0;
 453        }
 454}
 455
 456static int read_pwr_cal_values(struct zd_chip *chip)
 457{
 458        return read_values(chip, chip->pwr_cal_values,
 459                        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
 460                        0);
 461}
 462
 463static int read_pwr_int_values(struct zd_chip *chip)
 464{
 465        return read_values(chip, chip->pwr_int_values,
 466                        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
 467                        E2P_PWR_INT_GUARD);
 468}
 469
 470static int read_ofdm_cal_values(struct zd_chip *chip)
 471{
 472        int r;
 473        int i;
 474        static const zd_addr_t addresses[] = {
 475                E2P_36M_CAL_VALUE1,
 476                E2P_48M_CAL_VALUE1,
 477                E2P_54M_CAL_VALUE1,
 478        };
 479
 480        for (i = 0; i < 3; i++) {
 481                r = read_values(chip, chip->ofdm_cal_values[i],
 482                                E2P_CHANNEL_COUNT, addresses[i], 0);
 483                if (r)
 484                        return r;
 485        }
 486        return 0;
 487}
 488
 489static int read_cal_int_tables(struct zd_chip *chip)
 490{
 491        int r;
 492
 493        r = read_pwr_cal_values(chip);
 494        if (r)
 495                return r;
 496        r = read_pwr_int_values(chip);
 497        if (r)
 498                return r;
 499        r = read_ofdm_cal_values(chip);
 500        if (r)
 501                return r;
 502        return 0;
 503}
 504
 505/* phy means physical registers */
 506int zd_chip_lock_phy_regs(struct zd_chip *chip)
 507{
 508        int r;
 509        u32 tmp;
 510
 511        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 512        r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 513        if (r) {
 514                dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
 515                return r;
 516        }
 517
 518        tmp &= ~UNLOCK_PHY_REGS;
 519
 520        r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 521        if (r)
 522                dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 523        return r;
 524}
 525
 526int zd_chip_unlock_phy_regs(struct zd_chip *chip)
 527{
 528        int r;
 529        u32 tmp;
 530
 531        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 532        r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 533        if (r) {
 534                dev_err(zd_chip_dev(chip),
 535                        "error ioread32(CR_REG1): %d\n", r);
 536                return r;
 537        }
 538
 539        tmp |= UNLOCK_PHY_REGS;
 540
 541        r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 542        if (r)
 543                dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 544        return r;
 545}
 546
 547/* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
 548static int patch_cr157(struct zd_chip *chip)
 549{
 550        int r;
 551        u16 value;
 552
 553        if (!chip->patch_cr157)
 554                return 0;
 555
 556        r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
 557        if (r)
 558                return r;
 559
 560        dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
 561        return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
 562}
 563
 564/*
 565 * 6M band edge can be optionally overwritten for certain RF's
 566 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
 567 * bit (for AL2230, AL2230S)
 568 */
 569static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
 570{
 571        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 572        if (!chip->patch_6m_band_edge)
 573                return 0;
 574
 575        return zd_rf_patch_6m_band_edge(&chip->rf, channel);
 576}
 577
 578/* Generic implementation of 6M band edge patching, used by most RFs via
 579 * zd_rf_generic_patch_6m() */
 580int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
 581{
 582        struct zd_ioreq16 ioreqs[] = {
 583                { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 584                { ZD_CR47,  0x1e },
 585        };
 586
 587        /* FIXME: Channel 11 is not the edge for all regulatory domains. */
 588        if (channel == 1 || channel == 11)
 589                ioreqs[0].value = 0x12;
 590
 591        dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
 592        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 593}
 594
 595static int zd1211_hw_reset_phy(struct zd_chip *chip)
 596{
 597        static const struct zd_ioreq16 ioreqs[] = {
 598                { ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 599                { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
 600                { ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
 601                { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
 602                { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
 603                { ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
 604                { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
 605                { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
 606                { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
 607                { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 608                { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 609                { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 610                { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 611                { ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
 612                { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 613                { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 614                { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 615                { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 616                { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 617                { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 618                { ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 619                { ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
 620                { ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
 621                { ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
 622                { ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
 623                { ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
 624                { ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
 625                { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
 626                { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
 627                { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
 628                { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
 629                { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
 630                { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 631                { },
 632                { ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
 633                { ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
 634                { ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
 635                { ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
 636                { ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
 637                { ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
 638                { ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
 639                { ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
 640                { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
 641                { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 642                { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 643                { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 644                { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 645                { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
 646                { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
 647                { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
 648                { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
 649                { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
 650                { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
 651                { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
 652                { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
 653                { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 654                { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 655                { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 656                { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 657                /* Note: ZD_CR204 must lead the ZD_CR203 */
 658                { ZD_CR204, 0x7d },
 659                { },
 660                { ZD_CR203, 0x30 },
 661        };
 662
 663        int r, t;
 664
 665        dev_dbg_f(zd_chip_dev(chip), "\n");
 666
 667        r = zd_chip_lock_phy_regs(chip);
 668        if (r)
 669                goto out;
 670
 671        r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 672        if (r)
 673                goto unlock;
 674
 675        r = patch_cr157(chip);
 676unlock:
 677        t = zd_chip_unlock_phy_regs(chip);
 678        if (t && !r)
 679                r = t;
 680out:
 681        return r;
 682}
 683
 684static int zd1211b_hw_reset_phy(struct zd_chip *chip)
 685{
 686        static const struct zd_ioreq16 ioreqs[] = {
 687                { ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 688                { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
 689                { ZD_CR10,  0x81 },
 690                /* power control { { ZD_CR11,  1 << 6 }, */
 691                { ZD_CR11,  0x00 },
 692                { ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
 693                { ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
 694                { ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
 695                { ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
 696                { ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
 697                { ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
 698                { ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
 699                { ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
 700                { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 701                { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 702                { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 703                { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 704                { ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
 705                { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 706                { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 707                { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 708                { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 709                { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 710                { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 711                { ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 712                { ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
 713                { ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
 714                { ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
 715                { ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
 716                { ZD_CR94,  0x01 },
 717                { ZD_CR95,  0x20 }, /* ZD1211B */
 718                { ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
 719                { ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
 720                { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 721                { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
 722                { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 723                { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 724                { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 725                { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
 726                { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 727                { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 728                { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
 729                { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
 730                { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
 731                { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
 732                { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
 733                { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
 734                { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
 735                { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 736                { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 737                { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 738                { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 739                /* Note: ZD_CR204 must lead the ZD_CR203 */
 740                { ZD_CR204, 0x7d },
 741                {},
 742                { ZD_CR203, 0x30 },
 743        };
 744
 745        int r, t;
 746
 747        dev_dbg_f(zd_chip_dev(chip), "\n");
 748
 749        r = zd_chip_lock_phy_regs(chip);
 750        if (r)
 751                goto out;
 752
 753        r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 754        t = zd_chip_unlock_phy_regs(chip);
 755        if (t && !r)
 756                r = t;
 757out:
 758        return r;
 759}
 760
 761static int hw_reset_phy(struct zd_chip *chip)
 762{
 763        return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
 764                                  zd1211_hw_reset_phy(chip);
 765}
 766
 767static int zd1211_hw_init_hmac(struct zd_chip *chip)
 768{
 769        static const struct zd_ioreq32 ioreqs[] = {
 770                { CR_ZD1211_RETRY_MAX,          ZD1211_RETRY_COUNT },
 771                { CR_RX_THRESHOLD,              0x000c0640 },
 772        };
 773
 774        dev_dbg_f(zd_chip_dev(chip), "\n");
 775        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 776        return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 777}
 778
 779static int zd1211b_hw_init_hmac(struct zd_chip *chip)
 780{
 781        static const struct zd_ioreq32 ioreqs[] = {
 782                { CR_ZD1211B_RETRY_MAX,         ZD1211B_RETRY_COUNT },
 783                { CR_ZD1211B_CWIN_MAX_MIN_AC0,  0x007f003f },
 784                { CR_ZD1211B_CWIN_MAX_MIN_AC1,  0x007f003f },
 785                { CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
 786                { CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
 787                { CR_ZD1211B_AIFS_CTL1,         0x00280028 },
 788                { CR_ZD1211B_AIFS_CTL2,         0x008C003C },
 789                { CR_ZD1211B_TXOP,              0x01800824 },
 790                { CR_RX_THRESHOLD,              0x000c0eff, },
 791        };
 792
 793        dev_dbg_f(zd_chip_dev(chip), "\n");
 794        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 795        return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 796}
 797
 798static int hw_init_hmac(struct zd_chip *chip)
 799{
 800        int r;
 801        static const struct zd_ioreq32 ioreqs[] = {
 802                { CR_ACK_TIMEOUT_EXT,           0x20 },
 803                { CR_ADDA_MBIAS_WARMTIME,       0x30000808 },
 804                { CR_SNIFFER_ON,                0 },
 805                { CR_RX_FILTER,                 STA_RX_FILTER },
 806                { CR_GROUP_HASH_P1,             0x00 },
 807                { CR_GROUP_HASH_P2,             0x80000000 },
 808                { CR_REG1,                      0xa4 },
 809                { CR_ADDA_PWR_DWN,              0x7f },
 810                { CR_BCN_PLCP_CFG,              0x00f00401 },
 811                { CR_PHY_DELAY,                 0x00 },
 812                { CR_ACK_TIMEOUT_EXT,           0x80 },
 813                { CR_ADDA_PWR_DWN,              0x00 },
 814                { CR_ACK_TIME_80211,            0x100 },
 815                { CR_RX_PE_DELAY,               0x70 },
 816                { CR_PS_CTRL,                   0x10000000 },
 817                { CR_RTS_CTS_RATE,              0x02030203 },
 818                { CR_AFTER_PNP,                 0x1 },
 819                { CR_WEP_PROTECT,               0x114 },
 820                { CR_IFS_VALUE,                 IFS_VALUE_DEFAULT },
 821                { CR_CAM_MODE,                  MODE_AP_WDS},
 822        };
 823
 824        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 825        r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 826        if (r)
 827                return r;
 828
 829        return zd_chip_is_zd1211b(chip) ?
 830                zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
 831}
 832
 833struct aw_pt_bi {
 834        u32 atim_wnd_period;
 835        u32 pre_tbtt;
 836        u32 beacon_interval;
 837};
 838
 839static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 840{
 841        int r;
 842        static const zd_addr_t aw_pt_bi_addr[] =
 843                { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
 844        u32 values[3];
 845
 846        r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
 847                         ARRAY_SIZE(aw_pt_bi_addr));
 848        if (r) {
 849                memset(s, 0, sizeof(*s));
 850                return r;
 851        }
 852
 853        s->atim_wnd_period = values[0];
 854        s->pre_tbtt = values[1];
 855        s->beacon_interval = values[2];
 856        return 0;
 857}
 858
 859static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 860{
 861        struct zd_ioreq32 reqs[3];
 862        u16 b_interval = s->beacon_interval & 0xffff;
 863
 864        if (b_interval <= 5)
 865                b_interval = 5;
 866        if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
 867                s->pre_tbtt = b_interval - 1;
 868        if (s->atim_wnd_period >= s->pre_tbtt)
 869                s->atim_wnd_period = s->pre_tbtt - 1;
 870
 871        reqs[0].addr = CR_ATIM_WND_PERIOD;
 872        reqs[0].value = s->atim_wnd_period;
 873        reqs[1].addr = CR_PRE_TBTT;
 874        reqs[1].value = s->pre_tbtt;
 875        reqs[2].addr = CR_BCN_INTERVAL;
 876        reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
 877
 878        return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 879}
 880
 881
 882static int set_beacon_interval(struct zd_chip *chip, u16 interval,
 883                               u8 dtim_period, int type)
 884{
 885        int r;
 886        struct aw_pt_bi s;
 887        u32 b_interval, mode_flag;
 888
 889        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 890
 891        if (interval > 0) {
 892                switch (type) {
 893                case NL80211_IFTYPE_ADHOC:
 894                case NL80211_IFTYPE_MESH_POINT:
 895                        mode_flag = BCN_MODE_IBSS;
 896                        break;
 897                case NL80211_IFTYPE_AP:
 898                        mode_flag = BCN_MODE_AP;
 899                        break;
 900                default:
 901                        mode_flag = 0;
 902                        break;
 903                }
 904        } else {
 905                dtim_period = 0;
 906                mode_flag = 0;
 907        }
 908
 909        b_interval = mode_flag | (dtim_period << 16) | interval;
 910
 911        r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
 912        if (r)
 913                return r;
 914        r = get_aw_pt_bi(chip, &s);
 915        if (r)
 916                return r;
 917        return set_aw_pt_bi(chip, &s);
 918}
 919
 920int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
 921                           int type)
 922{
 923        int r;
 924
 925        mutex_lock(&chip->mutex);
 926        r = set_beacon_interval(chip, interval, dtim_period, type);
 927        mutex_unlock(&chip->mutex);
 928        return r;
 929}
 930
 931static int hw_init(struct zd_chip *chip)
 932{
 933        int r;
 934
 935        dev_dbg_f(zd_chip_dev(chip), "\n");
 936        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 937        r = hw_reset_phy(chip);
 938        if (r)
 939                return r;
 940
 941        r = hw_init_hmac(chip);
 942        if (r)
 943                return r;
 944
 945        return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
 946}
 947
 948static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
 949{
 950        return (zd_addr_t)((u16)chip->fw_regs_base + offset);
 951}
 952
 953#ifdef DEBUG
 954static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
 955                   const char *addr_string)
 956{
 957        int r;
 958        u32 value;
 959
 960        r = zd_ioread32_locked(chip, &value, addr);
 961        if (r) {
 962                dev_dbg_f(zd_chip_dev(chip),
 963                        "error reading %s. Error number %d\n", addr_string, r);
 964                return r;
 965        }
 966
 967        dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
 968                addr_string, (unsigned int)value);
 969        return 0;
 970}
 971
 972static int test_init(struct zd_chip *chip)
 973{
 974        int r;
 975
 976        r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
 977        if (r)
 978                return r;
 979        r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
 980        if (r)
 981                return r;
 982        return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
 983}
 984
 985static void dump_fw_registers(struct zd_chip *chip)
 986{
 987        const zd_addr_t addr[4] = {
 988                fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
 989                fw_reg_addr(chip, FW_REG_USB_SPEED),
 990                fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
 991                fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
 992        };
 993
 994        int r;
 995        u16 values[4];
 996
 997        r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
 998                         ARRAY_SIZE(addr));
 999        if (r) {
1000                dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1001                         r);
1002                return;
1003        }
1004
1005        dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1006        dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1007        dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1008        dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1009}
1010#endif /* DEBUG */
1011
1012static int print_fw_version(struct zd_chip *chip)
1013{
1014        struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1015        int r;
1016        u16 version;
1017
1018        r = zd_ioread16_locked(chip, &version,
1019                fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1020        if (r)
1021                return r;
1022
1023        dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1024
1025        snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1026                        "%04hx", version);
1027
1028        return 0;
1029}
1030
1031static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1032{
1033        u32 rates;
1034        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1035        /* This sets the mandatory rates, which only depend from the standard
1036         * that the device is supporting. Until further notice we should try
1037         * to support 802.11g also for full speed USB.
1038         */
1039        if (!gmode)
1040                rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1041        else
1042                rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1043                        CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1044
1045        return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1046}
1047
1048int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1049                                    int preamble)
1050{
1051        u32 value = 0;
1052
1053        dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1054        value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1055        value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1056
1057        /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1058        value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1059        value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1060        value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1061        value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1062
1063        return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1064}
1065
1066int zd_chip_enable_hwint(struct zd_chip *chip)
1067{
1068        int r;
1069
1070        mutex_lock(&chip->mutex);
1071        r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1072        mutex_unlock(&chip->mutex);
1073        return r;
1074}
1075
1076static int disable_hwint(struct zd_chip *chip)
1077{
1078        return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1079}
1080
1081int zd_chip_disable_hwint(struct zd_chip *chip)
1082{
1083        int r;
1084
1085        mutex_lock(&chip->mutex);
1086        r = disable_hwint(chip);
1087        mutex_unlock(&chip->mutex);
1088        return r;
1089}
1090
1091static int read_fw_regs_offset(struct zd_chip *chip)
1092{
1093        int r;
1094
1095        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1096        r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1097                               FWRAW_REGS_ADDR);
1098        if (r)
1099                return r;
1100        dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1101                  (u16)chip->fw_regs_base);
1102
1103        return 0;
1104}
1105
1106/* Read mac address using pre-firmware interface */
1107int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1108{
1109        dev_dbg_f(zd_chip_dev(chip), "\n");
1110        return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1111                ETH_ALEN);
1112}
1113
1114int zd_chip_init_hw(struct zd_chip *chip)
1115{
1116        int r;
1117        u8 rf_type;
1118
1119        dev_dbg_f(zd_chip_dev(chip), "\n");
1120
1121        mutex_lock(&chip->mutex);
1122
1123#ifdef DEBUG
1124        r = test_init(chip);
1125        if (r)
1126                goto out;
1127#endif
1128        r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1129        if (r)
1130                goto out;
1131
1132        r = read_fw_regs_offset(chip);
1133        if (r)
1134                goto out;
1135
1136        /* GPI is always disabled, also in the other driver.
1137         */
1138        r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1139        if (r)
1140                goto out;
1141        r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1142        if (r)
1143                goto out;
1144        /* Currently we support IEEE 802.11g for full and high speed USB.
1145         * It might be discussed, whether we should support pure b mode for
1146         * full speed USB.
1147         */
1148        r = set_mandatory_rates(chip, 1);
1149        if (r)
1150                goto out;
1151        /* Disabling interrupts is certainly a smart thing here.
1152         */
1153        r = disable_hwint(chip);
1154        if (r)
1155                goto out;
1156        r = read_pod(chip, &rf_type);
1157        if (r)
1158                goto out;
1159        r = hw_init(chip);
1160        if (r)
1161                goto out;
1162        r = zd_rf_init_hw(&chip->rf, rf_type);
1163        if (r)
1164                goto out;
1165
1166        r = print_fw_version(chip);
1167        if (r)
1168                goto out;
1169
1170#ifdef DEBUG
1171        dump_fw_registers(chip);
1172        r = test_init(chip);
1173        if (r)
1174                goto out;
1175#endif /* DEBUG */
1176
1177        r = read_cal_int_tables(chip);
1178        if (r)
1179                goto out;
1180
1181        print_id(chip);
1182out:
1183        mutex_unlock(&chip->mutex);
1184        return r;
1185}
1186
1187static int update_pwr_int(struct zd_chip *chip, u8 channel)
1188{
1189        u8 value = chip->pwr_int_values[channel - 1];
1190        return zd_iowrite16_locked(chip, value, ZD_CR31);
1191}
1192
1193static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1194{
1195        u8 value = chip->pwr_cal_values[channel-1];
1196        return zd_iowrite16_locked(chip, value, ZD_CR68);
1197}
1198
1199static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1200{
1201        struct zd_ioreq16 ioreqs[3];
1202
1203        ioreqs[0].addr = ZD_CR67;
1204        ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1205        ioreqs[1].addr = ZD_CR66;
1206        ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1207        ioreqs[2].addr = ZD_CR65;
1208        ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1209
1210        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1211}
1212
1213static int update_channel_integration_and_calibration(struct zd_chip *chip,
1214                                                      u8 channel)
1215{
1216        int r;
1217
1218        if (!zd_rf_should_update_pwr_int(&chip->rf))
1219                return 0;
1220
1221        r = update_pwr_int(chip, channel);
1222        if (r)
1223                return r;
1224        if (zd_chip_is_zd1211b(chip)) {
1225                static const struct zd_ioreq16 ioreqs[] = {
1226                        { ZD_CR69, 0x28 },
1227                        {},
1228                        { ZD_CR69, 0x2a },
1229                };
1230
1231                r = update_ofdm_cal(chip, channel);
1232                if (r)
1233                        return r;
1234                r = update_pwr_cal(chip, channel);
1235                if (r)
1236                        return r;
1237                r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1238                if (r)
1239                        return r;
1240        }
1241
1242        return 0;
1243}
1244
1245/* The CCK baseband gain can be optionally patched by the EEPROM */
1246static int patch_cck_gain(struct zd_chip *chip)
1247{
1248        int r;
1249        u32 value;
1250
1251        if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1252                return 0;
1253
1254        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1255        r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1256        if (r)
1257                return r;
1258        dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1259        return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1260}
1261
1262int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1263{
1264        int r, t;
1265
1266        mutex_lock(&chip->mutex);
1267        r = zd_chip_lock_phy_regs(chip);
1268        if (r)
1269                goto out;
1270        r = zd_rf_set_channel(&chip->rf, channel);
1271        if (r)
1272                goto unlock;
1273        r = update_channel_integration_and_calibration(chip, channel);
1274        if (r)
1275                goto unlock;
1276        r = patch_cck_gain(chip);
1277        if (r)
1278                goto unlock;
1279        r = patch_6m_band_edge(chip, channel);
1280        if (r)
1281                goto unlock;
1282        r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1283unlock:
1284        t = zd_chip_unlock_phy_regs(chip);
1285        if (t && !r)
1286                r = t;
1287out:
1288        mutex_unlock(&chip->mutex);
1289        return r;
1290}
1291
1292u8 zd_chip_get_channel(struct zd_chip *chip)
1293{
1294        u8 channel;
1295
1296        mutex_lock(&chip->mutex);
1297        channel = chip->rf.channel;
1298        mutex_unlock(&chip->mutex);
1299        return channel;
1300}
1301
1302int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1303{
1304        const zd_addr_t a[] = {
1305                fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1306                CR_LED,
1307        };
1308
1309        int r;
1310        u16 v[ARRAY_SIZE(a)];
1311        struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1312                [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1313                [1] = { CR_LED },
1314        };
1315        u16 other_led;
1316
1317        mutex_lock(&chip->mutex);
1318        r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1319        if (r)
1320                goto out;
1321
1322        other_led = chip->link_led == LED1 ? LED2 : LED1;
1323
1324        switch (status) {
1325        case ZD_LED_OFF:
1326                ioreqs[0].value = FW_LINK_OFF;
1327                ioreqs[1].value = v[1] & ~(LED1|LED2);
1328                break;
1329        case ZD_LED_SCANNING:
1330                ioreqs[0].value = FW_LINK_OFF;
1331                ioreqs[1].value = v[1] & ~other_led;
1332                if ((u32)ktime_get_seconds() % 3 == 0) {
1333                        ioreqs[1].value &= ~chip->link_led;
1334                } else {
1335                        ioreqs[1].value |= chip->link_led;
1336                }
1337                break;
1338        case ZD_LED_ASSOCIATED:
1339                ioreqs[0].value = FW_LINK_TX;
1340                ioreqs[1].value = v[1] & ~other_led;
1341                ioreqs[1].value |= chip->link_led;
1342                break;
1343        default:
1344                r = -EINVAL;
1345                goto out;
1346        }
1347
1348        if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1349                r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1350                if (r)
1351                        goto out;
1352        }
1353        r = 0;
1354out:
1355        mutex_unlock(&chip->mutex);
1356        return r;
1357}
1358
1359int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1360{
1361        int r;
1362
1363        if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1364                return -EINVAL;
1365
1366        mutex_lock(&chip->mutex);
1367        r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1368        mutex_unlock(&chip->mutex);
1369        return r;
1370}
1371
1372static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1373{
1374        return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1375}
1376
1377/**
1378 * zd_rx_rate - report zd-rate
1379 * @rx_frame - received frame
1380 * @rx_status - rx_status as given by the device
1381 *
1382 * This function converts the rate as encoded in the received packet to the
1383 * zd-rate, we are using on other places in the driver.
1384 */
1385u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1386{
1387        u8 zd_rate;
1388        if (status->frame_status & ZD_RX_OFDM) {
1389                zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1390        } else {
1391                switch (zd_cck_plcp_header_signal(rx_frame)) {
1392                case ZD_CCK_PLCP_SIGNAL_1M:
1393                        zd_rate = ZD_CCK_RATE_1M;
1394                        break;
1395                case ZD_CCK_PLCP_SIGNAL_2M:
1396                        zd_rate = ZD_CCK_RATE_2M;
1397                        break;
1398                case ZD_CCK_PLCP_SIGNAL_5M5:
1399                        zd_rate = ZD_CCK_RATE_5_5M;
1400                        break;
1401                case ZD_CCK_PLCP_SIGNAL_11M:
1402                        zd_rate = ZD_CCK_RATE_11M;
1403                        break;
1404                default:
1405                        zd_rate = 0;
1406                }
1407        }
1408
1409        return zd_rate;
1410}
1411
1412int zd_chip_switch_radio_on(struct zd_chip *chip)
1413{
1414        int r;
1415
1416        mutex_lock(&chip->mutex);
1417        r = zd_switch_radio_on(&chip->rf);
1418        mutex_unlock(&chip->mutex);
1419        return r;
1420}
1421
1422int zd_chip_switch_radio_off(struct zd_chip *chip)
1423{
1424        int r;
1425
1426        mutex_lock(&chip->mutex);
1427        r = zd_switch_radio_off(&chip->rf);
1428        mutex_unlock(&chip->mutex);
1429        return r;
1430}
1431
1432int zd_chip_enable_int(struct zd_chip *chip)
1433{
1434        int r;
1435
1436        mutex_lock(&chip->mutex);
1437        r = zd_usb_enable_int(&chip->usb);
1438        mutex_unlock(&chip->mutex);
1439        return r;
1440}
1441
1442void zd_chip_disable_int(struct zd_chip *chip)
1443{
1444        mutex_lock(&chip->mutex);
1445        zd_usb_disable_int(&chip->usb);
1446        mutex_unlock(&chip->mutex);
1447
1448        /* cancel pending interrupt work */
1449        cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1450}
1451
1452int zd_chip_enable_rxtx(struct zd_chip *chip)
1453{
1454        int r;
1455
1456        mutex_lock(&chip->mutex);
1457        zd_usb_enable_tx(&chip->usb);
1458        r = zd_usb_enable_rx(&chip->usb);
1459        zd_tx_watchdog_enable(&chip->usb);
1460        mutex_unlock(&chip->mutex);
1461        return r;
1462}
1463
1464void zd_chip_disable_rxtx(struct zd_chip *chip)
1465{
1466        mutex_lock(&chip->mutex);
1467        zd_tx_watchdog_disable(&chip->usb);
1468        zd_usb_disable_rx(&chip->usb);
1469        zd_usb_disable_tx(&chip->usb);
1470        mutex_unlock(&chip->mutex);
1471}
1472
1473int zd_rfwritev_locked(struct zd_chip *chip,
1474                       const u32* values, unsigned int count, u8 bits)
1475{
1476        int r;
1477        unsigned int i;
1478
1479        for (i = 0; i < count; i++) {
1480                r = zd_rfwrite_locked(chip, values[i], bits);
1481                if (r)
1482                        return r;
1483        }
1484
1485        return 0;
1486}
1487
1488/*
1489 * We can optionally program the RF directly through CR regs, if supported by
1490 * the hardware. This is much faster than the older method.
1491 */
1492int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1493{
1494        const struct zd_ioreq16 ioreqs[] = {
1495                { ZD_CR244, (value >> 16) & 0xff },
1496                { ZD_CR243, (value >>  8) & 0xff },
1497                { ZD_CR242,  value        & 0xff },
1498        };
1499        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1500        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1501}
1502
1503int zd_rfwritev_cr_locked(struct zd_chip *chip,
1504                          const u32 *values, unsigned int count)
1505{
1506        int r;
1507        unsigned int i;
1508
1509        for (i = 0; i < count; i++) {
1510                r = zd_rfwrite_cr_locked(chip, values[i]);
1511                if (r)
1512                        return r;
1513        }
1514
1515        return 0;
1516}
1517
1518int zd_chip_set_multicast_hash(struct zd_chip *chip,
1519                               struct zd_mc_hash *hash)
1520{
1521        const struct zd_ioreq32 ioreqs[] = {
1522                { CR_GROUP_HASH_P1, hash->low },
1523                { CR_GROUP_HASH_P2, hash->high },
1524        };
1525
1526        return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1527}
1528
1529u64 zd_chip_get_tsf(struct zd_chip *chip)
1530{
1531        int r;
1532        static const zd_addr_t aw_pt_bi_addr[] =
1533                { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1534        u32 values[2];
1535        u64 tsf;
1536
1537        mutex_lock(&chip->mutex);
1538        r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1539                                ARRAY_SIZE(aw_pt_bi_addr));
1540        mutex_unlock(&chip->mutex);
1541        if (r)
1542                return 0;
1543
1544        tsf = values[1];
1545        tsf = (tsf << 32) | values[0];
1546
1547        return tsf;
1548}
1549