linux/drivers/nvme/host/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/blk-mq.h>
   9#include <linux/delay.h>
  10#include <linux/errno.h>
  11#include <linux/hdreg.h>
  12#include <linux/kernel.h>
  13#include <linux/module.h>
  14#include <linux/backing-dev.h>
  15#include <linux/list_sort.h>
  16#include <linux/slab.h>
  17#include <linux/types.h>
  18#include <linux/pr.h>
  19#include <linux/ptrace.h>
  20#include <linux/nvme_ioctl.h>
  21#include <linux/t10-pi.h>
  22#include <linux/pm_qos.h>
  23#include <asm/unaligned.h>
  24
  25#define CREATE_TRACE_POINTS
  26#include "trace.h"
  27
  28#include "nvme.h"
  29#include "fabrics.h"
  30
  31#define NVME_MINORS             (1U << MINORBITS)
  32
  33unsigned int admin_timeout = 60;
  34module_param(admin_timeout, uint, 0644);
  35MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  36EXPORT_SYMBOL_GPL(admin_timeout);
  37
  38unsigned int nvme_io_timeout = 30;
  39module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
  40MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  41EXPORT_SYMBOL_GPL(nvme_io_timeout);
  42
  43static unsigned char shutdown_timeout = 5;
  44module_param(shutdown_timeout, byte, 0644);
  45MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  46
  47static u8 nvme_max_retries = 5;
  48module_param_named(max_retries, nvme_max_retries, byte, 0644);
  49MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
  50
  51static unsigned long default_ps_max_latency_us = 100000;
  52module_param(default_ps_max_latency_us, ulong, 0644);
  53MODULE_PARM_DESC(default_ps_max_latency_us,
  54                 "max power saving latency for new devices; use PM QOS to change per device");
  55
  56static bool force_apst;
  57module_param(force_apst, bool, 0644);
  58MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
  59
  60static bool streams;
  61module_param(streams, bool, 0644);
  62MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
  63
  64/*
  65 * nvme_wq - hosts nvme related works that are not reset or delete
  66 * nvme_reset_wq - hosts nvme reset works
  67 * nvme_delete_wq - hosts nvme delete works
  68 *
  69 * nvme_wq will host works such are scan, aen handling, fw activation,
  70 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
  71 * runs reset works which also flush works hosted on nvme_wq for
  72 * serialization purposes. nvme_delete_wq host controller deletion
  73 * works which flush reset works for serialization.
  74 */
  75struct workqueue_struct *nvme_wq;
  76EXPORT_SYMBOL_GPL(nvme_wq);
  77
  78struct workqueue_struct *nvme_reset_wq;
  79EXPORT_SYMBOL_GPL(nvme_reset_wq);
  80
  81struct workqueue_struct *nvme_delete_wq;
  82EXPORT_SYMBOL_GPL(nvme_delete_wq);
  83
  84static DEFINE_IDA(nvme_subsystems_ida);
  85static LIST_HEAD(nvme_subsystems);
  86static DEFINE_MUTEX(nvme_subsystems_lock);
  87
  88static DEFINE_IDA(nvme_instance_ida);
  89static dev_t nvme_chr_devt;
  90static struct class *nvme_class;
  91static struct class *nvme_subsys_class;
  92
  93static int nvme_revalidate_disk(struct gendisk *disk);
  94static void nvme_put_subsystem(struct nvme_subsystem *subsys);
  95static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
  96                                           unsigned nsid);
  97
  98static void nvme_set_queue_dying(struct nvme_ns *ns)
  99{
 100        /*
 101         * Revalidating a dead namespace sets capacity to 0. This will end
 102         * buffered writers dirtying pages that can't be synced.
 103         */
 104        if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
 105                return;
 106        revalidate_disk(ns->disk);
 107        blk_set_queue_dying(ns->queue);
 108        /* Forcibly unquiesce queues to avoid blocking dispatch */
 109        blk_mq_unquiesce_queue(ns->queue);
 110}
 111
 112static void nvme_queue_scan(struct nvme_ctrl *ctrl)
 113{
 114        /*
 115         * Only new queue scan work when admin and IO queues are both alive
 116         */
 117        if (ctrl->state == NVME_CTRL_LIVE)
 118                queue_work(nvme_wq, &ctrl->scan_work);
 119}
 120
 121int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
 122{
 123        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
 124                return -EBUSY;
 125        if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
 126                return -EBUSY;
 127        return 0;
 128}
 129EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
 130
 131int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
 132{
 133        int ret;
 134
 135        ret = nvme_reset_ctrl(ctrl);
 136        if (!ret) {
 137                flush_work(&ctrl->reset_work);
 138                if (ctrl->state != NVME_CTRL_LIVE &&
 139                    ctrl->state != NVME_CTRL_ADMIN_ONLY)
 140                        ret = -ENETRESET;
 141        }
 142
 143        return ret;
 144}
 145EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
 146
 147static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
 148{
 149        dev_info(ctrl->device,
 150                 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
 151
 152        flush_work(&ctrl->reset_work);
 153        nvme_stop_ctrl(ctrl);
 154        nvme_remove_namespaces(ctrl);
 155        ctrl->ops->delete_ctrl(ctrl);
 156        nvme_uninit_ctrl(ctrl);
 157        nvme_put_ctrl(ctrl);
 158}
 159
 160static void nvme_delete_ctrl_work(struct work_struct *work)
 161{
 162        struct nvme_ctrl *ctrl =
 163                container_of(work, struct nvme_ctrl, delete_work);
 164
 165        nvme_do_delete_ctrl(ctrl);
 166}
 167
 168int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
 169{
 170        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
 171                return -EBUSY;
 172        if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
 173                return -EBUSY;
 174        return 0;
 175}
 176EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
 177
 178static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
 179{
 180        int ret = 0;
 181
 182        /*
 183         * Keep a reference until nvme_do_delete_ctrl() complete,
 184         * since ->delete_ctrl can free the controller.
 185         */
 186        nvme_get_ctrl(ctrl);
 187        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
 188                ret = -EBUSY;
 189        if (!ret)
 190                nvme_do_delete_ctrl(ctrl);
 191        nvme_put_ctrl(ctrl);
 192        return ret;
 193}
 194
 195static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
 196{
 197        return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
 198}
 199
 200static blk_status_t nvme_error_status(struct request *req)
 201{
 202        switch (nvme_req(req)->status & 0x7ff) {
 203        case NVME_SC_SUCCESS:
 204                return BLK_STS_OK;
 205        case NVME_SC_CAP_EXCEEDED:
 206                return BLK_STS_NOSPC;
 207        case NVME_SC_LBA_RANGE:
 208                return BLK_STS_TARGET;
 209        case NVME_SC_BAD_ATTRIBUTES:
 210        case NVME_SC_ONCS_NOT_SUPPORTED:
 211        case NVME_SC_INVALID_OPCODE:
 212        case NVME_SC_INVALID_FIELD:
 213        case NVME_SC_INVALID_NS:
 214                return BLK_STS_NOTSUPP;
 215        case NVME_SC_WRITE_FAULT:
 216        case NVME_SC_READ_ERROR:
 217        case NVME_SC_UNWRITTEN_BLOCK:
 218        case NVME_SC_ACCESS_DENIED:
 219        case NVME_SC_READ_ONLY:
 220        case NVME_SC_COMPARE_FAILED:
 221                return BLK_STS_MEDIUM;
 222        case NVME_SC_GUARD_CHECK:
 223        case NVME_SC_APPTAG_CHECK:
 224        case NVME_SC_REFTAG_CHECK:
 225        case NVME_SC_INVALID_PI:
 226                return BLK_STS_PROTECTION;
 227        case NVME_SC_RESERVATION_CONFLICT:
 228                return BLK_STS_NEXUS;
 229        default:
 230                return BLK_STS_IOERR;
 231        }
 232}
 233
 234static inline bool nvme_req_needs_retry(struct request *req)
 235{
 236        if (blk_noretry_request(req))
 237                return false;
 238        if (nvme_req(req)->status & NVME_SC_DNR)
 239                return false;
 240        if (nvme_req(req)->retries >= nvme_max_retries)
 241                return false;
 242        return true;
 243}
 244
 245static void nvme_retry_req(struct request *req)
 246{
 247        struct nvme_ns *ns = req->q->queuedata;
 248        unsigned long delay = 0;
 249        u16 crd;
 250
 251        /* The mask and shift result must be <= 3 */
 252        crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
 253        if (ns && crd)
 254                delay = ns->ctrl->crdt[crd - 1] * 100;
 255
 256        nvme_req(req)->retries++;
 257        blk_mq_requeue_request(req, false);
 258        blk_mq_delay_kick_requeue_list(req->q, delay);
 259}
 260
 261void nvme_complete_rq(struct request *req)
 262{
 263        blk_status_t status = nvme_error_status(req);
 264
 265        trace_nvme_complete_rq(req);
 266
 267        if (nvme_req(req)->ctrl->kas)
 268                nvme_req(req)->ctrl->comp_seen = true;
 269
 270        if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
 271                if ((req->cmd_flags & REQ_NVME_MPATH) &&
 272                    blk_path_error(status)) {
 273                        nvme_failover_req(req);
 274                        return;
 275                }
 276
 277                if (!blk_queue_dying(req->q)) {
 278                        nvme_retry_req(req);
 279                        return;
 280                }
 281        }
 282        blk_mq_end_request(req, status);
 283}
 284EXPORT_SYMBOL_GPL(nvme_complete_rq);
 285
 286bool nvme_cancel_request(struct request *req, void *data, bool reserved)
 287{
 288        dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
 289                                "Cancelling I/O %d", req->tag);
 290
 291        nvme_req(req)->status = NVME_SC_ABORT_REQ;
 292        blk_mq_complete_request_sync(req);
 293        return true;
 294}
 295EXPORT_SYMBOL_GPL(nvme_cancel_request);
 296
 297bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
 298                enum nvme_ctrl_state new_state)
 299{
 300        enum nvme_ctrl_state old_state;
 301        unsigned long flags;
 302        bool changed = false;
 303
 304        spin_lock_irqsave(&ctrl->lock, flags);
 305
 306        old_state = ctrl->state;
 307        switch (new_state) {
 308        case NVME_CTRL_ADMIN_ONLY:
 309                switch (old_state) {
 310                case NVME_CTRL_CONNECTING:
 311                        changed = true;
 312                        /* FALLTHRU */
 313                default:
 314                        break;
 315                }
 316                break;
 317        case NVME_CTRL_LIVE:
 318                switch (old_state) {
 319                case NVME_CTRL_NEW:
 320                case NVME_CTRL_RESETTING:
 321                case NVME_CTRL_CONNECTING:
 322                        changed = true;
 323                        /* FALLTHRU */
 324                default:
 325                        break;
 326                }
 327                break;
 328        case NVME_CTRL_RESETTING:
 329                switch (old_state) {
 330                case NVME_CTRL_NEW:
 331                case NVME_CTRL_LIVE:
 332                case NVME_CTRL_ADMIN_ONLY:
 333                        changed = true;
 334                        /* FALLTHRU */
 335                default:
 336                        break;
 337                }
 338                break;
 339        case NVME_CTRL_CONNECTING:
 340                switch (old_state) {
 341                case NVME_CTRL_NEW:
 342                case NVME_CTRL_RESETTING:
 343                        changed = true;
 344                        /* FALLTHRU */
 345                default:
 346                        break;
 347                }
 348                break;
 349        case NVME_CTRL_DELETING:
 350                switch (old_state) {
 351                case NVME_CTRL_LIVE:
 352                case NVME_CTRL_ADMIN_ONLY:
 353                case NVME_CTRL_RESETTING:
 354                case NVME_CTRL_CONNECTING:
 355                        changed = true;
 356                        /* FALLTHRU */
 357                default:
 358                        break;
 359                }
 360                break;
 361        case NVME_CTRL_DEAD:
 362                switch (old_state) {
 363                case NVME_CTRL_DELETING:
 364                        changed = true;
 365                        /* FALLTHRU */
 366                default:
 367                        break;
 368                }
 369                break;
 370        default:
 371                break;
 372        }
 373
 374        if (changed)
 375                ctrl->state = new_state;
 376
 377        spin_unlock_irqrestore(&ctrl->lock, flags);
 378        if (changed && ctrl->state == NVME_CTRL_LIVE)
 379                nvme_kick_requeue_lists(ctrl);
 380        return changed;
 381}
 382EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
 383
 384static void nvme_free_ns_head(struct kref *ref)
 385{
 386        struct nvme_ns_head *head =
 387                container_of(ref, struct nvme_ns_head, ref);
 388
 389        nvme_mpath_remove_disk(head);
 390        ida_simple_remove(&head->subsys->ns_ida, head->instance);
 391        list_del_init(&head->entry);
 392        cleanup_srcu_struct(&head->srcu);
 393        nvme_put_subsystem(head->subsys);
 394        kfree(head);
 395}
 396
 397static void nvme_put_ns_head(struct nvme_ns_head *head)
 398{
 399        kref_put(&head->ref, nvme_free_ns_head);
 400}
 401
 402static void nvme_free_ns(struct kref *kref)
 403{
 404        struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
 405
 406        if (ns->ndev)
 407                nvme_nvm_unregister(ns);
 408
 409        put_disk(ns->disk);
 410        nvme_put_ns_head(ns->head);
 411        nvme_put_ctrl(ns->ctrl);
 412        kfree(ns);
 413}
 414
 415static void nvme_put_ns(struct nvme_ns *ns)
 416{
 417        kref_put(&ns->kref, nvme_free_ns);
 418}
 419
 420static inline void nvme_clear_nvme_request(struct request *req)
 421{
 422        if (!(req->rq_flags & RQF_DONTPREP)) {
 423                nvme_req(req)->retries = 0;
 424                nvme_req(req)->flags = 0;
 425                req->rq_flags |= RQF_DONTPREP;
 426        }
 427}
 428
 429struct request *nvme_alloc_request(struct request_queue *q,
 430                struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
 431{
 432        unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
 433        struct request *req;
 434
 435        if (qid == NVME_QID_ANY) {
 436                req = blk_mq_alloc_request(q, op, flags);
 437        } else {
 438                req = blk_mq_alloc_request_hctx(q, op, flags,
 439                                qid ? qid - 1 : 0);
 440        }
 441        if (IS_ERR(req))
 442                return req;
 443
 444        req->cmd_flags |= REQ_FAILFAST_DRIVER;
 445        nvme_clear_nvme_request(req);
 446        nvme_req(req)->cmd = cmd;
 447
 448        return req;
 449}
 450EXPORT_SYMBOL_GPL(nvme_alloc_request);
 451
 452static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
 453{
 454        struct nvme_command c;
 455
 456        memset(&c, 0, sizeof(c));
 457
 458        c.directive.opcode = nvme_admin_directive_send;
 459        c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
 460        c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
 461        c.directive.dtype = NVME_DIR_IDENTIFY;
 462        c.directive.tdtype = NVME_DIR_STREAMS;
 463        c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
 464
 465        return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
 466}
 467
 468static int nvme_disable_streams(struct nvme_ctrl *ctrl)
 469{
 470        return nvme_toggle_streams(ctrl, false);
 471}
 472
 473static int nvme_enable_streams(struct nvme_ctrl *ctrl)
 474{
 475        return nvme_toggle_streams(ctrl, true);
 476}
 477
 478static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
 479                                  struct streams_directive_params *s, u32 nsid)
 480{
 481        struct nvme_command c;
 482
 483        memset(&c, 0, sizeof(c));
 484        memset(s, 0, sizeof(*s));
 485
 486        c.directive.opcode = nvme_admin_directive_recv;
 487        c.directive.nsid = cpu_to_le32(nsid);
 488        c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
 489        c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
 490        c.directive.dtype = NVME_DIR_STREAMS;
 491
 492        return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
 493}
 494
 495static int nvme_configure_directives(struct nvme_ctrl *ctrl)
 496{
 497        struct streams_directive_params s;
 498        int ret;
 499
 500        if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
 501                return 0;
 502        if (!streams)
 503                return 0;
 504
 505        ret = nvme_enable_streams(ctrl);
 506        if (ret)
 507                return ret;
 508
 509        ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
 510        if (ret)
 511                return ret;
 512
 513        ctrl->nssa = le16_to_cpu(s.nssa);
 514        if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
 515                dev_info(ctrl->device, "too few streams (%u) available\n",
 516                                        ctrl->nssa);
 517                nvme_disable_streams(ctrl);
 518                return 0;
 519        }
 520
 521        ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
 522        dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
 523        return 0;
 524}
 525
 526/*
 527 * Check if 'req' has a write hint associated with it. If it does, assign
 528 * a valid namespace stream to the write.
 529 */
 530static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
 531                                     struct request *req, u16 *control,
 532                                     u32 *dsmgmt)
 533{
 534        enum rw_hint streamid = req->write_hint;
 535
 536        if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
 537                streamid = 0;
 538        else {
 539                streamid--;
 540                if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
 541                        return;
 542
 543                *control |= NVME_RW_DTYPE_STREAMS;
 544                *dsmgmt |= streamid << 16;
 545        }
 546
 547        if (streamid < ARRAY_SIZE(req->q->write_hints))
 548                req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
 549}
 550
 551static inline void nvme_setup_flush(struct nvme_ns *ns,
 552                struct nvme_command *cmnd)
 553{
 554        cmnd->common.opcode = nvme_cmd_flush;
 555        cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
 556}
 557
 558static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
 559                struct nvme_command *cmnd)
 560{
 561        unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
 562        struct nvme_dsm_range *range;
 563        struct bio *bio;
 564
 565        range = kmalloc_array(segments, sizeof(*range),
 566                                GFP_ATOMIC | __GFP_NOWARN);
 567        if (!range) {
 568                /*
 569                 * If we fail allocation our range, fallback to the controller
 570                 * discard page. If that's also busy, it's safe to return
 571                 * busy, as we know we can make progress once that's freed.
 572                 */
 573                if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
 574                        return BLK_STS_RESOURCE;
 575
 576                range = page_address(ns->ctrl->discard_page);
 577        }
 578
 579        __rq_for_each_bio(bio, req) {
 580                u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
 581                u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
 582
 583                if (n < segments) {
 584                        range[n].cattr = cpu_to_le32(0);
 585                        range[n].nlb = cpu_to_le32(nlb);
 586                        range[n].slba = cpu_to_le64(slba);
 587                }
 588                n++;
 589        }
 590
 591        if (WARN_ON_ONCE(n != segments)) {
 592                if (virt_to_page(range) == ns->ctrl->discard_page)
 593                        clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
 594                else
 595                        kfree(range);
 596                return BLK_STS_IOERR;
 597        }
 598
 599        cmnd->dsm.opcode = nvme_cmd_dsm;
 600        cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
 601        cmnd->dsm.nr = cpu_to_le32(segments - 1);
 602        cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 603
 604        req->special_vec.bv_page = virt_to_page(range);
 605        req->special_vec.bv_offset = offset_in_page(range);
 606        req->special_vec.bv_len = sizeof(*range) * segments;
 607        req->rq_flags |= RQF_SPECIAL_PAYLOAD;
 608
 609        return BLK_STS_OK;
 610}
 611
 612static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
 613                struct request *req, struct nvme_command *cmnd)
 614{
 615        if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
 616                return nvme_setup_discard(ns, req, cmnd);
 617
 618        cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
 619        cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
 620        cmnd->write_zeroes.slba =
 621                cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
 622        cmnd->write_zeroes.length =
 623                cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 624        cmnd->write_zeroes.control = 0;
 625        return BLK_STS_OK;
 626}
 627
 628static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
 629                struct request *req, struct nvme_command *cmnd)
 630{
 631        struct nvme_ctrl *ctrl = ns->ctrl;
 632        u16 control = 0;
 633        u32 dsmgmt = 0;
 634
 635        if (req->cmd_flags & REQ_FUA)
 636                control |= NVME_RW_FUA;
 637        if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
 638                control |= NVME_RW_LR;
 639
 640        if (req->cmd_flags & REQ_RAHEAD)
 641                dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
 642
 643        cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
 644        cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
 645        cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
 646        cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 647
 648        if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
 649                nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
 650
 651        if (ns->ms) {
 652                /*
 653                 * If formated with metadata, the block layer always provides a
 654                 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
 655                 * we enable the PRACT bit for protection information or set the
 656                 * namespace capacity to zero to prevent any I/O.
 657                 */
 658                if (!blk_integrity_rq(req)) {
 659                        if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
 660                                return BLK_STS_NOTSUPP;
 661                        control |= NVME_RW_PRINFO_PRACT;
 662                } else if (req_op(req) == REQ_OP_WRITE) {
 663                        t10_pi_prepare(req, ns->pi_type);
 664                }
 665
 666                switch (ns->pi_type) {
 667                case NVME_NS_DPS_PI_TYPE3:
 668                        control |= NVME_RW_PRINFO_PRCHK_GUARD;
 669                        break;
 670                case NVME_NS_DPS_PI_TYPE1:
 671                case NVME_NS_DPS_PI_TYPE2:
 672                        control |= NVME_RW_PRINFO_PRCHK_GUARD |
 673                                        NVME_RW_PRINFO_PRCHK_REF;
 674                        cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
 675                        break;
 676                }
 677        }
 678
 679        cmnd->rw.control = cpu_to_le16(control);
 680        cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
 681        return 0;
 682}
 683
 684void nvme_cleanup_cmd(struct request *req)
 685{
 686        if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
 687            nvme_req(req)->status == 0) {
 688                struct nvme_ns *ns = req->rq_disk->private_data;
 689
 690                t10_pi_complete(req, ns->pi_type,
 691                                blk_rq_bytes(req) >> ns->lba_shift);
 692        }
 693        if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
 694                struct nvme_ns *ns = req->rq_disk->private_data;
 695                struct page *page = req->special_vec.bv_page;
 696
 697                if (page == ns->ctrl->discard_page)
 698                        clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
 699                else
 700                        kfree(page_address(page) + req->special_vec.bv_offset);
 701        }
 702}
 703EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
 704
 705blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
 706                struct nvme_command *cmd)
 707{
 708        blk_status_t ret = BLK_STS_OK;
 709
 710        nvme_clear_nvme_request(req);
 711
 712        memset(cmd, 0, sizeof(*cmd));
 713        switch (req_op(req)) {
 714        case REQ_OP_DRV_IN:
 715        case REQ_OP_DRV_OUT:
 716                memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
 717                break;
 718        case REQ_OP_FLUSH:
 719                nvme_setup_flush(ns, cmd);
 720                break;
 721        case REQ_OP_WRITE_ZEROES:
 722                ret = nvme_setup_write_zeroes(ns, req, cmd);
 723                break;
 724        case REQ_OP_DISCARD:
 725                ret = nvme_setup_discard(ns, req, cmd);
 726                break;
 727        case REQ_OP_READ:
 728        case REQ_OP_WRITE:
 729                ret = nvme_setup_rw(ns, req, cmd);
 730                break;
 731        default:
 732                WARN_ON_ONCE(1);
 733                return BLK_STS_IOERR;
 734        }
 735
 736        cmd->common.command_id = req->tag;
 737        trace_nvme_setup_cmd(req, cmd);
 738        return ret;
 739}
 740EXPORT_SYMBOL_GPL(nvme_setup_cmd);
 741
 742static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
 743{
 744        struct completion *waiting = rq->end_io_data;
 745
 746        rq->end_io_data = NULL;
 747        complete(waiting);
 748}
 749
 750static void nvme_execute_rq_polled(struct request_queue *q,
 751                struct gendisk *bd_disk, struct request *rq, int at_head)
 752{
 753        DECLARE_COMPLETION_ONSTACK(wait);
 754
 755        WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
 756
 757        rq->cmd_flags |= REQ_HIPRI;
 758        rq->end_io_data = &wait;
 759        blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
 760
 761        while (!completion_done(&wait)) {
 762                blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
 763                cond_resched();
 764        }
 765}
 766
 767/*
 768 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 769 * if the result is positive, it's an NVM Express status code
 770 */
 771int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
 772                union nvme_result *result, void *buffer, unsigned bufflen,
 773                unsigned timeout, int qid, int at_head,
 774                blk_mq_req_flags_t flags, bool poll)
 775{
 776        struct request *req;
 777        int ret;
 778
 779        req = nvme_alloc_request(q, cmd, flags, qid);
 780        if (IS_ERR(req))
 781                return PTR_ERR(req);
 782
 783        req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
 784
 785        if (buffer && bufflen) {
 786                ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
 787                if (ret)
 788                        goto out;
 789        }
 790
 791        if (poll)
 792                nvme_execute_rq_polled(req->q, NULL, req, at_head);
 793        else
 794                blk_execute_rq(req->q, NULL, req, at_head);
 795        if (result)
 796                *result = nvme_req(req)->result;
 797        if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
 798                ret = -EINTR;
 799        else
 800                ret = nvme_req(req)->status;
 801 out:
 802        blk_mq_free_request(req);
 803        return ret;
 804}
 805EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
 806
 807int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
 808                void *buffer, unsigned bufflen)
 809{
 810        return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
 811                        NVME_QID_ANY, 0, 0, false);
 812}
 813EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
 814
 815static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
 816                unsigned len, u32 seed, bool write)
 817{
 818        struct bio_integrity_payload *bip;
 819        int ret = -ENOMEM;
 820        void *buf;
 821
 822        buf = kmalloc(len, GFP_KERNEL);
 823        if (!buf)
 824                goto out;
 825
 826        ret = -EFAULT;
 827        if (write && copy_from_user(buf, ubuf, len))
 828                goto out_free_meta;
 829
 830        bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
 831        if (IS_ERR(bip)) {
 832                ret = PTR_ERR(bip);
 833                goto out_free_meta;
 834        }
 835
 836        bip->bip_iter.bi_size = len;
 837        bip->bip_iter.bi_sector = seed;
 838        ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
 839                        offset_in_page(buf));
 840        if (ret == len)
 841                return buf;
 842        ret = -ENOMEM;
 843out_free_meta:
 844        kfree(buf);
 845out:
 846        return ERR_PTR(ret);
 847}
 848
 849static int nvme_submit_user_cmd(struct request_queue *q,
 850                struct nvme_command *cmd, void __user *ubuffer,
 851                unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
 852                u32 meta_seed, u32 *result, unsigned timeout)
 853{
 854        bool write = nvme_is_write(cmd);
 855        struct nvme_ns *ns = q->queuedata;
 856        struct gendisk *disk = ns ? ns->disk : NULL;
 857        struct request *req;
 858        struct bio *bio = NULL;
 859        void *meta = NULL;
 860        int ret;
 861
 862        req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
 863        if (IS_ERR(req))
 864                return PTR_ERR(req);
 865
 866        req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
 867        nvme_req(req)->flags |= NVME_REQ_USERCMD;
 868
 869        if (ubuffer && bufflen) {
 870                ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
 871                                GFP_KERNEL);
 872                if (ret)
 873                        goto out;
 874                bio = req->bio;
 875                bio->bi_disk = disk;
 876                if (disk && meta_buffer && meta_len) {
 877                        meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
 878                                        meta_seed, write);
 879                        if (IS_ERR(meta)) {
 880                                ret = PTR_ERR(meta);
 881                                goto out_unmap;
 882                        }
 883                        req->cmd_flags |= REQ_INTEGRITY;
 884                }
 885        }
 886
 887        blk_execute_rq(req->q, disk, req, 0);
 888        if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
 889                ret = -EINTR;
 890        else
 891                ret = nvme_req(req)->status;
 892        if (result)
 893                *result = le32_to_cpu(nvme_req(req)->result.u32);
 894        if (meta && !ret && !write) {
 895                if (copy_to_user(meta_buffer, meta, meta_len))
 896                        ret = -EFAULT;
 897        }
 898        kfree(meta);
 899 out_unmap:
 900        if (bio)
 901                blk_rq_unmap_user(bio);
 902 out:
 903        blk_mq_free_request(req);
 904        return ret;
 905}
 906
 907static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
 908{
 909        struct nvme_ctrl *ctrl = rq->end_io_data;
 910        unsigned long flags;
 911        bool startka = false;
 912
 913        blk_mq_free_request(rq);
 914
 915        if (status) {
 916                dev_err(ctrl->device,
 917                        "failed nvme_keep_alive_end_io error=%d\n",
 918                                status);
 919                return;
 920        }
 921
 922        ctrl->comp_seen = false;
 923        spin_lock_irqsave(&ctrl->lock, flags);
 924        if (ctrl->state == NVME_CTRL_LIVE ||
 925            ctrl->state == NVME_CTRL_CONNECTING)
 926                startka = true;
 927        spin_unlock_irqrestore(&ctrl->lock, flags);
 928        if (startka)
 929                schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
 930}
 931
 932static int nvme_keep_alive(struct nvme_ctrl *ctrl)
 933{
 934        struct request *rq;
 935
 936        rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
 937                        NVME_QID_ANY);
 938        if (IS_ERR(rq))
 939                return PTR_ERR(rq);
 940
 941        rq->timeout = ctrl->kato * HZ;
 942        rq->end_io_data = ctrl;
 943
 944        blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
 945
 946        return 0;
 947}
 948
 949static void nvme_keep_alive_work(struct work_struct *work)
 950{
 951        struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
 952                        struct nvme_ctrl, ka_work);
 953        bool comp_seen = ctrl->comp_seen;
 954
 955        if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
 956                dev_dbg(ctrl->device,
 957                        "reschedule traffic based keep-alive timer\n");
 958                ctrl->comp_seen = false;
 959                schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
 960                return;
 961        }
 962
 963        if (nvme_keep_alive(ctrl)) {
 964                /* allocation failure, reset the controller */
 965                dev_err(ctrl->device, "keep-alive failed\n");
 966                nvme_reset_ctrl(ctrl);
 967                return;
 968        }
 969}
 970
 971static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
 972{
 973        if (unlikely(ctrl->kato == 0))
 974                return;
 975
 976        schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
 977}
 978
 979void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
 980{
 981        if (unlikely(ctrl->kato == 0))
 982                return;
 983
 984        cancel_delayed_work_sync(&ctrl->ka_work);
 985}
 986EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
 987
 988static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
 989{
 990        struct nvme_command c = { };
 991        int error;
 992
 993        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
 994        c.identify.opcode = nvme_admin_identify;
 995        c.identify.cns = NVME_ID_CNS_CTRL;
 996
 997        *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
 998        if (!*id)
 999                return -ENOMEM;
1000
1001        error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1002                        sizeof(struct nvme_id_ctrl));
1003        if (error)
1004                kfree(*id);
1005        return error;
1006}
1007
1008static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1009                struct nvme_ns_ids *ids)
1010{
1011        struct nvme_command c = { };
1012        int status;
1013        void *data;
1014        int pos;
1015        int len;
1016
1017        c.identify.opcode = nvme_admin_identify;
1018        c.identify.nsid = cpu_to_le32(nsid);
1019        c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1020
1021        data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1022        if (!data)
1023                return -ENOMEM;
1024
1025        status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1026                                      NVME_IDENTIFY_DATA_SIZE);
1027        if (status)
1028                goto free_data;
1029
1030        for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1031                struct nvme_ns_id_desc *cur = data + pos;
1032
1033                if (cur->nidl == 0)
1034                        break;
1035
1036                switch (cur->nidt) {
1037                case NVME_NIDT_EUI64:
1038                        if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1039                                dev_warn(ctrl->device,
1040                                         "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1041                                         cur->nidl);
1042                                goto free_data;
1043                        }
1044                        len = NVME_NIDT_EUI64_LEN;
1045                        memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1046                        break;
1047                case NVME_NIDT_NGUID:
1048                        if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1049                                dev_warn(ctrl->device,
1050                                         "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1051                                         cur->nidl);
1052                                goto free_data;
1053                        }
1054                        len = NVME_NIDT_NGUID_LEN;
1055                        memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1056                        break;
1057                case NVME_NIDT_UUID:
1058                        if (cur->nidl != NVME_NIDT_UUID_LEN) {
1059                                dev_warn(ctrl->device,
1060                                         "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1061                                         cur->nidl);
1062                                goto free_data;
1063                        }
1064                        len = NVME_NIDT_UUID_LEN;
1065                        uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1066                        break;
1067                default:
1068                        /* Skip unknown types */
1069                        len = cur->nidl;
1070                        break;
1071                }
1072
1073                len += sizeof(*cur);
1074        }
1075free_data:
1076        kfree(data);
1077        return status;
1078}
1079
1080static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1081{
1082        struct nvme_command c = { };
1083
1084        c.identify.opcode = nvme_admin_identify;
1085        c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1086        c.identify.nsid = cpu_to_le32(nsid);
1087        return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1088                                    NVME_IDENTIFY_DATA_SIZE);
1089}
1090
1091static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1092                unsigned nsid)
1093{
1094        struct nvme_id_ns *id;
1095        struct nvme_command c = { };
1096        int error;
1097
1098        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1099        c.identify.opcode = nvme_admin_identify;
1100        c.identify.nsid = cpu_to_le32(nsid);
1101        c.identify.cns = NVME_ID_CNS_NS;
1102
1103        id = kmalloc(sizeof(*id), GFP_KERNEL);
1104        if (!id)
1105                return NULL;
1106
1107        error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1108        if (error) {
1109                dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1110                kfree(id);
1111                return NULL;
1112        }
1113
1114        return id;
1115}
1116
1117static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1118                unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1119{
1120        struct nvme_command c;
1121        union nvme_result res;
1122        int ret;
1123
1124        memset(&c, 0, sizeof(c));
1125        c.features.opcode = op;
1126        c.features.fid = cpu_to_le32(fid);
1127        c.features.dword11 = cpu_to_le32(dword11);
1128
1129        ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1130                        buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1131        if (ret >= 0 && result)
1132                *result = le32_to_cpu(res.u32);
1133        return ret;
1134}
1135
1136int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1137                      unsigned int dword11, void *buffer, size_t buflen,
1138                      u32 *result)
1139{
1140        return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1141                             buflen, result);
1142}
1143EXPORT_SYMBOL_GPL(nvme_set_features);
1144
1145int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1146                      unsigned int dword11, void *buffer, size_t buflen,
1147                      u32 *result)
1148{
1149        return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1150                             buflen, result);
1151}
1152EXPORT_SYMBOL_GPL(nvme_get_features);
1153
1154int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1155{
1156        u32 q_count = (*count - 1) | ((*count - 1) << 16);
1157        u32 result;
1158        int status, nr_io_queues;
1159
1160        status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1161                        &result);
1162        if (status < 0)
1163                return status;
1164
1165        /*
1166         * Degraded controllers might return an error when setting the queue
1167         * count.  We still want to be able to bring them online and offer
1168         * access to the admin queue, as that might be only way to fix them up.
1169         */
1170        if (status > 0) {
1171                dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1172                *count = 0;
1173        } else {
1174                nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1175                *count = min(*count, nr_io_queues);
1176        }
1177
1178        return 0;
1179}
1180EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1181
1182#define NVME_AEN_SUPPORTED \
1183        (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1184
1185static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1186{
1187        u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1188        int status;
1189
1190        if (!supported_aens)
1191                return;
1192
1193        status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1194                        NULL, 0, &result);
1195        if (status)
1196                dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1197                         supported_aens);
1198}
1199
1200static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1201{
1202        struct nvme_user_io io;
1203        struct nvme_command c;
1204        unsigned length, meta_len;
1205        void __user *metadata;
1206
1207        if (copy_from_user(&io, uio, sizeof(io)))
1208                return -EFAULT;
1209        if (io.flags)
1210                return -EINVAL;
1211
1212        switch (io.opcode) {
1213        case nvme_cmd_write:
1214        case nvme_cmd_read:
1215        case nvme_cmd_compare:
1216                break;
1217        default:
1218                return -EINVAL;
1219        }
1220
1221        length = (io.nblocks + 1) << ns->lba_shift;
1222        meta_len = (io.nblocks + 1) * ns->ms;
1223        metadata = (void __user *)(uintptr_t)io.metadata;
1224
1225        if (ns->ext) {
1226                length += meta_len;
1227                meta_len = 0;
1228        } else if (meta_len) {
1229                if ((io.metadata & 3) || !io.metadata)
1230                        return -EINVAL;
1231        }
1232
1233        memset(&c, 0, sizeof(c));
1234        c.rw.opcode = io.opcode;
1235        c.rw.flags = io.flags;
1236        c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1237        c.rw.slba = cpu_to_le64(io.slba);
1238        c.rw.length = cpu_to_le16(io.nblocks);
1239        c.rw.control = cpu_to_le16(io.control);
1240        c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1241        c.rw.reftag = cpu_to_le32(io.reftag);
1242        c.rw.apptag = cpu_to_le16(io.apptag);
1243        c.rw.appmask = cpu_to_le16(io.appmask);
1244
1245        return nvme_submit_user_cmd(ns->queue, &c,
1246                        (void __user *)(uintptr_t)io.addr, length,
1247                        metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1248}
1249
1250static u32 nvme_known_admin_effects(u8 opcode)
1251{
1252        switch (opcode) {
1253        case nvme_admin_format_nvm:
1254                return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1255                                        NVME_CMD_EFFECTS_CSE_MASK;
1256        case nvme_admin_sanitize_nvm:
1257                return NVME_CMD_EFFECTS_CSE_MASK;
1258        default:
1259                break;
1260        }
1261        return 0;
1262}
1263
1264static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1265                                                                u8 opcode)
1266{
1267        u32 effects = 0;
1268
1269        if (ns) {
1270                if (ctrl->effects)
1271                        effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1272                if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1273                        dev_warn(ctrl->device,
1274                                 "IO command:%02x has unhandled effects:%08x\n",
1275                                 opcode, effects);
1276                return 0;
1277        }
1278
1279        if (ctrl->effects)
1280                effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1281        effects |= nvme_known_admin_effects(opcode);
1282
1283        /*
1284         * For simplicity, IO to all namespaces is quiesced even if the command
1285         * effects say only one namespace is affected.
1286         */
1287        if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1288                mutex_lock(&ctrl->scan_lock);
1289                mutex_lock(&ctrl->subsys->lock);
1290                nvme_mpath_start_freeze(ctrl->subsys);
1291                nvme_mpath_wait_freeze(ctrl->subsys);
1292                nvme_start_freeze(ctrl);
1293                nvme_wait_freeze(ctrl);
1294        }
1295        return effects;
1296}
1297
1298static void nvme_update_formats(struct nvme_ctrl *ctrl)
1299{
1300        struct nvme_ns *ns;
1301
1302        down_read(&ctrl->namespaces_rwsem);
1303        list_for_each_entry(ns, &ctrl->namespaces, list)
1304                if (ns->disk && nvme_revalidate_disk(ns->disk))
1305                        nvme_set_queue_dying(ns);
1306        up_read(&ctrl->namespaces_rwsem);
1307
1308        nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1309}
1310
1311static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1312{
1313        /*
1314         * Revalidate LBA changes prior to unfreezing. This is necessary to
1315         * prevent memory corruption if a logical block size was changed by
1316         * this command.
1317         */
1318        if (effects & NVME_CMD_EFFECTS_LBCC)
1319                nvme_update_formats(ctrl);
1320        if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1321                nvme_unfreeze(ctrl);
1322                nvme_mpath_unfreeze(ctrl->subsys);
1323                mutex_unlock(&ctrl->subsys->lock);
1324                mutex_unlock(&ctrl->scan_lock);
1325        }
1326        if (effects & NVME_CMD_EFFECTS_CCC)
1327                nvme_init_identify(ctrl);
1328        if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1329                nvme_queue_scan(ctrl);
1330}
1331
1332static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1333                        struct nvme_passthru_cmd __user *ucmd)
1334{
1335        struct nvme_passthru_cmd cmd;
1336        struct nvme_command c;
1337        unsigned timeout = 0;
1338        u32 effects;
1339        int status;
1340
1341        if (!capable(CAP_SYS_ADMIN))
1342                return -EACCES;
1343        if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1344                return -EFAULT;
1345        if (cmd.flags)
1346                return -EINVAL;
1347
1348        memset(&c, 0, sizeof(c));
1349        c.common.opcode = cmd.opcode;
1350        c.common.flags = cmd.flags;
1351        c.common.nsid = cpu_to_le32(cmd.nsid);
1352        c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1353        c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1354        c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1355        c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1356        c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1357        c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1358        c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1359        c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1360
1361        if (cmd.timeout_ms)
1362                timeout = msecs_to_jiffies(cmd.timeout_ms);
1363
1364        effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1365        status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1366                        (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1367                        (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1368                        0, &cmd.result, timeout);
1369        nvme_passthru_end(ctrl, effects);
1370
1371        if (status >= 0) {
1372                if (put_user(cmd.result, &ucmd->result))
1373                        return -EFAULT;
1374        }
1375
1376        return status;
1377}
1378
1379/*
1380 * Issue ioctl requests on the first available path.  Note that unlike normal
1381 * block layer requests we will not retry failed request on another controller.
1382 */
1383static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1384                struct nvme_ns_head **head, int *srcu_idx)
1385{
1386#ifdef CONFIG_NVME_MULTIPATH
1387        if (disk->fops == &nvme_ns_head_ops) {
1388                struct nvme_ns *ns;
1389
1390                *head = disk->private_data;
1391                *srcu_idx = srcu_read_lock(&(*head)->srcu);
1392                ns = nvme_find_path(*head);
1393                if (!ns)
1394                        srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1395                return ns;
1396        }
1397#endif
1398        *head = NULL;
1399        *srcu_idx = -1;
1400        return disk->private_data;
1401}
1402
1403static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1404{
1405        if (head)
1406                srcu_read_unlock(&head->srcu, idx);
1407}
1408
1409static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1410                unsigned int cmd, unsigned long arg)
1411{
1412        struct nvme_ns_head *head = NULL;
1413        void __user *argp = (void __user *)arg;
1414        struct nvme_ns *ns;
1415        int srcu_idx, ret;
1416
1417        ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1418        if (unlikely(!ns))
1419                return -EWOULDBLOCK;
1420
1421        /*
1422         * Handle ioctls that apply to the controller instead of the namespace
1423         * seperately and drop the ns SRCU reference early.  This avoids a
1424         * deadlock when deleting namespaces using the passthrough interface.
1425         */
1426        if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) {
1427                struct nvme_ctrl *ctrl = ns->ctrl;
1428
1429                nvme_get_ctrl(ns->ctrl);
1430                nvme_put_ns_from_disk(head, srcu_idx);
1431
1432                if (cmd == NVME_IOCTL_ADMIN_CMD)
1433                        ret = nvme_user_cmd(ctrl, NULL, argp);
1434                else
1435                        ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1436
1437                nvme_put_ctrl(ctrl);
1438                return ret;
1439        }
1440
1441        switch (cmd) {
1442        case NVME_IOCTL_ID:
1443                force_successful_syscall_return();
1444                ret = ns->head->ns_id;
1445                break;
1446        case NVME_IOCTL_IO_CMD:
1447                ret = nvme_user_cmd(ns->ctrl, ns, argp);
1448                break;
1449        case NVME_IOCTL_SUBMIT_IO:
1450                ret = nvme_submit_io(ns, argp);
1451                break;
1452        default:
1453                if (ns->ndev)
1454                        ret = nvme_nvm_ioctl(ns, cmd, arg);
1455                else
1456                        ret = -ENOTTY;
1457        }
1458
1459        nvme_put_ns_from_disk(head, srcu_idx);
1460        return ret;
1461}
1462
1463static int nvme_open(struct block_device *bdev, fmode_t mode)
1464{
1465        struct nvme_ns *ns = bdev->bd_disk->private_data;
1466
1467#ifdef CONFIG_NVME_MULTIPATH
1468        /* should never be called due to GENHD_FL_HIDDEN */
1469        if (WARN_ON_ONCE(ns->head->disk))
1470                goto fail;
1471#endif
1472        if (!kref_get_unless_zero(&ns->kref))
1473                goto fail;
1474        if (!try_module_get(ns->ctrl->ops->module))
1475                goto fail_put_ns;
1476
1477        return 0;
1478
1479fail_put_ns:
1480        nvme_put_ns(ns);
1481fail:
1482        return -ENXIO;
1483}
1484
1485static void nvme_release(struct gendisk *disk, fmode_t mode)
1486{
1487        struct nvme_ns *ns = disk->private_data;
1488
1489        module_put(ns->ctrl->ops->module);
1490        nvme_put_ns(ns);
1491}
1492
1493static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1494{
1495        /* some standard values */
1496        geo->heads = 1 << 6;
1497        geo->sectors = 1 << 5;
1498        geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1499        return 0;
1500}
1501
1502#ifdef CONFIG_BLK_DEV_INTEGRITY
1503static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1504{
1505        struct blk_integrity integrity;
1506
1507        memset(&integrity, 0, sizeof(integrity));
1508        switch (pi_type) {
1509        case NVME_NS_DPS_PI_TYPE3:
1510                integrity.profile = &t10_pi_type3_crc;
1511                integrity.tag_size = sizeof(u16) + sizeof(u32);
1512                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1513                break;
1514        case NVME_NS_DPS_PI_TYPE1:
1515        case NVME_NS_DPS_PI_TYPE2:
1516                integrity.profile = &t10_pi_type1_crc;
1517                integrity.tag_size = sizeof(u16);
1518                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1519                break;
1520        default:
1521                integrity.profile = NULL;
1522                break;
1523        }
1524        integrity.tuple_size = ms;
1525        blk_integrity_register(disk, &integrity);
1526        blk_queue_max_integrity_segments(disk->queue, 1);
1527}
1528#else
1529static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1530{
1531}
1532#endif /* CONFIG_BLK_DEV_INTEGRITY */
1533
1534static void nvme_set_chunk_size(struct nvme_ns *ns)
1535{
1536        u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1537        blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1538}
1539
1540static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1541{
1542        struct nvme_ctrl *ctrl = ns->ctrl;
1543        struct request_queue *queue = disk->queue;
1544        u32 size = queue_logical_block_size(queue);
1545
1546        if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1547                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1548                return;
1549        }
1550
1551        if (ctrl->nr_streams && ns->sws && ns->sgs)
1552                size *= ns->sws * ns->sgs;
1553
1554        BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1555                        NVME_DSM_MAX_RANGES);
1556
1557        queue->limits.discard_alignment = 0;
1558        queue->limits.discard_granularity = size;
1559
1560        /* If discard is already enabled, don't reset queue limits */
1561        if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1562                return;
1563
1564        blk_queue_max_discard_sectors(queue, UINT_MAX);
1565        blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1566
1567        if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1568                blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1569}
1570
1571static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1572{
1573        u32 max_sectors;
1574        unsigned short bs = 1 << ns->lba_shift;
1575
1576        if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1577            (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1578                return;
1579        /*
1580         * Even though NVMe spec explicitly states that MDTS is not
1581         * applicable to the write-zeroes:- "The restriction does not apply to
1582         * commands that do not transfer data between the host and the
1583         * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1584         * In order to be more cautious use controller's max_hw_sectors value
1585         * to configure the maximum sectors for the write-zeroes which is
1586         * configured based on the controller's MDTS field in the
1587         * nvme_init_identify() if available.
1588         */
1589        if (ns->ctrl->max_hw_sectors == UINT_MAX)
1590                max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1591        else
1592                max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1593
1594        blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1595}
1596
1597static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1598                struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1599{
1600        memset(ids, 0, sizeof(*ids));
1601
1602        if (ctrl->vs >= NVME_VS(1, 1, 0))
1603                memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1604        if (ctrl->vs >= NVME_VS(1, 2, 0))
1605                memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1606        if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1607                 /* Don't treat error as fatal we potentially
1608                  * already have a NGUID or EUI-64
1609                  */
1610                if (nvme_identify_ns_descs(ctrl, nsid, ids))
1611                        dev_warn(ctrl->device,
1612                                 "%s: Identify Descriptors failed\n", __func__);
1613        }
1614}
1615
1616static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1617{
1618        return !uuid_is_null(&ids->uuid) ||
1619                memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1620                memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1621}
1622
1623static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1624{
1625        return uuid_equal(&a->uuid, &b->uuid) &&
1626                memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1627                memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1628}
1629
1630static void nvme_update_disk_info(struct gendisk *disk,
1631                struct nvme_ns *ns, struct nvme_id_ns *id)
1632{
1633        sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1634        unsigned short bs = 1 << ns->lba_shift;
1635        u32 atomic_bs, phys_bs, io_opt;
1636
1637        if (ns->lba_shift > PAGE_SHIFT) {
1638                /* unsupported block size, set capacity to 0 later */
1639                bs = (1 << 9);
1640        }
1641        blk_mq_freeze_queue(disk->queue);
1642        blk_integrity_unregister(disk);
1643
1644        if (id->nabo == 0) {
1645                /*
1646                 * Bit 1 indicates whether NAWUPF is defined for this namespace
1647                 * and whether it should be used instead of AWUPF. If NAWUPF ==
1648                 * 0 then AWUPF must be used instead.
1649                 */
1650                if (id->nsfeat & (1 << 1) && id->nawupf)
1651                        atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1652                else
1653                        atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1654        } else {
1655                atomic_bs = bs;
1656        }
1657        phys_bs = bs;
1658        io_opt = bs;
1659        if (id->nsfeat & (1 << 4)) {
1660                /* NPWG = Namespace Preferred Write Granularity */
1661                phys_bs *= 1 + le16_to_cpu(id->npwg);
1662                /* NOWS = Namespace Optimal Write Size */
1663                io_opt *= 1 + le16_to_cpu(id->nows);
1664        }
1665
1666        blk_queue_logical_block_size(disk->queue, bs);
1667        /*
1668         * Linux filesystems assume writing a single physical block is
1669         * an atomic operation. Hence limit the physical block size to the
1670         * value of the Atomic Write Unit Power Fail parameter.
1671         */
1672        blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1673        blk_queue_io_min(disk->queue, phys_bs);
1674        blk_queue_io_opt(disk->queue, io_opt);
1675
1676        if (ns->ms && !ns->ext &&
1677            (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1678                nvme_init_integrity(disk, ns->ms, ns->pi_type);
1679        if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1680            ns->lba_shift > PAGE_SHIFT)
1681                capacity = 0;
1682
1683        set_capacity(disk, capacity);
1684
1685        nvme_config_discard(disk, ns);
1686        nvme_config_write_zeroes(disk, ns);
1687
1688        if (id->nsattr & (1 << 0))
1689                set_disk_ro(disk, true);
1690        else
1691                set_disk_ro(disk, false);
1692
1693        blk_mq_unfreeze_queue(disk->queue);
1694}
1695
1696static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1697{
1698        struct nvme_ns *ns = disk->private_data;
1699
1700        /*
1701         * If identify namespace failed, use default 512 byte block size so
1702         * block layer can use before failing read/write for 0 capacity.
1703         */
1704        ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1705        if (ns->lba_shift == 0)
1706                ns->lba_shift = 9;
1707        ns->noiob = le16_to_cpu(id->noiob);
1708        ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1709        ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1710        /* the PI implementation requires metadata equal t10 pi tuple size */
1711        if (ns->ms == sizeof(struct t10_pi_tuple))
1712                ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1713        else
1714                ns->pi_type = 0;
1715
1716        if (ns->noiob)
1717                nvme_set_chunk_size(ns);
1718        nvme_update_disk_info(disk, ns, id);
1719#ifdef CONFIG_NVME_MULTIPATH
1720        if (ns->head->disk) {
1721                nvme_update_disk_info(ns->head->disk, ns, id);
1722                blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1723                revalidate_disk(ns->head->disk);
1724        }
1725#endif
1726}
1727
1728static int nvme_revalidate_disk(struct gendisk *disk)
1729{
1730        struct nvme_ns *ns = disk->private_data;
1731        struct nvme_ctrl *ctrl = ns->ctrl;
1732        struct nvme_id_ns *id;
1733        struct nvme_ns_ids ids;
1734        int ret = 0;
1735
1736        if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1737                set_capacity(disk, 0);
1738                return -ENODEV;
1739        }
1740
1741        id = nvme_identify_ns(ctrl, ns->head->ns_id);
1742        if (!id)
1743                return -ENODEV;
1744
1745        if (id->ncap == 0) {
1746                ret = -ENODEV;
1747                goto out;
1748        }
1749
1750        __nvme_revalidate_disk(disk, id);
1751        nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1752        if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1753                dev_err(ctrl->device,
1754                        "identifiers changed for nsid %d\n", ns->head->ns_id);
1755                ret = -ENODEV;
1756        }
1757
1758out:
1759        kfree(id);
1760        return ret;
1761}
1762
1763static char nvme_pr_type(enum pr_type type)
1764{
1765        switch (type) {
1766        case PR_WRITE_EXCLUSIVE:
1767                return 1;
1768        case PR_EXCLUSIVE_ACCESS:
1769                return 2;
1770        case PR_WRITE_EXCLUSIVE_REG_ONLY:
1771                return 3;
1772        case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1773                return 4;
1774        case PR_WRITE_EXCLUSIVE_ALL_REGS:
1775                return 5;
1776        case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1777                return 6;
1778        default:
1779                return 0;
1780        }
1781};
1782
1783static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1784                                u64 key, u64 sa_key, u8 op)
1785{
1786        struct nvme_ns_head *head = NULL;
1787        struct nvme_ns *ns;
1788        struct nvme_command c;
1789        int srcu_idx, ret;
1790        u8 data[16] = { 0, };
1791
1792        ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1793        if (unlikely(!ns))
1794                return -EWOULDBLOCK;
1795
1796        put_unaligned_le64(key, &data[0]);
1797        put_unaligned_le64(sa_key, &data[8]);
1798
1799        memset(&c, 0, sizeof(c));
1800        c.common.opcode = op;
1801        c.common.nsid = cpu_to_le32(ns->head->ns_id);
1802        c.common.cdw10 = cpu_to_le32(cdw10);
1803
1804        ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1805        nvme_put_ns_from_disk(head, srcu_idx);
1806        return ret;
1807}
1808
1809static int nvme_pr_register(struct block_device *bdev, u64 old,
1810                u64 new, unsigned flags)
1811{
1812        u32 cdw10;
1813
1814        if (flags & ~PR_FL_IGNORE_KEY)
1815                return -EOPNOTSUPP;
1816
1817        cdw10 = old ? 2 : 0;
1818        cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1819        cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1820        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1821}
1822
1823static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1824                enum pr_type type, unsigned flags)
1825{
1826        u32 cdw10;
1827
1828        if (flags & ~PR_FL_IGNORE_KEY)
1829                return -EOPNOTSUPP;
1830
1831        cdw10 = nvme_pr_type(type) << 8;
1832        cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1833        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1834}
1835
1836static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1837                enum pr_type type, bool abort)
1838{
1839        u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1840        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1841}
1842
1843static int nvme_pr_clear(struct block_device *bdev, u64 key)
1844{
1845        u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1846        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1847}
1848
1849static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1850{
1851        u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1852        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1853}
1854
1855static const struct pr_ops nvme_pr_ops = {
1856        .pr_register    = nvme_pr_register,
1857        .pr_reserve     = nvme_pr_reserve,
1858        .pr_release     = nvme_pr_release,
1859        .pr_preempt     = nvme_pr_preempt,
1860        .pr_clear       = nvme_pr_clear,
1861};
1862
1863#ifdef CONFIG_BLK_SED_OPAL
1864int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1865                bool send)
1866{
1867        struct nvme_ctrl *ctrl = data;
1868        struct nvme_command cmd;
1869
1870        memset(&cmd, 0, sizeof(cmd));
1871        if (send)
1872                cmd.common.opcode = nvme_admin_security_send;
1873        else
1874                cmd.common.opcode = nvme_admin_security_recv;
1875        cmd.common.nsid = 0;
1876        cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1877        cmd.common.cdw11 = cpu_to_le32(len);
1878
1879        return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1880                                      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1881}
1882EXPORT_SYMBOL_GPL(nvme_sec_submit);
1883#endif /* CONFIG_BLK_SED_OPAL */
1884
1885static const struct block_device_operations nvme_fops = {
1886        .owner          = THIS_MODULE,
1887        .ioctl          = nvme_ioctl,
1888        .compat_ioctl   = nvme_ioctl,
1889        .open           = nvme_open,
1890        .release        = nvme_release,
1891        .getgeo         = nvme_getgeo,
1892        .revalidate_disk= nvme_revalidate_disk,
1893        .pr_ops         = &nvme_pr_ops,
1894};
1895
1896#ifdef CONFIG_NVME_MULTIPATH
1897static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1898{
1899        struct nvme_ns_head *head = bdev->bd_disk->private_data;
1900
1901        if (!kref_get_unless_zero(&head->ref))
1902                return -ENXIO;
1903        return 0;
1904}
1905
1906static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1907{
1908        nvme_put_ns_head(disk->private_data);
1909}
1910
1911const struct block_device_operations nvme_ns_head_ops = {
1912        .owner          = THIS_MODULE,
1913        .open           = nvme_ns_head_open,
1914        .release        = nvme_ns_head_release,
1915        .ioctl          = nvme_ioctl,
1916        .compat_ioctl   = nvme_ioctl,
1917        .getgeo         = nvme_getgeo,
1918        .pr_ops         = &nvme_pr_ops,
1919};
1920#endif /* CONFIG_NVME_MULTIPATH */
1921
1922static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1923{
1924        unsigned long timeout =
1925                ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1926        u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1927        int ret;
1928
1929        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1930                if (csts == ~0)
1931                        return -ENODEV;
1932                if ((csts & NVME_CSTS_RDY) == bit)
1933                        break;
1934
1935                msleep(100);
1936                if (fatal_signal_pending(current))
1937                        return -EINTR;
1938                if (time_after(jiffies, timeout)) {
1939                        dev_err(ctrl->device,
1940                                "Device not ready; aborting %s\n", enabled ?
1941                                                "initialisation" : "reset");
1942                        return -ENODEV;
1943                }
1944        }
1945
1946        return ret;
1947}
1948
1949/*
1950 * If the device has been passed off to us in an enabled state, just clear
1951 * the enabled bit.  The spec says we should set the 'shutdown notification
1952 * bits', but doing so may cause the device to complete commands to the
1953 * admin queue ... and we don't know what memory that might be pointing at!
1954 */
1955int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1956{
1957        int ret;
1958
1959        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1960        ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1961
1962        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1963        if (ret)
1964                return ret;
1965
1966        if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1967                msleep(NVME_QUIRK_DELAY_AMOUNT);
1968
1969        return nvme_wait_ready(ctrl, cap, false);
1970}
1971EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1972
1973int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1974{
1975        /*
1976         * Default to a 4K page size, with the intention to update this
1977         * path in the future to accomodate architectures with differing
1978         * kernel and IO page sizes.
1979         */
1980        unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1981        int ret;
1982
1983        if (page_shift < dev_page_min) {
1984                dev_err(ctrl->device,
1985                        "Minimum device page size %u too large for host (%u)\n",
1986                        1 << dev_page_min, 1 << page_shift);
1987                return -ENODEV;
1988        }
1989
1990        ctrl->page_size = 1 << page_shift;
1991
1992        ctrl->ctrl_config = NVME_CC_CSS_NVM;
1993        ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1994        ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1995        ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1996        ctrl->ctrl_config |= NVME_CC_ENABLE;
1997
1998        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1999        if (ret)
2000                return ret;
2001        return nvme_wait_ready(ctrl, cap, true);
2002}
2003EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2004
2005int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2006{
2007        unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2008        u32 csts;
2009        int ret;
2010
2011        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2012        ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2013
2014        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2015        if (ret)
2016                return ret;
2017
2018        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2019                if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2020                        break;
2021
2022                msleep(100);
2023                if (fatal_signal_pending(current))
2024                        return -EINTR;
2025                if (time_after(jiffies, timeout)) {
2026                        dev_err(ctrl->device,
2027                                "Device shutdown incomplete; abort shutdown\n");
2028                        return -ENODEV;
2029                }
2030        }
2031
2032        return ret;
2033}
2034EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2035
2036static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2037                struct request_queue *q)
2038{
2039        bool vwc = false;
2040
2041        if (ctrl->max_hw_sectors) {
2042                u32 max_segments =
2043                        (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2044
2045                max_segments = min_not_zero(max_segments, ctrl->max_segments);
2046                blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2047                blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2048        }
2049        if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2050            is_power_of_2(ctrl->max_hw_sectors))
2051                blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2052        blk_queue_virt_boundary(q, ctrl->page_size - 1);
2053        if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2054                vwc = true;
2055        blk_queue_write_cache(q, vwc, vwc);
2056}
2057
2058static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2059{
2060        __le64 ts;
2061        int ret;
2062
2063        if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2064                return 0;
2065
2066        ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2067        ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2068                        NULL);
2069        if (ret)
2070                dev_warn_once(ctrl->device,
2071                        "could not set timestamp (%d)\n", ret);
2072        return ret;
2073}
2074
2075static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2076{
2077        struct nvme_feat_host_behavior *host;
2078        int ret;
2079
2080        /* Don't bother enabling the feature if retry delay is not reported */
2081        if (!ctrl->crdt[0])
2082                return 0;
2083
2084        host = kzalloc(sizeof(*host), GFP_KERNEL);
2085        if (!host)
2086                return 0;
2087
2088        host->acre = NVME_ENABLE_ACRE;
2089        ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2090                                host, sizeof(*host), NULL);
2091        kfree(host);
2092        return ret;
2093}
2094
2095static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2096{
2097        /*
2098         * APST (Autonomous Power State Transition) lets us program a
2099         * table of power state transitions that the controller will
2100         * perform automatically.  We configure it with a simple
2101         * heuristic: we are willing to spend at most 2% of the time
2102         * transitioning between power states.  Therefore, when running
2103         * in any given state, we will enter the next lower-power
2104         * non-operational state after waiting 50 * (enlat + exlat)
2105         * microseconds, as long as that state's exit latency is under
2106         * the requested maximum latency.
2107         *
2108         * We will not autonomously enter any non-operational state for
2109         * which the total latency exceeds ps_max_latency_us.  Users
2110         * can set ps_max_latency_us to zero to turn off APST.
2111         */
2112
2113        unsigned apste;
2114        struct nvme_feat_auto_pst *table;
2115        u64 max_lat_us = 0;
2116        int max_ps = -1;
2117        int ret;
2118
2119        /*
2120         * If APST isn't supported or if we haven't been initialized yet,
2121         * then don't do anything.
2122         */
2123        if (!ctrl->apsta)
2124                return 0;
2125
2126        if (ctrl->npss > 31) {
2127                dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2128                return 0;
2129        }
2130
2131        table = kzalloc(sizeof(*table), GFP_KERNEL);
2132        if (!table)
2133                return 0;
2134
2135        if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2136                /* Turn off APST. */
2137                apste = 0;
2138                dev_dbg(ctrl->device, "APST disabled\n");
2139        } else {
2140                __le64 target = cpu_to_le64(0);
2141                int state;
2142
2143                /*
2144                 * Walk through all states from lowest- to highest-power.
2145                 * According to the spec, lower-numbered states use more
2146                 * power.  NPSS, despite the name, is the index of the
2147                 * lowest-power state, not the number of states.
2148                 */
2149                for (state = (int)ctrl->npss; state >= 0; state--) {
2150                        u64 total_latency_us, exit_latency_us, transition_ms;
2151
2152                        if (target)
2153                                table->entries[state] = target;
2154
2155                        /*
2156                         * Don't allow transitions to the deepest state
2157                         * if it's quirked off.
2158                         */
2159                        if (state == ctrl->npss &&
2160                            (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2161                                continue;
2162
2163                        /*
2164                         * Is this state a useful non-operational state for
2165                         * higher-power states to autonomously transition to?
2166                         */
2167                        if (!(ctrl->psd[state].flags &
2168                              NVME_PS_FLAGS_NON_OP_STATE))
2169                                continue;
2170
2171                        exit_latency_us =
2172                                (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2173                        if (exit_latency_us > ctrl->ps_max_latency_us)
2174                                continue;
2175
2176                        total_latency_us =
2177                                exit_latency_us +
2178                                le32_to_cpu(ctrl->psd[state].entry_lat);
2179
2180                        /*
2181                         * This state is good.  Use it as the APST idle
2182                         * target for higher power states.
2183                         */
2184                        transition_ms = total_latency_us + 19;
2185                        do_div(transition_ms, 20);
2186                        if (transition_ms > (1 << 24) - 1)
2187                                transition_ms = (1 << 24) - 1;
2188
2189                        target = cpu_to_le64((state << 3) |
2190                                             (transition_ms << 8));
2191
2192                        if (max_ps == -1)
2193                                max_ps = state;
2194
2195                        if (total_latency_us > max_lat_us)
2196                                max_lat_us = total_latency_us;
2197                }
2198
2199                apste = 1;
2200
2201                if (max_ps == -1) {
2202                        dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2203                } else {
2204                        dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2205                                max_ps, max_lat_us, (int)sizeof(*table), table);
2206                }
2207        }
2208
2209        ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2210                                table, sizeof(*table), NULL);
2211        if (ret)
2212                dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2213
2214        kfree(table);
2215        return ret;
2216}
2217
2218static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2219{
2220        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2221        u64 latency;
2222
2223        switch (val) {
2224        case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2225        case PM_QOS_LATENCY_ANY:
2226                latency = U64_MAX;
2227                break;
2228
2229        default:
2230                latency = val;
2231        }
2232
2233        if (ctrl->ps_max_latency_us != latency) {
2234                ctrl->ps_max_latency_us = latency;
2235                nvme_configure_apst(ctrl);
2236        }
2237}
2238
2239struct nvme_core_quirk_entry {
2240        /*
2241         * NVMe model and firmware strings are padded with spaces.  For
2242         * simplicity, strings in the quirk table are padded with NULLs
2243         * instead.
2244         */
2245        u16 vid;
2246        const char *mn;
2247        const char *fr;
2248        unsigned long quirks;
2249};
2250
2251static const struct nvme_core_quirk_entry core_quirks[] = {
2252        {
2253                /*
2254                 * This Toshiba device seems to die using any APST states.  See:
2255                 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2256                 */
2257                .vid = 0x1179,
2258                .mn = "THNSF5256GPUK TOSHIBA",
2259                .quirks = NVME_QUIRK_NO_APST,
2260        },
2261        {
2262                /*
2263                 * This LiteON CL1-3D*-Q11 firmware version has a race
2264                 * condition associated with actions related to suspend to idle
2265                 * LiteON has resolved the problem in future firmware
2266                 */
2267                .vid = 0x14a4,
2268                .fr = "22301111",
2269                .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2270        }
2271};
2272
2273/* match is null-terminated but idstr is space-padded. */
2274static bool string_matches(const char *idstr, const char *match, size_t len)
2275{
2276        size_t matchlen;
2277
2278        if (!match)
2279                return true;
2280
2281        matchlen = strlen(match);
2282        WARN_ON_ONCE(matchlen > len);
2283
2284        if (memcmp(idstr, match, matchlen))
2285                return false;
2286
2287        for (; matchlen < len; matchlen++)
2288                if (idstr[matchlen] != ' ')
2289                        return false;
2290
2291        return true;
2292}
2293
2294static bool quirk_matches(const struct nvme_id_ctrl *id,
2295                          const struct nvme_core_quirk_entry *q)
2296{
2297        return q->vid == le16_to_cpu(id->vid) &&
2298                string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2299                string_matches(id->fr, q->fr, sizeof(id->fr));
2300}
2301
2302static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2303                struct nvme_id_ctrl *id)
2304{
2305        size_t nqnlen;
2306        int off;
2307
2308        if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2309                nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2310                if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2311                        strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2312                        return;
2313                }
2314
2315                if (ctrl->vs >= NVME_VS(1, 2, 1))
2316                        dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2317        }
2318
2319        /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2320        off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2321                        "nqn.2014.08.org.nvmexpress:%04x%04x",
2322                        le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2323        memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2324        off += sizeof(id->sn);
2325        memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2326        off += sizeof(id->mn);
2327        memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2328}
2329
2330static void nvme_release_subsystem(struct device *dev)
2331{
2332        struct nvme_subsystem *subsys =
2333                container_of(dev, struct nvme_subsystem, dev);
2334
2335        ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2336        kfree(subsys);
2337}
2338
2339static void nvme_destroy_subsystem(struct kref *ref)
2340{
2341        struct nvme_subsystem *subsys =
2342                        container_of(ref, struct nvme_subsystem, ref);
2343
2344        mutex_lock(&nvme_subsystems_lock);
2345        list_del(&subsys->entry);
2346        mutex_unlock(&nvme_subsystems_lock);
2347
2348        ida_destroy(&subsys->ns_ida);
2349        device_del(&subsys->dev);
2350        put_device(&subsys->dev);
2351}
2352
2353static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2354{
2355        kref_put(&subsys->ref, nvme_destroy_subsystem);
2356}
2357
2358static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2359{
2360        struct nvme_subsystem *subsys;
2361
2362        lockdep_assert_held(&nvme_subsystems_lock);
2363
2364        list_for_each_entry(subsys, &nvme_subsystems, entry) {
2365                if (strcmp(subsys->subnqn, subsysnqn))
2366                        continue;
2367                if (!kref_get_unless_zero(&subsys->ref))
2368                        continue;
2369                return subsys;
2370        }
2371
2372        return NULL;
2373}
2374
2375#define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2376        struct device_attribute subsys_attr_##_name = \
2377                __ATTR(_name, _mode, _show, NULL)
2378
2379static ssize_t nvme_subsys_show_nqn(struct device *dev,
2380                                    struct device_attribute *attr,
2381                                    char *buf)
2382{
2383        struct nvme_subsystem *subsys =
2384                container_of(dev, struct nvme_subsystem, dev);
2385
2386        return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2387}
2388static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2389
2390#define nvme_subsys_show_str_function(field)                            \
2391static ssize_t subsys_##field##_show(struct device *dev,                \
2392                            struct device_attribute *attr, char *buf)   \
2393{                                                                       \
2394        struct nvme_subsystem *subsys =                                 \
2395                container_of(dev, struct nvme_subsystem, dev);          \
2396        return sprintf(buf, "%.*s\n",                                   \
2397                       (int)sizeof(subsys->field), subsys->field);      \
2398}                                                                       \
2399static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2400
2401nvme_subsys_show_str_function(model);
2402nvme_subsys_show_str_function(serial);
2403nvme_subsys_show_str_function(firmware_rev);
2404
2405static struct attribute *nvme_subsys_attrs[] = {
2406        &subsys_attr_model.attr,
2407        &subsys_attr_serial.attr,
2408        &subsys_attr_firmware_rev.attr,
2409        &subsys_attr_subsysnqn.attr,
2410#ifdef CONFIG_NVME_MULTIPATH
2411        &subsys_attr_iopolicy.attr,
2412#endif
2413        NULL,
2414};
2415
2416static struct attribute_group nvme_subsys_attrs_group = {
2417        .attrs = nvme_subsys_attrs,
2418};
2419
2420static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2421        &nvme_subsys_attrs_group,
2422        NULL,
2423};
2424
2425static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2426                struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2427{
2428        struct nvme_ctrl *tmp;
2429
2430        lockdep_assert_held(&nvme_subsystems_lock);
2431
2432        list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2433                if (tmp->state == NVME_CTRL_DELETING ||
2434                    tmp->state == NVME_CTRL_DEAD)
2435                        continue;
2436
2437                if (tmp->cntlid == ctrl->cntlid) {
2438                        dev_err(ctrl->device,
2439                                "Duplicate cntlid %u with %s, rejecting\n",
2440                                ctrl->cntlid, dev_name(tmp->device));
2441                        return false;
2442                }
2443
2444                if ((id->cmic & (1 << 1)) ||
2445                    (ctrl->opts && ctrl->opts->discovery_nqn))
2446                        continue;
2447
2448                dev_err(ctrl->device,
2449                        "Subsystem does not support multiple controllers\n");
2450                return false;
2451        }
2452
2453        return true;
2454}
2455
2456static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2457{
2458        struct nvme_subsystem *subsys, *found;
2459        int ret;
2460
2461        subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2462        if (!subsys)
2463                return -ENOMEM;
2464        ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2465        if (ret < 0) {
2466                kfree(subsys);
2467                return ret;
2468        }
2469        subsys->instance = ret;
2470        mutex_init(&subsys->lock);
2471        kref_init(&subsys->ref);
2472        INIT_LIST_HEAD(&subsys->ctrls);
2473        INIT_LIST_HEAD(&subsys->nsheads);
2474        nvme_init_subnqn(subsys, ctrl, id);
2475        memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2476        memcpy(subsys->model, id->mn, sizeof(subsys->model));
2477        memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2478        subsys->vendor_id = le16_to_cpu(id->vid);
2479        subsys->cmic = id->cmic;
2480        subsys->awupf = le16_to_cpu(id->awupf);
2481#ifdef CONFIG_NVME_MULTIPATH
2482        subsys->iopolicy = NVME_IOPOLICY_NUMA;
2483#endif
2484
2485        subsys->dev.class = nvme_subsys_class;
2486        subsys->dev.release = nvme_release_subsystem;
2487        subsys->dev.groups = nvme_subsys_attrs_groups;
2488        dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2489        device_initialize(&subsys->dev);
2490
2491        mutex_lock(&nvme_subsystems_lock);
2492        found = __nvme_find_get_subsystem(subsys->subnqn);
2493        if (found) {
2494                put_device(&subsys->dev);
2495                subsys = found;
2496
2497                if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2498                        ret = -EINVAL;
2499                        goto out_put_subsystem;
2500                }
2501        } else {
2502                ret = device_add(&subsys->dev);
2503                if (ret) {
2504                        dev_err(ctrl->device,
2505                                "failed to register subsystem device.\n");
2506                        put_device(&subsys->dev);
2507                        goto out_unlock;
2508                }
2509                ida_init(&subsys->ns_ida);
2510                list_add_tail(&subsys->entry, &nvme_subsystems);
2511        }
2512
2513        if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2514                        dev_name(ctrl->device))) {
2515                dev_err(ctrl->device,
2516                        "failed to create sysfs link from subsystem.\n");
2517                goto out_put_subsystem;
2518        }
2519
2520        ctrl->subsys = subsys;
2521        list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2522        mutex_unlock(&nvme_subsystems_lock);
2523        return 0;
2524
2525out_put_subsystem:
2526        nvme_put_subsystem(subsys);
2527out_unlock:
2528        mutex_unlock(&nvme_subsystems_lock);
2529        return ret;
2530}
2531
2532int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2533                void *log, size_t size, u64 offset)
2534{
2535        struct nvme_command c = { };
2536        unsigned long dwlen = size / 4 - 1;
2537
2538        c.get_log_page.opcode = nvme_admin_get_log_page;
2539        c.get_log_page.nsid = cpu_to_le32(nsid);
2540        c.get_log_page.lid = log_page;
2541        c.get_log_page.lsp = lsp;
2542        c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2543        c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2544        c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2545        c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2546
2547        return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2548}
2549
2550static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2551{
2552        int ret;
2553
2554        if (!ctrl->effects)
2555                ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2556
2557        if (!ctrl->effects)
2558                return 0;
2559
2560        ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2561                        ctrl->effects, sizeof(*ctrl->effects), 0);
2562        if (ret) {
2563                kfree(ctrl->effects);
2564                ctrl->effects = NULL;
2565        }
2566        return ret;
2567}
2568
2569/*
2570 * Initialize the cached copies of the Identify data and various controller
2571 * register in our nvme_ctrl structure.  This should be called as soon as
2572 * the admin queue is fully up and running.
2573 */
2574int nvme_init_identify(struct nvme_ctrl *ctrl)
2575{
2576        struct nvme_id_ctrl *id;
2577        u64 cap;
2578        int ret, page_shift;
2579        u32 max_hw_sectors;
2580        bool prev_apst_enabled;
2581
2582        ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2583        if (ret) {
2584                dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2585                return ret;
2586        }
2587
2588        ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2589        if (ret) {
2590                dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2591                return ret;
2592        }
2593        page_shift = NVME_CAP_MPSMIN(cap) + 12;
2594
2595        if (ctrl->vs >= NVME_VS(1, 1, 0))
2596                ctrl->subsystem = NVME_CAP_NSSRC(cap);
2597
2598        ret = nvme_identify_ctrl(ctrl, &id);
2599        if (ret) {
2600                dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2601                return -EIO;
2602        }
2603
2604        if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2605                ret = nvme_get_effects_log(ctrl);
2606                if (ret < 0)
2607                        goto out_free;
2608        }
2609
2610        if (!(ctrl->ops->flags & NVME_F_FABRICS))
2611                ctrl->cntlid = le16_to_cpu(id->cntlid);
2612
2613        if (!ctrl->identified) {
2614                int i;
2615
2616                ret = nvme_init_subsystem(ctrl, id);
2617                if (ret)
2618                        goto out_free;
2619
2620                /*
2621                 * Check for quirks.  Quirk can depend on firmware version,
2622                 * so, in principle, the set of quirks present can change
2623                 * across a reset.  As a possible future enhancement, we
2624                 * could re-scan for quirks every time we reinitialize
2625                 * the device, but we'd have to make sure that the driver
2626                 * behaves intelligently if the quirks change.
2627                 */
2628                for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2629                        if (quirk_matches(id, &core_quirks[i]))
2630                                ctrl->quirks |= core_quirks[i].quirks;
2631                }
2632        }
2633
2634        if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2635                dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2636                ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2637        }
2638
2639        ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2640        ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2641        ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2642
2643        ctrl->oacs = le16_to_cpu(id->oacs);
2644        ctrl->oncs = le16_to_cpu(id->oncs);
2645        ctrl->mtfa = le16_to_cpu(id->mtfa);
2646        ctrl->oaes = le32_to_cpu(id->oaes);
2647        atomic_set(&ctrl->abort_limit, id->acl + 1);
2648        ctrl->vwc = id->vwc;
2649        if (id->mdts)
2650                max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2651        else
2652                max_hw_sectors = UINT_MAX;
2653        ctrl->max_hw_sectors =
2654                min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2655
2656        nvme_set_queue_limits(ctrl, ctrl->admin_q);
2657        ctrl->sgls = le32_to_cpu(id->sgls);
2658        ctrl->kas = le16_to_cpu(id->kas);
2659        ctrl->max_namespaces = le32_to_cpu(id->mnan);
2660        ctrl->ctratt = le32_to_cpu(id->ctratt);
2661
2662        if (id->rtd3e) {
2663                /* us -> s */
2664                u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2665
2666                ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2667                                                 shutdown_timeout, 60);
2668
2669                if (ctrl->shutdown_timeout != shutdown_timeout)
2670                        dev_info(ctrl->device,
2671                                 "Shutdown timeout set to %u seconds\n",
2672                                 ctrl->shutdown_timeout);
2673        } else
2674                ctrl->shutdown_timeout = shutdown_timeout;
2675
2676        ctrl->npss = id->npss;
2677        ctrl->apsta = id->apsta;
2678        prev_apst_enabled = ctrl->apst_enabled;
2679        if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2680                if (force_apst && id->apsta) {
2681                        dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2682                        ctrl->apst_enabled = true;
2683                } else {
2684                        ctrl->apst_enabled = false;
2685                }
2686        } else {
2687                ctrl->apst_enabled = id->apsta;
2688        }
2689        memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2690
2691        if (ctrl->ops->flags & NVME_F_FABRICS) {
2692                ctrl->icdoff = le16_to_cpu(id->icdoff);
2693                ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2694                ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2695                ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2696
2697                /*
2698                 * In fabrics we need to verify the cntlid matches the
2699                 * admin connect
2700                 */
2701                if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2702                        ret = -EINVAL;
2703                        goto out_free;
2704                }
2705
2706                if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2707                        dev_err(ctrl->device,
2708                                "keep-alive support is mandatory for fabrics\n");
2709                        ret = -EINVAL;
2710                        goto out_free;
2711                }
2712        } else {
2713                ctrl->hmpre = le32_to_cpu(id->hmpre);
2714                ctrl->hmmin = le32_to_cpu(id->hmmin);
2715                ctrl->hmminds = le32_to_cpu(id->hmminds);
2716                ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2717        }
2718
2719        ret = nvme_mpath_init(ctrl, id);
2720        kfree(id);
2721
2722        if (ret < 0)
2723                return ret;
2724
2725        if (ctrl->apst_enabled && !prev_apst_enabled)
2726                dev_pm_qos_expose_latency_tolerance(ctrl->device);
2727        else if (!ctrl->apst_enabled && prev_apst_enabled)
2728                dev_pm_qos_hide_latency_tolerance(ctrl->device);
2729
2730        ret = nvme_configure_apst(ctrl);
2731        if (ret < 0)
2732                return ret;
2733        
2734        ret = nvme_configure_timestamp(ctrl);
2735        if (ret < 0)
2736                return ret;
2737
2738        ret = nvme_configure_directives(ctrl);
2739        if (ret < 0)
2740                return ret;
2741
2742        ret = nvme_configure_acre(ctrl);
2743        if (ret < 0)
2744                return ret;
2745
2746        ctrl->identified = true;
2747
2748        return 0;
2749
2750out_free:
2751        kfree(id);
2752        return ret;
2753}
2754EXPORT_SYMBOL_GPL(nvme_init_identify);
2755
2756static int nvme_dev_open(struct inode *inode, struct file *file)
2757{
2758        struct nvme_ctrl *ctrl =
2759                container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2760
2761        switch (ctrl->state) {
2762        case NVME_CTRL_LIVE:
2763        case NVME_CTRL_ADMIN_ONLY:
2764                break;
2765        default:
2766                return -EWOULDBLOCK;
2767        }
2768
2769        file->private_data = ctrl;
2770        return 0;
2771}
2772
2773static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2774{
2775        struct nvme_ns *ns;
2776        int ret;
2777
2778        down_read(&ctrl->namespaces_rwsem);
2779        if (list_empty(&ctrl->namespaces)) {
2780                ret = -ENOTTY;
2781                goto out_unlock;
2782        }
2783
2784        ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2785        if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2786                dev_warn(ctrl->device,
2787                        "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2788                ret = -EINVAL;
2789                goto out_unlock;
2790        }
2791
2792        dev_warn(ctrl->device,
2793                "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2794        kref_get(&ns->kref);
2795        up_read(&ctrl->namespaces_rwsem);
2796
2797        ret = nvme_user_cmd(ctrl, ns, argp);
2798        nvme_put_ns(ns);
2799        return ret;
2800
2801out_unlock:
2802        up_read(&ctrl->namespaces_rwsem);
2803        return ret;
2804}
2805
2806static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2807                unsigned long arg)
2808{
2809        struct nvme_ctrl *ctrl = file->private_data;
2810        void __user *argp = (void __user *)arg;
2811
2812        switch (cmd) {
2813        case NVME_IOCTL_ADMIN_CMD:
2814                return nvme_user_cmd(ctrl, NULL, argp);
2815        case NVME_IOCTL_IO_CMD:
2816                return nvme_dev_user_cmd(ctrl, argp);
2817        case NVME_IOCTL_RESET:
2818                dev_warn(ctrl->device, "resetting controller\n");
2819                return nvme_reset_ctrl_sync(ctrl);
2820        case NVME_IOCTL_SUBSYS_RESET:
2821                return nvme_reset_subsystem(ctrl);
2822        case NVME_IOCTL_RESCAN:
2823                nvme_queue_scan(ctrl);
2824                return 0;
2825        default:
2826                return -ENOTTY;
2827        }
2828}
2829
2830static const struct file_operations nvme_dev_fops = {
2831        .owner          = THIS_MODULE,
2832        .open           = nvme_dev_open,
2833        .unlocked_ioctl = nvme_dev_ioctl,
2834        .compat_ioctl   = nvme_dev_ioctl,
2835};
2836
2837static ssize_t nvme_sysfs_reset(struct device *dev,
2838                                struct device_attribute *attr, const char *buf,
2839                                size_t count)
2840{
2841        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2842        int ret;
2843
2844        ret = nvme_reset_ctrl_sync(ctrl);
2845        if (ret < 0)
2846                return ret;
2847        return count;
2848}
2849static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2850
2851static ssize_t nvme_sysfs_rescan(struct device *dev,
2852                                struct device_attribute *attr, const char *buf,
2853                                size_t count)
2854{
2855        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2856
2857        nvme_queue_scan(ctrl);
2858        return count;
2859}
2860static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2861
2862static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2863{
2864        struct gendisk *disk = dev_to_disk(dev);
2865
2866        if (disk->fops == &nvme_fops)
2867                return nvme_get_ns_from_dev(dev)->head;
2868        else
2869                return disk->private_data;
2870}
2871
2872static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2873                char *buf)
2874{
2875        struct nvme_ns_head *head = dev_to_ns_head(dev);
2876        struct nvme_ns_ids *ids = &head->ids;
2877        struct nvme_subsystem *subsys = head->subsys;
2878        int serial_len = sizeof(subsys->serial);
2879        int model_len = sizeof(subsys->model);
2880
2881        if (!uuid_is_null(&ids->uuid))
2882                return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2883
2884        if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2885                return sprintf(buf, "eui.%16phN\n", ids->nguid);
2886
2887        if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2888                return sprintf(buf, "eui.%8phN\n", ids->eui64);
2889
2890        while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2891                                  subsys->serial[serial_len - 1] == '\0'))
2892                serial_len--;
2893        while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2894                                 subsys->model[model_len - 1] == '\0'))
2895                model_len--;
2896
2897        return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2898                serial_len, subsys->serial, model_len, subsys->model,
2899                head->ns_id);
2900}
2901static DEVICE_ATTR_RO(wwid);
2902
2903static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2904                char *buf)
2905{
2906        return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2907}
2908static DEVICE_ATTR_RO(nguid);
2909
2910static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2911                char *buf)
2912{
2913        struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2914
2915        /* For backward compatibility expose the NGUID to userspace if
2916         * we have no UUID set
2917         */
2918        if (uuid_is_null(&ids->uuid)) {
2919                printk_ratelimited(KERN_WARNING
2920                                   "No UUID available providing old NGUID\n");
2921                return sprintf(buf, "%pU\n", ids->nguid);
2922        }
2923        return sprintf(buf, "%pU\n", &ids->uuid);
2924}
2925static DEVICE_ATTR_RO(uuid);
2926
2927static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2928                char *buf)
2929{
2930        return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2931}
2932static DEVICE_ATTR_RO(eui);
2933
2934static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2935                char *buf)
2936{
2937        return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2938}
2939static DEVICE_ATTR_RO(nsid);
2940
2941static struct attribute *nvme_ns_id_attrs[] = {
2942        &dev_attr_wwid.attr,
2943        &dev_attr_uuid.attr,
2944        &dev_attr_nguid.attr,
2945        &dev_attr_eui.attr,
2946        &dev_attr_nsid.attr,
2947#ifdef CONFIG_NVME_MULTIPATH
2948        &dev_attr_ana_grpid.attr,
2949        &dev_attr_ana_state.attr,
2950#endif
2951        NULL,
2952};
2953
2954static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2955                struct attribute *a, int n)
2956{
2957        struct device *dev = container_of(kobj, struct device, kobj);
2958        struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2959
2960        if (a == &dev_attr_uuid.attr) {
2961                if (uuid_is_null(&ids->uuid) &&
2962                    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2963                        return 0;
2964        }
2965        if (a == &dev_attr_nguid.attr) {
2966                if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2967                        return 0;
2968        }
2969        if (a == &dev_attr_eui.attr) {
2970                if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2971                        return 0;
2972        }
2973#ifdef CONFIG_NVME_MULTIPATH
2974        if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2975                if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2976                        return 0;
2977                if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2978                        return 0;
2979        }
2980#endif
2981        return a->mode;
2982}
2983
2984static const struct attribute_group nvme_ns_id_attr_group = {
2985        .attrs          = nvme_ns_id_attrs,
2986        .is_visible     = nvme_ns_id_attrs_are_visible,
2987};
2988
2989const struct attribute_group *nvme_ns_id_attr_groups[] = {
2990        &nvme_ns_id_attr_group,
2991#ifdef CONFIG_NVM
2992        &nvme_nvm_attr_group,
2993#endif
2994        NULL,
2995};
2996
2997#define nvme_show_str_function(field)                                           \
2998static ssize_t  field##_show(struct device *dev,                                \
2999                            struct device_attribute *attr, char *buf)           \
3000{                                                                               \
3001        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3002        return sprintf(buf, "%.*s\n",                                           \
3003                (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3004}                                                                               \
3005static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3006
3007nvme_show_str_function(model);
3008nvme_show_str_function(serial);
3009nvme_show_str_function(firmware_rev);
3010
3011#define nvme_show_int_function(field)                                           \
3012static ssize_t  field##_show(struct device *dev,                                \
3013                            struct device_attribute *attr, char *buf)           \
3014{                                                                               \
3015        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3016        return sprintf(buf, "%d\n", ctrl->field);       \
3017}                                                                               \
3018static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3019
3020nvme_show_int_function(cntlid);
3021nvme_show_int_function(numa_node);
3022
3023static ssize_t nvme_sysfs_delete(struct device *dev,
3024                                struct device_attribute *attr, const char *buf,
3025                                size_t count)
3026{
3027        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3028
3029        if (device_remove_file_self(dev, attr))
3030                nvme_delete_ctrl_sync(ctrl);
3031        return count;
3032}
3033static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3034
3035static ssize_t nvme_sysfs_show_transport(struct device *dev,
3036                                         struct device_attribute *attr,
3037                                         char *buf)
3038{
3039        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3040
3041        return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3042}
3043static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3044
3045static ssize_t nvme_sysfs_show_state(struct device *dev,
3046                                     struct device_attribute *attr,
3047                                     char *buf)
3048{
3049        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3050        static const char *const state_name[] = {
3051                [NVME_CTRL_NEW]         = "new",
3052                [NVME_CTRL_LIVE]        = "live",
3053                [NVME_CTRL_ADMIN_ONLY]  = "only-admin",
3054                [NVME_CTRL_RESETTING]   = "resetting",
3055                [NVME_CTRL_CONNECTING]  = "connecting",
3056                [NVME_CTRL_DELETING]    = "deleting",
3057                [NVME_CTRL_DEAD]        = "dead",
3058        };
3059
3060        if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3061            state_name[ctrl->state])
3062                return sprintf(buf, "%s\n", state_name[ctrl->state]);
3063
3064        return sprintf(buf, "unknown state\n");
3065}
3066
3067static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3068
3069static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3070                                         struct device_attribute *attr,
3071                                         char *buf)
3072{
3073        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3074
3075        return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3076}
3077static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3078
3079static ssize_t nvme_sysfs_show_address(struct device *dev,
3080                                         struct device_attribute *attr,
3081                                         char *buf)
3082{
3083        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3084
3085        return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3086}
3087static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3088
3089static struct attribute *nvme_dev_attrs[] = {
3090        &dev_attr_reset_controller.attr,
3091        &dev_attr_rescan_controller.attr,
3092        &dev_attr_model.attr,
3093        &dev_attr_serial.attr,
3094        &dev_attr_firmware_rev.attr,
3095        &dev_attr_cntlid.attr,
3096        &dev_attr_delete_controller.attr,
3097        &dev_attr_transport.attr,
3098        &dev_attr_subsysnqn.attr,
3099        &dev_attr_address.attr,
3100        &dev_attr_state.attr,
3101        &dev_attr_numa_node.attr,
3102        NULL
3103};
3104
3105static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3106                struct attribute *a, int n)
3107{
3108        struct device *dev = container_of(kobj, struct device, kobj);
3109        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3110
3111        if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3112                return 0;
3113        if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3114                return 0;
3115
3116        return a->mode;
3117}
3118
3119static struct attribute_group nvme_dev_attrs_group = {
3120        .attrs          = nvme_dev_attrs,
3121        .is_visible     = nvme_dev_attrs_are_visible,
3122};
3123
3124static const struct attribute_group *nvme_dev_attr_groups[] = {
3125        &nvme_dev_attrs_group,
3126        NULL,
3127};
3128
3129static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3130                unsigned nsid)
3131{
3132        struct nvme_ns_head *h;
3133
3134        lockdep_assert_held(&subsys->lock);
3135
3136        list_for_each_entry(h, &subsys->nsheads, entry) {
3137                if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3138                        return h;
3139        }
3140
3141        return NULL;
3142}
3143
3144static int __nvme_check_ids(struct nvme_subsystem *subsys,
3145                struct nvme_ns_head *new)
3146{
3147        struct nvme_ns_head *h;
3148
3149        lockdep_assert_held(&subsys->lock);
3150
3151        list_for_each_entry(h, &subsys->nsheads, entry) {
3152                if (nvme_ns_ids_valid(&new->ids) &&
3153                    !list_empty(&h->list) &&
3154                    nvme_ns_ids_equal(&new->ids, &h->ids))
3155                        return -EINVAL;
3156        }
3157
3158        return 0;
3159}
3160
3161static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3162                unsigned nsid, struct nvme_id_ns *id)
3163{
3164        struct nvme_ns_head *head;
3165        size_t size = sizeof(*head);
3166        int ret = -ENOMEM;
3167
3168#ifdef CONFIG_NVME_MULTIPATH
3169        size += num_possible_nodes() * sizeof(struct nvme_ns *);
3170#endif
3171
3172        head = kzalloc(size, GFP_KERNEL);
3173        if (!head)
3174                goto out;
3175        ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3176        if (ret < 0)
3177                goto out_free_head;
3178        head->instance = ret;
3179        INIT_LIST_HEAD(&head->list);
3180        ret = init_srcu_struct(&head->srcu);
3181        if (ret)
3182                goto out_ida_remove;
3183        head->subsys = ctrl->subsys;
3184        head->ns_id = nsid;
3185        kref_init(&head->ref);
3186
3187        nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3188
3189        ret = __nvme_check_ids(ctrl->subsys, head);
3190        if (ret) {
3191                dev_err(ctrl->device,
3192                        "duplicate IDs for nsid %d\n", nsid);
3193                goto out_cleanup_srcu;
3194        }
3195
3196        ret = nvme_mpath_alloc_disk(ctrl, head);
3197        if (ret)
3198                goto out_cleanup_srcu;
3199
3200        list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3201
3202        kref_get(&ctrl->subsys->ref);
3203
3204        return head;
3205out_cleanup_srcu:
3206        cleanup_srcu_struct(&head->srcu);
3207out_ida_remove:
3208        ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3209out_free_head:
3210        kfree(head);
3211out:
3212        return ERR_PTR(ret);
3213}
3214
3215static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3216                struct nvme_id_ns *id)
3217{
3218        struct nvme_ctrl *ctrl = ns->ctrl;
3219        bool is_shared = id->nmic & (1 << 0);
3220        struct nvme_ns_head *head = NULL;
3221        int ret = 0;
3222
3223        mutex_lock(&ctrl->subsys->lock);
3224        if (is_shared)
3225                head = __nvme_find_ns_head(ctrl->subsys, nsid);
3226        if (!head) {
3227                head = nvme_alloc_ns_head(ctrl, nsid, id);
3228                if (IS_ERR(head)) {
3229                        ret = PTR_ERR(head);
3230                        goto out_unlock;
3231                }
3232        } else {
3233                struct nvme_ns_ids ids;
3234
3235                nvme_report_ns_ids(ctrl, nsid, id, &ids);
3236                if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3237                        dev_err(ctrl->device,
3238                                "IDs don't match for shared namespace %d\n",
3239                                        nsid);
3240                        ret = -EINVAL;
3241                        goto out_unlock;
3242                }
3243        }
3244
3245        list_add_tail(&ns->siblings, &head->list);
3246        ns->head = head;
3247
3248out_unlock:
3249        mutex_unlock(&ctrl->subsys->lock);
3250        return ret;
3251}
3252
3253static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3254{
3255        struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3256        struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3257
3258        return nsa->head->ns_id - nsb->head->ns_id;
3259}
3260
3261static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3262{
3263        struct nvme_ns *ns, *ret = NULL;
3264
3265        down_read(&ctrl->namespaces_rwsem);
3266        list_for_each_entry(ns, &ctrl->namespaces, list) {
3267                if (ns->head->ns_id == nsid) {
3268                        if (!kref_get_unless_zero(&ns->kref))
3269                                continue;
3270                        ret = ns;
3271                        break;
3272                }
3273                if (ns->head->ns_id > nsid)
3274                        break;
3275        }
3276        up_read(&ctrl->namespaces_rwsem);
3277        return ret;
3278}
3279
3280static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3281{
3282        struct streams_directive_params s;
3283        int ret;
3284
3285        if (!ctrl->nr_streams)
3286                return 0;
3287
3288        ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3289        if (ret)
3290                return ret;
3291
3292        ns->sws = le32_to_cpu(s.sws);
3293        ns->sgs = le16_to_cpu(s.sgs);
3294
3295        if (ns->sws) {
3296                unsigned int bs = 1 << ns->lba_shift;
3297
3298                blk_queue_io_min(ns->queue, bs * ns->sws);
3299                if (ns->sgs)
3300                        blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3301        }
3302
3303        return 0;
3304}
3305
3306static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3307{
3308        struct nvme_ns *ns;
3309        struct gendisk *disk;
3310        struct nvme_id_ns *id;
3311        char disk_name[DISK_NAME_LEN];
3312        int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3313
3314        ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3315        if (!ns)
3316                return -ENOMEM;
3317
3318        ns->queue = blk_mq_init_queue(ctrl->tagset);
3319        if (IS_ERR(ns->queue)) {
3320                ret = PTR_ERR(ns->queue);
3321                goto out_free_ns;
3322        }
3323
3324        if (ctrl->opts && ctrl->opts->data_digest)
3325                ns->queue->backing_dev_info->capabilities
3326                        |= BDI_CAP_STABLE_WRITES;
3327
3328        blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3329        if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3330                blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3331
3332        ns->queue->queuedata = ns;
3333        ns->ctrl = ctrl;
3334
3335        kref_init(&ns->kref);
3336        ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3337
3338        blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3339        nvme_set_queue_limits(ctrl, ns->queue);
3340
3341        id = nvme_identify_ns(ctrl, nsid);
3342        if (!id) {
3343                ret = -EIO;
3344                goto out_free_queue;
3345        }
3346
3347        if (id->ncap == 0) {
3348                ret = -EINVAL;
3349                goto out_free_id;
3350        }
3351
3352        ret = nvme_init_ns_head(ns, nsid, id);
3353        if (ret)
3354                goto out_free_id;
3355        nvme_setup_streams_ns(ctrl, ns);
3356        nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3357
3358        disk = alloc_disk_node(0, node);
3359        if (!disk) {
3360                ret = -ENOMEM;
3361                goto out_unlink_ns;
3362        }
3363
3364        disk->fops = &nvme_fops;
3365        disk->private_data = ns;
3366        disk->queue = ns->queue;
3367        disk->flags = flags;
3368        memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3369        ns->disk = disk;
3370
3371        __nvme_revalidate_disk(disk, id);
3372
3373        if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3374                ret = nvme_nvm_register(ns, disk_name, node);
3375                if (ret) {
3376                        dev_warn(ctrl->device, "LightNVM init failure\n");
3377                        goto out_put_disk;
3378                }
3379        }
3380
3381        down_write(&ctrl->namespaces_rwsem);
3382        list_add_tail(&ns->list, &ctrl->namespaces);
3383        up_write(&ctrl->namespaces_rwsem);
3384
3385        nvme_get_ctrl(ctrl);
3386
3387        device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3388
3389        nvme_mpath_add_disk(ns, id);
3390        nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3391        kfree(id);
3392
3393        return 0;
3394 out_put_disk:
3395        put_disk(ns->disk);
3396 out_unlink_ns:
3397        mutex_lock(&ctrl->subsys->lock);
3398        list_del_rcu(&ns->siblings);
3399        mutex_unlock(&ctrl->subsys->lock);
3400        nvme_put_ns_head(ns->head);
3401 out_free_id:
3402        kfree(id);
3403 out_free_queue:
3404        blk_cleanup_queue(ns->queue);
3405 out_free_ns:
3406        kfree(ns);
3407        return ret;
3408}
3409
3410static void nvme_ns_remove(struct nvme_ns *ns)
3411{
3412        if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3413                return;
3414
3415        nvme_fault_inject_fini(&ns->fault_inject);
3416
3417        mutex_lock(&ns->ctrl->subsys->lock);
3418        list_del_rcu(&ns->siblings);
3419        mutex_unlock(&ns->ctrl->subsys->lock);
3420        synchronize_rcu(); /* guarantee not available in head->list */
3421        nvme_mpath_clear_current_path(ns);
3422        synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3423
3424        if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3425                del_gendisk(ns->disk);
3426                blk_cleanup_queue(ns->queue);
3427                if (blk_get_integrity(ns->disk))
3428                        blk_integrity_unregister(ns->disk);
3429        }
3430
3431        down_write(&ns->ctrl->namespaces_rwsem);
3432        list_del_init(&ns->list);
3433        up_write(&ns->ctrl->namespaces_rwsem);
3434
3435        nvme_mpath_check_last_path(ns);
3436        nvme_put_ns(ns);
3437}
3438
3439static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3440{
3441        struct nvme_ns *ns;
3442
3443        ns = nvme_find_get_ns(ctrl, nsid);
3444        if (ns) {
3445                if (ns->disk && revalidate_disk(ns->disk))
3446                        nvme_ns_remove(ns);
3447                nvme_put_ns(ns);
3448        } else
3449                nvme_alloc_ns(ctrl, nsid);
3450}
3451
3452static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3453                                        unsigned nsid)
3454{
3455        struct nvme_ns *ns, *next;
3456        LIST_HEAD(rm_list);
3457
3458        down_write(&ctrl->namespaces_rwsem);
3459        list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3460                if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3461                        list_move_tail(&ns->list, &rm_list);
3462        }
3463        up_write(&ctrl->namespaces_rwsem);
3464
3465        list_for_each_entry_safe(ns, next, &rm_list, list)
3466                nvme_ns_remove(ns);
3467
3468}
3469
3470static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3471{
3472        struct nvme_ns *ns;
3473        __le32 *ns_list;
3474        unsigned i, j, nsid, prev = 0;
3475        unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3476        int ret = 0;
3477
3478        ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3479        if (!ns_list)
3480                return -ENOMEM;
3481
3482        for (i = 0; i < num_lists; i++) {
3483                ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3484                if (ret)
3485                        goto free;
3486
3487                for (j = 0; j < min(nn, 1024U); j++) {
3488                        nsid = le32_to_cpu(ns_list[j]);
3489                        if (!nsid)
3490                                goto out;
3491
3492                        nvme_validate_ns(ctrl, nsid);
3493
3494                        while (++prev < nsid) {
3495                                ns = nvme_find_get_ns(ctrl, prev);
3496                                if (ns) {
3497                                        nvme_ns_remove(ns);
3498                                        nvme_put_ns(ns);
3499                                }
3500                        }
3501                }
3502                nn -= j;
3503        }
3504 out:
3505        nvme_remove_invalid_namespaces(ctrl, prev);
3506 free:
3507        kfree(ns_list);
3508        return ret;
3509}
3510
3511static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3512{
3513        unsigned i;
3514
3515        for (i = 1; i <= nn; i++)
3516                nvme_validate_ns(ctrl, i);
3517
3518        nvme_remove_invalid_namespaces(ctrl, nn);
3519}
3520
3521static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3522{
3523        size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3524        __le32 *log;
3525        int error;
3526
3527        log = kzalloc(log_size, GFP_KERNEL);
3528        if (!log)
3529                return;
3530
3531        /*
3532         * We need to read the log to clear the AEN, but we don't want to rely
3533         * on it for the changed namespace information as userspace could have
3534         * raced with us in reading the log page, which could cause us to miss
3535         * updates.
3536         */
3537        error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3538                        log_size, 0);
3539        if (error)
3540                dev_warn(ctrl->device,
3541                        "reading changed ns log failed: %d\n", error);
3542
3543        kfree(log);
3544}
3545
3546static void nvme_scan_work(struct work_struct *work)
3547{
3548        struct nvme_ctrl *ctrl =
3549                container_of(work, struct nvme_ctrl, scan_work);
3550        struct nvme_id_ctrl *id;
3551        unsigned nn;
3552
3553        if (ctrl->state != NVME_CTRL_LIVE)
3554                return;
3555
3556        WARN_ON_ONCE(!ctrl->tagset);
3557
3558        if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3559                dev_info(ctrl->device, "rescanning namespaces.\n");
3560                nvme_clear_changed_ns_log(ctrl);
3561        }
3562
3563        if (nvme_identify_ctrl(ctrl, &id))
3564                return;
3565
3566        mutex_lock(&ctrl->scan_lock);
3567        nn = le32_to_cpu(id->nn);
3568        if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3569            !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3570                if (!nvme_scan_ns_list(ctrl, nn))
3571                        goto out_free_id;
3572        }
3573        nvme_scan_ns_sequential(ctrl, nn);
3574out_free_id:
3575        mutex_unlock(&ctrl->scan_lock);
3576        kfree(id);
3577        down_write(&ctrl->namespaces_rwsem);
3578        list_sort(NULL, &ctrl->namespaces, ns_cmp);
3579        up_write(&ctrl->namespaces_rwsem);
3580}
3581
3582/*
3583 * This function iterates the namespace list unlocked to allow recovery from
3584 * controller failure. It is up to the caller to ensure the namespace list is
3585 * not modified by scan work while this function is executing.
3586 */
3587void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3588{
3589        struct nvme_ns *ns, *next;
3590        LIST_HEAD(ns_list);
3591
3592        /*
3593         * make sure to requeue I/O to all namespaces as these
3594         * might result from the scan itself and must complete
3595         * for the scan_work to make progress
3596         */
3597        nvme_mpath_clear_ctrl_paths(ctrl);
3598
3599        /* prevent racing with ns scanning */
3600        flush_work(&ctrl->scan_work);
3601
3602        /*
3603         * The dead states indicates the controller was not gracefully
3604         * disconnected. In that case, we won't be able to flush any data while
3605         * removing the namespaces' disks; fail all the queues now to avoid
3606         * potentially having to clean up the failed sync later.
3607         */
3608        if (ctrl->state == NVME_CTRL_DEAD)
3609                nvme_kill_queues(ctrl);
3610
3611        down_write(&ctrl->namespaces_rwsem);
3612        list_splice_init(&ctrl->namespaces, &ns_list);
3613        up_write(&ctrl->namespaces_rwsem);
3614
3615        list_for_each_entry_safe(ns, next, &ns_list, list)
3616                nvme_ns_remove(ns);
3617}
3618EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3619
3620static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3621{
3622        char *envp[2] = { NULL, NULL };
3623        u32 aen_result = ctrl->aen_result;
3624
3625        ctrl->aen_result = 0;
3626        if (!aen_result)
3627                return;
3628
3629        envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3630        if (!envp[0])
3631                return;
3632        kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3633        kfree(envp[0]);
3634}
3635
3636static void nvme_async_event_work(struct work_struct *work)
3637{
3638        struct nvme_ctrl *ctrl =
3639                container_of(work, struct nvme_ctrl, async_event_work);
3640
3641        nvme_aen_uevent(ctrl);
3642        ctrl->ops->submit_async_event(ctrl);
3643}
3644
3645static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3646{
3647
3648        u32 csts;
3649
3650        if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3651                return false;
3652
3653        if (csts == ~0)
3654                return false;
3655
3656        return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3657}
3658
3659static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3660{
3661        struct nvme_fw_slot_info_log *log;
3662
3663        log = kmalloc(sizeof(*log), GFP_KERNEL);
3664        if (!log)
3665                return;
3666
3667        if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3668                        sizeof(*log), 0))
3669                dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3670        kfree(log);
3671}
3672
3673static void nvme_fw_act_work(struct work_struct *work)
3674{
3675        struct nvme_ctrl *ctrl = container_of(work,
3676                                struct nvme_ctrl, fw_act_work);
3677        unsigned long fw_act_timeout;
3678
3679        if (ctrl->mtfa)
3680                fw_act_timeout = jiffies +
3681                                msecs_to_jiffies(ctrl->mtfa * 100);
3682        else
3683                fw_act_timeout = jiffies +
3684                                msecs_to_jiffies(admin_timeout * 1000);
3685
3686        nvme_stop_queues(ctrl);
3687        while (nvme_ctrl_pp_status(ctrl)) {
3688                if (time_after(jiffies, fw_act_timeout)) {
3689                        dev_warn(ctrl->device,
3690                                "Fw activation timeout, reset controller\n");
3691                        nvme_reset_ctrl(ctrl);
3692                        break;
3693                }
3694                msleep(100);
3695        }
3696
3697        if (ctrl->state != NVME_CTRL_LIVE)
3698                return;
3699
3700        nvme_start_queues(ctrl);
3701        /* read FW slot information to clear the AER */
3702        nvme_get_fw_slot_info(ctrl);
3703}
3704
3705static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3706{
3707        u32 aer_notice_type = (result & 0xff00) >> 8;
3708
3709        trace_nvme_async_event(ctrl, aer_notice_type);
3710
3711        switch (aer_notice_type) {
3712        case NVME_AER_NOTICE_NS_CHANGED:
3713                set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3714                nvme_queue_scan(ctrl);
3715                break;
3716        case NVME_AER_NOTICE_FW_ACT_STARTING:
3717                queue_work(nvme_wq, &ctrl->fw_act_work);
3718                break;
3719#ifdef CONFIG_NVME_MULTIPATH
3720        case NVME_AER_NOTICE_ANA:
3721                if (!ctrl->ana_log_buf)
3722                        break;
3723                queue_work(nvme_wq, &ctrl->ana_work);
3724                break;
3725#endif
3726        default:
3727                dev_warn(ctrl->device, "async event result %08x\n", result);
3728        }
3729}
3730
3731void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3732                volatile union nvme_result *res)
3733{
3734        u32 result = le32_to_cpu(res->u32);
3735        u32 aer_type = result & 0x07;
3736
3737        if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3738                return;
3739
3740        switch (aer_type) {
3741        case NVME_AER_NOTICE:
3742                nvme_handle_aen_notice(ctrl, result);
3743                break;
3744        case NVME_AER_ERROR:
3745        case NVME_AER_SMART:
3746        case NVME_AER_CSS:
3747        case NVME_AER_VS:
3748                trace_nvme_async_event(ctrl, aer_type);
3749                ctrl->aen_result = result;
3750                break;
3751        default:
3752                break;
3753        }
3754        queue_work(nvme_wq, &ctrl->async_event_work);
3755}
3756EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3757
3758void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3759{
3760        nvme_mpath_stop(ctrl);
3761        nvme_stop_keep_alive(ctrl);
3762        flush_work(&ctrl->async_event_work);
3763        cancel_work_sync(&ctrl->fw_act_work);
3764}
3765EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3766
3767void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3768{
3769        if (ctrl->kato)
3770                nvme_start_keep_alive(ctrl);
3771
3772        if (ctrl->queue_count > 1) {
3773                nvme_queue_scan(ctrl);
3774                nvme_enable_aen(ctrl);
3775                queue_work(nvme_wq, &ctrl->async_event_work);
3776                nvme_start_queues(ctrl);
3777        }
3778}
3779EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3780
3781void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3782{
3783        nvme_fault_inject_fini(&ctrl->fault_inject);
3784        dev_pm_qos_hide_latency_tolerance(ctrl->device);
3785        cdev_device_del(&ctrl->cdev, ctrl->device);
3786}
3787EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3788
3789static void nvme_free_ctrl(struct device *dev)
3790{
3791        struct nvme_ctrl *ctrl =
3792                container_of(dev, struct nvme_ctrl, ctrl_device);
3793        struct nvme_subsystem *subsys = ctrl->subsys;
3794
3795        ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3796        kfree(ctrl->effects);
3797        nvme_mpath_uninit(ctrl);
3798        __free_page(ctrl->discard_page);
3799
3800        if (subsys) {
3801                mutex_lock(&nvme_subsystems_lock);
3802                list_del(&ctrl->subsys_entry);
3803                sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3804                mutex_unlock(&nvme_subsystems_lock);
3805        }
3806
3807        ctrl->ops->free_ctrl(ctrl);
3808
3809        if (subsys)
3810                nvme_put_subsystem(subsys);
3811}
3812
3813/*
3814 * Initialize a NVMe controller structures.  This needs to be called during
3815 * earliest initialization so that we have the initialized structured around
3816 * during probing.
3817 */
3818int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3819                const struct nvme_ctrl_ops *ops, unsigned long quirks)
3820{
3821        int ret;
3822
3823        ctrl->state = NVME_CTRL_NEW;
3824        spin_lock_init(&ctrl->lock);
3825        mutex_init(&ctrl->scan_lock);
3826        INIT_LIST_HEAD(&ctrl->namespaces);
3827        init_rwsem(&ctrl->namespaces_rwsem);
3828        ctrl->dev = dev;
3829        ctrl->ops = ops;
3830        ctrl->quirks = quirks;
3831        INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3832        INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3833        INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3834        INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3835
3836        INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3837        memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3838        ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3839
3840        BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3841                        PAGE_SIZE);
3842        ctrl->discard_page = alloc_page(GFP_KERNEL);
3843        if (!ctrl->discard_page) {
3844                ret = -ENOMEM;
3845                goto out;
3846        }
3847
3848        ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3849        if (ret < 0)
3850                goto out;
3851        ctrl->instance = ret;
3852
3853        device_initialize(&ctrl->ctrl_device);
3854        ctrl->device = &ctrl->ctrl_device;
3855        ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3856        ctrl->device->class = nvme_class;
3857        ctrl->device->parent = ctrl->dev;
3858        ctrl->device->groups = nvme_dev_attr_groups;
3859        ctrl->device->release = nvme_free_ctrl;
3860        dev_set_drvdata(ctrl->device, ctrl);
3861        ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3862        if (ret)
3863                goto out_release_instance;
3864
3865        cdev_init(&ctrl->cdev, &nvme_dev_fops);
3866        ctrl->cdev.owner = ops->module;
3867        ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3868        if (ret)
3869                goto out_free_name;
3870
3871        /*
3872         * Initialize latency tolerance controls.  The sysfs files won't
3873         * be visible to userspace unless the device actually supports APST.
3874         */
3875        ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3876        dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3877                min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3878
3879        nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
3880
3881        return 0;
3882out_free_name:
3883        kfree_const(ctrl->device->kobj.name);
3884out_release_instance:
3885        ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3886out:
3887        if (ctrl->discard_page)
3888                __free_page(ctrl->discard_page);
3889        return ret;
3890}
3891EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3892
3893/**
3894 * nvme_kill_queues(): Ends all namespace queues
3895 * @ctrl: the dead controller that needs to end
3896 *
3897 * Call this function when the driver determines it is unable to get the
3898 * controller in a state capable of servicing IO.
3899 */
3900void nvme_kill_queues(struct nvme_ctrl *ctrl)
3901{
3902        struct nvme_ns *ns;
3903
3904        down_read(&ctrl->namespaces_rwsem);
3905
3906        /* Forcibly unquiesce queues to avoid blocking dispatch */
3907        if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3908                blk_mq_unquiesce_queue(ctrl->admin_q);
3909
3910        list_for_each_entry(ns, &ctrl->namespaces, list)
3911                nvme_set_queue_dying(ns);
3912
3913        up_read(&ctrl->namespaces_rwsem);
3914}
3915EXPORT_SYMBOL_GPL(nvme_kill_queues);
3916
3917void nvme_unfreeze(struct nvme_ctrl *ctrl)
3918{
3919        struct nvme_ns *ns;
3920
3921        down_read(&ctrl->namespaces_rwsem);
3922        list_for_each_entry(ns, &ctrl->namespaces, list)
3923                blk_mq_unfreeze_queue(ns->queue);
3924        up_read(&ctrl->namespaces_rwsem);
3925}
3926EXPORT_SYMBOL_GPL(nvme_unfreeze);
3927
3928void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3929{
3930        struct nvme_ns *ns;
3931
3932        down_read(&ctrl->namespaces_rwsem);
3933        list_for_each_entry(ns, &ctrl->namespaces, list) {
3934                timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3935                if (timeout <= 0)
3936                        break;
3937        }
3938        up_read(&ctrl->namespaces_rwsem);
3939}
3940EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3941
3942void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3943{
3944        struct nvme_ns *ns;
3945
3946        down_read(&ctrl->namespaces_rwsem);
3947        list_for_each_entry(ns, &ctrl->namespaces, list)
3948                blk_mq_freeze_queue_wait(ns->queue);
3949        up_read(&ctrl->namespaces_rwsem);
3950}
3951EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3952
3953void nvme_start_freeze(struct nvme_ctrl *ctrl)
3954{
3955        struct nvme_ns *ns;
3956
3957        down_read(&ctrl->namespaces_rwsem);
3958        list_for_each_entry(ns, &ctrl->namespaces, list)
3959                blk_freeze_queue_start(ns->queue);
3960        up_read(&ctrl->namespaces_rwsem);
3961}
3962EXPORT_SYMBOL_GPL(nvme_start_freeze);
3963
3964void nvme_stop_queues(struct nvme_ctrl *ctrl)
3965{
3966        struct nvme_ns *ns;
3967
3968        down_read(&ctrl->namespaces_rwsem);
3969        list_for_each_entry(ns, &ctrl->namespaces, list)
3970                blk_mq_quiesce_queue(ns->queue);
3971        up_read(&ctrl->namespaces_rwsem);
3972}
3973EXPORT_SYMBOL_GPL(nvme_stop_queues);
3974
3975void nvme_start_queues(struct nvme_ctrl *ctrl)
3976{
3977        struct nvme_ns *ns;
3978
3979        down_read(&ctrl->namespaces_rwsem);
3980        list_for_each_entry(ns, &ctrl->namespaces, list)
3981                blk_mq_unquiesce_queue(ns->queue);
3982        up_read(&ctrl->namespaces_rwsem);
3983}
3984EXPORT_SYMBOL_GPL(nvme_start_queues);
3985
3986
3987void nvme_sync_queues(struct nvme_ctrl *ctrl)
3988{
3989        struct nvme_ns *ns;
3990
3991        down_read(&ctrl->namespaces_rwsem);
3992        list_for_each_entry(ns, &ctrl->namespaces, list)
3993                blk_sync_queue(ns->queue);
3994        up_read(&ctrl->namespaces_rwsem);
3995}
3996EXPORT_SYMBOL_GPL(nvme_sync_queues);
3997
3998/*
3999 * Check we didn't inadvertently grow the command structure sizes:
4000 */
4001static inline void _nvme_check_size(void)
4002{
4003        BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4004        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4005        BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4006        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4007        BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4008        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4009        BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4010        BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4011        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4012        BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4013        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4014        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4015        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4016        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4017        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4018        BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4019        BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4020}
4021
4022
4023static int __init nvme_core_init(void)
4024{
4025        int result = -ENOMEM;
4026
4027        _nvme_check_size();
4028
4029        nvme_wq = alloc_workqueue("nvme-wq",
4030                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4031        if (!nvme_wq)
4032                goto out;
4033
4034        nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4035                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4036        if (!nvme_reset_wq)
4037                goto destroy_wq;
4038
4039        nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4040                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4041        if (!nvme_delete_wq)
4042                goto destroy_reset_wq;
4043
4044        result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4045        if (result < 0)
4046                goto destroy_delete_wq;
4047
4048        nvme_class = class_create(THIS_MODULE, "nvme");
4049        if (IS_ERR(nvme_class)) {
4050                result = PTR_ERR(nvme_class);
4051                goto unregister_chrdev;
4052        }
4053
4054        nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4055        if (IS_ERR(nvme_subsys_class)) {
4056                result = PTR_ERR(nvme_subsys_class);
4057                goto destroy_class;
4058        }
4059        return 0;
4060
4061destroy_class:
4062        class_destroy(nvme_class);
4063unregister_chrdev:
4064        unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4065destroy_delete_wq:
4066        destroy_workqueue(nvme_delete_wq);
4067destroy_reset_wq:
4068        destroy_workqueue(nvme_reset_wq);
4069destroy_wq:
4070        destroy_workqueue(nvme_wq);
4071out:
4072        return result;
4073}
4074
4075static void __exit nvme_core_exit(void)
4076{
4077        ida_destroy(&nvme_subsystems_ida);
4078        class_destroy(nvme_subsys_class);
4079        class_destroy(nvme_class);
4080        unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4081        destroy_workqueue(nvme_delete_wq);
4082        destroy_workqueue(nvme_reset_wq);
4083        destroy_workqueue(nvme_wq);
4084}
4085
4086MODULE_LICENSE("GPL");
4087MODULE_VERSION("1.0");
4088module_init(nvme_core_init);
4089module_exit(nvme_core_exit);
4090