linux/drivers/nvme/host/fc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   4 */
   5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   6#include <linux/module.h>
   7#include <linux/parser.h>
   8#include <uapi/scsi/fc/fc_fs.h>
   9#include <uapi/scsi/fc/fc_els.h>
  10#include <linux/delay.h>
  11#include <linux/overflow.h>
  12
  13#include "nvme.h"
  14#include "fabrics.h"
  15#include <linux/nvme-fc-driver.h>
  16#include <linux/nvme-fc.h>
  17#include <scsi/scsi_transport_fc.h>
  18
  19/* *************************** Data Structures/Defines ****************** */
  20
  21
  22enum nvme_fc_queue_flags {
  23        NVME_FC_Q_CONNECTED = 0,
  24        NVME_FC_Q_LIVE,
  25};
  26
  27#define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
  28
  29struct nvme_fc_queue {
  30        struct nvme_fc_ctrl     *ctrl;
  31        struct device           *dev;
  32        struct blk_mq_hw_ctx    *hctx;
  33        void                    *lldd_handle;
  34        size_t                  cmnd_capsule_len;
  35        u32                     qnum;
  36        u32                     rqcnt;
  37        u32                     seqno;
  38
  39        u64                     connection_id;
  40        atomic_t                csn;
  41
  42        unsigned long           flags;
  43} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
  44
  45enum nvme_fcop_flags {
  46        FCOP_FLAGS_TERMIO       = (1 << 0),
  47        FCOP_FLAGS_AEN          = (1 << 1),
  48};
  49
  50struct nvmefc_ls_req_op {
  51        struct nvmefc_ls_req    ls_req;
  52
  53        struct nvme_fc_rport    *rport;
  54        struct nvme_fc_queue    *queue;
  55        struct request          *rq;
  56        u32                     flags;
  57
  58        int                     ls_error;
  59        struct completion       ls_done;
  60        struct list_head        lsreq_list;     /* rport->ls_req_list */
  61        bool                    req_queued;
  62};
  63
  64enum nvme_fcpop_state {
  65        FCPOP_STATE_UNINIT      = 0,
  66        FCPOP_STATE_IDLE        = 1,
  67        FCPOP_STATE_ACTIVE      = 2,
  68        FCPOP_STATE_ABORTED     = 3,
  69        FCPOP_STATE_COMPLETE    = 4,
  70};
  71
  72struct nvme_fc_fcp_op {
  73        struct nvme_request     nreq;           /*
  74                                                 * nvme/host/core.c
  75                                                 * requires this to be
  76                                                 * the 1st element in the
  77                                                 * private structure
  78                                                 * associated with the
  79                                                 * request.
  80                                                 */
  81        struct nvmefc_fcp_req   fcp_req;
  82
  83        struct nvme_fc_ctrl     *ctrl;
  84        struct nvme_fc_queue    *queue;
  85        struct request          *rq;
  86
  87        atomic_t                state;
  88        u32                     flags;
  89        u32                     rqno;
  90        u32                     nents;
  91
  92        struct nvme_fc_cmd_iu   cmd_iu;
  93        struct nvme_fc_ersp_iu  rsp_iu;
  94};
  95
  96struct nvme_fcp_op_w_sgl {
  97        struct nvme_fc_fcp_op   op;
  98        struct scatterlist      sgl[SG_CHUNK_SIZE];
  99        uint8_t                 priv[0];
 100};
 101
 102struct nvme_fc_lport {
 103        struct nvme_fc_local_port       localport;
 104
 105        struct ida                      endp_cnt;
 106        struct list_head                port_list;      /* nvme_fc_port_list */
 107        struct list_head                endp_list;
 108        struct device                   *dev;   /* physical device for dma */
 109        struct nvme_fc_port_template    *ops;
 110        struct kref                     ref;
 111        atomic_t                        act_rport_cnt;
 112} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 113
 114struct nvme_fc_rport {
 115        struct nvme_fc_remote_port      remoteport;
 116
 117        struct list_head                endp_list; /* for lport->endp_list */
 118        struct list_head                ctrl_list;
 119        struct list_head                ls_req_list;
 120        struct list_head                disc_list;
 121        struct device                   *dev;   /* physical device for dma */
 122        struct nvme_fc_lport            *lport;
 123        spinlock_t                      lock;
 124        struct kref                     ref;
 125        atomic_t                        act_ctrl_cnt;
 126        unsigned long                   dev_loss_end;
 127} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 128
 129enum nvme_fcctrl_flags {
 130        FCCTRL_TERMIO           = (1 << 0),
 131};
 132
 133struct nvme_fc_ctrl {
 134        spinlock_t              lock;
 135        struct nvme_fc_queue    *queues;
 136        struct device           *dev;
 137        struct nvme_fc_lport    *lport;
 138        struct nvme_fc_rport    *rport;
 139        u32                     cnum;
 140
 141        bool                    ioq_live;
 142        bool                    assoc_active;
 143        atomic_t                err_work_active;
 144        u64                     association_id;
 145
 146        struct list_head        ctrl_list;      /* rport->ctrl_list */
 147
 148        struct blk_mq_tag_set   admin_tag_set;
 149        struct blk_mq_tag_set   tag_set;
 150
 151        struct delayed_work     connect_work;
 152        struct work_struct      err_work;
 153
 154        struct kref             ref;
 155        u32                     flags;
 156        u32                     iocnt;
 157        wait_queue_head_t       ioabort_wait;
 158
 159        struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
 160
 161        struct nvme_ctrl        ctrl;
 162};
 163
 164static inline struct nvme_fc_ctrl *
 165to_fc_ctrl(struct nvme_ctrl *ctrl)
 166{
 167        return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
 168}
 169
 170static inline struct nvme_fc_lport *
 171localport_to_lport(struct nvme_fc_local_port *portptr)
 172{
 173        return container_of(portptr, struct nvme_fc_lport, localport);
 174}
 175
 176static inline struct nvme_fc_rport *
 177remoteport_to_rport(struct nvme_fc_remote_port *portptr)
 178{
 179        return container_of(portptr, struct nvme_fc_rport, remoteport);
 180}
 181
 182static inline struct nvmefc_ls_req_op *
 183ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
 184{
 185        return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
 186}
 187
 188static inline struct nvme_fc_fcp_op *
 189fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
 190{
 191        return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
 192}
 193
 194
 195
 196/* *************************** Globals **************************** */
 197
 198
 199static DEFINE_SPINLOCK(nvme_fc_lock);
 200
 201static LIST_HEAD(nvme_fc_lport_list);
 202static DEFINE_IDA(nvme_fc_local_port_cnt);
 203static DEFINE_IDA(nvme_fc_ctrl_cnt);
 204
 205static struct workqueue_struct *nvme_fc_wq;
 206
 207static bool nvme_fc_waiting_to_unload;
 208static DECLARE_COMPLETION(nvme_fc_unload_proceed);
 209
 210/*
 211 * These items are short-term. They will eventually be moved into
 212 * a generic FC class. See comments in module init.
 213 */
 214static struct device *fc_udev_device;
 215
 216
 217/* *********************** FC-NVME Port Management ************************ */
 218
 219static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
 220                        struct nvme_fc_queue *, unsigned int);
 221
 222static void
 223nvme_fc_free_lport(struct kref *ref)
 224{
 225        struct nvme_fc_lport *lport =
 226                container_of(ref, struct nvme_fc_lport, ref);
 227        unsigned long flags;
 228
 229        WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
 230        WARN_ON(!list_empty(&lport->endp_list));
 231
 232        /* remove from transport list */
 233        spin_lock_irqsave(&nvme_fc_lock, flags);
 234        list_del(&lport->port_list);
 235        if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
 236                complete(&nvme_fc_unload_proceed);
 237        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 238
 239        ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
 240        ida_destroy(&lport->endp_cnt);
 241
 242        put_device(lport->dev);
 243
 244        kfree(lport);
 245}
 246
 247static void
 248nvme_fc_lport_put(struct nvme_fc_lport *lport)
 249{
 250        kref_put(&lport->ref, nvme_fc_free_lport);
 251}
 252
 253static int
 254nvme_fc_lport_get(struct nvme_fc_lport *lport)
 255{
 256        return kref_get_unless_zero(&lport->ref);
 257}
 258
 259
 260static struct nvme_fc_lport *
 261nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
 262                        struct nvme_fc_port_template *ops,
 263                        struct device *dev)
 264{
 265        struct nvme_fc_lport *lport;
 266        unsigned long flags;
 267
 268        spin_lock_irqsave(&nvme_fc_lock, flags);
 269
 270        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
 271                if (lport->localport.node_name != pinfo->node_name ||
 272                    lport->localport.port_name != pinfo->port_name)
 273                        continue;
 274
 275                if (lport->dev != dev) {
 276                        lport = ERR_PTR(-EXDEV);
 277                        goto out_done;
 278                }
 279
 280                if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
 281                        lport = ERR_PTR(-EEXIST);
 282                        goto out_done;
 283                }
 284
 285                if (!nvme_fc_lport_get(lport)) {
 286                        /*
 287                         * fails if ref cnt already 0. If so,
 288                         * act as if lport already deleted
 289                         */
 290                        lport = NULL;
 291                        goto out_done;
 292                }
 293
 294                /* resume the lport */
 295
 296                lport->ops = ops;
 297                lport->localport.port_role = pinfo->port_role;
 298                lport->localport.port_id = pinfo->port_id;
 299                lport->localport.port_state = FC_OBJSTATE_ONLINE;
 300
 301                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 302
 303                return lport;
 304        }
 305
 306        lport = NULL;
 307
 308out_done:
 309        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 310
 311        return lport;
 312}
 313
 314/**
 315 * nvme_fc_register_localport - transport entry point called by an
 316 *                              LLDD to register the existence of a NVME
 317 *                              host FC port.
 318 * @pinfo:     pointer to information about the port to be registered
 319 * @template:  LLDD entrypoints and operational parameters for the port
 320 * @dev:       physical hardware device node port corresponds to. Will be
 321 *             used for DMA mappings
 322 * @portptr:   pointer to a local port pointer. Upon success, the routine
 323 *             will allocate a nvme_fc_local_port structure and place its
 324 *             address in the local port pointer. Upon failure, local port
 325 *             pointer will be set to 0.
 326 *
 327 * Returns:
 328 * a completion status. Must be 0 upon success; a negative errno
 329 * (ex: -ENXIO) upon failure.
 330 */
 331int
 332nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
 333                        struct nvme_fc_port_template *template,
 334                        struct device *dev,
 335                        struct nvme_fc_local_port **portptr)
 336{
 337        struct nvme_fc_lport *newrec;
 338        unsigned long flags;
 339        int ret, idx;
 340
 341        if (!template->localport_delete || !template->remoteport_delete ||
 342            !template->ls_req || !template->fcp_io ||
 343            !template->ls_abort || !template->fcp_abort ||
 344            !template->max_hw_queues || !template->max_sgl_segments ||
 345            !template->max_dif_sgl_segments || !template->dma_boundary) {
 346                ret = -EINVAL;
 347                goto out_reghost_failed;
 348        }
 349
 350        /*
 351         * look to see if there is already a localport that had been
 352         * deregistered and in the process of waiting for all the
 353         * references to fully be removed.  If the references haven't
 354         * expired, we can simply re-enable the localport. Remoteports
 355         * and controller reconnections should resume naturally.
 356         */
 357        newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
 358
 359        /* found an lport, but something about its state is bad */
 360        if (IS_ERR(newrec)) {
 361                ret = PTR_ERR(newrec);
 362                goto out_reghost_failed;
 363
 364        /* found existing lport, which was resumed */
 365        } else if (newrec) {
 366                *portptr = &newrec->localport;
 367                return 0;
 368        }
 369
 370        /* nothing found - allocate a new localport struct */
 371
 372        newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
 373                         GFP_KERNEL);
 374        if (!newrec) {
 375                ret = -ENOMEM;
 376                goto out_reghost_failed;
 377        }
 378
 379        idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
 380        if (idx < 0) {
 381                ret = -ENOSPC;
 382                goto out_fail_kfree;
 383        }
 384
 385        if (!get_device(dev) && dev) {
 386                ret = -ENODEV;
 387                goto out_ida_put;
 388        }
 389
 390        INIT_LIST_HEAD(&newrec->port_list);
 391        INIT_LIST_HEAD(&newrec->endp_list);
 392        kref_init(&newrec->ref);
 393        atomic_set(&newrec->act_rport_cnt, 0);
 394        newrec->ops = template;
 395        newrec->dev = dev;
 396        ida_init(&newrec->endp_cnt);
 397        newrec->localport.private = &newrec[1];
 398        newrec->localport.node_name = pinfo->node_name;
 399        newrec->localport.port_name = pinfo->port_name;
 400        newrec->localport.port_role = pinfo->port_role;
 401        newrec->localport.port_id = pinfo->port_id;
 402        newrec->localport.port_state = FC_OBJSTATE_ONLINE;
 403        newrec->localport.port_num = idx;
 404
 405        spin_lock_irqsave(&nvme_fc_lock, flags);
 406        list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
 407        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 408
 409        if (dev)
 410                dma_set_seg_boundary(dev, template->dma_boundary);
 411
 412        *portptr = &newrec->localport;
 413        return 0;
 414
 415out_ida_put:
 416        ida_simple_remove(&nvme_fc_local_port_cnt, idx);
 417out_fail_kfree:
 418        kfree(newrec);
 419out_reghost_failed:
 420        *portptr = NULL;
 421
 422        return ret;
 423}
 424EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
 425
 426/**
 427 * nvme_fc_unregister_localport - transport entry point called by an
 428 *                              LLDD to deregister/remove a previously
 429 *                              registered a NVME host FC port.
 430 * @portptr: pointer to the (registered) local port that is to be deregistered.
 431 *
 432 * Returns:
 433 * a completion status. Must be 0 upon success; a negative errno
 434 * (ex: -ENXIO) upon failure.
 435 */
 436int
 437nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
 438{
 439        struct nvme_fc_lport *lport = localport_to_lport(portptr);
 440        unsigned long flags;
 441
 442        if (!portptr)
 443                return -EINVAL;
 444
 445        spin_lock_irqsave(&nvme_fc_lock, flags);
 446
 447        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 448                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 449                return -EINVAL;
 450        }
 451        portptr->port_state = FC_OBJSTATE_DELETED;
 452
 453        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 454
 455        if (atomic_read(&lport->act_rport_cnt) == 0)
 456                lport->ops->localport_delete(&lport->localport);
 457
 458        nvme_fc_lport_put(lport);
 459
 460        return 0;
 461}
 462EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
 463
 464/*
 465 * TRADDR strings, per FC-NVME are fixed format:
 466 *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
 467 * udev event will only differ by prefix of what field is
 468 * being specified:
 469 *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
 470 *  19 + 43 + null_fudge = 64 characters
 471 */
 472#define FCNVME_TRADDR_LENGTH            64
 473
 474static void
 475nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
 476                struct nvme_fc_rport *rport)
 477{
 478        char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
 479        char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
 480        char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
 481
 482        if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
 483                return;
 484
 485        snprintf(hostaddr, sizeof(hostaddr),
 486                "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
 487                lport->localport.node_name, lport->localport.port_name);
 488        snprintf(tgtaddr, sizeof(tgtaddr),
 489                "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
 490                rport->remoteport.node_name, rport->remoteport.port_name);
 491        kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
 492}
 493
 494static void
 495nvme_fc_free_rport(struct kref *ref)
 496{
 497        struct nvme_fc_rport *rport =
 498                container_of(ref, struct nvme_fc_rport, ref);
 499        struct nvme_fc_lport *lport =
 500                        localport_to_lport(rport->remoteport.localport);
 501        unsigned long flags;
 502
 503        WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
 504        WARN_ON(!list_empty(&rport->ctrl_list));
 505
 506        /* remove from lport list */
 507        spin_lock_irqsave(&nvme_fc_lock, flags);
 508        list_del(&rport->endp_list);
 509        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 510
 511        WARN_ON(!list_empty(&rport->disc_list));
 512        ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
 513
 514        kfree(rport);
 515
 516        nvme_fc_lport_put(lport);
 517}
 518
 519static void
 520nvme_fc_rport_put(struct nvme_fc_rport *rport)
 521{
 522        kref_put(&rport->ref, nvme_fc_free_rport);
 523}
 524
 525static int
 526nvme_fc_rport_get(struct nvme_fc_rport *rport)
 527{
 528        return kref_get_unless_zero(&rport->ref);
 529}
 530
 531static void
 532nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
 533{
 534        switch (ctrl->ctrl.state) {
 535        case NVME_CTRL_NEW:
 536        case NVME_CTRL_CONNECTING:
 537                /*
 538                 * As all reconnects were suppressed, schedule a
 539                 * connect.
 540                 */
 541                dev_info(ctrl->ctrl.device,
 542                        "NVME-FC{%d}: connectivity re-established. "
 543                        "Attempting reconnect\n", ctrl->cnum);
 544
 545                queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
 546                break;
 547
 548        case NVME_CTRL_RESETTING:
 549                /*
 550                 * Controller is already in the process of terminating the
 551                 * association. No need to do anything further. The reconnect
 552                 * step will naturally occur after the reset completes.
 553                 */
 554                break;
 555
 556        default:
 557                /* no action to take - let it delete */
 558                break;
 559        }
 560}
 561
 562static struct nvme_fc_rport *
 563nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
 564                                struct nvme_fc_port_info *pinfo)
 565{
 566        struct nvme_fc_rport *rport;
 567        struct nvme_fc_ctrl *ctrl;
 568        unsigned long flags;
 569
 570        spin_lock_irqsave(&nvme_fc_lock, flags);
 571
 572        list_for_each_entry(rport, &lport->endp_list, endp_list) {
 573                if (rport->remoteport.node_name != pinfo->node_name ||
 574                    rport->remoteport.port_name != pinfo->port_name)
 575                        continue;
 576
 577                if (!nvme_fc_rport_get(rport)) {
 578                        rport = ERR_PTR(-ENOLCK);
 579                        goto out_done;
 580                }
 581
 582                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 583
 584                spin_lock_irqsave(&rport->lock, flags);
 585
 586                /* has it been unregistered */
 587                if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
 588                        /* means lldd called us twice */
 589                        spin_unlock_irqrestore(&rport->lock, flags);
 590                        nvme_fc_rport_put(rport);
 591                        return ERR_PTR(-ESTALE);
 592                }
 593
 594                rport->remoteport.port_role = pinfo->port_role;
 595                rport->remoteport.port_id = pinfo->port_id;
 596                rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
 597                rport->dev_loss_end = 0;
 598
 599                /*
 600                 * kick off a reconnect attempt on all associations to the
 601                 * remote port. A successful reconnects will resume i/o.
 602                 */
 603                list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
 604                        nvme_fc_resume_controller(ctrl);
 605
 606                spin_unlock_irqrestore(&rport->lock, flags);
 607
 608                return rport;
 609        }
 610
 611        rport = NULL;
 612
 613out_done:
 614        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 615
 616        return rport;
 617}
 618
 619static inline void
 620__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
 621                        struct nvme_fc_port_info *pinfo)
 622{
 623        if (pinfo->dev_loss_tmo)
 624                rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
 625        else
 626                rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
 627}
 628
 629/**
 630 * nvme_fc_register_remoteport - transport entry point called by an
 631 *                              LLDD to register the existence of a NVME
 632 *                              subsystem FC port on its fabric.
 633 * @localport: pointer to the (registered) local port that the remote
 634 *             subsystem port is connected to.
 635 * @pinfo:     pointer to information about the port to be registered
 636 * @portptr:   pointer to a remote port pointer. Upon success, the routine
 637 *             will allocate a nvme_fc_remote_port structure and place its
 638 *             address in the remote port pointer. Upon failure, remote port
 639 *             pointer will be set to 0.
 640 *
 641 * Returns:
 642 * a completion status. Must be 0 upon success; a negative errno
 643 * (ex: -ENXIO) upon failure.
 644 */
 645int
 646nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
 647                                struct nvme_fc_port_info *pinfo,
 648                                struct nvme_fc_remote_port **portptr)
 649{
 650        struct nvme_fc_lport *lport = localport_to_lport(localport);
 651        struct nvme_fc_rport *newrec;
 652        unsigned long flags;
 653        int ret, idx;
 654
 655        if (!nvme_fc_lport_get(lport)) {
 656                ret = -ESHUTDOWN;
 657                goto out_reghost_failed;
 658        }
 659
 660        /*
 661         * look to see if there is already a remoteport that is waiting
 662         * for a reconnect (within dev_loss_tmo) with the same WWN's.
 663         * If so, transition to it and reconnect.
 664         */
 665        newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
 666
 667        /* found an rport, but something about its state is bad */
 668        if (IS_ERR(newrec)) {
 669                ret = PTR_ERR(newrec);
 670                goto out_lport_put;
 671
 672        /* found existing rport, which was resumed */
 673        } else if (newrec) {
 674                nvme_fc_lport_put(lport);
 675                __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 676                nvme_fc_signal_discovery_scan(lport, newrec);
 677                *portptr = &newrec->remoteport;
 678                return 0;
 679        }
 680
 681        /* nothing found - allocate a new remoteport struct */
 682
 683        newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
 684                         GFP_KERNEL);
 685        if (!newrec) {
 686                ret = -ENOMEM;
 687                goto out_lport_put;
 688        }
 689
 690        idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
 691        if (idx < 0) {
 692                ret = -ENOSPC;
 693                goto out_kfree_rport;
 694        }
 695
 696        INIT_LIST_HEAD(&newrec->endp_list);
 697        INIT_LIST_HEAD(&newrec->ctrl_list);
 698        INIT_LIST_HEAD(&newrec->ls_req_list);
 699        INIT_LIST_HEAD(&newrec->disc_list);
 700        kref_init(&newrec->ref);
 701        atomic_set(&newrec->act_ctrl_cnt, 0);
 702        spin_lock_init(&newrec->lock);
 703        newrec->remoteport.localport = &lport->localport;
 704        newrec->dev = lport->dev;
 705        newrec->lport = lport;
 706        newrec->remoteport.private = &newrec[1];
 707        newrec->remoteport.port_role = pinfo->port_role;
 708        newrec->remoteport.node_name = pinfo->node_name;
 709        newrec->remoteport.port_name = pinfo->port_name;
 710        newrec->remoteport.port_id = pinfo->port_id;
 711        newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
 712        newrec->remoteport.port_num = idx;
 713        __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 714
 715        spin_lock_irqsave(&nvme_fc_lock, flags);
 716        list_add_tail(&newrec->endp_list, &lport->endp_list);
 717        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 718
 719        nvme_fc_signal_discovery_scan(lport, newrec);
 720
 721        *portptr = &newrec->remoteport;
 722        return 0;
 723
 724out_kfree_rport:
 725        kfree(newrec);
 726out_lport_put:
 727        nvme_fc_lport_put(lport);
 728out_reghost_failed:
 729        *portptr = NULL;
 730        return ret;
 731}
 732EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
 733
 734static int
 735nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
 736{
 737        struct nvmefc_ls_req_op *lsop;
 738        unsigned long flags;
 739
 740restart:
 741        spin_lock_irqsave(&rport->lock, flags);
 742
 743        list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
 744                if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
 745                        lsop->flags |= FCOP_FLAGS_TERMIO;
 746                        spin_unlock_irqrestore(&rport->lock, flags);
 747                        rport->lport->ops->ls_abort(&rport->lport->localport,
 748                                                &rport->remoteport,
 749                                                &lsop->ls_req);
 750                        goto restart;
 751                }
 752        }
 753        spin_unlock_irqrestore(&rport->lock, flags);
 754
 755        return 0;
 756}
 757
 758static void
 759nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
 760{
 761        dev_info(ctrl->ctrl.device,
 762                "NVME-FC{%d}: controller connectivity lost. Awaiting "
 763                "Reconnect", ctrl->cnum);
 764
 765        switch (ctrl->ctrl.state) {
 766        case NVME_CTRL_NEW:
 767        case NVME_CTRL_LIVE:
 768                /*
 769                 * Schedule a controller reset. The reset will terminate the
 770                 * association and schedule the reconnect timer.  Reconnects
 771                 * will be attempted until either the ctlr_loss_tmo
 772                 * (max_retries * connect_delay) expires or the remoteport's
 773                 * dev_loss_tmo expires.
 774                 */
 775                if (nvme_reset_ctrl(&ctrl->ctrl)) {
 776                        dev_warn(ctrl->ctrl.device,
 777                                "NVME-FC{%d}: Couldn't schedule reset.\n",
 778                                ctrl->cnum);
 779                        nvme_delete_ctrl(&ctrl->ctrl);
 780                }
 781                break;
 782
 783        case NVME_CTRL_CONNECTING:
 784                /*
 785                 * The association has already been terminated and the
 786                 * controller is attempting reconnects.  No need to do anything
 787                 * futher.  Reconnects will be attempted until either the
 788                 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
 789                 * remoteport's dev_loss_tmo expires.
 790                 */
 791                break;
 792
 793        case NVME_CTRL_RESETTING:
 794                /*
 795                 * Controller is already in the process of terminating the
 796                 * association.  No need to do anything further. The reconnect
 797                 * step will kick in naturally after the association is
 798                 * terminated.
 799                 */
 800                break;
 801
 802        case NVME_CTRL_DELETING:
 803        default:
 804                /* no action to take - let it delete */
 805                break;
 806        }
 807}
 808
 809/**
 810 * nvme_fc_unregister_remoteport - transport entry point called by an
 811 *                              LLDD to deregister/remove a previously
 812 *                              registered a NVME subsystem FC port.
 813 * @portptr: pointer to the (registered) remote port that is to be
 814 *           deregistered.
 815 *
 816 * Returns:
 817 * a completion status. Must be 0 upon success; a negative errno
 818 * (ex: -ENXIO) upon failure.
 819 */
 820int
 821nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
 822{
 823        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 824        struct nvme_fc_ctrl *ctrl;
 825        unsigned long flags;
 826
 827        if (!portptr)
 828                return -EINVAL;
 829
 830        spin_lock_irqsave(&rport->lock, flags);
 831
 832        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 833                spin_unlock_irqrestore(&rport->lock, flags);
 834                return -EINVAL;
 835        }
 836        portptr->port_state = FC_OBJSTATE_DELETED;
 837
 838        rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
 839
 840        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
 841                /* if dev_loss_tmo==0, dev loss is immediate */
 842                if (!portptr->dev_loss_tmo) {
 843                        dev_warn(ctrl->ctrl.device,
 844                                "NVME-FC{%d}: controller connectivity lost.\n",
 845                                ctrl->cnum);
 846                        nvme_delete_ctrl(&ctrl->ctrl);
 847                } else
 848                        nvme_fc_ctrl_connectivity_loss(ctrl);
 849        }
 850
 851        spin_unlock_irqrestore(&rport->lock, flags);
 852
 853        nvme_fc_abort_lsops(rport);
 854
 855        if (atomic_read(&rport->act_ctrl_cnt) == 0)
 856                rport->lport->ops->remoteport_delete(portptr);
 857
 858        /*
 859         * release the reference, which will allow, if all controllers
 860         * go away, which should only occur after dev_loss_tmo occurs,
 861         * for the rport to be torn down.
 862         */
 863        nvme_fc_rport_put(rport);
 864
 865        return 0;
 866}
 867EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
 868
 869/**
 870 * nvme_fc_rescan_remoteport - transport entry point called by an
 871 *                              LLDD to request a nvme device rescan.
 872 * @remoteport: pointer to the (registered) remote port that is to be
 873 *              rescanned.
 874 *
 875 * Returns: N/A
 876 */
 877void
 878nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
 879{
 880        struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
 881
 882        nvme_fc_signal_discovery_scan(rport->lport, rport);
 883}
 884EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
 885
 886int
 887nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
 888                        u32 dev_loss_tmo)
 889{
 890        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 891        unsigned long flags;
 892
 893        spin_lock_irqsave(&rport->lock, flags);
 894
 895        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 896                spin_unlock_irqrestore(&rport->lock, flags);
 897                return -EINVAL;
 898        }
 899
 900        /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
 901        rport->remoteport.dev_loss_tmo = dev_loss_tmo;
 902
 903        spin_unlock_irqrestore(&rport->lock, flags);
 904
 905        return 0;
 906}
 907EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
 908
 909
 910/* *********************** FC-NVME DMA Handling **************************** */
 911
 912/*
 913 * The fcloop device passes in a NULL device pointer. Real LLD's will
 914 * pass in a valid device pointer. If NULL is passed to the dma mapping
 915 * routines, depending on the platform, it may or may not succeed, and
 916 * may crash.
 917 *
 918 * As such:
 919 * Wrapper all the dma routines and check the dev pointer.
 920 *
 921 * If simple mappings (return just a dma address, we'll noop them,
 922 * returning a dma address of 0.
 923 *
 924 * On more complex mappings (dma_map_sg), a pseudo routine fills
 925 * in the scatter list, setting all dma addresses to 0.
 926 */
 927
 928static inline dma_addr_t
 929fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 930                enum dma_data_direction dir)
 931{
 932        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 933}
 934
 935static inline int
 936fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 937{
 938        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 939}
 940
 941static inline void
 942fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 943        enum dma_data_direction dir)
 944{
 945        if (dev)
 946                dma_unmap_single(dev, addr, size, dir);
 947}
 948
 949static inline void
 950fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 951                enum dma_data_direction dir)
 952{
 953        if (dev)
 954                dma_sync_single_for_cpu(dev, addr, size, dir);
 955}
 956
 957static inline void
 958fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 959                enum dma_data_direction dir)
 960{
 961        if (dev)
 962                dma_sync_single_for_device(dev, addr, size, dir);
 963}
 964
 965/* pseudo dma_map_sg call */
 966static int
 967fc_map_sg(struct scatterlist *sg, int nents)
 968{
 969        struct scatterlist *s;
 970        int i;
 971
 972        WARN_ON(nents == 0 || sg[0].length == 0);
 973
 974        for_each_sg(sg, s, nents, i) {
 975                s->dma_address = 0L;
 976#ifdef CONFIG_NEED_SG_DMA_LENGTH
 977                s->dma_length = s->length;
 978#endif
 979        }
 980        return nents;
 981}
 982
 983static inline int
 984fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 985                enum dma_data_direction dir)
 986{
 987        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 988}
 989
 990static inline void
 991fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 992                enum dma_data_direction dir)
 993{
 994        if (dev)
 995                dma_unmap_sg(dev, sg, nents, dir);
 996}
 997
 998/* *********************** FC-NVME LS Handling **************************** */
 999
1000static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1002
1003
1004static void
1005__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1006{
1007        struct nvme_fc_rport *rport = lsop->rport;
1008        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009        unsigned long flags;
1010
1011        spin_lock_irqsave(&rport->lock, flags);
1012
1013        if (!lsop->req_queued) {
1014                spin_unlock_irqrestore(&rport->lock, flags);
1015                return;
1016        }
1017
1018        list_del(&lsop->lsreq_list);
1019
1020        lsop->req_queued = false;
1021
1022        spin_unlock_irqrestore(&rport->lock, flags);
1023
1024        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025                                  (lsreq->rqstlen + lsreq->rsplen),
1026                                  DMA_BIDIRECTIONAL);
1027
1028        nvme_fc_rport_put(rport);
1029}
1030
1031static int
1032__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033                struct nvmefc_ls_req_op *lsop,
1034                void (*done)(struct nvmefc_ls_req *req, int status))
1035{
1036        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037        unsigned long flags;
1038        int ret = 0;
1039
1040        if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041                return -ECONNREFUSED;
1042
1043        if (!nvme_fc_rport_get(rport))
1044                return -ESHUTDOWN;
1045
1046        lsreq->done = done;
1047        lsop->rport = rport;
1048        lsop->req_queued = false;
1049        INIT_LIST_HEAD(&lsop->lsreq_list);
1050        init_completion(&lsop->ls_done);
1051
1052        lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053                                  lsreq->rqstlen + lsreq->rsplen,
1054                                  DMA_BIDIRECTIONAL);
1055        if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056                ret = -EFAULT;
1057                goto out_putrport;
1058        }
1059        lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1060
1061        spin_lock_irqsave(&rport->lock, flags);
1062
1063        list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1064
1065        lsop->req_queued = true;
1066
1067        spin_unlock_irqrestore(&rport->lock, flags);
1068
1069        ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070                                        &rport->remoteport, lsreq);
1071        if (ret)
1072                goto out_unlink;
1073
1074        return 0;
1075
1076out_unlink:
1077        lsop->ls_error = ret;
1078        spin_lock_irqsave(&rport->lock, flags);
1079        lsop->req_queued = false;
1080        list_del(&lsop->lsreq_list);
1081        spin_unlock_irqrestore(&rport->lock, flags);
1082        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083                                  (lsreq->rqstlen + lsreq->rsplen),
1084                                  DMA_BIDIRECTIONAL);
1085out_putrport:
1086        nvme_fc_rport_put(rport);
1087
1088        return ret;
1089}
1090
1091static void
1092nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1093{
1094        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1095
1096        lsop->ls_error = status;
1097        complete(&lsop->ls_done);
1098}
1099
1100static int
1101nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1102{
1103        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104        struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105        int ret;
1106
1107        ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1108
1109        if (!ret) {
1110                /*
1111                 * No timeout/not interruptible as we need the struct
1112                 * to exist until the lldd calls us back. Thus mandate
1113                 * wait until driver calls back. lldd responsible for
1114                 * the timeout action
1115                 */
1116                wait_for_completion(&lsop->ls_done);
1117
1118                __nvme_fc_finish_ls_req(lsop);
1119
1120                ret = lsop->ls_error;
1121        }
1122
1123        if (ret)
1124                return ret;
1125
1126        /* ACC or RJT payload ? */
1127        if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128                return -ENXIO;
1129
1130        return 0;
1131}
1132
1133static int
1134nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135                struct nvmefc_ls_req_op *lsop,
1136                void (*done)(struct nvmefc_ls_req *req, int status))
1137{
1138        /* don't wait for completion */
1139
1140        return __nvme_fc_send_ls_req(rport, lsop, done);
1141}
1142
1143/* Validation Error indexes into the string table below */
1144enum {
1145        VERR_NO_ERROR           = 0,
1146        VERR_LSACC              = 1,
1147        VERR_LSDESC_RQST        = 2,
1148        VERR_LSDESC_RQST_LEN    = 3,
1149        VERR_ASSOC_ID           = 4,
1150        VERR_ASSOC_ID_LEN       = 5,
1151        VERR_CONN_ID            = 6,
1152        VERR_CONN_ID_LEN        = 7,
1153        VERR_CR_ASSOC           = 8,
1154        VERR_CR_ASSOC_ACC_LEN   = 9,
1155        VERR_CR_CONN            = 10,
1156        VERR_CR_CONN_ACC_LEN    = 11,
1157        VERR_DISCONN            = 12,
1158        VERR_DISCONN_ACC_LEN    = 13,
1159};
1160
1161static char *validation_errors[] = {
1162        "OK",
1163        "Not LS_ACC",
1164        "Not LSDESC_RQST",
1165        "Bad LSDESC_RQST Length",
1166        "Not Association ID",
1167        "Bad Association ID Length",
1168        "Not Connection ID",
1169        "Bad Connection ID Length",
1170        "Not CR_ASSOC Rqst",
1171        "Bad CR_ASSOC ACC Length",
1172        "Not CR_CONN Rqst",
1173        "Bad CR_CONN ACC Length",
1174        "Not Disconnect Rqst",
1175        "Bad Disconnect ACC Length",
1176};
1177
1178static int
1179nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180        struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1181{
1182        struct nvmefc_ls_req_op *lsop;
1183        struct nvmefc_ls_req *lsreq;
1184        struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185        struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186        int ret, fcret = 0;
1187
1188        lsop = kzalloc((sizeof(*lsop) +
1189                         ctrl->lport->ops->lsrqst_priv_sz +
1190                         sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191        if (!lsop) {
1192                ret = -ENOMEM;
1193                goto out_no_memory;
1194        }
1195        lsreq = &lsop->ls_req;
1196
1197        lsreq->private = (void *)&lsop[1];
1198        assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200        assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1201
1202        assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203        assoc_rqst->desc_list_len =
1204                        cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1205
1206        assoc_rqst->assoc_cmd.desc_tag =
1207                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208        assoc_rqst->assoc_cmd.desc_len =
1209                        fcnvme_lsdesc_len(
1210                                sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1211
1212        assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213        assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1214        /* Linux supports only Dynamic controllers */
1215        assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216        uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217        strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218                min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219        strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220                min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1221
1222        lsop->queue = queue;
1223        lsreq->rqstaddr = assoc_rqst;
1224        lsreq->rqstlen = sizeof(*assoc_rqst);
1225        lsreq->rspaddr = assoc_acc;
1226        lsreq->rsplen = sizeof(*assoc_acc);
1227        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1228
1229        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230        if (ret)
1231                goto out_free_buffer;
1232
1233        /* process connect LS completion */
1234
1235        /* validate the ACC response */
1236        if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237                fcret = VERR_LSACC;
1238        else if (assoc_acc->hdr.desc_list_len !=
1239                        fcnvme_lsdesc_len(
1240                                sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241                fcret = VERR_CR_ASSOC_ACC_LEN;
1242        else if (assoc_acc->hdr.rqst.desc_tag !=
1243                        cpu_to_be32(FCNVME_LSDESC_RQST))
1244                fcret = VERR_LSDESC_RQST;
1245        else if (assoc_acc->hdr.rqst.desc_len !=
1246                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247                fcret = VERR_LSDESC_RQST_LEN;
1248        else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249                fcret = VERR_CR_ASSOC;
1250        else if (assoc_acc->associd.desc_tag !=
1251                        cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252                fcret = VERR_ASSOC_ID;
1253        else if (assoc_acc->associd.desc_len !=
1254                        fcnvme_lsdesc_len(
1255                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1256                fcret = VERR_ASSOC_ID_LEN;
1257        else if (assoc_acc->connectid.desc_tag !=
1258                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259                fcret = VERR_CONN_ID;
1260        else if (assoc_acc->connectid.desc_len !=
1261                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262                fcret = VERR_CONN_ID_LEN;
1263
1264        if (fcret) {
1265                ret = -EBADF;
1266                dev_err(ctrl->dev,
1267                        "q %d connect failed: %s\n",
1268                        queue->qnum, validation_errors[fcret]);
1269        } else {
1270                ctrl->association_id =
1271                        be64_to_cpu(assoc_acc->associd.association_id);
1272                queue->connection_id =
1273                        be64_to_cpu(assoc_acc->connectid.connection_id);
1274                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1275        }
1276
1277out_free_buffer:
1278        kfree(lsop);
1279out_no_memory:
1280        if (ret)
1281                dev_err(ctrl->dev,
1282                        "queue %d connect admin queue failed (%d).\n",
1283                        queue->qnum, ret);
1284        return ret;
1285}
1286
1287static int
1288nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289                        u16 qsize, u16 ersp_ratio)
1290{
1291        struct nvmefc_ls_req_op *lsop;
1292        struct nvmefc_ls_req *lsreq;
1293        struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294        struct fcnvme_ls_cr_conn_acc *conn_acc;
1295        int ret, fcret = 0;
1296
1297        lsop = kzalloc((sizeof(*lsop) +
1298                         ctrl->lport->ops->lsrqst_priv_sz +
1299                         sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300        if (!lsop) {
1301                ret = -ENOMEM;
1302                goto out_no_memory;
1303        }
1304        lsreq = &lsop->ls_req;
1305
1306        lsreq->private = (void *)&lsop[1];
1307        conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309        conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1310
1311        conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312        conn_rqst->desc_list_len = cpu_to_be32(
1313                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1314                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1315
1316        conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317        conn_rqst->associd.desc_len =
1318                        fcnvme_lsdesc_len(
1319                                sizeof(struct fcnvme_lsdesc_assoc_id));
1320        conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321        conn_rqst->connect_cmd.desc_tag =
1322                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323        conn_rqst->connect_cmd.desc_len =
1324                        fcnvme_lsdesc_len(
1325                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326        conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327        conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1328        conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1329
1330        lsop->queue = queue;
1331        lsreq->rqstaddr = conn_rqst;
1332        lsreq->rqstlen = sizeof(*conn_rqst);
1333        lsreq->rspaddr = conn_acc;
1334        lsreq->rsplen = sizeof(*conn_acc);
1335        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1336
1337        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338        if (ret)
1339                goto out_free_buffer;
1340
1341        /* process connect LS completion */
1342
1343        /* validate the ACC response */
1344        if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345                fcret = VERR_LSACC;
1346        else if (conn_acc->hdr.desc_list_len !=
1347                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348                fcret = VERR_CR_CONN_ACC_LEN;
1349        else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350                fcret = VERR_LSDESC_RQST;
1351        else if (conn_acc->hdr.rqst.desc_len !=
1352                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353                fcret = VERR_LSDESC_RQST_LEN;
1354        else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355                fcret = VERR_CR_CONN;
1356        else if (conn_acc->connectid.desc_tag !=
1357                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358                fcret = VERR_CONN_ID;
1359        else if (conn_acc->connectid.desc_len !=
1360                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361                fcret = VERR_CONN_ID_LEN;
1362
1363        if (fcret) {
1364                ret = -EBADF;
1365                dev_err(ctrl->dev,
1366                        "q %d connect failed: %s\n",
1367                        queue->qnum, validation_errors[fcret]);
1368        } else {
1369                queue->connection_id =
1370                        be64_to_cpu(conn_acc->connectid.connection_id);
1371                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1372        }
1373
1374out_free_buffer:
1375        kfree(lsop);
1376out_no_memory:
1377        if (ret)
1378                dev_err(ctrl->dev,
1379                        "queue %d connect command failed (%d).\n",
1380                        queue->qnum, ret);
1381        return ret;
1382}
1383
1384static void
1385nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1386{
1387        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1388
1389        __nvme_fc_finish_ls_req(lsop);
1390
1391        /* fc-nvme initiator doesn't care about success or failure of cmd */
1392
1393        kfree(lsop);
1394}
1395
1396/*
1397 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398 * the FC-NVME Association.  Terminating the association also
1399 * terminates the FC-NVME connections (per queue, both admin and io
1400 * queues) that are part of the association. E.g. things are torn
1401 * down, and the related FC-NVME Association ID and Connection IDs
1402 * become invalid.
1403 *
1404 * The behavior of the fc-nvme initiator is such that it's
1405 * understanding of the association and connections will implicitly
1406 * be torn down. The action is implicit as it may be due to a loss of
1407 * connectivity with the fc-nvme target, so you may never get a
1408 * response even if you tried.  As such, the action of this routine
1409 * is to asynchronously send the LS, ignore any results of the LS, and
1410 * continue on with terminating the association. If the fc-nvme target
1411 * is present and receives the LS, it too can tear down.
1412 */
1413static void
1414nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1415{
1416        struct fcnvme_ls_disconnect_rqst *discon_rqst;
1417        struct fcnvme_ls_disconnect_acc *discon_acc;
1418        struct nvmefc_ls_req_op *lsop;
1419        struct nvmefc_ls_req *lsreq;
1420        int ret;
1421
1422        lsop = kzalloc((sizeof(*lsop) +
1423                         ctrl->lport->ops->lsrqst_priv_sz +
1424                         sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425                        GFP_KERNEL);
1426        if (!lsop)
1427                /* couldn't sent it... too bad */
1428                return;
1429
1430        lsreq = &lsop->ls_req;
1431
1432        lsreq->private = (void *)&lsop[1];
1433        discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1434                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435        discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1436
1437        discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1438        discon_rqst->desc_list_len = cpu_to_be32(
1439                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1440                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1441
1442        discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443        discon_rqst->associd.desc_len =
1444                        fcnvme_lsdesc_len(
1445                                sizeof(struct fcnvme_lsdesc_assoc_id));
1446
1447        discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1448
1449        discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450                                                FCNVME_LSDESC_DISCONN_CMD);
1451        discon_rqst->discon_cmd.desc_len =
1452                        fcnvme_lsdesc_len(
1453                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1454        discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1455        discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1456
1457        lsreq->rqstaddr = discon_rqst;
1458        lsreq->rqstlen = sizeof(*discon_rqst);
1459        lsreq->rspaddr = discon_acc;
1460        lsreq->rsplen = sizeof(*discon_acc);
1461        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1462
1463        ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1464                                nvme_fc_disconnect_assoc_done);
1465        if (ret)
1466                kfree(lsop);
1467
1468        /* only meaningful part to terminating the association */
1469        ctrl->association_id = 0;
1470}
1471
1472
1473/* *********************** NVME Ctrl Routines **************************** */
1474
1475static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1476
1477static void
1478__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1479                struct nvme_fc_fcp_op *op)
1480{
1481        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1482                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1483        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1484                                sizeof(op->cmd_iu), DMA_TO_DEVICE);
1485
1486        atomic_set(&op->state, FCPOP_STATE_UNINIT);
1487}
1488
1489static void
1490nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1491                unsigned int hctx_idx)
1492{
1493        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1494
1495        return __nvme_fc_exit_request(set->driver_data, op);
1496}
1497
1498static int
1499__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1500{
1501        unsigned long flags;
1502        int opstate;
1503
1504        spin_lock_irqsave(&ctrl->lock, flags);
1505        opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1506        if (opstate != FCPOP_STATE_ACTIVE)
1507                atomic_set(&op->state, opstate);
1508        else if (ctrl->flags & FCCTRL_TERMIO)
1509                ctrl->iocnt++;
1510        spin_unlock_irqrestore(&ctrl->lock, flags);
1511
1512        if (opstate != FCPOP_STATE_ACTIVE)
1513                return -ECANCELED;
1514
1515        ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1516                                        &ctrl->rport->remoteport,
1517                                        op->queue->lldd_handle,
1518                                        &op->fcp_req);
1519
1520        return 0;
1521}
1522
1523static void
1524nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1525{
1526        struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1527        int i;
1528
1529        /* ensure we've initialized the ops once */
1530        if (!(aen_op->flags & FCOP_FLAGS_AEN))
1531                return;
1532
1533        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1534                __nvme_fc_abort_op(ctrl, aen_op);
1535}
1536
1537static inline void
1538__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1539                struct nvme_fc_fcp_op *op, int opstate)
1540{
1541        unsigned long flags;
1542
1543        if (opstate == FCPOP_STATE_ABORTED) {
1544                spin_lock_irqsave(&ctrl->lock, flags);
1545                if (ctrl->flags & FCCTRL_TERMIO) {
1546                        if (!--ctrl->iocnt)
1547                                wake_up(&ctrl->ioabort_wait);
1548                }
1549                spin_unlock_irqrestore(&ctrl->lock, flags);
1550        }
1551}
1552
1553static void
1554nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1555{
1556        struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1557        struct request *rq = op->rq;
1558        struct nvmefc_fcp_req *freq = &op->fcp_req;
1559        struct nvme_fc_ctrl *ctrl = op->ctrl;
1560        struct nvme_fc_queue *queue = op->queue;
1561        struct nvme_completion *cqe = &op->rsp_iu.cqe;
1562        struct nvme_command *sqe = &op->cmd_iu.sqe;
1563        __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1564        union nvme_result result;
1565        bool terminate_assoc = true;
1566        int opstate;
1567
1568        /*
1569         * WARNING:
1570         * The current linux implementation of a nvme controller
1571         * allocates a single tag set for all io queues and sizes
1572         * the io queues to fully hold all possible tags. Thus, the
1573         * implementation does not reference or care about the sqhd
1574         * value as it never needs to use the sqhd/sqtail pointers
1575         * for submission pacing.
1576         *
1577         * This affects the FC-NVME implementation in two ways:
1578         * 1) As the value doesn't matter, we don't need to waste
1579         *    cycles extracting it from ERSPs and stamping it in the
1580         *    cases where the transport fabricates CQEs on successful
1581         *    completions.
1582         * 2) The FC-NVME implementation requires that delivery of
1583         *    ERSP completions are to go back to the nvme layer in order
1584         *    relative to the rsn, such that the sqhd value will always
1585         *    be "in order" for the nvme layer. As the nvme layer in
1586         *    linux doesn't care about sqhd, there's no need to return
1587         *    them in order.
1588         *
1589         * Additionally:
1590         * As the core nvme layer in linux currently does not look at
1591         * every field in the cqe - in cases where the FC transport must
1592         * fabricate a CQE, the following fields will not be set as they
1593         * are not referenced:
1594         *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1595         *
1596         * Failure or error of an individual i/o, in a transport
1597         * detected fashion unrelated to the nvme completion status,
1598         * potentially cause the initiator and target sides to get out
1599         * of sync on SQ head/tail (aka outstanding io count allowed).
1600         * Per FC-NVME spec, failure of an individual command requires
1601         * the connection to be terminated, which in turn requires the
1602         * association to be terminated.
1603         */
1604
1605        opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1606
1607        fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1608                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1609
1610        if (opstate == FCPOP_STATE_ABORTED)
1611                status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1612        else if (freq->status)
1613                status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1614
1615        /*
1616         * For the linux implementation, if we have an unsuccesful
1617         * status, they blk-mq layer can typically be called with the
1618         * non-zero status and the content of the cqe isn't important.
1619         */
1620        if (status)
1621                goto done;
1622
1623        /*
1624         * command completed successfully relative to the wire
1625         * protocol. However, validate anything received and
1626         * extract the status and result from the cqe (create it
1627         * where necessary).
1628         */
1629
1630        switch (freq->rcv_rsplen) {
1631
1632        case 0:
1633        case NVME_FC_SIZEOF_ZEROS_RSP:
1634                /*
1635                 * No response payload or 12 bytes of payload (which
1636                 * should all be zeros) are considered successful and
1637                 * no payload in the CQE by the transport.
1638                 */
1639                if (freq->transferred_length !=
1640                        be32_to_cpu(op->cmd_iu.data_len)) {
1641                        status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1642                        goto done;
1643                }
1644                result.u64 = 0;
1645                break;
1646
1647        case sizeof(struct nvme_fc_ersp_iu):
1648                /*
1649                 * The ERSP IU contains a full completion with CQE.
1650                 * Validate ERSP IU and look at cqe.
1651                 */
1652                if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1653                                        (freq->rcv_rsplen / 4) ||
1654                             be32_to_cpu(op->rsp_iu.xfrd_len) !=
1655                                        freq->transferred_length ||
1656                             op->rsp_iu.status_code ||
1657                             sqe->common.command_id != cqe->command_id)) {
1658                        status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1659                        goto done;
1660                }
1661                result = cqe->result;
1662                status = cqe->status;
1663                break;
1664
1665        default:
1666                status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1667                goto done;
1668        }
1669
1670        terminate_assoc = false;
1671
1672done:
1673        if (op->flags & FCOP_FLAGS_AEN) {
1674                nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1675                __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1676                atomic_set(&op->state, FCPOP_STATE_IDLE);
1677                op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1678                nvme_fc_ctrl_put(ctrl);
1679                goto check_error;
1680        }
1681
1682        __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1683        nvme_end_request(rq, status, result);
1684
1685check_error:
1686        if (terminate_assoc)
1687                nvme_fc_error_recovery(ctrl, "transport detected io error");
1688}
1689
1690static int
1691__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1692                struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1693                struct request *rq, u32 rqno)
1694{
1695        struct nvme_fcp_op_w_sgl *op_w_sgl =
1696                container_of(op, typeof(*op_w_sgl), op);
1697        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1698        int ret = 0;
1699
1700        memset(op, 0, sizeof(*op));
1701        op->fcp_req.cmdaddr = &op->cmd_iu;
1702        op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1703        op->fcp_req.rspaddr = &op->rsp_iu;
1704        op->fcp_req.rsplen = sizeof(op->rsp_iu);
1705        op->fcp_req.done = nvme_fc_fcpio_done;
1706        op->ctrl = ctrl;
1707        op->queue = queue;
1708        op->rq = rq;
1709        op->rqno = rqno;
1710
1711        cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1712        cmdiu->fc_id = NVME_CMD_FC_ID;
1713        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1714
1715        op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1716                                &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1717        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1718                dev_err(ctrl->dev,
1719                        "FCP Op failed - cmdiu dma mapping failed.\n");
1720                ret = EFAULT;
1721                goto out_on_error;
1722        }
1723
1724        op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1725                                &op->rsp_iu, sizeof(op->rsp_iu),
1726                                DMA_FROM_DEVICE);
1727        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1728                dev_err(ctrl->dev,
1729                        "FCP Op failed - rspiu dma mapping failed.\n");
1730                ret = EFAULT;
1731        }
1732
1733        atomic_set(&op->state, FCPOP_STATE_IDLE);
1734out_on_error:
1735        return ret;
1736}
1737
1738static int
1739nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740                unsigned int hctx_idx, unsigned int numa_node)
1741{
1742        struct nvme_fc_ctrl *ctrl = set->driver_data;
1743        struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1744        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1745        struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1746        int res;
1747
1748        res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1749        if (res)
1750                return res;
1751        op->op.fcp_req.first_sgl = &op->sgl[0];
1752        op->op.fcp_req.private = &op->priv[0];
1753        nvme_req(rq)->ctrl = &ctrl->ctrl;
1754        return res;
1755}
1756
1757static int
1758nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1759{
1760        struct nvme_fc_fcp_op *aen_op;
1761        struct nvme_fc_cmd_iu *cmdiu;
1762        struct nvme_command *sqe;
1763        void *private;
1764        int i, ret;
1765
1766        aen_op = ctrl->aen_ops;
1767        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1768                private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1769                                                GFP_KERNEL);
1770                if (!private)
1771                        return -ENOMEM;
1772
1773                cmdiu = &aen_op->cmd_iu;
1774                sqe = &cmdiu->sqe;
1775                ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1776                                aen_op, (struct request *)NULL,
1777                                (NVME_AQ_BLK_MQ_DEPTH + i));
1778                if (ret) {
1779                        kfree(private);
1780                        return ret;
1781                }
1782
1783                aen_op->flags = FCOP_FLAGS_AEN;
1784                aen_op->fcp_req.private = private;
1785
1786                memset(sqe, 0, sizeof(*sqe));
1787                sqe->common.opcode = nvme_admin_async_event;
1788                /* Note: core layer may overwrite the sqe.command_id value */
1789                sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1790        }
1791        return 0;
1792}
1793
1794static void
1795nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1796{
1797        struct nvme_fc_fcp_op *aen_op;
1798        int i;
1799
1800        aen_op = ctrl->aen_ops;
1801        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1802                if (!aen_op->fcp_req.private)
1803                        continue;
1804
1805                __nvme_fc_exit_request(ctrl, aen_op);
1806
1807                kfree(aen_op->fcp_req.private);
1808                aen_op->fcp_req.private = NULL;
1809        }
1810}
1811
1812static inline void
1813__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1814                unsigned int qidx)
1815{
1816        struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1817
1818        hctx->driver_data = queue;
1819        queue->hctx = hctx;
1820}
1821
1822static int
1823nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1824                unsigned int hctx_idx)
1825{
1826        struct nvme_fc_ctrl *ctrl = data;
1827
1828        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1829
1830        return 0;
1831}
1832
1833static int
1834nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1835                unsigned int hctx_idx)
1836{
1837        struct nvme_fc_ctrl *ctrl = data;
1838
1839        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1840
1841        return 0;
1842}
1843
1844static void
1845nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1846{
1847        struct nvme_fc_queue *queue;
1848
1849        queue = &ctrl->queues[idx];
1850        memset(queue, 0, sizeof(*queue));
1851        queue->ctrl = ctrl;
1852        queue->qnum = idx;
1853        atomic_set(&queue->csn, 0);
1854        queue->dev = ctrl->dev;
1855
1856        if (idx > 0)
1857                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1858        else
1859                queue->cmnd_capsule_len = sizeof(struct nvme_command);
1860
1861        /*
1862         * Considered whether we should allocate buffers for all SQEs
1863         * and CQEs and dma map them - mapping their respective entries
1864         * into the request structures (kernel vm addr and dma address)
1865         * thus the driver could use the buffers/mappings directly.
1866         * It only makes sense if the LLDD would use them for its
1867         * messaging api. It's very unlikely most adapter api's would use
1868         * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1869         * structures were used instead.
1870         */
1871}
1872
1873/*
1874 * This routine terminates a queue at the transport level.
1875 * The transport has already ensured that all outstanding ios on
1876 * the queue have been terminated.
1877 * The transport will send a Disconnect LS request to terminate
1878 * the queue's connection. Termination of the admin queue will also
1879 * terminate the association at the target.
1880 */
1881static void
1882nvme_fc_free_queue(struct nvme_fc_queue *queue)
1883{
1884        if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1885                return;
1886
1887        clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1888        /*
1889         * Current implementation never disconnects a single queue.
1890         * It always terminates a whole association. So there is never
1891         * a disconnect(queue) LS sent to the target.
1892         */
1893
1894        queue->connection_id = 0;
1895        atomic_set(&queue->csn, 0);
1896}
1897
1898static void
1899__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1900        struct nvme_fc_queue *queue, unsigned int qidx)
1901{
1902        if (ctrl->lport->ops->delete_queue)
1903                ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1904                                queue->lldd_handle);
1905        queue->lldd_handle = NULL;
1906}
1907
1908static void
1909nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1910{
1911        int i;
1912
1913        for (i = 1; i < ctrl->ctrl.queue_count; i++)
1914                nvme_fc_free_queue(&ctrl->queues[i]);
1915}
1916
1917static int
1918__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1919        struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1920{
1921        int ret = 0;
1922
1923        queue->lldd_handle = NULL;
1924        if (ctrl->lport->ops->create_queue)
1925                ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1926                                qidx, qsize, &queue->lldd_handle);
1927
1928        return ret;
1929}
1930
1931static void
1932nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1933{
1934        struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1935        int i;
1936
1937        for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1938                __nvme_fc_delete_hw_queue(ctrl, queue, i);
1939}
1940
1941static int
1942nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1943{
1944        struct nvme_fc_queue *queue = &ctrl->queues[1];
1945        int i, ret;
1946
1947        for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1948                ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1949                if (ret)
1950                        goto delete_queues;
1951        }
1952
1953        return 0;
1954
1955delete_queues:
1956        for (; i >= 0; i--)
1957                __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1958        return ret;
1959}
1960
1961static int
1962nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1963{
1964        int i, ret = 0;
1965
1966        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1967                ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1968                                        (qsize / 5));
1969                if (ret)
1970                        break;
1971                ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1972                if (ret)
1973                        break;
1974
1975                set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1976        }
1977
1978        return ret;
1979}
1980
1981static void
1982nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1983{
1984        int i;
1985
1986        for (i = 1; i < ctrl->ctrl.queue_count; i++)
1987                nvme_fc_init_queue(ctrl, i);
1988}
1989
1990static void
1991nvme_fc_ctrl_free(struct kref *ref)
1992{
1993        struct nvme_fc_ctrl *ctrl =
1994                container_of(ref, struct nvme_fc_ctrl, ref);
1995        unsigned long flags;
1996
1997        if (ctrl->ctrl.tagset) {
1998                blk_cleanup_queue(ctrl->ctrl.connect_q);
1999                blk_mq_free_tag_set(&ctrl->tag_set);
2000        }
2001
2002        /* remove from rport list */
2003        spin_lock_irqsave(&ctrl->rport->lock, flags);
2004        list_del(&ctrl->ctrl_list);
2005        spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2006
2007        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2008        blk_cleanup_queue(ctrl->ctrl.admin_q);
2009        blk_mq_free_tag_set(&ctrl->admin_tag_set);
2010
2011        kfree(ctrl->queues);
2012
2013        put_device(ctrl->dev);
2014        nvme_fc_rport_put(ctrl->rport);
2015
2016        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2017        if (ctrl->ctrl.opts)
2018                nvmf_free_options(ctrl->ctrl.opts);
2019        kfree(ctrl);
2020}
2021
2022static void
2023nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2024{
2025        kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2026}
2027
2028static int
2029nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2030{
2031        return kref_get_unless_zero(&ctrl->ref);
2032}
2033
2034/*
2035 * All accesses from nvme core layer done - can now free the
2036 * controller. Called after last nvme_put_ctrl() call
2037 */
2038static void
2039nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2040{
2041        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2042
2043        WARN_ON(nctrl != &ctrl->ctrl);
2044
2045        nvme_fc_ctrl_put(ctrl);
2046}
2047
2048static void
2049nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2050{
2051        int active;
2052
2053        /*
2054         * if an error (io timeout, etc) while (re)connecting,
2055         * it's an error on creating the new association.
2056         * Start the error recovery thread if it hasn't already
2057         * been started. It is expected there could be multiple
2058         * ios hitting this path before things are cleaned up.
2059         */
2060        if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2061                active = atomic_xchg(&ctrl->err_work_active, 1);
2062                if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2063                        atomic_set(&ctrl->err_work_active, 0);
2064                        WARN_ON(1);
2065                }
2066                return;
2067        }
2068
2069        /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2070        if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2071                return;
2072
2073        dev_warn(ctrl->ctrl.device,
2074                "NVME-FC{%d}: transport association error detected: %s\n",
2075                ctrl->cnum, errmsg);
2076        dev_warn(ctrl->ctrl.device,
2077                "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2078
2079        nvme_reset_ctrl(&ctrl->ctrl);
2080}
2081
2082static enum blk_eh_timer_return
2083nvme_fc_timeout(struct request *rq, bool reserved)
2084{
2085        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2086        struct nvme_fc_ctrl *ctrl = op->ctrl;
2087
2088        /*
2089         * we can't individually ABTS an io without affecting the queue,
2090         * thus killing the queue, and thus the association.
2091         * So resolve by performing a controller reset, which will stop
2092         * the host/io stack, terminate the association on the link,
2093         * and recreate an association on the link.
2094         */
2095        nvme_fc_error_recovery(ctrl, "io timeout error");
2096
2097        /*
2098         * the io abort has been initiated. Have the reset timer
2099         * restarted and the abort completion will complete the io
2100         * shortly. Avoids a synchronous wait while the abort finishes.
2101         */
2102        return BLK_EH_RESET_TIMER;
2103}
2104
2105static int
2106nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2107                struct nvme_fc_fcp_op *op)
2108{
2109        struct nvmefc_fcp_req *freq = &op->fcp_req;
2110        enum dma_data_direction dir;
2111        int ret;
2112
2113        freq->sg_cnt = 0;
2114
2115        if (!blk_rq_nr_phys_segments(rq))
2116                return 0;
2117
2118        freq->sg_table.sgl = freq->first_sgl;
2119        ret = sg_alloc_table_chained(&freq->sg_table,
2120                        blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2121                        SG_CHUNK_SIZE);
2122        if (ret)
2123                return -ENOMEM;
2124
2125        op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2126        WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2127        dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2128        freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2129                                op->nents, dir);
2130        if (unlikely(freq->sg_cnt <= 0)) {
2131                sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2132                freq->sg_cnt = 0;
2133                return -EFAULT;
2134        }
2135
2136        /*
2137         * TODO: blk_integrity_rq(rq)  for DIF
2138         */
2139        return 0;
2140}
2141
2142static void
2143nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2144                struct nvme_fc_fcp_op *op)
2145{
2146        struct nvmefc_fcp_req *freq = &op->fcp_req;
2147
2148        if (!freq->sg_cnt)
2149                return;
2150
2151        fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2152                                ((rq_data_dir(rq) == WRITE) ?
2153                                        DMA_TO_DEVICE : DMA_FROM_DEVICE));
2154
2155        nvme_cleanup_cmd(rq);
2156
2157        sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2158
2159        freq->sg_cnt = 0;
2160}
2161
2162/*
2163 * In FC, the queue is a logical thing. At transport connect, the target
2164 * creates its "queue" and returns a handle that is to be given to the
2165 * target whenever it posts something to the corresponding SQ.  When an
2166 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2167 * command contained within the SQE, an io, and assigns a FC exchange
2168 * to it. The SQE and the associated SQ handle are sent in the initial
2169 * CMD IU sents on the exchange. All transfers relative to the io occur
2170 * as part of the exchange.  The CQE is the last thing for the io,
2171 * which is transferred (explicitly or implicitly) with the RSP IU
2172 * sent on the exchange. After the CQE is received, the FC exchange is
2173 * terminaed and the Exchange may be used on a different io.
2174 *
2175 * The transport to LLDD api has the transport making a request for a
2176 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2177 * resource and transfers the command. The LLDD will then process all
2178 * steps to complete the io. Upon completion, the transport done routine
2179 * is called.
2180 *
2181 * So - while the operation is outstanding to the LLDD, there is a link
2182 * level FC exchange resource that is also outstanding. This must be
2183 * considered in all cleanup operations.
2184 */
2185static blk_status_t
2186nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2187        struct nvme_fc_fcp_op *op, u32 data_len,
2188        enum nvmefc_fcp_datadir io_dir)
2189{
2190        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2191        struct nvme_command *sqe = &cmdiu->sqe;
2192        int ret, opstate;
2193
2194        /*
2195         * before attempting to send the io, check to see if we believe
2196         * the target device is present
2197         */
2198        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2199                return BLK_STS_RESOURCE;
2200
2201        if (!nvme_fc_ctrl_get(ctrl))
2202                return BLK_STS_IOERR;
2203
2204        /* format the FC-NVME CMD IU and fcp_req */
2205        cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2206        cmdiu->data_len = cpu_to_be32(data_len);
2207        switch (io_dir) {
2208        case NVMEFC_FCP_WRITE:
2209                cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2210                break;
2211        case NVMEFC_FCP_READ:
2212                cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2213                break;
2214        case NVMEFC_FCP_NODATA:
2215                cmdiu->flags = 0;
2216                break;
2217        }
2218        op->fcp_req.payload_length = data_len;
2219        op->fcp_req.io_dir = io_dir;
2220        op->fcp_req.transferred_length = 0;
2221        op->fcp_req.rcv_rsplen = 0;
2222        op->fcp_req.status = NVME_SC_SUCCESS;
2223        op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2224
2225        /*
2226         * validate per fabric rules, set fields mandated by fabric spec
2227         * as well as those by FC-NVME spec.
2228         */
2229        WARN_ON_ONCE(sqe->common.metadata);
2230        sqe->common.flags |= NVME_CMD_SGL_METABUF;
2231
2232        /*
2233         * format SQE DPTR field per FC-NVME rules:
2234         *    type=0x5     Transport SGL Data Block Descriptor
2235         *    subtype=0xA  Transport-specific value
2236         *    address=0
2237         *    length=length of the data series
2238         */
2239        sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2240                                        NVME_SGL_FMT_TRANSPORT_A;
2241        sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2242        sqe->rw.dptr.sgl.addr = 0;
2243
2244        if (!(op->flags & FCOP_FLAGS_AEN)) {
2245                ret = nvme_fc_map_data(ctrl, op->rq, op);
2246                if (ret < 0) {
2247                        nvme_cleanup_cmd(op->rq);
2248                        nvme_fc_ctrl_put(ctrl);
2249                        if (ret == -ENOMEM || ret == -EAGAIN)
2250                                return BLK_STS_RESOURCE;
2251                        return BLK_STS_IOERR;
2252                }
2253        }
2254
2255        fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2256                                  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2257
2258        atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2259
2260        if (!(op->flags & FCOP_FLAGS_AEN))
2261                blk_mq_start_request(op->rq);
2262
2263        cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2264        ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2265                                        &ctrl->rport->remoteport,
2266                                        queue->lldd_handle, &op->fcp_req);
2267
2268        if (ret) {
2269                /*
2270                 * If the lld fails to send the command is there an issue with
2271                 * the csn value?  If the command that fails is the Connect,
2272                 * no - as the connection won't be live.  If it is a command
2273                 * post-connect, it's possible a gap in csn may be created.
2274                 * Does this matter?  As Linux initiators don't send fused
2275                 * commands, no.  The gap would exist, but as there's nothing
2276                 * that depends on csn order to be delivered on the target
2277                 * side, it shouldn't hurt.  It would be difficult for a
2278                 * target to even detect the csn gap as it has no idea when the
2279                 * cmd with the csn was supposed to arrive.
2280                 */
2281                opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2282                __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2283
2284                if (!(op->flags & FCOP_FLAGS_AEN))
2285                        nvme_fc_unmap_data(ctrl, op->rq, op);
2286
2287                nvme_fc_ctrl_put(ctrl);
2288
2289                if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2290                                ret != -EBUSY)
2291                        return BLK_STS_IOERR;
2292
2293                return BLK_STS_RESOURCE;
2294        }
2295
2296        return BLK_STS_OK;
2297}
2298
2299static blk_status_t
2300nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2301                        const struct blk_mq_queue_data *bd)
2302{
2303        struct nvme_ns *ns = hctx->queue->queuedata;
2304        struct nvme_fc_queue *queue = hctx->driver_data;
2305        struct nvme_fc_ctrl *ctrl = queue->ctrl;
2306        struct request *rq = bd->rq;
2307        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2308        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2309        struct nvme_command *sqe = &cmdiu->sqe;
2310        enum nvmefc_fcp_datadir io_dir;
2311        bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2312        u32 data_len;
2313        blk_status_t ret;
2314
2315        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2316            !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2317                return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2318
2319        ret = nvme_setup_cmd(ns, rq, sqe);
2320        if (ret)
2321                return ret;
2322
2323        /*
2324         * nvme core doesn't quite treat the rq opaquely. Commands such
2325         * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2326         * there is no actual payload to be transferred.
2327         * To get it right, key data transmission on there being 1 or
2328         * more physical segments in the sg list. If there is no
2329         * physical segments, there is no payload.
2330         */
2331        if (blk_rq_nr_phys_segments(rq)) {
2332                data_len = blk_rq_payload_bytes(rq);
2333                io_dir = ((rq_data_dir(rq) == WRITE) ?
2334                                        NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2335        } else {
2336                data_len = 0;
2337                io_dir = NVMEFC_FCP_NODATA;
2338        }
2339
2340
2341        return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2342}
2343
2344static void
2345nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2346{
2347        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2348        struct nvme_fc_fcp_op *aen_op;
2349        unsigned long flags;
2350        bool terminating = false;
2351        blk_status_t ret;
2352
2353        spin_lock_irqsave(&ctrl->lock, flags);
2354        if (ctrl->flags & FCCTRL_TERMIO)
2355                terminating = true;
2356        spin_unlock_irqrestore(&ctrl->lock, flags);
2357
2358        if (terminating)
2359                return;
2360
2361        aen_op = &ctrl->aen_ops[0];
2362
2363        ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2364                                        NVMEFC_FCP_NODATA);
2365        if (ret)
2366                dev_err(ctrl->ctrl.device,
2367                        "failed async event work\n");
2368}
2369
2370static void
2371nvme_fc_complete_rq(struct request *rq)
2372{
2373        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2374        struct nvme_fc_ctrl *ctrl = op->ctrl;
2375
2376        atomic_set(&op->state, FCPOP_STATE_IDLE);
2377
2378        nvme_fc_unmap_data(ctrl, rq, op);
2379        nvme_complete_rq(rq);
2380        nvme_fc_ctrl_put(ctrl);
2381}
2382
2383/*
2384 * This routine is used by the transport when it needs to find active
2385 * io on a queue that is to be terminated. The transport uses
2386 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2387 * this routine to kill them on a 1 by 1 basis.
2388 *
2389 * As FC allocates FC exchange for each io, the transport must contact
2390 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2391 * After terminating the exchange the LLDD will call the transport's
2392 * normal io done path for the request, but it will have an aborted
2393 * status. The done path will return the io request back to the block
2394 * layer with an error status.
2395 */
2396static bool
2397nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2398{
2399        struct nvme_ctrl *nctrl = data;
2400        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2401        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2402
2403        __nvme_fc_abort_op(ctrl, op);
2404        return true;
2405}
2406
2407
2408static const struct blk_mq_ops nvme_fc_mq_ops = {
2409        .queue_rq       = nvme_fc_queue_rq,
2410        .complete       = nvme_fc_complete_rq,
2411        .init_request   = nvme_fc_init_request,
2412        .exit_request   = nvme_fc_exit_request,
2413        .init_hctx      = nvme_fc_init_hctx,
2414        .timeout        = nvme_fc_timeout,
2415};
2416
2417static int
2418nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2419{
2420        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2421        unsigned int nr_io_queues;
2422        int ret;
2423
2424        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2425                                ctrl->lport->ops->max_hw_queues);
2426        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2427        if (ret) {
2428                dev_info(ctrl->ctrl.device,
2429                        "set_queue_count failed: %d\n", ret);
2430                return ret;
2431        }
2432
2433        ctrl->ctrl.queue_count = nr_io_queues + 1;
2434        if (!nr_io_queues)
2435                return 0;
2436
2437        nvme_fc_init_io_queues(ctrl);
2438
2439        memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2440        ctrl->tag_set.ops = &nvme_fc_mq_ops;
2441        ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2442        ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2443        ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2444        ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2445        ctrl->tag_set.cmd_size =
2446                struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2447                            ctrl->lport->ops->fcprqst_priv_sz);
2448        ctrl->tag_set.driver_data = ctrl;
2449        ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2450        ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2451
2452        ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2453        if (ret)
2454                return ret;
2455
2456        ctrl->ctrl.tagset = &ctrl->tag_set;
2457
2458        ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2459        if (IS_ERR(ctrl->ctrl.connect_q)) {
2460                ret = PTR_ERR(ctrl->ctrl.connect_q);
2461                goto out_free_tag_set;
2462        }
2463
2464        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2465        if (ret)
2466                goto out_cleanup_blk_queue;
2467
2468        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2469        if (ret)
2470                goto out_delete_hw_queues;
2471
2472        ctrl->ioq_live = true;
2473
2474        return 0;
2475
2476out_delete_hw_queues:
2477        nvme_fc_delete_hw_io_queues(ctrl);
2478out_cleanup_blk_queue:
2479        blk_cleanup_queue(ctrl->ctrl.connect_q);
2480out_free_tag_set:
2481        blk_mq_free_tag_set(&ctrl->tag_set);
2482        nvme_fc_free_io_queues(ctrl);
2483
2484        /* force put free routine to ignore io queues */
2485        ctrl->ctrl.tagset = NULL;
2486
2487        return ret;
2488}
2489
2490static int
2491nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2492{
2493        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2494        u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2495        unsigned int nr_io_queues;
2496        int ret;
2497
2498        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2499                                ctrl->lport->ops->max_hw_queues);
2500        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2501        if (ret) {
2502                dev_info(ctrl->ctrl.device,
2503                        "set_queue_count failed: %d\n", ret);
2504                return ret;
2505        }
2506
2507        if (!nr_io_queues && prior_ioq_cnt) {
2508                dev_info(ctrl->ctrl.device,
2509                        "Fail Reconnect: At least 1 io queue "
2510                        "required (was %d)\n", prior_ioq_cnt);
2511                return -ENOSPC;
2512        }
2513
2514        ctrl->ctrl.queue_count = nr_io_queues + 1;
2515        /* check for io queues existing */
2516        if (ctrl->ctrl.queue_count == 1)
2517                return 0;
2518
2519        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2520        if (ret)
2521                goto out_free_io_queues;
2522
2523        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2524        if (ret)
2525                goto out_delete_hw_queues;
2526
2527        if (prior_ioq_cnt != nr_io_queues)
2528                dev_info(ctrl->ctrl.device,
2529                        "reconnect: revising io queue count from %d to %d\n",
2530                        prior_ioq_cnt, nr_io_queues);
2531        blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2532
2533        return 0;
2534
2535out_delete_hw_queues:
2536        nvme_fc_delete_hw_io_queues(ctrl);
2537out_free_io_queues:
2538        nvme_fc_free_io_queues(ctrl);
2539        return ret;
2540}
2541
2542static void
2543nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2544{
2545        struct nvme_fc_lport *lport = rport->lport;
2546
2547        atomic_inc(&lport->act_rport_cnt);
2548}
2549
2550static void
2551nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2552{
2553        struct nvme_fc_lport *lport = rport->lport;
2554        u32 cnt;
2555
2556        cnt = atomic_dec_return(&lport->act_rport_cnt);
2557        if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2558                lport->ops->localport_delete(&lport->localport);
2559}
2560
2561static int
2562nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2563{
2564        struct nvme_fc_rport *rport = ctrl->rport;
2565        u32 cnt;
2566
2567        if (ctrl->assoc_active)
2568                return 1;
2569
2570        ctrl->assoc_active = true;
2571        cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2572        if (cnt == 1)
2573                nvme_fc_rport_active_on_lport(rport);
2574
2575        return 0;
2576}
2577
2578static int
2579nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2580{
2581        struct nvme_fc_rport *rport = ctrl->rport;
2582        struct nvme_fc_lport *lport = rport->lport;
2583        u32 cnt;
2584
2585        /* ctrl->assoc_active=false will be set independently */
2586
2587        cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2588        if (cnt == 0) {
2589                if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2590                        lport->ops->remoteport_delete(&rport->remoteport);
2591                nvme_fc_rport_inactive_on_lport(rport);
2592        }
2593
2594        return 0;
2595}
2596
2597/*
2598 * This routine restarts the controller on the host side, and
2599 * on the link side, recreates the controller association.
2600 */
2601static int
2602nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2603{
2604        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2605        int ret;
2606        bool changed;
2607
2608        ++ctrl->ctrl.nr_reconnects;
2609
2610        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2611                return -ENODEV;
2612
2613        if (nvme_fc_ctlr_active_on_rport(ctrl))
2614                return -ENOTUNIQ;
2615
2616        dev_info(ctrl->ctrl.device,
2617                "NVME-FC{%d}: create association : host wwpn 0x%016llx "
2618                " rport wwpn 0x%016llx: NQN \"%s\"\n",
2619                ctrl->cnum, ctrl->lport->localport.port_name,
2620                ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2621
2622        /*
2623         * Create the admin queue
2624         */
2625
2626        ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2627                                NVME_AQ_DEPTH);
2628        if (ret)
2629                goto out_free_queue;
2630
2631        ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2632                                NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2633        if (ret)
2634                goto out_delete_hw_queue;
2635
2636        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2637
2638        ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2639        if (ret)
2640                goto out_disconnect_admin_queue;
2641
2642        set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2643
2644        /*
2645         * Check controller capabilities
2646         *
2647         * todo:- add code to check if ctrl attributes changed from
2648         * prior connection values
2649         */
2650
2651        ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2652        if (ret) {
2653                dev_err(ctrl->ctrl.device,
2654                        "prop_get NVME_REG_CAP failed\n");
2655                goto out_disconnect_admin_queue;
2656        }
2657
2658        ctrl->ctrl.sqsize =
2659                min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2660
2661        ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2662        if (ret)
2663                goto out_disconnect_admin_queue;
2664
2665        ctrl->ctrl.max_hw_sectors =
2666                (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2667
2668        ret = nvme_init_identify(&ctrl->ctrl);
2669        if (ret)
2670                goto out_disconnect_admin_queue;
2671
2672        /* sanity checks */
2673
2674        /* FC-NVME does not have other data in the capsule */
2675        if (ctrl->ctrl.icdoff) {
2676                dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2677                                ctrl->ctrl.icdoff);
2678                goto out_disconnect_admin_queue;
2679        }
2680
2681        /* FC-NVME supports normal SGL Data Block Descriptors */
2682
2683        if (opts->queue_size > ctrl->ctrl.maxcmd) {
2684                /* warn if maxcmd is lower than queue_size */
2685                dev_warn(ctrl->ctrl.device,
2686                        "queue_size %zu > ctrl maxcmd %u, reducing "
2687                        "to queue_size\n",
2688                        opts->queue_size, ctrl->ctrl.maxcmd);
2689                opts->queue_size = ctrl->ctrl.maxcmd;
2690        }
2691
2692        if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2693                /* warn if sqsize is lower than queue_size */
2694                dev_warn(ctrl->ctrl.device,
2695                        "queue_size %zu > ctrl sqsize %u, clamping down\n",
2696                        opts->queue_size, ctrl->ctrl.sqsize + 1);
2697                opts->queue_size = ctrl->ctrl.sqsize + 1;
2698        }
2699
2700        ret = nvme_fc_init_aen_ops(ctrl);
2701        if (ret)
2702                goto out_term_aen_ops;
2703
2704        /*
2705         * Create the io queues
2706         */
2707
2708        if (ctrl->ctrl.queue_count > 1) {
2709                if (!ctrl->ioq_live)
2710                        ret = nvme_fc_create_io_queues(ctrl);
2711                else
2712                        ret = nvme_fc_recreate_io_queues(ctrl);
2713                if (ret)
2714                        goto out_term_aen_ops;
2715        }
2716
2717        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2718
2719        ctrl->ctrl.nr_reconnects = 0;
2720
2721        if (changed)
2722                nvme_start_ctrl(&ctrl->ctrl);
2723
2724        return 0;       /* Success */
2725
2726out_term_aen_ops:
2727        nvme_fc_term_aen_ops(ctrl);
2728out_disconnect_admin_queue:
2729        /* send a Disconnect(association) LS to fc-nvme target */
2730        nvme_fc_xmt_disconnect_assoc(ctrl);
2731out_delete_hw_queue:
2732        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2733out_free_queue:
2734        nvme_fc_free_queue(&ctrl->queues[0]);
2735        ctrl->assoc_active = false;
2736        nvme_fc_ctlr_inactive_on_rport(ctrl);
2737
2738        return ret;
2739}
2740
2741/*
2742 * This routine stops operation of the controller on the host side.
2743 * On the host os stack side: Admin and IO queues are stopped,
2744 *   outstanding ios on them terminated via FC ABTS.
2745 * On the link side: the association is terminated.
2746 */
2747static void
2748nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2749{
2750        unsigned long flags;
2751
2752        if (!ctrl->assoc_active)
2753                return;
2754        ctrl->assoc_active = false;
2755
2756        spin_lock_irqsave(&ctrl->lock, flags);
2757        ctrl->flags |= FCCTRL_TERMIO;
2758        ctrl->iocnt = 0;
2759        spin_unlock_irqrestore(&ctrl->lock, flags);
2760
2761        /*
2762         * If io queues are present, stop them and terminate all outstanding
2763         * ios on them. As FC allocates FC exchange for each io, the
2764         * transport must contact the LLDD to terminate the exchange,
2765         * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2766         * to tell us what io's are busy and invoke a transport routine
2767         * to kill them with the LLDD.  After terminating the exchange
2768         * the LLDD will call the transport's normal io done path, but it
2769         * will have an aborted status. The done path will return the
2770         * io requests back to the block layer as part of normal completions
2771         * (but with error status).
2772         */
2773        if (ctrl->ctrl.queue_count > 1) {
2774                nvme_stop_queues(&ctrl->ctrl);
2775                blk_mq_tagset_busy_iter(&ctrl->tag_set,
2776                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2777        }
2778
2779        /*
2780         * Other transports, which don't have link-level contexts bound
2781         * to sqe's, would try to gracefully shutdown the controller by
2782         * writing the registers for shutdown and polling (call
2783         * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2784         * just aborted and we will wait on those contexts, and given
2785         * there was no indication of how live the controlelr is on the
2786         * link, don't send more io to create more contexts for the
2787         * shutdown. Let the controller fail via keepalive failure if
2788         * its still present.
2789         */
2790
2791        /*
2792         * clean up the admin queue. Same thing as above.
2793         * use blk_mq_tagset_busy_itr() and the transport routine to
2794         * terminate the exchanges.
2795         */
2796        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2797        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2798                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2799
2800        /* kill the aens as they are a separate path */
2801        nvme_fc_abort_aen_ops(ctrl);
2802
2803        /* wait for all io that had to be aborted */
2804        spin_lock_irq(&ctrl->lock);
2805        wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2806        ctrl->flags &= ~FCCTRL_TERMIO;
2807        spin_unlock_irq(&ctrl->lock);
2808
2809        nvme_fc_term_aen_ops(ctrl);
2810
2811        /*
2812         * send a Disconnect(association) LS to fc-nvme target
2813         * Note: could have been sent at top of process, but
2814         * cleaner on link traffic if after the aborts complete.
2815         * Note: if association doesn't exist, association_id will be 0
2816         */
2817        if (ctrl->association_id)
2818                nvme_fc_xmt_disconnect_assoc(ctrl);
2819
2820        if (ctrl->ctrl.tagset) {
2821                nvme_fc_delete_hw_io_queues(ctrl);
2822                nvme_fc_free_io_queues(ctrl);
2823        }
2824
2825        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2826        nvme_fc_free_queue(&ctrl->queues[0]);
2827
2828        /* re-enable the admin_q so anything new can fast fail */
2829        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2830
2831        /* resume the io queues so that things will fast fail */
2832        nvme_start_queues(&ctrl->ctrl);
2833
2834        nvme_fc_ctlr_inactive_on_rport(ctrl);
2835}
2836
2837static void
2838nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2839{
2840        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2841
2842        cancel_work_sync(&ctrl->err_work);
2843        cancel_delayed_work_sync(&ctrl->connect_work);
2844        /*
2845         * kill the association on the link side.  this will block
2846         * waiting for io to terminate
2847         */
2848        nvme_fc_delete_association(ctrl);
2849}
2850
2851static void
2852nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2853{
2854        struct nvme_fc_rport *rport = ctrl->rport;
2855        struct nvme_fc_remote_port *portptr = &rport->remoteport;
2856        unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2857        bool recon = true;
2858
2859        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2860                return;
2861
2862        if (portptr->port_state == FC_OBJSTATE_ONLINE)
2863                dev_info(ctrl->ctrl.device,
2864                        "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2865                        ctrl->cnum, status);
2866        else if (time_after_eq(jiffies, rport->dev_loss_end))
2867                recon = false;
2868
2869        if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2870                if (portptr->port_state == FC_OBJSTATE_ONLINE)
2871                        dev_info(ctrl->ctrl.device,
2872                                "NVME-FC{%d}: Reconnect attempt in %ld "
2873                                "seconds\n",
2874                                ctrl->cnum, recon_delay / HZ);
2875                else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2876                        recon_delay = rport->dev_loss_end - jiffies;
2877
2878                queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2879        } else {
2880                if (portptr->port_state == FC_OBJSTATE_ONLINE)
2881                        dev_warn(ctrl->ctrl.device,
2882                                "NVME-FC{%d}: Max reconnect attempts (%d) "
2883                                "reached.\n",
2884                                ctrl->cnum, ctrl->ctrl.nr_reconnects);
2885                else
2886                        dev_warn(ctrl->ctrl.device,
2887                                "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2888                                "while waiting for remoteport connectivity.\n",
2889                                ctrl->cnum, portptr->dev_loss_tmo);
2890                WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2891        }
2892}
2893
2894static void
2895__nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2896{
2897        nvme_stop_keep_alive(&ctrl->ctrl);
2898
2899        /* will block will waiting for io to terminate */
2900        nvme_fc_delete_association(ctrl);
2901
2902        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2903            !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2904                dev_err(ctrl->ctrl.device,
2905                        "NVME-FC{%d}: error_recovery: Couldn't change state "
2906                        "to CONNECTING\n", ctrl->cnum);
2907}
2908
2909static void
2910nvme_fc_reset_ctrl_work(struct work_struct *work)
2911{
2912        struct nvme_fc_ctrl *ctrl =
2913                container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2914        int ret;
2915
2916        __nvme_fc_terminate_io(ctrl);
2917
2918        nvme_stop_ctrl(&ctrl->ctrl);
2919
2920        if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2921                ret = nvme_fc_create_association(ctrl);
2922        else
2923                ret = -ENOTCONN;
2924
2925        if (ret)
2926                nvme_fc_reconnect_or_delete(ctrl, ret);
2927        else
2928                dev_info(ctrl->ctrl.device,
2929                        "NVME-FC{%d}: controller reset complete\n",
2930                        ctrl->cnum);
2931}
2932
2933static void
2934nvme_fc_connect_err_work(struct work_struct *work)
2935{
2936        struct nvme_fc_ctrl *ctrl =
2937                        container_of(work, struct nvme_fc_ctrl, err_work);
2938
2939        __nvme_fc_terminate_io(ctrl);
2940
2941        atomic_set(&ctrl->err_work_active, 0);
2942
2943        /*
2944         * Rescheduling the connection after recovering
2945         * from the io error is left to the reconnect work
2946         * item, which is what should have stalled waiting on
2947         * the io that had the error that scheduled this work.
2948         */
2949}
2950
2951static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2952        .name                   = "fc",
2953        .module                 = THIS_MODULE,
2954        .flags                  = NVME_F_FABRICS,
2955        .reg_read32             = nvmf_reg_read32,
2956        .reg_read64             = nvmf_reg_read64,
2957        .reg_write32            = nvmf_reg_write32,
2958        .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2959        .submit_async_event     = nvme_fc_submit_async_event,
2960        .delete_ctrl            = nvme_fc_delete_ctrl,
2961        .get_address            = nvmf_get_address,
2962};
2963
2964static void
2965nvme_fc_connect_ctrl_work(struct work_struct *work)
2966{
2967        int ret;
2968
2969        struct nvme_fc_ctrl *ctrl =
2970                        container_of(to_delayed_work(work),
2971                                struct nvme_fc_ctrl, connect_work);
2972
2973        ret = nvme_fc_create_association(ctrl);
2974        if (ret)
2975                nvme_fc_reconnect_or_delete(ctrl, ret);
2976        else
2977                dev_info(ctrl->ctrl.device,
2978                        "NVME-FC{%d}: controller connect complete\n",
2979                        ctrl->cnum);
2980}
2981
2982
2983static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2984        .queue_rq       = nvme_fc_queue_rq,
2985        .complete       = nvme_fc_complete_rq,
2986        .init_request   = nvme_fc_init_request,
2987        .exit_request   = nvme_fc_exit_request,
2988        .init_hctx      = nvme_fc_init_admin_hctx,
2989        .timeout        = nvme_fc_timeout,
2990};
2991
2992
2993/*
2994 * Fails a controller request if it matches an existing controller
2995 * (association) with the same tuple:
2996 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2997 *
2998 * The ports don't need to be compared as they are intrinsically
2999 * already matched by the port pointers supplied.
3000 */
3001static bool
3002nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3003                struct nvmf_ctrl_options *opts)
3004{
3005        struct nvme_fc_ctrl *ctrl;
3006        unsigned long flags;
3007        bool found = false;
3008
3009        spin_lock_irqsave(&rport->lock, flags);
3010        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3011                found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3012                if (found)
3013                        break;
3014        }
3015        spin_unlock_irqrestore(&rport->lock, flags);
3016
3017        return found;
3018}
3019
3020static struct nvme_ctrl *
3021nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3022        struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3023{
3024        struct nvme_fc_ctrl *ctrl;
3025        unsigned long flags;
3026        int ret, idx;
3027
3028        if (!(rport->remoteport.port_role &
3029            (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3030                ret = -EBADR;
3031                goto out_fail;
3032        }
3033
3034        if (!opts->duplicate_connect &&
3035            nvme_fc_existing_controller(rport, opts)) {
3036                ret = -EALREADY;
3037                goto out_fail;
3038        }
3039
3040        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3041        if (!ctrl) {
3042                ret = -ENOMEM;
3043                goto out_fail;
3044        }
3045
3046        idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3047        if (idx < 0) {
3048                ret = -ENOSPC;
3049                goto out_free_ctrl;
3050        }
3051
3052        ctrl->ctrl.opts = opts;
3053        ctrl->ctrl.nr_reconnects = 0;
3054        if (lport->dev)
3055                ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3056        else
3057                ctrl->ctrl.numa_node = NUMA_NO_NODE;
3058        INIT_LIST_HEAD(&ctrl->ctrl_list);
3059        ctrl->lport = lport;
3060        ctrl->rport = rport;
3061        ctrl->dev = lport->dev;
3062        ctrl->cnum = idx;
3063        ctrl->ioq_live = false;
3064        ctrl->assoc_active = false;
3065        atomic_set(&ctrl->err_work_active, 0);
3066        init_waitqueue_head(&ctrl->ioabort_wait);
3067
3068        get_device(ctrl->dev);
3069        kref_init(&ctrl->ref);
3070
3071        INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3072        INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3073        INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3074        spin_lock_init(&ctrl->lock);
3075
3076        /* io queue count */
3077        ctrl->ctrl.queue_count = min_t(unsigned int,
3078                                opts->nr_io_queues,
3079                                lport->ops->max_hw_queues);
3080        ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3081
3082        ctrl->ctrl.sqsize = opts->queue_size - 1;
3083        ctrl->ctrl.kato = opts->kato;
3084        ctrl->ctrl.cntlid = 0xffff;
3085
3086        ret = -ENOMEM;
3087        ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3088                                sizeof(struct nvme_fc_queue), GFP_KERNEL);
3089        if (!ctrl->queues)
3090                goto out_free_ida;
3091
3092        nvme_fc_init_queue(ctrl, 0);
3093
3094        memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3095        ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3096        ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3097        ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3098        ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3099        ctrl->admin_tag_set.cmd_size =
3100                struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3101                            ctrl->lport->ops->fcprqst_priv_sz);
3102        ctrl->admin_tag_set.driver_data = ctrl;
3103        ctrl->admin_tag_set.nr_hw_queues = 1;
3104        ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3105        ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3106
3107        ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3108        if (ret)
3109                goto out_free_queues;
3110        ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3111
3112        ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3113        if (IS_ERR(ctrl->ctrl.admin_q)) {
3114                ret = PTR_ERR(ctrl->ctrl.admin_q);
3115                goto out_free_admin_tag_set;
3116        }
3117
3118        /*
3119         * Would have been nice to init io queues tag set as well.
3120         * However, we require interaction from the controller
3121         * for max io queue count before we can do so.
3122         * Defer this to the connect path.
3123         */
3124
3125        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3126        if (ret)
3127                goto out_cleanup_admin_q;
3128
3129        /* at this point, teardown path changes to ref counting on nvme ctrl */
3130
3131        spin_lock_irqsave(&rport->lock, flags);
3132        list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3133        spin_unlock_irqrestore(&rport->lock, flags);
3134
3135        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3136            !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3137                dev_err(ctrl->ctrl.device,
3138                        "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3139                goto fail_ctrl;
3140        }
3141
3142        nvme_get_ctrl(&ctrl->ctrl);
3143
3144        if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3145                nvme_put_ctrl(&ctrl->ctrl);
3146                dev_err(ctrl->ctrl.device,
3147                        "NVME-FC{%d}: failed to schedule initial connect\n",
3148                        ctrl->cnum);
3149                goto fail_ctrl;
3150        }
3151
3152        flush_delayed_work(&ctrl->connect_work);
3153
3154        dev_info(ctrl->ctrl.device,
3155                "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3156                ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3157
3158        return &ctrl->ctrl;
3159
3160fail_ctrl:
3161        nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3162        cancel_work_sync(&ctrl->ctrl.reset_work);
3163        cancel_work_sync(&ctrl->err_work);
3164        cancel_delayed_work_sync(&ctrl->connect_work);
3165
3166        ctrl->ctrl.opts = NULL;
3167
3168        /* initiate nvme ctrl ref counting teardown */
3169        nvme_uninit_ctrl(&ctrl->ctrl);
3170
3171        /* Remove core ctrl ref. */
3172        nvme_put_ctrl(&ctrl->ctrl);
3173
3174        /* as we're past the point where we transition to the ref
3175         * counting teardown path, if we return a bad pointer here,
3176         * the calling routine, thinking it's prior to the
3177         * transition, will do an rport put. Since the teardown
3178         * path also does a rport put, we do an extra get here to
3179         * so proper order/teardown happens.
3180         */
3181        nvme_fc_rport_get(rport);
3182
3183        return ERR_PTR(-EIO);
3184
3185out_cleanup_admin_q:
3186        blk_cleanup_queue(ctrl->ctrl.admin_q);
3187out_free_admin_tag_set:
3188        blk_mq_free_tag_set(&ctrl->admin_tag_set);
3189out_free_queues:
3190        kfree(ctrl->queues);
3191out_free_ida:
3192        put_device(ctrl->dev);
3193        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3194out_free_ctrl:
3195        kfree(ctrl);
3196out_fail:
3197        /* exit via here doesn't follow ctlr ref points */
3198        return ERR_PTR(ret);
3199}
3200
3201
3202struct nvmet_fc_traddr {
3203        u64     nn;
3204        u64     pn;
3205};
3206
3207static int
3208__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3209{
3210        u64 token64;
3211
3212        if (match_u64(sstr, &token64))
3213                return -EINVAL;
3214        *val = token64;
3215
3216        return 0;
3217}
3218
3219/*
3220 * This routine validates and extracts the WWN's from the TRADDR string.
3221 * As kernel parsers need the 0x to determine number base, universally
3222 * build string to parse with 0x prefix before parsing name strings.
3223 */
3224static int
3225nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3226{
3227        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3228        substring_t wwn = { name, &name[sizeof(name)-1] };
3229        int nnoffset, pnoffset;
3230
3231        /* validate if string is one of the 2 allowed formats */
3232        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3233                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3234                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3235                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3236                nnoffset = NVME_FC_TRADDR_OXNNLEN;
3237                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3238                                                NVME_FC_TRADDR_OXNNLEN;
3239        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3240                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3241                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3242                                "pn-", NVME_FC_TRADDR_NNLEN))) {
3243                nnoffset = NVME_FC_TRADDR_NNLEN;
3244                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3245        } else
3246                goto out_einval;
3247
3248        name[0] = '0';
3249        name[1] = 'x';
3250        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3251
3252        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3253        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3254                goto out_einval;
3255
3256        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3257        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3258                goto out_einval;
3259
3260        return 0;
3261
3262out_einval:
3263        pr_warn("%s: bad traddr string\n", __func__);
3264        return -EINVAL;
3265}
3266
3267static struct nvme_ctrl *
3268nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3269{
3270        struct nvme_fc_lport *lport;
3271        struct nvme_fc_rport *rport;
3272        struct nvme_ctrl *ctrl;
3273        struct nvmet_fc_traddr laddr = { 0L, 0L };
3274        struct nvmet_fc_traddr raddr = { 0L, 0L };
3275        unsigned long flags;
3276        int ret;
3277
3278        ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3279        if (ret || !raddr.nn || !raddr.pn)
3280                return ERR_PTR(-EINVAL);
3281
3282        ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3283        if (ret || !laddr.nn || !laddr.pn)
3284                return ERR_PTR(-EINVAL);
3285
3286        /* find the host and remote ports to connect together */
3287        spin_lock_irqsave(&nvme_fc_lock, flags);
3288        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3289                if (lport->localport.node_name != laddr.nn ||
3290                    lport->localport.port_name != laddr.pn)
3291                        continue;
3292
3293                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3294                        if (rport->remoteport.node_name != raddr.nn ||
3295                            rport->remoteport.port_name != raddr.pn)
3296                                continue;
3297
3298                        /* if fail to get reference fall through. Will error */
3299                        if (!nvme_fc_rport_get(rport))
3300                                break;
3301
3302                        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3303
3304                        ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3305                        if (IS_ERR(ctrl))
3306                                nvme_fc_rport_put(rport);
3307                        return ctrl;
3308                }
3309        }
3310        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3311
3312        pr_warn("%s: %s - %s combination not found\n",
3313                __func__, opts->traddr, opts->host_traddr);
3314        return ERR_PTR(-ENOENT);
3315}
3316
3317
3318static struct nvmf_transport_ops nvme_fc_transport = {
3319        .name           = "fc",
3320        .module         = THIS_MODULE,
3321        .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3322        .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3323        .create_ctrl    = nvme_fc_create_ctrl,
3324};
3325
3326/* Arbitrary successive failures max. With lots of subsystems could be high */
3327#define DISCOVERY_MAX_FAIL      20
3328
3329static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3330                struct device_attribute *attr, const char *buf, size_t count)
3331{
3332        unsigned long flags;
3333        LIST_HEAD(local_disc_list);
3334        struct nvme_fc_lport *lport;
3335        struct nvme_fc_rport *rport;
3336        int failcnt = 0;
3337
3338        spin_lock_irqsave(&nvme_fc_lock, flags);
3339restart:
3340        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3341                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3342                        if (!nvme_fc_lport_get(lport))
3343                                continue;
3344                        if (!nvme_fc_rport_get(rport)) {
3345                                /*
3346                                 * This is a temporary condition. Upon restart
3347                                 * this rport will be gone from the list.
3348                                 *
3349                                 * Revert the lport put and retry.  Anything
3350                                 * added to the list already will be skipped (as
3351                                 * they are no longer list_empty).  Loops should
3352                                 * resume at rports that were not yet seen.
3353                                 */
3354                                nvme_fc_lport_put(lport);
3355
3356                                if (failcnt++ < DISCOVERY_MAX_FAIL)
3357                                        goto restart;
3358
3359                                pr_err("nvme_discovery: too many reference "
3360                                       "failures\n");
3361                                goto process_local_list;
3362                        }
3363                        if (list_empty(&rport->disc_list))
3364                                list_add_tail(&rport->disc_list,
3365                                              &local_disc_list);
3366                }
3367        }
3368
3369process_local_list:
3370        while (!list_empty(&local_disc_list)) {
3371                rport = list_first_entry(&local_disc_list,
3372                                         struct nvme_fc_rport, disc_list);
3373                list_del_init(&rport->disc_list);
3374                spin_unlock_irqrestore(&nvme_fc_lock, flags);
3375
3376                lport = rport->lport;
3377                /* signal discovery. Won't hurt if it repeats */
3378                nvme_fc_signal_discovery_scan(lport, rport);
3379                nvme_fc_rport_put(rport);
3380                nvme_fc_lport_put(lport);
3381
3382                spin_lock_irqsave(&nvme_fc_lock, flags);
3383        }
3384        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3385
3386        return count;
3387}
3388static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3389
3390static struct attribute *nvme_fc_attrs[] = {
3391        &dev_attr_nvme_discovery.attr,
3392        NULL
3393};
3394
3395static struct attribute_group nvme_fc_attr_group = {
3396        .attrs = nvme_fc_attrs,
3397};
3398
3399static const struct attribute_group *nvme_fc_attr_groups[] = {
3400        &nvme_fc_attr_group,
3401        NULL
3402};
3403
3404static struct class fc_class = {
3405        .name = "fc",
3406        .dev_groups = nvme_fc_attr_groups,
3407        .owner = THIS_MODULE,
3408};
3409
3410static int __init nvme_fc_init_module(void)
3411{
3412        int ret;
3413
3414        nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3415        if (!nvme_fc_wq)
3416                return -ENOMEM;
3417
3418        /*
3419         * NOTE:
3420         * It is expected that in the future the kernel will combine
3421         * the FC-isms that are currently under scsi and now being
3422         * added to by NVME into a new standalone FC class. The SCSI
3423         * and NVME protocols and their devices would be under this
3424         * new FC class.
3425         *
3426         * As we need something to post FC-specific udev events to,
3427         * specifically for nvme probe events, start by creating the
3428         * new device class.  When the new standalone FC class is
3429         * put in place, this code will move to a more generic
3430         * location for the class.
3431         */
3432        ret = class_register(&fc_class);
3433        if (ret) {
3434                pr_err("couldn't register class fc\n");
3435                goto out_destroy_wq;
3436        }
3437
3438        /*
3439         * Create a device for the FC-centric udev events
3440         */
3441        fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3442                                "fc_udev_device");
3443        if (IS_ERR(fc_udev_device)) {
3444                pr_err("couldn't create fc_udev device!\n");
3445                ret = PTR_ERR(fc_udev_device);
3446                goto out_destroy_class;
3447        }
3448
3449        ret = nvmf_register_transport(&nvme_fc_transport);
3450        if (ret)
3451                goto out_destroy_device;
3452
3453        return 0;
3454
3455out_destroy_device:
3456        device_destroy(&fc_class, MKDEV(0, 0));
3457out_destroy_class:
3458        class_unregister(&fc_class);
3459out_destroy_wq:
3460        destroy_workqueue(nvme_fc_wq);
3461
3462        return ret;
3463}
3464
3465static void
3466nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3467{
3468        struct nvme_fc_ctrl *ctrl;
3469
3470        spin_lock(&rport->lock);
3471        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3472                dev_warn(ctrl->ctrl.device,
3473                        "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3474                        ctrl->cnum);
3475                nvme_delete_ctrl(&ctrl->ctrl);
3476        }
3477        spin_unlock(&rport->lock);
3478}
3479
3480static void
3481nvme_fc_cleanup_for_unload(void)
3482{
3483        struct nvme_fc_lport *lport;
3484        struct nvme_fc_rport *rport;
3485
3486        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3487                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3488                        nvme_fc_delete_controllers(rport);
3489                }
3490        }
3491}
3492
3493static void __exit nvme_fc_exit_module(void)
3494{
3495        unsigned long flags;
3496        bool need_cleanup = false;
3497
3498        spin_lock_irqsave(&nvme_fc_lock, flags);
3499        nvme_fc_waiting_to_unload = true;
3500        if (!list_empty(&nvme_fc_lport_list)) {
3501                need_cleanup = true;
3502                nvme_fc_cleanup_for_unload();
3503        }
3504        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3505        if (need_cleanup) {
3506                pr_info("%s: waiting for ctlr deletes\n", __func__);
3507                wait_for_completion(&nvme_fc_unload_proceed);
3508                pr_info("%s: ctrl deletes complete\n", __func__);
3509        }
3510
3511        nvmf_unregister_transport(&nvme_fc_transport);
3512
3513        ida_destroy(&nvme_fc_local_port_cnt);
3514        ida_destroy(&nvme_fc_ctrl_cnt);
3515
3516        device_destroy(&fc_class, MKDEV(0, 0));
3517        class_unregister(&fc_class);
3518        destroy_workqueue(nvme_fc_wq);
3519}
3520
3521module_init(nvme_fc_init_module);
3522module_exit(nvme_fc_exit_module);
3523
3524MODULE_LICENSE("GPL v2");
3525