linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/aer.h>
   8#include <linux/async.h>
   9#include <linux/blkdev.h>
  10#include <linux/blk-mq.h>
  11#include <linux/blk-mq-pci.h>
  12#include <linux/dmi.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <linux/once.h>
  20#include <linux/pci.h>
  21#include <linux/suspend.h>
  22#include <linux/t10-pi.h>
  23#include <linux/types.h>
  24#include <linux/io-64-nonatomic-lo-hi.h>
  25#include <linux/sed-opal.h>
  26#include <linux/pci-p2pdma.h>
  27
  28#include "trace.h"
  29#include "nvme.h"
  30
  31#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  32#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  33
  34#define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  35
  36/*
  37 * These can be higher, but we need to ensure that any command doesn't
  38 * require an sg allocation that needs more than a page of data.
  39 */
  40#define NVME_MAX_KB_SZ  4096
  41#define NVME_MAX_SEGS   127
  42
  43static int use_threaded_interrupts;
  44module_param(use_threaded_interrupts, int, 0);
  45
  46static bool use_cmb_sqes = true;
  47module_param(use_cmb_sqes, bool, 0444);
  48MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  49
  50static unsigned int max_host_mem_size_mb = 128;
  51module_param(max_host_mem_size_mb, uint, 0444);
  52MODULE_PARM_DESC(max_host_mem_size_mb,
  53        "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  54
  55static unsigned int sgl_threshold = SZ_32K;
  56module_param(sgl_threshold, uint, 0644);
  57MODULE_PARM_DESC(sgl_threshold,
  58                "Use SGLs when average request segment size is larger or equal to "
  59                "this size. Use 0 to disable SGLs.");
  60
  61static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  62static const struct kernel_param_ops io_queue_depth_ops = {
  63        .set = io_queue_depth_set,
  64        .get = param_get_int,
  65};
  66
  67static int io_queue_depth = 1024;
  68module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  69MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  70
  71static int write_queues;
  72module_param(write_queues, int, 0644);
  73MODULE_PARM_DESC(write_queues,
  74        "Number of queues to use for writes. If not set, reads and writes "
  75        "will share a queue set.");
  76
  77static int poll_queues;
  78module_param(poll_queues, int, 0644);
  79MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
  80
  81struct nvme_dev;
  82struct nvme_queue;
  83
  84static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  85static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
  86
  87/*
  88 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
  89 */
  90struct nvme_dev {
  91        struct nvme_queue *queues;
  92        struct blk_mq_tag_set tagset;
  93        struct blk_mq_tag_set admin_tagset;
  94        u32 __iomem *dbs;
  95        struct device *dev;
  96        struct dma_pool *prp_page_pool;
  97        struct dma_pool *prp_small_pool;
  98        unsigned online_queues;
  99        unsigned max_qid;
 100        unsigned io_queues[HCTX_MAX_TYPES];
 101        unsigned int num_vecs;
 102        int q_depth;
 103        u32 db_stride;
 104        void __iomem *bar;
 105        unsigned long bar_mapped_size;
 106        struct work_struct remove_work;
 107        struct mutex shutdown_lock;
 108        bool subsystem;
 109        u64 cmb_size;
 110        bool cmb_use_sqes;
 111        u32 cmbsz;
 112        u32 cmbloc;
 113        struct nvme_ctrl ctrl;
 114        u32 last_ps;
 115
 116        mempool_t *iod_mempool;
 117
 118        /* shadow doorbell buffer support: */
 119        u32 *dbbuf_dbs;
 120        dma_addr_t dbbuf_dbs_dma_addr;
 121        u32 *dbbuf_eis;
 122        dma_addr_t dbbuf_eis_dma_addr;
 123
 124        /* host memory buffer support: */
 125        u64 host_mem_size;
 126        u32 nr_host_mem_descs;
 127        dma_addr_t host_mem_descs_dma;
 128        struct nvme_host_mem_buf_desc *host_mem_descs;
 129        void **host_mem_desc_bufs;
 130};
 131
 132static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
 133{
 134        int n = 0, ret;
 135
 136        ret = kstrtoint(val, 10, &n);
 137        if (ret != 0 || n < 2)
 138                return -EINVAL;
 139
 140        return param_set_int(val, kp);
 141}
 142
 143static inline unsigned int sq_idx(unsigned int qid, u32 stride)
 144{
 145        return qid * 2 * stride;
 146}
 147
 148static inline unsigned int cq_idx(unsigned int qid, u32 stride)
 149{
 150        return (qid * 2 + 1) * stride;
 151}
 152
 153static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 154{
 155        return container_of(ctrl, struct nvme_dev, ctrl);
 156}
 157
 158/*
 159 * An NVM Express queue.  Each device has at least two (one for admin
 160 * commands and one for I/O commands).
 161 */
 162struct nvme_queue {
 163        struct nvme_dev *dev;
 164        spinlock_t sq_lock;
 165        struct nvme_command *sq_cmds;
 166         /* only used for poll queues: */
 167        spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
 168        volatile struct nvme_completion *cqes;
 169        struct blk_mq_tags **tags;
 170        dma_addr_t sq_dma_addr;
 171        dma_addr_t cq_dma_addr;
 172        u32 __iomem *q_db;
 173        u16 q_depth;
 174        u16 cq_vector;
 175        u16 sq_tail;
 176        u16 last_sq_tail;
 177        u16 cq_head;
 178        u16 last_cq_head;
 179        u16 qid;
 180        u8 cq_phase;
 181        unsigned long flags;
 182#define NVMEQ_ENABLED           0
 183#define NVMEQ_SQ_CMB            1
 184#define NVMEQ_DELETE_ERROR      2
 185#define NVMEQ_POLLED            3
 186        u32 *dbbuf_sq_db;
 187        u32 *dbbuf_cq_db;
 188        u32 *dbbuf_sq_ei;
 189        u32 *dbbuf_cq_ei;
 190        struct completion delete_done;
 191};
 192
 193/*
 194 * The nvme_iod describes the data in an I/O.
 195 *
 196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
 197 * to the actual struct scatterlist.
 198 */
 199struct nvme_iod {
 200        struct nvme_request req;
 201        struct nvme_queue *nvmeq;
 202        bool use_sgl;
 203        int aborted;
 204        int npages;             /* In the PRP list. 0 means small pool in use */
 205        int nents;              /* Used in scatterlist */
 206        dma_addr_t first_dma;
 207        unsigned int dma_len;   /* length of single DMA segment mapping */
 208        dma_addr_t meta_dma;
 209        struct scatterlist *sg;
 210};
 211
 212static unsigned int max_io_queues(void)
 213{
 214        return num_possible_cpus() + write_queues + poll_queues;
 215}
 216
 217static unsigned int max_queue_count(void)
 218{
 219        /* IO queues + admin queue */
 220        return 1 + max_io_queues();
 221}
 222
 223static inline unsigned int nvme_dbbuf_size(u32 stride)
 224{
 225        return (max_queue_count() * 8 * stride);
 226}
 227
 228static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
 229{
 230        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 231
 232        if (dev->dbbuf_dbs)
 233                return 0;
 234
 235        dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
 236                                            &dev->dbbuf_dbs_dma_addr,
 237                                            GFP_KERNEL);
 238        if (!dev->dbbuf_dbs)
 239                return -ENOMEM;
 240        dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
 241                                            &dev->dbbuf_eis_dma_addr,
 242                                            GFP_KERNEL);
 243        if (!dev->dbbuf_eis) {
 244                dma_free_coherent(dev->dev, mem_size,
 245                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 246                dev->dbbuf_dbs = NULL;
 247                return -ENOMEM;
 248        }
 249
 250        return 0;
 251}
 252
 253static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
 254{
 255        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 256
 257        if (dev->dbbuf_dbs) {
 258                dma_free_coherent(dev->dev, mem_size,
 259                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 260                dev->dbbuf_dbs = NULL;
 261        }
 262        if (dev->dbbuf_eis) {
 263                dma_free_coherent(dev->dev, mem_size,
 264                                  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
 265                dev->dbbuf_eis = NULL;
 266        }
 267}
 268
 269static void nvme_dbbuf_init(struct nvme_dev *dev,
 270                            struct nvme_queue *nvmeq, int qid)
 271{
 272        if (!dev->dbbuf_dbs || !qid)
 273                return;
 274
 275        nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
 276        nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
 277        nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
 278        nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
 279}
 280
 281static void nvme_dbbuf_set(struct nvme_dev *dev)
 282{
 283        struct nvme_command c;
 284
 285        if (!dev->dbbuf_dbs)
 286                return;
 287
 288        memset(&c, 0, sizeof(c));
 289        c.dbbuf.opcode = nvme_admin_dbbuf;
 290        c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
 291        c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
 292
 293        if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
 294                dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
 295                /* Free memory and continue on */
 296                nvme_dbbuf_dma_free(dev);
 297        }
 298}
 299
 300static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
 301{
 302        return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
 303}
 304
 305/* Update dbbuf and return true if an MMIO is required */
 306static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
 307                                              volatile u32 *dbbuf_ei)
 308{
 309        if (dbbuf_db) {
 310                u16 old_value;
 311
 312                /*
 313                 * Ensure that the queue is written before updating
 314                 * the doorbell in memory
 315                 */
 316                wmb();
 317
 318                old_value = *dbbuf_db;
 319                *dbbuf_db = value;
 320
 321                /*
 322                 * Ensure that the doorbell is updated before reading the event
 323                 * index from memory.  The controller needs to provide similar
 324                 * ordering to ensure the envent index is updated before reading
 325                 * the doorbell.
 326                 */
 327                mb();
 328
 329                if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
 330                        return false;
 331        }
 332
 333        return true;
 334}
 335
 336/*
 337 * Will slightly overestimate the number of pages needed.  This is OK
 338 * as it only leads to a small amount of wasted memory for the lifetime of
 339 * the I/O.
 340 */
 341static int nvme_npages(unsigned size, struct nvme_dev *dev)
 342{
 343        unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 344                                      dev->ctrl.page_size);
 345        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 346}
 347
 348/*
 349 * Calculates the number of pages needed for the SGL segments. For example a 4k
 350 * page can accommodate 256 SGL descriptors.
 351 */
 352static int nvme_pci_npages_sgl(unsigned int num_seg)
 353{
 354        return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
 355}
 356
 357static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
 358                unsigned int size, unsigned int nseg, bool use_sgl)
 359{
 360        size_t alloc_size;
 361
 362        if (use_sgl)
 363                alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
 364        else
 365                alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
 366
 367        return alloc_size + sizeof(struct scatterlist) * nseg;
 368}
 369
 370static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 371                                unsigned int hctx_idx)
 372{
 373        struct nvme_dev *dev = data;
 374        struct nvme_queue *nvmeq = &dev->queues[0];
 375
 376        WARN_ON(hctx_idx != 0);
 377        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 378        WARN_ON(nvmeq->tags);
 379
 380        hctx->driver_data = nvmeq;
 381        nvmeq->tags = &dev->admin_tagset.tags[0];
 382        return 0;
 383}
 384
 385static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 386{
 387        struct nvme_queue *nvmeq = hctx->driver_data;
 388
 389        nvmeq->tags = NULL;
 390}
 391
 392static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 393                          unsigned int hctx_idx)
 394{
 395        struct nvme_dev *dev = data;
 396        struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
 397
 398        if (!nvmeq->tags)
 399                nvmeq->tags = &dev->tagset.tags[hctx_idx];
 400
 401        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 402        hctx->driver_data = nvmeq;
 403        return 0;
 404}
 405
 406static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
 407                unsigned int hctx_idx, unsigned int numa_node)
 408{
 409        struct nvme_dev *dev = set->driver_data;
 410        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 411        int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
 412        struct nvme_queue *nvmeq = &dev->queues[queue_idx];
 413
 414        BUG_ON(!nvmeq);
 415        iod->nvmeq = nvmeq;
 416
 417        nvme_req(req)->ctrl = &dev->ctrl;
 418        return 0;
 419}
 420
 421static int queue_irq_offset(struct nvme_dev *dev)
 422{
 423        /* if we have more than 1 vec, admin queue offsets us by 1 */
 424        if (dev->num_vecs > 1)
 425                return 1;
 426
 427        return 0;
 428}
 429
 430static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 431{
 432        struct nvme_dev *dev = set->driver_data;
 433        int i, qoff, offset;
 434
 435        offset = queue_irq_offset(dev);
 436        for (i = 0, qoff = 0; i < set->nr_maps; i++) {
 437                struct blk_mq_queue_map *map = &set->map[i];
 438
 439                map->nr_queues = dev->io_queues[i];
 440                if (!map->nr_queues) {
 441                        BUG_ON(i == HCTX_TYPE_DEFAULT);
 442                        continue;
 443                }
 444
 445                /*
 446                 * The poll queue(s) doesn't have an IRQ (and hence IRQ
 447                 * affinity), so use the regular blk-mq cpu mapping
 448                 */
 449                map->queue_offset = qoff;
 450                if (i != HCTX_TYPE_POLL && offset)
 451                        blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
 452                else
 453                        blk_mq_map_queues(map);
 454                qoff += map->nr_queues;
 455                offset += map->nr_queues;
 456        }
 457
 458        return 0;
 459}
 460
 461/*
 462 * Write sq tail if we are asked to, or if the next command would wrap.
 463 */
 464static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
 465{
 466        if (!write_sq) {
 467                u16 next_tail = nvmeq->sq_tail + 1;
 468
 469                if (next_tail == nvmeq->q_depth)
 470                        next_tail = 0;
 471                if (next_tail != nvmeq->last_sq_tail)
 472                        return;
 473        }
 474
 475        if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
 476                        nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
 477                writel(nvmeq->sq_tail, nvmeq->q_db);
 478        nvmeq->last_sq_tail = nvmeq->sq_tail;
 479}
 480
 481/**
 482 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 483 * @nvmeq: The queue to use
 484 * @cmd: The command to send
 485 * @write_sq: whether to write to the SQ doorbell
 486 */
 487static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
 488                            bool write_sq)
 489{
 490        spin_lock(&nvmeq->sq_lock);
 491        memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
 492        if (++nvmeq->sq_tail == nvmeq->q_depth)
 493                nvmeq->sq_tail = 0;
 494        nvme_write_sq_db(nvmeq, write_sq);
 495        spin_unlock(&nvmeq->sq_lock);
 496}
 497
 498static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
 499{
 500        struct nvme_queue *nvmeq = hctx->driver_data;
 501
 502        spin_lock(&nvmeq->sq_lock);
 503        if (nvmeq->sq_tail != nvmeq->last_sq_tail)
 504                nvme_write_sq_db(nvmeq, true);
 505        spin_unlock(&nvmeq->sq_lock);
 506}
 507
 508static void **nvme_pci_iod_list(struct request *req)
 509{
 510        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 511        return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
 512}
 513
 514static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
 515{
 516        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 517        int nseg = blk_rq_nr_phys_segments(req);
 518        unsigned int avg_seg_size;
 519
 520        if (nseg == 0)
 521                return false;
 522
 523        avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
 524
 525        if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
 526                return false;
 527        if (!iod->nvmeq->qid)
 528                return false;
 529        if (!sgl_threshold || avg_seg_size < sgl_threshold)
 530                return false;
 531        return true;
 532}
 533
 534static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 535{
 536        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 537        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 538                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 539        const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
 540        dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
 541        int i;
 542
 543        if (iod->dma_len) {
 544                dma_unmap_page(dev->dev, dma_addr, iod->dma_len, dma_dir);
 545                return;
 546        }
 547
 548        WARN_ON_ONCE(!iod->nents);
 549
 550        /* P2PDMA requests do not need to be unmapped */
 551        if (!is_pci_p2pdma_page(sg_page(iod->sg)))
 552                dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
 553
 554
 555        if (iod->npages == 0)
 556                dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
 557                        dma_addr);
 558
 559        for (i = 0; i < iod->npages; i++) {
 560                void *addr = nvme_pci_iod_list(req)[i];
 561
 562                if (iod->use_sgl) {
 563                        struct nvme_sgl_desc *sg_list = addr;
 564
 565                        next_dma_addr =
 566                            le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
 567                } else {
 568                        __le64 *prp_list = addr;
 569
 570                        next_dma_addr = le64_to_cpu(prp_list[last_prp]);
 571                }
 572
 573                dma_pool_free(dev->prp_page_pool, addr, dma_addr);
 574                dma_addr = next_dma_addr;
 575        }
 576
 577        mempool_free(iod->sg, dev->iod_mempool);
 578}
 579
 580static void nvme_print_sgl(struct scatterlist *sgl, int nents)
 581{
 582        int i;
 583        struct scatterlist *sg;
 584
 585        for_each_sg(sgl, sg, nents, i) {
 586                dma_addr_t phys = sg_phys(sg);
 587                pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
 588                        "dma_address:%pad dma_length:%d\n",
 589                        i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
 590                        sg_dma_len(sg));
 591        }
 592}
 593
 594static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
 595                struct request *req, struct nvme_rw_command *cmnd)
 596{
 597        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 598        struct dma_pool *pool;
 599        int length = blk_rq_payload_bytes(req);
 600        struct scatterlist *sg = iod->sg;
 601        int dma_len = sg_dma_len(sg);
 602        u64 dma_addr = sg_dma_address(sg);
 603        u32 page_size = dev->ctrl.page_size;
 604        int offset = dma_addr & (page_size - 1);
 605        __le64 *prp_list;
 606        void **list = nvme_pci_iod_list(req);
 607        dma_addr_t prp_dma;
 608        int nprps, i;
 609
 610        length -= (page_size - offset);
 611        if (length <= 0) {
 612                iod->first_dma = 0;
 613                goto done;
 614        }
 615
 616        dma_len -= (page_size - offset);
 617        if (dma_len) {
 618                dma_addr += (page_size - offset);
 619        } else {
 620                sg = sg_next(sg);
 621                dma_addr = sg_dma_address(sg);
 622                dma_len = sg_dma_len(sg);
 623        }
 624
 625        if (length <= page_size) {
 626                iod->first_dma = dma_addr;
 627                goto done;
 628        }
 629
 630        nprps = DIV_ROUND_UP(length, page_size);
 631        if (nprps <= (256 / 8)) {
 632                pool = dev->prp_small_pool;
 633                iod->npages = 0;
 634        } else {
 635                pool = dev->prp_page_pool;
 636                iod->npages = 1;
 637        }
 638
 639        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 640        if (!prp_list) {
 641                iod->first_dma = dma_addr;
 642                iod->npages = -1;
 643                return BLK_STS_RESOURCE;
 644        }
 645        list[0] = prp_list;
 646        iod->first_dma = prp_dma;
 647        i = 0;
 648        for (;;) {
 649                if (i == page_size >> 3) {
 650                        __le64 *old_prp_list = prp_list;
 651                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 652                        if (!prp_list)
 653                                return BLK_STS_RESOURCE;
 654                        list[iod->npages++] = prp_list;
 655                        prp_list[0] = old_prp_list[i - 1];
 656                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 657                        i = 1;
 658                }
 659                prp_list[i++] = cpu_to_le64(dma_addr);
 660                dma_len -= page_size;
 661                dma_addr += page_size;
 662                length -= page_size;
 663                if (length <= 0)
 664                        break;
 665                if (dma_len > 0)
 666                        continue;
 667                if (unlikely(dma_len < 0))
 668                        goto bad_sgl;
 669                sg = sg_next(sg);
 670                dma_addr = sg_dma_address(sg);
 671                dma_len = sg_dma_len(sg);
 672        }
 673
 674done:
 675        cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 676        cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
 677
 678        return BLK_STS_OK;
 679
 680 bad_sgl:
 681        WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
 682                        "Invalid SGL for payload:%d nents:%d\n",
 683                        blk_rq_payload_bytes(req), iod->nents);
 684        return BLK_STS_IOERR;
 685}
 686
 687static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
 688                struct scatterlist *sg)
 689{
 690        sge->addr = cpu_to_le64(sg_dma_address(sg));
 691        sge->length = cpu_to_le32(sg_dma_len(sg));
 692        sge->type = NVME_SGL_FMT_DATA_DESC << 4;
 693}
 694
 695static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
 696                dma_addr_t dma_addr, int entries)
 697{
 698        sge->addr = cpu_to_le64(dma_addr);
 699        if (entries < SGES_PER_PAGE) {
 700                sge->length = cpu_to_le32(entries * sizeof(*sge));
 701                sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
 702        } else {
 703                sge->length = cpu_to_le32(PAGE_SIZE);
 704                sge->type = NVME_SGL_FMT_SEG_DESC << 4;
 705        }
 706}
 707
 708static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
 709                struct request *req, struct nvme_rw_command *cmd, int entries)
 710{
 711        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 712        struct dma_pool *pool;
 713        struct nvme_sgl_desc *sg_list;
 714        struct scatterlist *sg = iod->sg;
 715        dma_addr_t sgl_dma;
 716        int i = 0;
 717
 718        /* setting the transfer type as SGL */
 719        cmd->flags = NVME_CMD_SGL_METABUF;
 720
 721        if (entries == 1) {
 722                nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
 723                return BLK_STS_OK;
 724        }
 725
 726        if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
 727                pool = dev->prp_small_pool;
 728                iod->npages = 0;
 729        } else {
 730                pool = dev->prp_page_pool;
 731                iod->npages = 1;
 732        }
 733
 734        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 735        if (!sg_list) {
 736                iod->npages = -1;
 737                return BLK_STS_RESOURCE;
 738        }
 739
 740        nvme_pci_iod_list(req)[0] = sg_list;
 741        iod->first_dma = sgl_dma;
 742
 743        nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
 744
 745        do {
 746                if (i == SGES_PER_PAGE) {
 747                        struct nvme_sgl_desc *old_sg_desc = sg_list;
 748                        struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
 749
 750                        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 751                        if (!sg_list)
 752                                return BLK_STS_RESOURCE;
 753
 754                        i = 0;
 755                        nvme_pci_iod_list(req)[iod->npages++] = sg_list;
 756                        sg_list[i++] = *link;
 757                        nvme_pci_sgl_set_seg(link, sgl_dma, entries);
 758                }
 759
 760                nvme_pci_sgl_set_data(&sg_list[i++], sg);
 761                sg = sg_next(sg);
 762        } while (--entries > 0);
 763
 764        return BLK_STS_OK;
 765}
 766
 767static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
 768                struct request *req, struct nvme_rw_command *cmnd,
 769                struct bio_vec *bv)
 770{
 771        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 772        unsigned int first_prp_len = dev->ctrl.page_size - bv->bv_offset;
 773
 774        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 775        if (dma_mapping_error(dev->dev, iod->first_dma))
 776                return BLK_STS_RESOURCE;
 777        iod->dma_len = bv->bv_len;
 778
 779        cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
 780        if (bv->bv_len > first_prp_len)
 781                cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
 782        return 0;
 783}
 784
 785static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
 786                struct request *req, struct nvme_rw_command *cmnd,
 787                struct bio_vec *bv)
 788{
 789        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 790
 791        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 792        if (dma_mapping_error(dev->dev, iod->first_dma))
 793                return BLK_STS_RESOURCE;
 794        iod->dma_len = bv->bv_len;
 795
 796        cmnd->flags = NVME_CMD_SGL_METABUF;
 797        cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
 798        cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
 799        cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
 800        return 0;
 801}
 802
 803static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
 804                struct nvme_command *cmnd)
 805{
 806        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 807        blk_status_t ret = BLK_STS_RESOURCE;
 808        int nr_mapped;
 809
 810        if (blk_rq_nr_phys_segments(req) == 1) {
 811                struct bio_vec bv = req_bvec(req);
 812
 813                if (!is_pci_p2pdma_page(bv.bv_page)) {
 814                        if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
 815                                return nvme_setup_prp_simple(dev, req,
 816                                                             &cmnd->rw, &bv);
 817
 818                        if (iod->nvmeq->qid &&
 819                            dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
 820                                return nvme_setup_sgl_simple(dev, req,
 821                                                             &cmnd->rw, &bv);
 822                }
 823        }
 824
 825        iod->dma_len = 0;
 826        iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
 827        if (!iod->sg)
 828                return BLK_STS_RESOURCE;
 829        sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
 830        iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
 831        if (!iod->nents)
 832                goto out;
 833
 834        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 835                nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
 836                                              rq_dma_dir(req));
 837        else
 838                nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
 839                                             rq_dma_dir(req), DMA_ATTR_NO_WARN);
 840        if (!nr_mapped)
 841                goto out;
 842
 843        iod->use_sgl = nvme_pci_use_sgls(dev, req);
 844        if (iod->use_sgl)
 845                ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
 846        else
 847                ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
 848out:
 849        if (ret != BLK_STS_OK)
 850                nvme_unmap_data(dev, req);
 851        return ret;
 852}
 853
 854static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
 855                struct nvme_command *cmnd)
 856{
 857        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 858
 859        iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
 860                        rq_dma_dir(req), 0);
 861        if (dma_mapping_error(dev->dev, iod->meta_dma))
 862                return BLK_STS_IOERR;
 863        cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
 864        return 0;
 865}
 866
 867/*
 868 * NOTE: ns is NULL when called on the admin queue.
 869 */
 870static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 871                         const struct blk_mq_queue_data *bd)
 872{
 873        struct nvme_ns *ns = hctx->queue->queuedata;
 874        struct nvme_queue *nvmeq = hctx->driver_data;
 875        struct nvme_dev *dev = nvmeq->dev;
 876        struct request *req = bd->rq;
 877        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 878        struct nvme_command cmnd;
 879        blk_status_t ret;
 880
 881        iod->aborted = 0;
 882        iod->npages = -1;
 883        iod->nents = 0;
 884
 885        /*
 886         * We should not need to do this, but we're still using this to
 887         * ensure we can drain requests on a dying queue.
 888         */
 889        if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
 890                return BLK_STS_IOERR;
 891
 892        ret = nvme_setup_cmd(ns, req, &cmnd);
 893        if (ret)
 894                return ret;
 895
 896        if (blk_rq_nr_phys_segments(req)) {
 897                ret = nvme_map_data(dev, req, &cmnd);
 898                if (ret)
 899                        goto out_free_cmd;
 900        }
 901
 902        if (blk_integrity_rq(req)) {
 903                ret = nvme_map_metadata(dev, req, &cmnd);
 904                if (ret)
 905                        goto out_unmap_data;
 906        }
 907
 908        blk_mq_start_request(req);
 909        nvme_submit_cmd(nvmeq, &cmnd, bd->last);
 910        return BLK_STS_OK;
 911out_unmap_data:
 912        nvme_unmap_data(dev, req);
 913out_free_cmd:
 914        nvme_cleanup_cmd(req);
 915        return ret;
 916}
 917
 918static void nvme_pci_complete_rq(struct request *req)
 919{
 920        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 921        struct nvme_dev *dev = iod->nvmeq->dev;
 922
 923        nvme_cleanup_cmd(req);
 924        if (blk_integrity_rq(req))
 925                dma_unmap_page(dev->dev, iod->meta_dma,
 926                               rq_integrity_vec(req)->bv_len, rq_data_dir(req));
 927        if (blk_rq_nr_phys_segments(req))
 928                nvme_unmap_data(dev, req);
 929        nvme_complete_rq(req);
 930}
 931
 932/* We read the CQE phase first to check if the rest of the entry is valid */
 933static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
 934{
 935        return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
 936                        nvmeq->cq_phase;
 937}
 938
 939static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
 940{
 941        u16 head = nvmeq->cq_head;
 942
 943        if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
 944                                              nvmeq->dbbuf_cq_ei))
 945                writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 946}
 947
 948static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
 949{
 950        volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
 951        struct request *req;
 952
 953        if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
 954                dev_warn(nvmeq->dev->ctrl.device,
 955                        "invalid id %d completed on queue %d\n",
 956                        cqe->command_id, le16_to_cpu(cqe->sq_id));
 957                return;
 958        }
 959
 960        /*
 961         * AEN requests are special as they don't time out and can
 962         * survive any kind of queue freeze and often don't respond to
 963         * aborts.  We don't even bother to allocate a struct request
 964         * for them but rather special case them here.
 965         */
 966        if (unlikely(nvmeq->qid == 0 &&
 967                        cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
 968                nvme_complete_async_event(&nvmeq->dev->ctrl,
 969                                cqe->status, &cqe->result);
 970                return;
 971        }
 972
 973        req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
 974        trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
 975        nvme_end_request(req, cqe->status, cqe->result);
 976}
 977
 978static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
 979{
 980        while (start != end) {
 981                nvme_handle_cqe(nvmeq, start);
 982                if (++start == nvmeq->q_depth)
 983                        start = 0;
 984        }
 985}
 986
 987static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
 988{
 989        if (nvmeq->cq_head == nvmeq->q_depth - 1) {
 990                nvmeq->cq_head = 0;
 991                nvmeq->cq_phase = !nvmeq->cq_phase;
 992        } else {
 993                nvmeq->cq_head++;
 994        }
 995}
 996
 997static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
 998                                  u16 *end, unsigned int tag)
 999{
1000        int found = 0;
1001
1002        *start = nvmeq->cq_head;
1003        while (nvme_cqe_pending(nvmeq)) {
1004                if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1005                        found++;
1006                nvme_update_cq_head(nvmeq);
1007        }
1008        *end = nvmeq->cq_head;
1009
1010        if (*start != *end)
1011                nvme_ring_cq_doorbell(nvmeq);
1012        return found;
1013}
1014
1015static irqreturn_t nvme_irq(int irq, void *data)
1016{
1017        struct nvme_queue *nvmeq = data;
1018        irqreturn_t ret = IRQ_NONE;
1019        u16 start, end;
1020
1021        /*
1022         * The rmb/wmb pair ensures we see all updates from a previous run of
1023         * the irq handler, even if that was on another CPU.
1024         */
1025        rmb();
1026        if (nvmeq->cq_head != nvmeq->last_cq_head)
1027                ret = IRQ_HANDLED;
1028        nvme_process_cq(nvmeq, &start, &end, -1);
1029        nvmeq->last_cq_head = nvmeq->cq_head;
1030        wmb();
1031
1032        if (start != end) {
1033                nvme_complete_cqes(nvmeq, start, end);
1034                return IRQ_HANDLED;
1035        }
1036
1037        return ret;
1038}
1039
1040static irqreturn_t nvme_irq_check(int irq, void *data)
1041{
1042        struct nvme_queue *nvmeq = data;
1043        if (nvme_cqe_pending(nvmeq))
1044                return IRQ_WAKE_THREAD;
1045        return IRQ_NONE;
1046}
1047
1048/*
1049 * Poll for completions any queue, including those not dedicated to polling.
1050 * Can be called from any context.
1051 */
1052static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1053{
1054        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1055        u16 start, end;
1056        int found;
1057
1058        /*
1059         * For a poll queue we need to protect against the polling thread
1060         * using the CQ lock.  For normal interrupt driven threads we have
1061         * to disable the interrupt to avoid racing with it.
1062         */
1063        if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1064                spin_lock(&nvmeq->cq_poll_lock);
1065                found = nvme_process_cq(nvmeq, &start, &end, tag);
1066                spin_unlock(&nvmeq->cq_poll_lock);
1067        } else {
1068                disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1069                found = nvme_process_cq(nvmeq, &start, &end, tag);
1070                enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1071        }
1072
1073        nvme_complete_cqes(nvmeq, start, end);
1074        return found;
1075}
1076
1077static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1078{
1079        struct nvme_queue *nvmeq = hctx->driver_data;
1080        u16 start, end;
1081        bool found;
1082
1083        if (!nvme_cqe_pending(nvmeq))
1084                return 0;
1085
1086        spin_lock(&nvmeq->cq_poll_lock);
1087        found = nvme_process_cq(nvmeq, &start, &end, -1);
1088        spin_unlock(&nvmeq->cq_poll_lock);
1089
1090        nvme_complete_cqes(nvmeq, start, end);
1091        return found;
1092}
1093
1094static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1095{
1096        struct nvme_dev *dev = to_nvme_dev(ctrl);
1097        struct nvme_queue *nvmeq = &dev->queues[0];
1098        struct nvme_command c;
1099
1100        memset(&c, 0, sizeof(c));
1101        c.common.opcode = nvme_admin_async_event;
1102        c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1103        nvme_submit_cmd(nvmeq, &c, true);
1104}
1105
1106static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1107{
1108        struct nvme_command c;
1109
1110        memset(&c, 0, sizeof(c));
1111        c.delete_queue.opcode = opcode;
1112        c.delete_queue.qid = cpu_to_le16(id);
1113
1114        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1115}
1116
1117static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1118                struct nvme_queue *nvmeq, s16 vector)
1119{
1120        struct nvme_command c;
1121        int flags = NVME_QUEUE_PHYS_CONTIG;
1122
1123        if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1124                flags |= NVME_CQ_IRQ_ENABLED;
1125
1126        /*
1127         * Note: we (ab)use the fact that the prp fields survive if no data
1128         * is attached to the request.
1129         */
1130        memset(&c, 0, sizeof(c));
1131        c.create_cq.opcode = nvme_admin_create_cq;
1132        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1133        c.create_cq.cqid = cpu_to_le16(qid);
1134        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1135        c.create_cq.cq_flags = cpu_to_le16(flags);
1136        c.create_cq.irq_vector = cpu_to_le16(vector);
1137
1138        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1139}
1140
1141static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1142                                                struct nvme_queue *nvmeq)
1143{
1144        struct nvme_ctrl *ctrl = &dev->ctrl;
1145        struct nvme_command c;
1146        int flags = NVME_QUEUE_PHYS_CONTIG;
1147
1148        /*
1149         * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1150         * set. Since URGENT priority is zeroes, it makes all queues
1151         * URGENT.
1152         */
1153        if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1154                flags |= NVME_SQ_PRIO_MEDIUM;
1155
1156        /*
1157         * Note: we (ab)use the fact that the prp fields survive if no data
1158         * is attached to the request.
1159         */
1160        memset(&c, 0, sizeof(c));
1161        c.create_sq.opcode = nvme_admin_create_sq;
1162        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1163        c.create_sq.sqid = cpu_to_le16(qid);
1164        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1165        c.create_sq.sq_flags = cpu_to_le16(flags);
1166        c.create_sq.cqid = cpu_to_le16(qid);
1167
1168        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1169}
1170
1171static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1172{
1173        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1174}
1175
1176static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1177{
1178        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1179}
1180
1181static void abort_endio(struct request *req, blk_status_t error)
1182{
1183        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1184        struct nvme_queue *nvmeq = iod->nvmeq;
1185
1186        dev_warn(nvmeq->dev->ctrl.device,
1187                 "Abort status: 0x%x", nvme_req(req)->status);
1188        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1189        blk_mq_free_request(req);
1190}
1191
1192static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1193{
1194
1195        /* If true, indicates loss of adapter communication, possibly by a
1196         * NVMe Subsystem reset.
1197         */
1198        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1199
1200        /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1201        switch (dev->ctrl.state) {
1202        case NVME_CTRL_RESETTING:
1203        case NVME_CTRL_CONNECTING:
1204                return false;
1205        default:
1206                break;
1207        }
1208
1209        /* We shouldn't reset unless the controller is on fatal error state
1210         * _or_ if we lost the communication with it.
1211         */
1212        if (!(csts & NVME_CSTS_CFS) && !nssro)
1213                return false;
1214
1215        return true;
1216}
1217
1218static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1219{
1220        /* Read a config register to help see what died. */
1221        u16 pci_status;
1222        int result;
1223
1224        result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1225                                      &pci_status);
1226        if (result == PCIBIOS_SUCCESSFUL)
1227                dev_warn(dev->ctrl.device,
1228                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1229                         csts, pci_status);
1230        else
1231                dev_warn(dev->ctrl.device,
1232                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1233                         csts, result);
1234}
1235
1236static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1237{
1238        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1239        struct nvme_queue *nvmeq = iod->nvmeq;
1240        struct nvme_dev *dev = nvmeq->dev;
1241        struct request *abort_req;
1242        struct nvme_command cmd;
1243        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1244
1245        /* If PCI error recovery process is happening, we cannot reset or
1246         * the recovery mechanism will surely fail.
1247         */
1248        mb();
1249        if (pci_channel_offline(to_pci_dev(dev->dev)))
1250                return BLK_EH_RESET_TIMER;
1251
1252        /*
1253         * Reset immediately if the controller is failed
1254         */
1255        if (nvme_should_reset(dev, csts)) {
1256                nvme_warn_reset(dev, csts);
1257                nvme_dev_disable(dev, false);
1258                nvme_reset_ctrl(&dev->ctrl);
1259                return BLK_EH_DONE;
1260        }
1261
1262        /*
1263         * Did we miss an interrupt?
1264         */
1265        if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1266                dev_warn(dev->ctrl.device,
1267                         "I/O %d QID %d timeout, completion polled\n",
1268                         req->tag, nvmeq->qid);
1269                return BLK_EH_DONE;
1270        }
1271
1272        /*
1273         * Shutdown immediately if controller times out while starting. The
1274         * reset work will see the pci device disabled when it gets the forced
1275         * cancellation error. All outstanding requests are completed on
1276         * shutdown, so we return BLK_EH_DONE.
1277         */
1278        switch (dev->ctrl.state) {
1279        case NVME_CTRL_CONNECTING:
1280                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1281                /* fall through */
1282        case NVME_CTRL_DELETING:
1283                dev_warn_ratelimited(dev->ctrl.device,
1284                         "I/O %d QID %d timeout, disable controller\n",
1285                         req->tag, nvmeq->qid);
1286                nvme_dev_disable(dev, true);
1287                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1288                return BLK_EH_DONE;
1289        case NVME_CTRL_RESETTING:
1290                return BLK_EH_RESET_TIMER;
1291        default:
1292                break;
1293        }
1294
1295        /*
1296         * Shutdown the controller immediately and schedule a reset if the
1297         * command was already aborted once before and still hasn't been
1298         * returned to the driver, or if this is the admin queue.
1299         */
1300        if (!nvmeq->qid || iod->aborted) {
1301                dev_warn(dev->ctrl.device,
1302                         "I/O %d QID %d timeout, reset controller\n",
1303                         req->tag, nvmeq->qid);
1304                nvme_dev_disable(dev, false);
1305                nvme_reset_ctrl(&dev->ctrl);
1306
1307                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1308                return BLK_EH_DONE;
1309        }
1310
1311        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1312                atomic_inc(&dev->ctrl.abort_limit);
1313                return BLK_EH_RESET_TIMER;
1314        }
1315        iod->aborted = 1;
1316
1317        memset(&cmd, 0, sizeof(cmd));
1318        cmd.abort.opcode = nvme_admin_abort_cmd;
1319        cmd.abort.cid = req->tag;
1320        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1321
1322        dev_warn(nvmeq->dev->ctrl.device,
1323                "I/O %d QID %d timeout, aborting\n",
1324                 req->tag, nvmeq->qid);
1325
1326        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1327                        BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1328        if (IS_ERR(abort_req)) {
1329                atomic_inc(&dev->ctrl.abort_limit);
1330                return BLK_EH_RESET_TIMER;
1331        }
1332
1333        abort_req->timeout = ADMIN_TIMEOUT;
1334        abort_req->end_io_data = NULL;
1335        blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1336
1337        /*
1338         * The aborted req will be completed on receiving the abort req.
1339         * We enable the timer again. If hit twice, it'll cause a device reset,
1340         * as the device then is in a faulty state.
1341         */
1342        return BLK_EH_RESET_TIMER;
1343}
1344
1345static void nvme_free_queue(struct nvme_queue *nvmeq)
1346{
1347        dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth),
1348                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1349        if (!nvmeq->sq_cmds)
1350                return;
1351
1352        if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1353                pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1354                                nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1355        } else {
1356                dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth),
1357                                nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1358        }
1359}
1360
1361static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1362{
1363        int i;
1364
1365        for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1366                dev->ctrl.queue_count--;
1367                nvme_free_queue(&dev->queues[i]);
1368        }
1369}
1370
1371/**
1372 * nvme_suspend_queue - put queue into suspended state
1373 * @nvmeq: queue to suspend
1374 */
1375static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1376{
1377        if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1378                return 1;
1379
1380        /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1381        mb();
1382
1383        nvmeq->dev->online_queues--;
1384        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1385                blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1386        if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1387                pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1388        return 0;
1389}
1390
1391static void nvme_suspend_io_queues(struct nvme_dev *dev)
1392{
1393        int i;
1394
1395        for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1396                nvme_suspend_queue(&dev->queues[i]);
1397}
1398
1399static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1400{
1401        struct nvme_queue *nvmeq = &dev->queues[0];
1402
1403        if (shutdown)
1404                nvme_shutdown_ctrl(&dev->ctrl);
1405        else
1406                nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1407
1408        nvme_poll_irqdisable(nvmeq, -1);
1409}
1410
1411static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1412                                int entry_size)
1413{
1414        int q_depth = dev->q_depth;
1415        unsigned q_size_aligned = roundup(q_depth * entry_size,
1416                                          dev->ctrl.page_size);
1417
1418        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1419                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1420                mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1421                q_depth = div_u64(mem_per_q, entry_size);
1422
1423                /*
1424                 * Ensure the reduced q_depth is above some threshold where it
1425                 * would be better to map queues in system memory with the
1426                 * original depth
1427                 */
1428                if (q_depth < 64)
1429                        return -ENOMEM;
1430        }
1431
1432        return q_depth;
1433}
1434
1435static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1436                                int qid, int depth)
1437{
1438        struct pci_dev *pdev = to_pci_dev(dev->dev);
1439
1440        if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1441                nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1442                if (nvmeq->sq_cmds) {
1443                        nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1444                                                        nvmeq->sq_cmds);
1445                        if (nvmeq->sq_dma_addr) {
1446                                set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1447                                return 0;
1448                        }
1449
1450                        pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(depth));
1451                }
1452        }
1453
1454        nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1455                                &nvmeq->sq_dma_addr, GFP_KERNEL);
1456        if (!nvmeq->sq_cmds)
1457                return -ENOMEM;
1458        return 0;
1459}
1460
1461static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1462{
1463        struct nvme_queue *nvmeq = &dev->queues[qid];
1464
1465        if (dev->ctrl.queue_count > qid)
1466                return 0;
1467
1468        nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1469                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1470        if (!nvmeq->cqes)
1471                goto free_nvmeq;
1472
1473        if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1474                goto free_cqdma;
1475
1476        nvmeq->dev = dev;
1477        spin_lock_init(&nvmeq->sq_lock);
1478        spin_lock_init(&nvmeq->cq_poll_lock);
1479        nvmeq->cq_head = 0;
1480        nvmeq->cq_phase = 1;
1481        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1482        nvmeq->q_depth = depth;
1483        nvmeq->qid = qid;
1484        dev->ctrl.queue_count++;
1485
1486        return 0;
1487
1488 free_cqdma:
1489        dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1490                                                        nvmeq->cq_dma_addr);
1491 free_nvmeq:
1492        return -ENOMEM;
1493}
1494
1495static int queue_request_irq(struct nvme_queue *nvmeq)
1496{
1497        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1498        int nr = nvmeq->dev->ctrl.instance;
1499
1500        if (use_threaded_interrupts) {
1501                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1502                                nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1503        } else {
1504                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1505                                NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1506        }
1507}
1508
1509static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1510{
1511        struct nvme_dev *dev = nvmeq->dev;
1512
1513        nvmeq->sq_tail = 0;
1514        nvmeq->last_sq_tail = 0;
1515        nvmeq->cq_head = 0;
1516        nvmeq->cq_phase = 1;
1517        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1518        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1519        nvme_dbbuf_init(dev, nvmeq, qid);
1520        dev->online_queues++;
1521        wmb(); /* ensure the first interrupt sees the initialization */
1522}
1523
1524static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1525{
1526        struct nvme_dev *dev = nvmeq->dev;
1527        int result;
1528        u16 vector = 0;
1529
1530        clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1531
1532        /*
1533         * A queue's vector matches the queue identifier unless the controller
1534         * has only one vector available.
1535         */
1536        if (!polled)
1537                vector = dev->num_vecs == 1 ? 0 : qid;
1538        else
1539                set_bit(NVMEQ_POLLED, &nvmeq->flags);
1540
1541        result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1542        if (result)
1543                return result;
1544
1545        result = adapter_alloc_sq(dev, qid, nvmeq);
1546        if (result < 0)
1547                return result;
1548        else if (result)
1549                goto release_cq;
1550
1551        nvmeq->cq_vector = vector;
1552        nvme_init_queue(nvmeq, qid);
1553
1554        if (!polled) {
1555                nvmeq->cq_vector = vector;
1556                result = queue_request_irq(nvmeq);
1557                if (result < 0)
1558                        goto release_sq;
1559        }
1560
1561        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1562        return result;
1563
1564release_sq:
1565        dev->online_queues--;
1566        adapter_delete_sq(dev, qid);
1567release_cq:
1568        adapter_delete_cq(dev, qid);
1569        return result;
1570}
1571
1572static const struct blk_mq_ops nvme_mq_admin_ops = {
1573        .queue_rq       = nvme_queue_rq,
1574        .complete       = nvme_pci_complete_rq,
1575        .init_hctx      = nvme_admin_init_hctx,
1576        .exit_hctx      = nvme_admin_exit_hctx,
1577        .init_request   = nvme_init_request,
1578        .timeout        = nvme_timeout,
1579};
1580
1581static const struct blk_mq_ops nvme_mq_ops = {
1582        .queue_rq       = nvme_queue_rq,
1583        .complete       = nvme_pci_complete_rq,
1584        .commit_rqs     = nvme_commit_rqs,
1585        .init_hctx      = nvme_init_hctx,
1586        .init_request   = nvme_init_request,
1587        .map_queues     = nvme_pci_map_queues,
1588        .timeout        = nvme_timeout,
1589        .poll           = nvme_poll,
1590};
1591
1592static void nvme_dev_remove_admin(struct nvme_dev *dev)
1593{
1594        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1595                /*
1596                 * If the controller was reset during removal, it's possible
1597                 * user requests may be waiting on a stopped queue. Start the
1598                 * queue to flush these to completion.
1599                 */
1600                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1601                blk_cleanup_queue(dev->ctrl.admin_q);
1602                blk_mq_free_tag_set(&dev->admin_tagset);
1603        }
1604}
1605
1606static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1607{
1608        if (!dev->ctrl.admin_q) {
1609                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1610                dev->admin_tagset.nr_hw_queues = 1;
1611
1612                dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1613                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1614                dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1615                dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1616                dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1617                dev->admin_tagset.driver_data = dev;
1618
1619                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1620                        return -ENOMEM;
1621                dev->ctrl.admin_tagset = &dev->admin_tagset;
1622
1623                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1624                if (IS_ERR(dev->ctrl.admin_q)) {
1625                        blk_mq_free_tag_set(&dev->admin_tagset);
1626                        return -ENOMEM;
1627                }
1628                if (!blk_get_queue(dev->ctrl.admin_q)) {
1629                        nvme_dev_remove_admin(dev);
1630                        dev->ctrl.admin_q = NULL;
1631                        return -ENODEV;
1632                }
1633        } else
1634                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1635
1636        return 0;
1637}
1638
1639static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1640{
1641        return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1642}
1643
1644static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1645{
1646        struct pci_dev *pdev = to_pci_dev(dev->dev);
1647
1648        if (size <= dev->bar_mapped_size)
1649                return 0;
1650        if (size > pci_resource_len(pdev, 0))
1651                return -ENOMEM;
1652        if (dev->bar)
1653                iounmap(dev->bar);
1654        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1655        if (!dev->bar) {
1656                dev->bar_mapped_size = 0;
1657                return -ENOMEM;
1658        }
1659        dev->bar_mapped_size = size;
1660        dev->dbs = dev->bar + NVME_REG_DBS;
1661
1662        return 0;
1663}
1664
1665static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1666{
1667        int result;
1668        u32 aqa;
1669        struct nvme_queue *nvmeq;
1670
1671        result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1672        if (result < 0)
1673                return result;
1674
1675        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1676                                NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1677
1678        if (dev->subsystem &&
1679            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1680                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1681
1682        result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1683        if (result < 0)
1684                return result;
1685
1686        result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1687        if (result)
1688                return result;
1689
1690        nvmeq = &dev->queues[0];
1691        aqa = nvmeq->q_depth - 1;
1692        aqa |= aqa << 16;
1693
1694        writel(aqa, dev->bar + NVME_REG_AQA);
1695        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1696        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1697
1698        result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1699        if (result)
1700                return result;
1701
1702        nvmeq->cq_vector = 0;
1703        nvme_init_queue(nvmeq, 0);
1704        result = queue_request_irq(nvmeq);
1705        if (result) {
1706                dev->online_queues--;
1707                return result;
1708        }
1709
1710        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1711        return result;
1712}
1713
1714static int nvme_create_io_queues(struct nvme_dev *dev)
1715{
1716        unsigned i, max, rw_queues;
1717        int ret = 0;
1718
1719        for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1720                if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1721                        ret = -ENOMEM;
1722                        break;
1723                }
1724        }
1725
1726        max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1727        if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1728                rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1729                                dev->io_queues[HCTX_TYPE_READ];
1730        } else {
1731                rw_queues = max;
1732        }
1733
1734        for (i = dev->online_queues; i <= max; i++) {
1735                bool polled = i > rw_queues;
1736
1737                ret = nvme_create_queue(&dev->queues[i], i, polled);
1738                if (ret)
1739                        break;
1740        }
1741
1742        /*
1743         * Ignore failing Create SQ/CQ commands, we can continue with less
1744         * than the desired amount of queues, and even a controller without
1745         * I/O queues can still be used to issue admin commands.  This might
1746         * be useful to upgrade a buggy firmware for example.
1747         */
1748        return ret >= 0 ? 0 : ret;
1749}
1750
1751static ssize_t nvme_cmb_show(struct device *dev,
1752                             struct device_attribute *attr,
1753                             char *buf)
1754{
1755        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1756
1757        return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1758                       ndev->cmbloc, ndev->cmbsz);
1759}
1760static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1761
1762static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1763{
1764        u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1765
1766        return 1ULL << (12 + 4 * szu);
1767}
1768
1769static u32 nvme_cmb_size(struct nvme_dev *dev)
1770{
1771        return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1772}
1773
1774static void nvme_map_cmb(struct nvme_dev *dev)
1775{
1776        u64 size, offset;
1777        resource_size_t bar_size;
1778        struct pci_dev *pdev = to_pci_dev(dev->dev);
1779        int bar;
1780
1781        if (dev->cmb_size)
1782                return;
1783
1784        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1785        if (!dev->cmbsz)
1786                return;
1787        dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1788
1789        size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1790        offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1791        bar = NVME_CMB_BIR(dev->cmbloc);
1792        bar_size = pci_resource_len(pdev, bar);
1793
1794        if (offset > bar_size)
1795                return;
1796
1797        /*
1798         * Controllers may support a CMB size larger than their BAR,
1799         * for example, due to being behind a bridge. Reduce the CMB to
1800         * the reported size of the BAR
1801         */
1802        if (size > bar_size - offset)
1803                size = bar_size - offset;
1804
1805        if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1806                dev_warn(dev->ctrl.device,
1807                         "failed to register the CMB\n");
1808                return;
1809        }
1810
1811        dev->cmb_size = size;
1812        dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1813
1814        if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1815                        (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1816                pci_p2pmem_publish(pdev, true);
1817
1818        if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1819                                    &dev_attr_cmb.attr, NULL))
1820                dev_warn(dev->ctrl.device,
1821                         "failed to add sysfs attribute for CMB\n");
1822}
1823
1824static inline void nvme_release_cmb(struct nvme_dev *dev)
1825{
1826        if (dev->cmb_size) {
1827                sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1828                                             &dev_attr_cmb.attr, NULL);
1829                dev->cmb_size = 0;
1830        }
1831}
1832
1833static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1834{
1835        u64 dma_addr = dev->host_mem_descs_dma;
1836        struct nvme_command c;
1837        int ret;
1838
1839        memset(&c, 0, sizeof(c));
1840        c.features.opcode       = nvme_admin_set_features;
1841        c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1842        c.features.dword11      = cpu_to_le32(bits);
1843        c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1844                                              ilog2(dev->ctrl.page_size));
1845        c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1846        c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1847        c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1848
1849        ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1850        if (ret) {
1851                dev_warn(dev->ctrl.device,
1852                         "failed to set host mem (err %d, flags %#x).\n",
1853                         ret, bits);
1854        }
1855        return ret;
1856}
1857
1858static void nvme_free_host_mem(struct nvme_dev *dev)
1859{
1860        int i;
1861
1862        for (i = 0; i < dev->nr_host_mem_descs; i++) {
1863                struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1864                size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1865
1866                dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1867                               le64_to_cpu(desc->addr),
1868                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1869        }
1870
1871        kfree(dev->host_mem_desc_bufs);
1872        dev->host_mem_desc_bufs = NULL;
1873        dma_free_coherent(dev->dev,
1874                        dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1875                        dev->host_mem_descs, dev->host_mem_descs_dma);
1876        dev->host_mem_descs = NULL;
1877        dev->nr_host_mem_descs = 0;
1878}
1879
1880static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1881                u32 chunk_size)
1882{
1883        struct nvme_host_mem_buf_desc *descs;
1884        u32 max_entries, len;
1885        dma_addr_t descs_dma;
1886        int i = 0;
1887        void **bufs;
1888        u64 size, tmp;
1889
1890        tmp = (preferred + chunk_size - 1);
1891        do_div(tmp, chunk_size);
1892        max_entries = tmp;
1893
1894        if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1895                max_entries = dev->ctrl.hmmaxd;
1896
1897        descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1898                                   &descs_dma, GFP_KERNEL);
1899        if (!descs)
1900                goto out;
1901
1902        bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1903        if (!bufs)
1904                goto out_free_descs;
1905
1906        for (size = 0; size < preferred && i < max_entries; size += len) {
1907                dma_addr_t dma_addr;
1908
1909                len = min_t(u64, chunk_size, preferred - size);
1910                bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1911                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1912                if (!bufs[i])
1913                        break;
1914
1915                descs[i].addr = cpu_to_le64(dma_addr);
1916                descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1917                i++;
1918        }
1919
1920        if (!size)
1921                goto out_free_bufs;
1922
1923        dev->nr_host_mem_descs = i;
1924        dev->host_mem_size = size;
1925        dev->host_mem_descs = descs;
1926        dev->host_mem_descs_dma = descs_dma;
1927        dev->host_mem_desc_bufs = bufs;
1928        return 0;
1929
1930out_free_bufs:
1931        while (--i >= 0) {
1932                size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1933
1934                dma_free_attrs(dev->dev, size, bufs[i],
1935                               le64_to_cpu(descs[i].addr),
1936                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1937        }
1938
1939        kfree(bufs);
1940out_free_descs:
1941        dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1942                        descs_dma);
1943out:
1944        dev->host_mem_descs = NULL;
1945        return -ENOMEM;
1946}
1947
1948static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1949{
1950        u32 chunk_size;
1951
1952        /* start big and work our way down */
1953        for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1954             chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1955             chunk_size /= 2) {
1956                if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1957                        if (!min || dev->host_mem_size >= min)
1958                                return 0;
1959                        nvme_free_host_mem(dev);
1960                }
1961        }
1962
1963        return -ENOMEM;
1964}
1965
1966static int nvme_setup_host_mem(struct nvme_dev *dev)
1967{
1968        u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1969        u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1970        u64 min = (u64)dev->ctrl.hmmin * 4096;
1971        u32 enable_bits = NVME_HOST_MEM_ENABLE;
1972        int ret;
1973
1974        preferred = min(preferred, max);
1975        if (min > max) {
1976                dev_warn(dev->ctrl.device,
1977                        "min host memory (%lld MiB) above limit (%d MiB).\n",
1978                        min >> ilog2(SZ_1M), max_host_mem_size_mb);
1979                nvme_free_host_mem(dev);
1980                return 0;
1981        }
1982
1983        /*
1984         * If we already have a buffer allocated check if we can reuse it.
1985         */
1986        if (dev->host_mem_descs) {
1987                if (dev->host_mem_size >= min)
1988                        enable_bits |= NVME_HOST_MEM_RETURN;
1989                else
1990                        nvme_free_host_mem(dev);
1991        }
1992
1993        if (!dev->host_mem_descs) {
1994                if (nvme_alloc_host_mem(dev, min, preferred)) {
1995                        dev_warn(dev->ctrl.device,
1996                                "failed to allocate host memory buffer.\n");
1997                        return 0; /* controller must work without HMB */
1998                }
1999
2000                dev_info(dev->ctrl.device,
2001                        "allocated %lld MiB host memory buffer.\n",
2002                        dev->host_mem_size >> ilog2(SZ_1M));
2003        }
2004
2005        ret = nvme_set_host_mem(dev, enable_bits);
2006        if (ret)
2007                nvme_free_host_mem(dev);
2008        return ret;
2009}
2010
2011/*
2012 * nirqs is the number of interrupts available for write and read
2013 * queues. The core already reserved an interrupt for the admin queue.
2014 */
2015static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2016{
2017        struct nvme_dev *dev = affd->priv;
2018        unsigned int nr_read_queues;
2019
2020        /*
2021         * If there is no interupt available for queues, ensure that
2022         * the default queue is set to 1. The affinity set size is
2023         * also set to one, but the irq core ignores it for this case.
2024         *
2025         * If only one interrupt is available or 'write_queue' == 0, combine
2026         * write and read queues.
2027         *
2028         * If 'write_queues' > 0, ensure it leaves room for at least one read
2029         * queue.
2030         */
2031        if (!nrirqs) {
2032                nrirqs = 1;
2033                nr_read_queues = 0;
2034        } else if (nrirqs == 1 || !write_queues) {
2035                nr_read_queues = 0;
2036        } else if (write_queues >= nrirqs) {
2037                nr_read_queues = 1;
2038        } else {
2039                nr_read_queues = nrirqs - write_queues;
2040        }
2041
2042        dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2043        affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2044        dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2045        affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2046        affd->nr_sets = nr_read_queues ? 2 : 1;
2047}
2048
2049static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2050{
2051        struct pci_dev *pdev = to_pci_dev(dev->dev);
2052        struct irq_affinity affd = {
2053                .pre_vectors    = 1,
2054                .calc_sets      = nvme_calc_irq_sets,
2055                .priv           = dev,
2056        };
2057        unsigned int irq_queues, this_p_queues;
2058        unsigned int nr_cpus = num_possible_cpus();
2059
2060        /*
2061         * Poll queues don't need interrupts, but we need at least one IO
2062         * queue left over for non-polled IO.
2063         */
2064        this_p_queues = poll_queues;
2065        if (this_p_queues >= nr_io_queues) {
2066                this_p_queues = nr_io_queues - 1;
2067                irq_queues = 1;
2068        } else {
2069                if (nr_cpus < nr_io_queues - this_p_queues)
2070                        irq_queues = nr_cpus + 1;
2071                else
2072                        irq_queues = nr_io_queues - this_p_queues + 1;
2073        }
2074        dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2075
2076        /* Initialize for the single interrupt case */
2077        dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2078        dev->io_queues[HCTX_TYPE_READ] = 0;
2079
2080        return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2081                              PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2082}
2083
2084static void nvme_disable_io_queues(struct nvme_dev *dev)
2085{
2086        if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2087                __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2088}
2089
2090static int nvme_setup_io_queues(struct nvme_dev *dev)
2091{
2092        struct nvme_queue *adminq = &dev->queues[0];
2093        struct pci_dev *pdev = to_pci_dev(dev->dev);
2094        int result, nr_io_queues;
2095        unsigned long size;
2096
2097        nr_io_queues = max_io_queues();
2098        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2099        if (result < 0)
2100                return result;
2101
2102        if (nr_io_queues == 0)
2103                return 0;
2104        
2105        clear_bit(NVMEQ_ENABLED, &adminq->flags);
2106
2107        if (dev->cmb_use_sqes) {
2108                result = nvme_cmb_qdepth(dev, nr_io_queues,
2109                                sizeof(struct nvme_command));
2110                if (result > 0)
2111                        dev->q_depth = result;
2112                else
2113                        dev->cmb_use_sqes = false;
2114        }
2115
2116        do {
2117                size = db_bar_size(dev, nr_io_queues);
2118                result = nvme_remap_bar(dev, size);
2119                if (!result)
2120                        break;
2121                if (!--nr_io_queues)
2122                        return -ENOMEM;
2123        } while (1);
2124        adminq->q_db = dev->dbs;
2125
2126 retry:
2127        /* Deregister the admin queue's interrupt */
2128        pci_free_irq(pdev, 0, adminq);
2129
2130        /*
2131         * If we enable msix early due to not intx, disable it again before
2132         * setting up the full range we need.
2133         */
2134        pci_free_irq_vectors(pdev);
2135
2136        result = nvme_setup_irqs(dev, nr_io_queues);
2137        if (result <= 0)
2138                return -EIO;
2139
2140        dev->num_vecs = result;
2141        result = max(result - 1, 1);
2142        dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2143
2144        /*
2145         * Should investigate if there's a performance win from allocating
2146         * more queues than interrupt vectors; it might allow the submission
2147         * path to scale better, even if the receive path is limited by the
2148         * number of interrupts.
2149         */
2150        result = queue_request_irq(adminq);
2151        if (result)
2152                return result;
2153        set_bit(NVMEQ_ENABLED, &adminq->flags);
2154
2155        result = nvme_create_io_queues(dev);
2156        if (result || dev->online_queues < 2)
2157                return result;
2158
2159        if (dev->online_queues - 1 < dev->max_qid) {
2160                nr_io_queues = dev->online_queues - 1;
2161                nvme_disable_io_queues(dev);
2162                nvme_suspend_io_queues(dev);
2163                goto retry;
2164        }
2165        dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2166                                        dev->io_queues[HCTX_TYPE_DEFAULT],
2167                                        dev->io_queues[HCTX_TYPE_READ],
2168                                        dev->io_queues[HCTX_TYPE_POLL]);
2169        return 0;
2170}
2171
2172static void nvme_del_queue_end(struct request *req, blk_status_t error)
2173{
2174        struct nvme_queue *nvmeq = req->end_io_data;
2175
2176        blk_mq_free_request(req);
2177        complete(&nvmeq->delete_done);
2178}
2179
2180static void nvme_del_cq_end(struct request *req, blk_status_t error)
2181{
2182        struct nvme_queue *nvmeq = req->end_io_data;
2183
2184        if (error)
2185                set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2186
2187        nvme_del_queue_end(req, error);
2188}
2189
2190static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2191{
2192        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2193        struct request *req;
2194        struct nvme_command cmd;
2195
2196        memset(&cmd, 0, sizeof(cmd));
2197        cmd.delete_queue.opcode = opcode;
2198        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2199
2200        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2201        if (IS_ERR(req))
2202                return PTR_ERR(req);
2203
2204        req->timeout = ADMIN_TIMEOUT;
2205        req->end_io_data = nvmeq;
2206
2207        init_completion(&nvmeq->delete_done);
2208        blk_execute_rq_nowait(q, NULL, req, false,
2209                        opcode == nvme_admin_delete_cq ?
2210                                nvme_del_cq_end : nvme_del_queue_end);
2211        return 0;
2212}
2213
2214static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2215{
2216        int nr_queues = dev->online_queues - 1, sent = 0;
2217        unsigned long timeout;
2218
2219 retry:
2220        timeout = ADMIN_TIMEOUT;
2221        while (nr_queues > 0) {
2222                if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2223                        break;
2224                nr_queues--;
2225                sent++;
2226        }
2227        while (sent) {
2228                struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2229
2230                timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2231                                timeout);
2232                if (timeout == 0)
2233                        return false;
2234
2235                /* handle any remaining CQEs */
2236                if (opcode == nvme_admin_delete_cq &&
2237                    !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2238                        nvme_poll_irqdisable(nvmeq, -1);
2239
2240                sent--;
2241                if (nr_queues)
2242                        goto retry;
2243        }
2244        return true;
2245}
2246
2247/*
2248 * return error value only when tagset allocation failed
2249 */
2250static int nvme_dev_add(struct nvme_dev *dev)
2251{
2252        int ret;
2253
2254        if (!dev->ctrl.tagset) {
2255                dev->tagset.ops = &nvme_mq_ops;
2256                dev->tagset.nr_hw_queues = dev->online_queues - 1;
2257                dev->tagset.nr_maps = 2; /* default + read */
2258                if (dev->io_queues[HCTX_TYPE_POLL])
2259                        dev->tagset.nr_maps++;
2260                dev->tagset.timeout = NVME_IO_TIMEOUT;
2261                dev->tagset.numa_node = dev_to_node(dev->dev);
2262                dev->tagset.queue_depth =
2263                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2264                dev->tagset.cmd_size = sizeof(struct nvme_iod);
2265                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2266                dev->tagset.driver_data = dev;
2267
2268                ret = blk_mq_alloc_tag_set(&dev->tagset);
2269                if (ret) {
2270                        dev_warn(dev->ctrl.device,
2271                                "IO queues tagset allocation failed %d\n", ret);
2272                        return ret;
2273                }
2274                dev->ctrl.tagset = &dev->tagset;
2275        } else {
2276                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2277
2278                /* Free previously allocated queues that are no longer usable */
2279                nvme_free_queues(dev, dev->online_queues);
2280        }
2281
2282        nvme_dbbuf_set(dev);
2283        return 0;
2284}
2285
2286static int nvme_pci_enable(struct nvme_dev *dev)
2287{
2288        int result = -ENOMEM;
2289        struct pci_dev *pdev = to_pci_dev(dev->dev);
2290
2291        if (pci_enable_device_mem(pdev))
2292                return result;
2293
2294        pci_set_master(pdev);
2295
2296        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2297                goto disable;
2298
2299        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2300                result = -ENODEV;
2301                goto disable;
2302        }
2303
2304        /*
2305         * Some devices and/or platforms don't advertise or work with INTx
2306         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2307         * adjust this later.
2308         */
2309        result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2310        if (result < 0)
2311                return result;
2312
2313        dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2314
2315        dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2316                                io_queue_depth);
2317        dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2318        dev->dbs = dev->bar + 4096;
2319
2320        /*
2321         * Temporary fix for the Apple controller found in the MacBook8,1 and
2322         * some MacBook7,1 to avoid controller resets and data loss.
2323         */
2324        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2325                dev->q_depth = 2;
2326                dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2327                        "set queue depth=%u to work around controller resets\n",
2328                        dev->q_depth);
2329        } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2330                   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2331                   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2332                dev->q_depth = 64;
2333                dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2334                        "set queue depth=%u\n", dev->q_depth);
2335        }
2336
2337        nvme_map_cmb(dev);
2338
2339        pci_enable_pcie_error_reporting(pdev);
2340        pci_save_state(pdev);
2341        return 0;
2342
2343 disable:
2344        pci_disable_device(pdev);
2345        return result;
2346}
2347
2348static void nvme_dev_unmap(struct nvme_dev *dev)
2349{
2350        if (dev->bar)
2351                iounmap(dev->bar);
2352        pci_release_mem_regions(to_pci_dev(dev->dev));
2353}
2354
2355static void nvme_pci_disable(struct nvme_dev *dev)
2356{
2357        struct pci_dev *pdev = to_pci_dev(dev->dev);
2358
2359        pci_free_irq_vectors(pdev);
2360
2361        if (pci_is_enabled(pdev)) {
2362                pci_disable_pcie_error_reporting(pdev);
2363                pci_disable_device(pdev);
2364        }
2365}
2366
2367static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2368{
2369        bool dead = true, freeze = false;
2370        struct pci_dev *pdev = to_pci_dev(dev->dev);
2371
2372        mutex_lock(&dev->shutdown_lock);
2373        if (pci_is_enabled(pdev)) {
2374                u32 csts = readl(dev->bar + NVME_REG_CSTS);
2375
2376                if (dev->ctrl.state == NVME_CTRL_LIVE ||
2377                    dev->ctrl.state == NVME_CTRL_RESETTING) {
2378                        freeze = true;
2379                        nvme_start_freeze(&dev->ctrl);
2380                }
2381                dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2382                        pdev->error_state  != pci_channel_io_normal);
2383        }
2384
2385        /*
2386         * Give the controller a chance to complete all entered requests if
2387         * doing a safe shutdown.
2388         */
2389        if (!dead && shutdown && freeze)
2390                nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2391
2392        nvme_stop_queues(&dev->ctrl);
2393
2394        if (!dead && dev->ctrl.queue_count > 0) {
2395                nvme_disable_io_queues(dev);
2396                nvme_disable_admin_queue(dev, shutdown);
2397        }
2398        nvme_suspend_io_queues(dev);
2399        nvme_suspend_queue(&dev->queues[0]);
2400        nvme_pci_disable(dev);
2401
2402        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2403        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2404
2405        /*
2406         * The driver will not be starting up queues again if shutting down so
2407         * must flush all entered requests to their failed completion to avoid
2408         * deadlocking blk-mq hot-cpu notifier.
2409         */
2410        if (shutdown) {
2411                nvme_start_queues(&dev->ctrl);
2412                if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2413                        blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2414        }
2415        mutex_unlock(&dev->shutdown_lock);
2416}
2417
2418static int nvme_setup_prp_pools(struct nvme_dev *dev)
2419{
2420        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2421                                                PAGE_SIZE, PAGE_SIZE, 0);
2422        if (!dev->prp_page_pool)
2423                return -ENOMEM;
2424
2425        /* Optimisation for I/Os between 4k and 128k */
2426        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2427                                                256, 256, 0);
2428        if (!dev->prp_small_pool) {
2429                dma_pool_destroy(dev->prp_page_pool);
2430                return -ENOMEM;
2431        }
2432        return 0;
2433}
2434
2435static void nvme_release_prp_pools(struct nvme_dev *dev)
2436{
2437        dma_pool_destroy(dev->prp_page_pool);
2438        dma_pool_destroy(dev->prp_small_pool);
2439}
2440
2441static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2442{
2443        struct nvme_dev *dev = to_nvme_dev(ctrl);
2444
2445        nvme_dbbuf_dma_free(dev);
2446        put_device(dev->dev);
2447        if (dev->tagset.tags)
2448                blk_mq_free_tag_set(&dev->tagset);
2449        if (dev->ctrl.admin_q)
2450                blk_put_queue(dev->ctrl.admin_q);
2451        kfree(dev->queues);
2452        free_opal_dev(dev->ctrl.opal_dev);
2453        mempool_destroy(dev->iod_mempool);
2454        kfree(dev);
2455}
2456
2457static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2458{
2459        nvme_get_ctrl(&dev->ctrl);
2460        nvme_dev_disable(dev, false);
2461        nvme_kill_queues(&dev->ctrl);
2462        if (!queue_work(nvme_wq, &dev->remove_work))
2463                nvme_put_ctrl(&dev->ctrl);
2464}
2465
2466static void nvme_reset_work(struct work_struct *work)
2467{
2468        struct nvme_dev *dev =
2469                container_of(work, struct nvme_dev, ctrl.reset_work);
2470        bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2471        int result;
2472        enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2473
2474        if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2475                result = -ENODEV;
2476                goto out;
2477        }
2478
2479        /*
2480         * If we're called to reset a live controller first shut it down before
2481         * moving on.
2482         */
2483        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2484                nvme_dev_disable(dev, false);
2485        nvme_sync_queues(&dev->ctrl);
2486
2487        mutex_lock(&dev->shutdown_lock);
2488        result = nvme_pci_enable(dev);
2489        if (result)
2490                goto out_unlock;
2491
2492        result = nvme_pci_configure_admin_queue(dev);
2493        if (result)
2494                goto out_unlock;
2495
2496        result = nvme_alloc_admin_tags(dev);
2497        if (result)
2498                goto out_unlock;
2499
2500        /*
2501         * Limit the max command size to prevent iod->sg allocations going
2502         * over a single page.
2503         */
2504        dev->ctrl.max_hw_sectors = min_t(u32,
2505                NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2506        dev->ctrl.max_segments = NVME_MAX_SEGS;
2507
2508        /*
2509         * Don't limit the IOMMU merged segment size.
2510         */
2511        dma_set_max_seg_size(dev->dev, 0xffffffff);
2512
2513        mutex_unlock(&dev->shutdown_lock);
2514
2515        /*
2516         * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2517         * initializing procedure here.
2518         */
2519        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2520                dev_warn(dev->ctrl.device,
2521                        "failed to mark controller CONNECTING\n");
2522                result = -EBUSY;
2523                goto out;
2524        }
2525
2526        result = nvme_init_identify(&dev->ctrl);
2527        if (result)
2528                goto out;
2529
2530        if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2531                if (!dev->ctrl.opal_dev)
2532                        dev->ctrl.opal_dev =
2533                                init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2534                else if (was_suspend)
2535                        opal_unlock_from_suspend(dev->ctrl.opal_dev);
2536        } else {
2537                free_opal_dev(dev->ctrl.opal_dev);
2538                dev->ctrl.opal_dev = NULL;
2539        }
2540
2541        if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2542                result = nvme_dbbuf_dma_alloc(dev);
2543                if (result)
2544                        dev_warn(dev->dev,
2545                                 "unable to allocate dma for dbbuf\n");
2546        }
2547
2548        if (dev->ctrl.hmpre) {
2549                result = nvme_setup_host_mem(dev);
2550                if (result < 0)
2551                        goto out;
2552        }
2553
2554        result = nvme_setup_io_queues(dev);
2555        if (result)
2556                goto out;
2557
2558        /*
2559         * Keep the controller around but remove all namespaces if we don't have
2560         * any working I/O queue.
2561         */
2562        if (dev->online_queues < 2) {
2563                dev_warn(dev->ctrl.device, "IO queues not created\n");
2564                nvme_kill_queues(&dev->ctrl);
2565                nvme_remove_namespaces(&dev->ctrl);
2566                new_state = NVME_CTRL_ADMIN_ONLY;
2567        } else {
2568                nvme_start_queues(&dev->ctrl);
2569                nvme_wait_freeze(&dev->ctrl);
2570                /* hit this only when allocate tagset fails */
2571                if (nvme_dev_add(dev))
2572                        new_state = NVME_CTRL_ADMIN_ONLY;
2573                nvme_unfreeze(&dev->ctrl);
2574        }
2575
2576        /*
2577         * If only admin queue live, keep it to do further investigation or
2578         * recovery.
2579         */
2580        if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2581                dev_warn(dev->ctrl.device,
2582                        "failed to mark controller state %d\n", new_state);
2583                result = -ENODEV;
2584                goto out;
2585        }
2586
2587        nvme_start_ctrl(&dev->ctrl);
2588        return;
2589
2590 out_unlock:
2591        mutex_unlock(&dev->shutdown_lock);
2592 out:
2593        if (result)
2594                dev_warn(dev->ctrl.device,
2595                         "Removing after probe failure status: %d\n", result);
2596        nvme_remove_dead_ctrl(dev);
2597}
2598
2599static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2600{
2601        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2602        struct pci_dev *pdev = to_pci_dev(dev->dev);
2603
2604        if (pci_get_drvdata(pdev))
2605                device_release_driver(&pdev->dev);
2606        nvme_put_ctrl(&dev->ctrl);
2607}
2608
2609static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2610{
2611        *val = readl(to_nvme_dev(ctrl)->bar + off);
2612        return 0;
2613}
2614
2615static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2616{
2617        writel(val, to_nvme_dev(ctrl)->bar + off);
2618        return 0;
2619}
2620
2621static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2622{
2623        *val = readq(to_nvme_dev(ctrl)->bar + off);
2624        return 0;
2625}
2626
2627static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2628{
2629        struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2630
2631        return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2632}
2633
2634static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2635        .name                   = "pcie",
2636        .module                 = THIS_MODULE,
2637        .flags                  = NVME_F_METADATA_SUPPORTED |
2638                                  NVME_F_PCI_P2PDMA,
2639        .reg_read32             = nvme_pci_reg_read32,
2640        .reg_write32            = nvme_pci_reg_write32,
2641        .reg_read64             = nvme_pci_reg_read64,
2642        .free_ctrl              = nvme_pci_free_ctrl,
2643        .submit_async_event     = nvme_pci_submit_async_event,
2644        .get_address            = nvme_pci_get_address,
2645};
2646
2647static int nvme_dev_map(struct nvme_dev *dev)
2648{
2649        struct pci_dev *pdev = to_pci_dev(dev->dev);
2650
2651        if (pci_request_mem_regions(pdev, "nvme"))
2652                return -ENODEV;
2653
2654        if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2655                goto release;
2656
2657        return 0;
2658  release:
2659        pci_release_mem_regions(pdev);
2660        return -ENODEV;
2661}
2662
2663static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2664{
2665        if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2666                /*
2667                 * Several Samsung devices seem to drop off the PCIe bus
2668                 * randomly when APST is on and uses the deepest sleep state.
2669                 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2670                 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2671                 * 950 PRO 256GB", but it seems to be restricted to two Dell
2672                 * laptops.
2673                 */
2674                if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2675                    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2676                     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2677                        return NVME_QUIRK_NO_DEEPEST_PS;
2678        } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2679                /*
2680                 * Samsung SSD 960 EVO drops off the PCIe bus after system
2681                 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2682                 * within few minutes after bootup on a Coffee Lake board -
2683                 * ASUS PRIME Z370-A
2684                 */
2685                if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2686                    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2687                     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2688                        return NVME_QUIRK_NO_APST;
2689        }
2690
2691        return 0;
2692}
2693
2694static void nvme_async_probe(void *data, async_cookie_t cookie)
2695{
2696        struct nvme_dev *dev = data;
2697
2698        flush_work(&dev->ctrl.reset_work);
2699        flush_work(&dev->ctrl.scan_work);
2700        nvme_put_ctrl(&dev->ctrl);
2701}
2702
2703static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2704{
2705        int node, result = -ENOMEM;
2706        struct nvme_dev *dev;
2707        unsigned long quirks = id->driver_data;
2708        size_t alloc_size;
2709
2710        node = dev_to_node(&pdev->dev);
2711        if (node == NUMA_NO_NODE)
2712                set_dev_node(&pdev->dev, first_memory_node);
2713
2714        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2715        if (!dev)
2716                return -ENOMEM;
2717
2718        dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2719                                        GFP_KERNEL, node);
2720        if (!dev->queues)
2721                goto free;
2722
2723        dev->dev = get_device(&pdev->dev);
2724        pci_set_drvdata(pdev, dev);
2725
2726        result = nvme_dev_map(dev);
2727        if (result)
2728                goto put_pci;
2729
2730        INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2731        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2732        mutex_init(&dev->shutdown_lock);
2733
2734        result = nvme_setup_prp_pools(dev);
2735        if (result)
2736                goto unmap;
2737
2738        quirks |= check_vendor_combination_bug(pdev);
2739
2740        /*
2741         * Double check that our mempool alloc size will cover the biggest
2742         * command we support.
2743         */
2744        alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2745                                                NVME_MAX_SEGS, true);
2746        WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2747
2748        dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2749                                                mempool_kfree,
2750                                                (void *) alloc_size,
2751                                                GFP_KERNEL, node);
2752        if (!dev->iod_mempool) {
2753                result = -ENOMEM;
2754                goto release_pools;
2755        }
2756
2757        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2758                        quirks);
2759        if (result)
2760                goto release_mempool;
2761
2762        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2763
2764        nvme_reset_ctrl(&dev->ctrl);
2765        nvme_get_ctrl(&dev->ctrl);
2766        async_schedule(nvme_async_probe, dev);
2767
2768        return 0;
2769
2770 release_mempool:
2771        mempool_destroy(dev->iod_mempool);
2772 release_pools:
2773        nvme_release_prp_pools(dev);
2774 unmap:
2775        nvme_dev_unmap(dev);
2776 put_pci:
2777        put_device(dev->dev);
2778 free:
2779        kfree(dev->queues);
2780        kfree(dev);
2781        return result;
2782}
2783
2784static void nvme_reset_prepare(struct pci_dev *pdev)
2785{
2786        struct nvme_dev *dev = pci_get_drvdata(pdev);
2787        nvme_dev_disable(dev, false);
2788}
2789
2790static void nvme_reset_done(struct pci_dev *pdev)
2791{
2792        struct nvme_dev *dev = pci_get_drvdata(pdev);
2793        nvme_reset_ctrl_sync(&dev->ctrl);
2794}
2795
2796static void nvme_shutdown(struct pci_dev *pdev)
2797{
2798        struct nvme_dev *dev = pci_get_drvdata(pdev);
2799        nvme_dev_disable(dev, true);
2800}
2801
2802/*
2803 * The driver's remove may be called on a device in a partially initialized
2804 * state. This function must not have any dependencies on the device state in
2805 * order to proceed.
2806 */
2807static void nvme_remove(struct pci_dev *pdev)
2808{
2809        struct nvme_dev *dev = pci_get_drvdata(pdev);
2810
2811        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2812        pci_set_drvdata(pdev, NULL);
2813
2814        if (!pci_device_is_present(pdev)) {
2815                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2816                nvme_dev_disable(dev, true);
2817                nvme_dev_remove_admin(dev);
2818        }
2819
2820        flush_work(&dev->ctrl.reset_work);
2821        nvme_stop_ctrl(&dev->ctrl);
2822        nvme_remove_namespaces(&dev->ctrl);
2823        nvme_dev_disable(dev, true);
2824        nvme_release_cmb(dev);
2825        nvme_free_host_mem(dev);
2826        nvme_dev_remove_admin(dev);
2827        nvme_free_queues(dev, 0);
2828        nvme_uninit_ctrl(&dev->ctrl);
2829        nvme_release_prp_pools(dev);
2830        nvme_dev_unmap(dev);
2831        nvme_put_ctrl(&dev->ctrl);
2832}
2833
2834#ifdef CONFIG_PM_SLEEP
2835static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2836{
2837        return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2838}
2839
2840static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2841{
2842        return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2843}
2844
2845static int nvme_resume(struct device *dev)
2846{
2847        struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2848        struct nvme_ctrl *ctrl = &ndev->ctrl;
2849
2850        if (ndev->last_ps == U32_MAX ||
2851            nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2852                nvme_reset_ctrl(ctrl);
2853        return 0;
2854}
2855
2856static int nvme_suspend(struct device *dev)
2857{
2858        struct pci_dev *pdev = to_pci_dev(dev);
2859        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2860        struct nvme_ctrl *ctrl = &ndev->ctrl;
2861        int ret = -EBUSY;
2862
2863        ndev->last_ps = U32_MAX;
2864
2865        /*
2866         * The platform does not remove power for a kernel managed suspend so
2867         * use host managed nvme power settings for lowest idle power if
2868         * possible. This should have quicker resume latency than a full device
2869         * shutdown.  But if the firmware is involved after the suspend or the
2870         * device does not support any non-default power states, shut down the
2871         * device fully.
2872         *
2873         * If ASPM is not enabled for the device, shut down the device and allow
2874         * the PCI bus layer to put it into D3 in order to take the PCIe link
2875         * down, so as to allow the platform to achieve its minimum low-power
2876         * state (which may not be possible if the link is up).
2877         */
2878        if (pm_suspend_via_firmware() || !ctrl->npss ||
2879            !pcie_aspm_enabled(pdev) ||
2880            (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) {
2881                nvme_dev_disable(ndev, true);
2882                return 0;
2883        }
2884
2885        nvme_start_freeze(ctrl);
2886        nvme_wait_freeze(ctrl);
2887        nvme_sync_queues(ctrl);
2888
2889        if (ctrl->state != NVME_CTRL_LIVE &&
2890            ctrl->state != NVME_CTRL_ADMIN_ONLY)
2891                goto unfreeze;
2892
2893        ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2894        if (ret < 0)
2895                goto unfreeze;
2896
2897        ret = nvme_set_power_state(ctrl, ctrl->npss);
2898        if (ret < 0)
2899                goto unfreeze;
2900
2901        if (ret) {
2902                /*
2903                 * Clearing npss forces a controller reset on resume. The
2904                 * correct value will be resdicovered then.
2905                 */
2906                nvme_dev_disable(ndev, true);
2907                ctrl->npss = 0;
2908                ret = 0;
2909                goto unfreeze;
2910        }
2911        /*
2912         * A saved state prevents pci pm from generically controlling the
2913         * device's power. If we're using protocol specific settings, we don't
2914         * want pci interfering.
2915         */
2916        pci_save_state(pdev);
2917unfreeze:
2918        nvme_unfreeze(ctrl);
2919        return ret;
2920}
2921
2922static int nvme_simple_suspend(struct device *dev)
2923{
2924        struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2925
2926        nvme_dev_disable(ndev, true);
2927        return 0;
2928}
2929
2930static int nvme_simple_resume(struct device *dev)
2931{
2932        struct pci_dev *pdev = to_pci_dev(dev);
2933        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2934
2935        nvme_reset_ctrl(&ndev->ctrl);
2936        return 0;
2937}
2938
2939static const struct dev_pm_ops nvme_dev_pm_ops = {
2940        .suspend        = nvme_suspend,
2941        .resume         = nvme_resume,
2942        .freeze         = nvme_simple_suspend,
2943        .thaw           = nvme_simple_resume,
2944        .poweroff       = nvme_simple_suspend,
2945        .restore        = nvme_simple_resume,
2946};
2947#endif /* CONFIG_PM_SLEEP */
2948
2949static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2950                                                pci_channel_state_t state)
2951{
2952        struct nvme_dev *dev = pci_get_drvdata(pdev);
2953
2954        /*
2955         * A frozen channel requires a reset. When detected, this method will
2956         * shutdown the controller to quiesce. The controller will be restarted
2957         * after the slot reset through driver's slot_reset callback.
2958         */
2959        switch (state) {
2960        case pci_channel_io_normal:
2961                return PCI_ERS_RESULT_CAN_RECOVER;
2962        case pci_channel_io_frozen:
2963                dev_warn(dev->ctrl.device,
2964                        "frozen state error detected, reset controller\n");
2965                nvme_dev_disable(dev, false);
2966                return PCI_ERS_RESULT_NEED_RESET;
2967        case pci_channel_io_perm_failure:
2968                dev_warn(dev->ctrl.device,
2969                        "failure state error detected, request disconnect\n");
2970                return PCI_ERS_RESULT_DISCONNECT;
2971        }
2972        return PCI_ERS_RESULT_NEED_RESET;
2973}
2974
2975static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2976{
2977        struct nvme_dev *dev = pci_get_drvdata(pdev);
2978
2979        dev_info(dev->ctrl.device, "restart after slot reset\n");
2980        pci_restore_state(pdev);
2981        nvme_reset_ctrl(&dev->ctrl);
2982        return PCI_ERS_RESULT_RECOVERED;
2983}
2984
2985static void nvme_error_resume(struct pci_dev *pdev)
2986{
2987        struct nvme_dev *dev = pci_get_drvdata(pdev);
2988
2989        flush_work(&dev->ctrl.reset_work);
2990}
2991
2992static const struct pci_error_handlers nvme_err_handler = {
2993        .error_detected = nvme_error_detected,
2994        .slot_reset     = nvme_slot_reset,
2995        .resume         = nvme_error_resume,
2996        .reset_prepare  = nvme_reset_prepare,
2997        .reset_done     = nvme_reset_done,
2998};
2999
3000static const struct pci_device_id nvme_id_table[] = {
3001        { PCI_VDEVICE(INTEL, 0x0953),
3002                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3003                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3004        { PCI_VDEVICE(INTEL, 0x0a53),
3005                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3006                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3007        { PCI_VDEVICE(INTEL, 0x0a54),
3008                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3009                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3010        { PCI_VDEVICE(INTEL, 0x0a55),
3011                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3012                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3013        { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3014                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3015                                NVME_QUIRK_MEDIUM_PRIO_SQ },
3016        { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3017                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3018        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3019                .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3020                                NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3021        { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3022                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3023        { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3024                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3025        { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3026                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3027        { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3028                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3029        { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3030                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3031        { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3032                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3033        { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3034                .driver_data = NVME_QUIRK_LIGHTNVM, },
3035        { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3036                .driver_data = NVME_QUIRK_LIGHTNVM, },
3037        { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3038                .driver_data = NVME_QUIRK_LIGHTNVM, },
3039        { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3040                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3041        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3042        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3043        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3044        { 0, }
3045};
3046MODULE_DEVICE_TABLE(pci, nvme_id_table);
3047
3048static struct pci_driver nvme_driver = {
3049        .name           = "nvme",
3050        .id_table       = nvme_id_table,
3051        .probe          = nvme_probe,
3052        .remove         = nvme_remove,
3053        .shutdown       = nvme_shutdown,
3054#ifdef CONFIG_PM_SLEEP
3055        .driver         = {
3056                .pm     = &nvme_dev_pm_ops,
3057        },
3058#endif
3059        .sriov_configure = pci_sriov_configure_simple,
3060        .err_handler    = &nvme_err_handler,
3061};
3062
3063static int __init nvme_init(void)
3064{
3065        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3066        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3067        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3068        BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3069        return pci_register_driver(&nvme_driver);
3070}
3071
3072static void __exit nvme_exit(void)
3073{
3074        pci_unregister_driver(&nvme_driver);
3075        flush_workqueue(nvme_wq);
3076}
3077
3078MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3079MODULE_LICENSE("GPL");
3080MODULE_VERSION("1.0");
3081module_init(nvme_init);
3082module_exit(nvme_exit);
3083