linux/drivers/nvme/host/rdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVMe over Fabrics RDMA host code.
   4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7#include <linux/module.h>
   8#include <linux/init.h>
   9#include <linux/slab.h>
  10#include <rdma/mr_pool.h>
  11#include <linux/err.h>
  12#include <linux/string.h>
  13#include <linux/atomic.h>
  14#include <linux/blk-mq.h>
  15#include <linux/blk-mq-rdma.h>
  16#include <linux/types.h>
  17#include <linux/list.h>
  18#include <linux/mutex.h>
  19#include <linux/scatterlist.h>
  20#include <linux/nvme.h>
  21#include <asm/unaligned.h>
  22
  23#include <rdma/ib_verbs.h>
  24#include <rdma/rdma_cm.h>
  25#include <linux/nvme-rdma.h>
  26
  27#include "nvme.h"
  28#include "fabrics.h"
  29
  30
  31#define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
  32
  33#define NVME_RDMA_MAX_SEGMENTS          256
  34
  35#define NVME_RDMA_MAX_INLINE_SEGMENTS   4
  36
  37struct nvme_rdma_device {
  38        struct ib_device        *dev;
  39        struct ib_pd            *pd;
  40        struct kref             ref;
  41        struct list_head        entry;
  42        unsigned int            num_inline_segments;
  43};
  44
  45struct nvme_rdma_qe {
  46        struct ib_cqe           cqe;
  47        void                    *data;
  48        u64                     dma;
  49};
  50
  51struct nvme_rdma_queue;
  52struct nvme_rdma_request {
  53        struct nvme_request     req;
  54        struct ib_mr            *mr;
  55        struct nvme_rdma_qe     sqe;
  56        union nvme_result       result;
  57        __le16                  status;
  58        refcount_t              ref;
  59        struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  60        u32                     num_sge;
  61        int                     nents;
  62        struct ib_reg_wr        reg_wr;
  63        struct ib_cqe           reg_cqe;
  64        struct nvme_rdma_queue  *queue;
  65        struct sg_table         sg_table;
  66        struct scatterlist      first_sgl[];
  67};
  68
  69enum nvme_rdma_queue_flags {
  70        NVME_RDMA_Q_ALLOCATED           = 0,
  71        NVME_RDMA_Q_LIVE                = 1,
  72        NVME_RDMA_Q_TR_READY            = 2,
  73};
  74
  75struct nvme_rdma_queue {
  76        struct nvme_rdma_qe     *rsp_ring;
  77        int                     queue_size;
  78        size_t                  cmnd_capsule_len;
  79        struct nvme_rdma_ctrl   *ctrl;
  80        struct nvme_rdma_device *device;
  81        struct ib_cq            *ib_cq;
  82        struct ib_qp            *qp;
  83
  84        unsigned long           flags;
  85        struct rdma_cm_id       *cm_id;
  86        int                     cm_error;
  87        struct completion       cm_done;
  88};
  89
  90struct nvme_rdma_ctrl {
  91        /* read only in the hot path */
  92        struct nvme_rdma_queue  *queues;
  93
  94        /* other member variables */
  95        struct blk_mq_tag_set   tag_set;
  96        struct work_struct      err_work;
  97
  98        struct nvme_rdma_qe     async_event_sqe;
  99
 100        struct delayed_work     reconnect_work;
 101
 102        struct list_head        list;
 103
 104        struct blk_mq_tag_set   admin_tag_set;
 105        struct nvme_rdma_device *device;
 106
 107        u32                     max_fr_pages;
 108
 109        struct sockaddr_storage addr;
 110        struct sockaddr_storage src_addr;
 111
 112        struct nvme_ctrl        ctrl;
 113        bool                    use_inline_data;
 114        u32                     io_queues[HCTX_MAX_TYPES];
 115};
 116
 117static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
 118{
 119        return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
 120}
 121
 122static LIST_HEAD(device_list);
 123static DEFINE_MUTEX(device_list_mutex);
 124
 125static LIST_HEAD(nvme_rdma_ctrl_list);
 126static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
 127
 128/*
 129 * Disabling this option makes small I/O goes faster, but is fundamentally
 130 * unsafe.  With it turned off we will have to register a global rkey that
 131 * allows read and write access to all physical memory.
 132 */
 133static bool register_always = true;
 134module_param(register_always, bool, 0444);
 135MODULE_PARM_DESC(register_always,
 136         "Use memory registration even for contiguous memory regions");
 137
 138static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
 139                struct rdma_cm_event *event);
 140static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 141
 142static const struct blk_mq_ops nvme_rdma_mq_ops;
 143static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
 144
 145/* XXX: really should move to a generic header sooner or later.. */
 146static inline void put_unaligned_le24(u32 val, u8 *p)
 147{
 148        *p++ = val;
 149        *p++ = val >> 8;
 150        *p++ = val >> 16;
 151}
 152
 153static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
 154{
 155        return queue - queue->ctrl->queues;
 156}
 157
 158static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
 159{
 160        return nvme_rdma_queue_idx(queue) >
 161                queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
 162                queue->ctrl->io_queues[HCTX_TYPE_READ];
 163}
 164
 165static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
 166{
 167        return queue->cmnd_capsule_len - sizeof(struct nvme_command);
 168}
 169
 170static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 171                size_t capsule_size, enum dma_data_direction dir)
 172{
 173        ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
 174        kfree(qe->data);
 175}
 176
 177static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 178                size_t capsule_size, enum dma_data_direction dir)
 179{
 180        qe->data = kzalloc(capsule_size, GFP_KERNEL);
 181        if (!qe->data)
 182                return -ENOMEM;
 183
 184        qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
 185        if (ib_dma_mapping_error(ibdev, qe->dma)) {
 186                kfree(qe->data);
 187                qe->data = NULL;
 188                return -ENOMEM;
 189        }
 190
 191        return 0;
 192}
 193
 194static void nvme_rdma_free_ring(struct ib_device *ibdev,
 195                struct nvme_rdma_qe *ring, size_t ib_queue_size,
 196                size_t capsule_size, enum dma_data_direction dir)
 197{
 198        int i;
 199
 200        for (i = 0; i < ib_queue_size; i++)
 201                nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
 202        kfree(ring);
 203}
 204
 205static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
 206                size_t ib_queue_size, size_t capsule_size,
 207                enum dma_data_direction dir)
 208{
 209        struct nvme_rdma_qe *ring;
 210        int i;
 211
 212        ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
 213        if (!ring)
 214                return NULL;
 215
 216        /*
 217         * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
 218         * lifetime. It's safe, since any chage in the underlying RDMA device
 219         * will issue error recovery and queue re-creation.
 220         */
 221        for (i = 0; i < ib_queue_size; i++) {
 222                if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
 223                        goto out_free_ring;
 224        }
 225
 226        return ring;
 227
 228out_free_ring:
 229        nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
 230        return NULL;
 231}
 232
 233static void nvme_rdma_qp_event(struct ib_event *event, void *context)
 234{
 235        pr_debug("QP event %s (%d)\n",
 236                 ib_event_msg(event->event), event->event);
 237
 238}
 239
 240static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
 241{
 242        int ret;
 243
 244        ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
 245                        msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
 246        if (ret < 0)
 247                return ret;
 248        if (ret == 0)
 249                return -ETIMEDOUT;
 250        WARN_ON_ONCE(queue->cm_error > 0);
 251        return queue->cm_error;
 252}
 253
 254static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
 255{
 256        struct nvme_rdma_device *dev = queue->device;
 257        struct ib_qp_init_attr init_attr;
 258        int ret;
 259
 260        memset(&init_attr, 0, sizeof(init_attr));
 261        init_attr.event_handler = nvme_rdma_qp_event;
 262        /* +1 for drain */
 263        init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
 264        /* +1 for drain */
 265        init_attr.cap.max_recv_wr = queue->queue_size + 1;
 266        init_attr.cap.max_recv_sge = 1;
 267        init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
 268        init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
 269        init_attr.qp_type = IB_QPT_RC;
 270        init_attr.send_cq = queue->ib_cq;
 271        init_attr.recv_cq = queue->ib_cq;
 272
 273        ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
 274
 275        queue->qp = queue->cm_id->qp;
 276        return ret;
 277}
 278
 279static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
 280                struct request *rq, unsigned int hctx_idx)
 281{
 282        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 283
 284        kfree(req->sqe.data);
 285}
 286
 287static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
 288                struct request *rq, unsigned int hctx_idx,
 289                unsigned int numa_node)
 290{
 291        struct nvme_rdma_ctrl *ctrl = set->driver_data;
 292        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 293        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
 294        struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
 295
 296        nvme_req(rq)->ctrl = &ctrl->ctrl;
 297        req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
 298        if (!req->sqe.data)
 299                return -ENOMEM;
 300
 301        req->queue = queue;
 302
 303        return 0;
 304}
 305
 306static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 307                unsigned int hctx_idx)
 308{
 309        struct nvme_rdma_ctrl *ctrl = data;
 310        struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
 311
 312        BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
 313
 314        hctx->driver_data = queue;
 315        return 0;
 316}
 317
 318static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 319                unsigned int hctx_idx)
 320{
 321        struct nvme_rdma_ctrl *ctrl = data;
 322        struct nvme_rdma_queue *queue = &ctrl->queues[0];
 323
 324        BUG_ON(hctx_idx != 0);
 325
 326        hctx->driver_data = queue;
 327        return 0;
 328}
 329
 330static void nvme_rdma_free_dev(struct kref *ref)
 331{
 332        struct nvme_rdma_device *ndev =
 333                container_of(ref, struct nvme_rdma_device, ref);
 334
 335        mutex_lock(&device_list_mutex);
 336        list_del(&ndev->entry);
 337        mutex_unlock(&device_list_mutex);
 338
 339        ib_dealloc_pd(ndev->pd);
 340        kfree(ndev);
 341}
 342
 343static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
 344{
 345        kref_put(&dev->ref, nvme_rdma_free_dev);
 346}
 347
 348static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
 349{
 350        return kref_get_unless_zero(&dev->ref);
 351}
 352
 353static struct nvme_rdma_device *
 354nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
 355{
 356        struct nvme_rdma_device *ndev;
 357
 358        mutex_lock(&device_list_mutex);
 359        list_for_each_entry(ndev, &device_list, entry) {
 360                if (ndev->dev->node_guid == cm_id->device->node_guid &&
 361                    nvme_rdma_dev_get(ndev))
 362                        goto out_unlock;
 363        }
 364
 365        ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
 366        if (!ndev)
 367                goto out_err;
 368
 369        ndev->dev = cm_id->device;
 370        kref_init(&ndev->ref);
 371
 372        ndev->pd = ib_alloc_pd(ndev->dev,
 373                register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
 374        if (IS_ERR(ndev->pd))
 375                goto out_free_dev;
 376
 377        if (!(ndev->dev->attrs.device_cap_flags &
 378              IB_DEVICE_MEM_MGT_EXTENSIONS)) {
 379                dev_err(&ndev->dev->dev,
 380                        "Memory registrations not supported.\n");
 381                goto out_free_pd;
 382        }
 383
 384        ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
 385                                        ndev->dev->attrs.max_send_sge - 1);
 386        list_add(&ndev->entry, &device_list);
 387out_unlock:
 388        mutex_unlock(&device_list_mutex);
 389        return ndev;
 390
 391out_free_pd:
 392        ib_dealloc_pd(ndev->pd);
 393out_free_dev:
 394        kfree(ndev);
 395out_err:
 396        mutex_unlock(&device_list_mutex);
 397        return NULL;
 398}
 399
 400static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
 401{
 402        struct nvme_rdma_device *dev;
 403        struct ib_device *ibdev;
 404
 405        if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
 406                return;
 407
 408        dev = queue->device;
 409        ibdev = dev->dev;
 410
 411        ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
 412
 413        /*
 414         * The cm_id object might have been destroyed during RDMA connection
 415         * establishment error flow to avoid getting other cma events, thus
 416         * the destruction of the QP shouldn't use rdma_cm API.
 417         */
 418        ib_destroy_qp(queue->qp);
 419        ib_free_cq(queue->ib_cq);
 420
 421        nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 422                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 423
 424        nvme_rdma_dev_put(dev);
 425}
 426
 427static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
 428{
 429        return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
 430                     ibdev->attrs.max_fast_reg_page_list_len);
 431}
 432
 433static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
 434{
 435        struct ib_device *ibdev;
 436        const int send_wr_factor = 3;                   /* MR, SEND, INV */
 437        const int cq_factor = send_wr_factor + 1;       /* + RECV */
 438        int comp_vector, idx = nvme_rdma_queue_idx(queue);
 439        enum ib_poll_context poll_ctx;
 440        int ret;
 441
 442        queue->device = nvme_rdma_find_get_device(queue->cm_id);
 443        if (!queue->device) {
 444                dev_err(queue->cm_id->device->dev.parent,
 445                        "no client data found!\n");
 446                return -ECONNREFUSED;
 447        }
 448        ibdev = queue->device->dev;
 449
 450        /*
 451         * Spread I/O queues completion vectors according their queue index.
 452         * Admin queues can always go on completion vector 0.
 453         */
 454        comp_vector = idx == 0 ? idx : idx - 1;
 455
 456        /* Polling queues need direct cq polling context */
 457        if (nvme_rdma_poll_queue(queue))
 458                poll_ctx = IB_POLL_DIRECT;
 459        else
 460                poll_ctx = IB_POLL_SOFTIRQ;
 461
 462        /* +1 for ib_stop_cq */
 463        queue->ib_cq = ib_alloc_cq(ibdev, queue,
 464                                cq_factor * queue->queue_size + 1,
 465                                comp_vector, poll_ctx);
 466        if (IS_ERR(queue->ib_cq)) {
 467                ret = PTR_ERR(queue->ib_cq);
 468                goto out_put_dev;
 469        }
 470
 471        ret = nvme_rdma_create_qp(queue, send_wr_factor);
 472        if (ret)
 473                goto out_destroy_ib_cq;
 474
 475        queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
 476                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 477        if (!queue->rsp_ring) {
 478                ret = -ENOMEM;
 479                goto out_destroy_qp;
 480        }
 481
 482        ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
 483                              queue->queue_size,
 484                              IB_MR_TYPE_MEM_REG,
 485                              nvme_rdma_get_max_fr_pages(ibdev), 0);
 486        if (ret) {
 487                dev_err(queue->ctrl->ctrl.device,
 488                        "failed to initialize MR pool sized %d for QID %d\n",
 489                        queue->queue_size, idx);
 490                goto out_destroy_ring;
 491        }
 492
 493        set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
 494
 495        return 0;
 496
 497out_destroy_ring:
 498        nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 499                            sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 500out_destroy_qp:
 501        rdma_destroy_qp(queue->cm_id);
 502out_destroy_ib_cq:
 503        ib_free_cq(queue->ib_cq);
 504out_put_dev:
 505        nvme_rdma_dev_put(queue->device);
 506        return ret;
 507}
 508
 509static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
 510                int idx, size_t queue_size)
 511{
 512        struct nvme_rdma_queue *queue;
 513        struct sockaddr *src_addr = NULL;
 514        int ret;
 515
 516        queue = &ctrl->queues[idx];
 517        queue->ctrl = ctrl;
 518        init_completion(&queue->cm_done);
 519
 520        if (idx > 0)
 521                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
 522        else
 523                queue->cmnd_capsule_len = sizeof(struct nvme_command);
 524
 525        queue->queue_size = queue_size;
 526
 527        queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
 528                        RDMA_PS_TCP, IB_QPT_RC);
 529        if (IS_ERR(queue->cm_id)) {
 530                dev_info(ctrl->ctrl.device,
 531                        "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
 532                return PTR_ERR(queue->cm_id);
 533        }
 534
 535        if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
 536                src_addr = (struct sockaddr *)&ctrl->src_addr;
 537
 538        queue->cm_error = -ETIMEDOUT;
 539        ret = rdma_resolve_addr(queue->cm_id, src_addr,
 540                        (struct sockaddr *)&ctrl->addr,
 541                        NVME_RDMA_CONNECT_TIMEOUT_MS);
 542        if (ret) {
 543                dev_info(ctrl->ctrl.device,
 544                        "rdma_resolve_addr failed (%d).\n", ret);
 545                goto out_destroy_cm_id;
 546        }
 547
 548        ret = nvme_rdma_wait_for_cm(queue);
 549        if (ret) {
 550                dev_info(ctrl->ctrl.device,
 551                        "rdma connection establishment failed (%d)\n", ret);
 552                goto out_destroy_cm_id;
 553        }
 554
 555        set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
 556
 557        return 0;
 558
 559out_destroy_cm_id:
 560        rdma_destroy_id(queue->cm_id);
 561        nvme_rdma_destroy_queue_ib(queue);
 562        return ret;
 563}
 564
 565static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 566{
 567        rdma_disconnect(queue->cm_id);
 568        ib_drain_qp(queue->qp);
 569}
 570
 571static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 572{
 573        if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
 574                return;
 575        __nvme_rdma_stop_queue(queue);
 576}
 577
 578static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
 579{
 580        if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
 581                return;
 582
 583        nvme_rdma_destroy_queue_ib(queue);
 584        rdma_destroy_id(queue->cm_id);
 585}
 586
 587static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
 588{
 589        int i;
 590
 591        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 592                nvme_rdma_free_queue(&ctrl->queues[i]);
 593}
 594
 595static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
 596{
 597        int i;
 598
 599        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 600                nvme_rdma_stop_queue(&ctrl->queues[i]);
 601}
 602
 603static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
 604{
 605        struct nvme_rdma_queue *queue = &ctrl->queues[idx];
 606        bool poll = nvme_rdma_poll_queue(queue);
 607        int ret;
 608
 609        if (idx)
 610                ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
 611        else
 612                ret = nvmf_connect_admin_queue(&ctrl->ctrl);
 613
 614        if (!ret) {
 615                set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
 616        } else {
 617                __nvme_rdma_stop_queue(queue);
 618                dev_info(ctrl->ctrl.device,
 619                        "failed to connect queue: %d ret=%d\n", idx, ret);
 620        }
 621        return ret;
 622}
 623
 624static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
 625{
 626        int i, ret = 0;
 627
 628        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 629                ret = nvme_rdma_start_queue(ctrl, i);
 630                if (ret)
 631                        goto out_stop_queues;
 632        }
 633
 634        return 0;
 635
 636out_stop_queues:
 637        for (i--; i >= 1; i--)
 638                nvme_rdma_stop_queue(&ctrl->queues[i]);
 639        return ret;
 640}
 641
 642static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
 643{
 644        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
 645        struct ib_device *ibdev = ctrl->device->dev;
 646        unsigned int nr_io_queues, nr_default_queues;
 647        unsigned int nr_read_queues, nr_poll_queues;
 648        int i, ret;
 649
 650        nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
 651                                min(opts->nr_io_queues, num_online_cpus()));
 652        nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
 653                                min(opts->nr_write_queues, num_online_cpus()));
 654        nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
 655        nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
 656
 657        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
 658        if (ret)
 659                return ret;
 660
 661        ctrl->ctrl.queue_count = nr_io_queues + 1;
 662        if (ctrl->ctrl.queue_count < 2)
 663                return 0;
 664
 665        dev_info(ctrl->ctrl.device,
 666                "creating %d I/O queues.\n", nr_io_queues);
 667
 668        if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
 669                /*
 670                 * separate read/write queues
 671                 * hand out dedicated default queues only after we have
 672                 * sufficient read queues.
 673                 */
 674                ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
 675                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
 676                ctrl->io_queues[HCTX_TYPE_DEFAULT] =
 677                        min(nr_default_queues, nr_io_queues);
 678                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
 679        } else {
 680                /*
 681                 * shared read/write queues
 682                 * either no write queues were requested, or we don't have
 683                 * sufficient queue count to have dedicated default queues.
 684                 */
 685                ctrl->io_queues[HCTX_TYPE_DEFAULT] =
 686                        min(nr_read_queues, nr_io_queues);
 687                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
 688        }
 689
 690        if (opts->nr_poll_queues && nr_io_queues) {
 691                /* map dedicated poll queues only if we have queues left */
 692                ctrl->io_queues[HCTX_TYPE_POLL] =
 693                        min(nr_poll_queues, nr_io_queues);
 694        }
 695
 696        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 697                ret = nvme_rdma_alloc_queue(ctrl, i,
 698                                ctrl->ctrl.sqsize + 1);
 699                if (ret)
 700                        goto out_free_queues;
 701        }
 702
 703        return 0;
 704
 705out_free_queues:
 706        for (i--; i >= 1; i--)
 707                nvme_rdma_free_queue(&ctrl->queues[i]);
 708
 709        return ret;
 710}
 711
 712static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
 713                bool admin)
 714{
 715        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 716        struct blk_mq_tag_set *set;
 717        int ret;
 718
 719        if (admin) {
 720                set = &ctrl->admin_tag_set;
 721                memset(set, 0, sizeof(*set));
 722                set->ops = &nvme_rdma_admin_mq_ops;
 723                set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
 724                set->reserved_tags = 2; /* connect + keep-alive */
 725                set->numa_node = nctrl->numa_node;
 726                set->cmd_size = sizeof(struct nvme_rdma_request) +
 727                        SG_CHUNK_SIZE * sizeof(struct scatterlist);
 728                set->driver_data = ctrl;
 729                set->nr_hw_queues = 1;
 730                set->timeout = ADMIN_TIMEOUT;
 731                set->flags = BLK_MQ_F_NO_SCHED;
 732        } else {
 733                set = &ctrl->tag_set;
 734                memset(set, 0, sizeof(*set));
 735                set->ops = &nvme_rdma_mq_ops;
 736                set->queue_depth = nctrl->sqsize + 1;
 737                set->reserved_tags = 1; /* fabric connect */
 738                set->numa_node = nctrl->numa_node;
 739                set->flags = BLK_MQ_F_SHOULD_MERGE;
 740                set->cmd_size = sizeof(struct nvme_rdma_request) +
 741                        SG_CHUNK_SIZE * sizeof(struct scatterlist);
 742                set->driver_data = ctrl;
 743                set->nr_hw_queues = nctrl->queue_count - 1;
 744                set->timeout = NVME_IO_TIMEOUT;
 745                set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
 746        }
 747
 748        ret = blk_mq_alloc_tag_set(set);
 749        if (ret)
 750                return ERR_PTR(ret);
 751
 752        return set;
 753}
 754
 755static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
 756                bool remove)
 757{
 758        if (remove) {
 759                blk_cleanup_queue(ctrl->ctrl.admin_q);
 760                blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
 761        }
 762        if (ctrl->async_event_sqe.data) {
 763                nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 764                                sizeof(struct nvme_command), DMA_TO_DEVICE);
 765                ctrl->async_event_sqe.data = NULL;
 766        }
 767        nvme_rdma_free_queue(&ctrl->queues[0]);
 768}
 769
 770static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
 771                bool new)
 772{
 773        int error;
 774
 775        error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
 776        if (error)
 777                return error;
 778
 779        ctrl->device = ctrl->queues[0].device;
 780        ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
 781
 782        ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
 783
 784        /*
 785         * Bind the async event SQE DMA mapping to the admin queue lifetime.
 786         * It's safe, since any chage in the underlying RDMA device will issue
 787         * error recovery and queue re-creation.
 788         */
 789        error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 790                        sizeof(struct nvme_command), DMA_TO_DEVICE);
 791        if (error)
 792                goto out_free_queue;
 793
 794        if (new) {
 795                ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
 796                if (IS_ERR(ctrl->ctrl.admin_tagset)) {
 797                        error = PTR_ERR(ctrl->ctrl.admin_tagset);
 798                        goto out_free_async_qe;
 799                }
 800
 801                ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
 802                if (IS_ERR(ctrl->ctrl.admin_q)) {
 803                        error = PTR_ERR(ctrl->ctrl.admin_q);
 804                        goto out_free_tagset;
 805                }
 806        }
 807
 808        error = nvme_rdma_start_queue(ctrl, 0);
 809        if (error)
 810                goto out_cleanup_queue;
 811
 812        error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
 813                        &ctrl->ctrl.cap);
 814        if (error) {
 815                dev_err(ctrl->ctrl.device,
 816                        "prop_get NVME_REG_CAP failed\n");
 817                goto out_stop_queue;
 818        }
 819
 820        ctrl->ctrl.sqsize =
 821                min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
 822
 823        error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
 824        if (error)
 825                goto out_stop_queue;
 826
 827        ctrl->ctrl.max_hw_sectors =
 828                (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
 829
 830        error = nvme_init_identify(&ctrl->ctrl);
 831        if (error)
 832                goto out_stop_queue;
 833
 834        return 0;
 835
 836out_stop_queue:
 837        nvme_rdma_stop_queue(&ctrl->queues[0]);
 838out_cleanup_queue:
 839        if (new)
 840                blk_cleanup_queue(ctrl->ctrl.admin_q);
 841out_free_tagset:
 842        if (new)
 843                blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
 844out_free_async_qe:
 845        nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 846                sizeof(struct nvme_command), DMA_TO_DEVICE);
 847        ctrl->async_event_sqe.data = NULL;
 848out_free_queue:
 849        nvme_rdma_free_queue(&ctrl->queues[0]);
 850        return error;
 851}
 852
 853static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
 854                bool remove)
 855{
 856        if (remove) {
 857                blk_cleanup_queue(ctrl->ctrl.connect_q);
 858                blk_mq_free_tag_set(ctrl->ctrl.tagset);
 859        }
 860        nvme_rdma_free_io_queues(ctrl);
 861}
 862
 863static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
 864{
 865        int ret;
 866
 867        ret = nvme_rdma_alloc_io_queues(ctrl);
 868        if (ret)
 869                return ret;
 870
 871        if (new) {
 872                ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
 873                if (IS_ERR(ctrl->ctrl.tagset)) {
 874                        ret = PTR_ERR(ctrl->ctrl.tagset);
 875                        goto out_free_io_queues;
 876                }
 877
 878                ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
 879                if (IS_ERR(ctrl->ctrl.connect_q)) {
 880                        ret = PTR_ERR(ctrl->ctrl.connect_q);
 881                        goto out_free_tag_set;
 882                }
 883        } else {
 884                blk_mq_update_nr_hw_queues(&ctrl->tag_set,
 885                        ctrl->ctrl.queue_count - 1);
 886        }
 887
 888        ret = nvme_rdma_start_io_queues(ctrl);
 889        if (ret)
 890                goto out_cleanup_connect_q;
 891
 892        return 0;
 893
 894out_cleanup_connect_q:
 895        if (new)
 896                blk_cleanup_queue(ctrl->ctrl.connect_q);
 897out_free_tag_set:
 898        if (new)
 899                blk_mq_free_tag_set(ctrl->ctrl.tagset);
 900out_free_io_queues:
 901        nvme_rdma_free_io_queues(ctrl);
 902        return ret;
 903}
 904
 905static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
 906                bool remove)
 907{
 908        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
 909        nvme_rdma_stop_queue(&ctrl->queues[0]);
 910        if (ctrl->ctrl.admin_tagset)
 911                blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
 912                        nvme_cancel_request, &ctrl->ctrl);
 913        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
 914        nvme_rdma_destroy_admin_queue(ctrl, remove);
 915}
 916
 917static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
 918                bool remove)
 919{
 920        if (ctrl->ctrl.queue_count > 1) {
 921                nvme_stop_queues(&ctrl->ctrl);
 922                nvme_rdma_stop_io_queues(ctrl);
 923                if (ctrl->ctrl.tagset)
 924                        blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
 925                                nvme_cancel_request, &ctrl->ctrl);
 926                if (remove)
 927                        nvme_start_queues(&ctrl->ctrl);
 928                nvme_rdma_destroy_io_queues(ctrl, remove);
 929        }
 930}
 931
 932static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
 933{
 934        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 935
 936        if (list_empty(&ctrl->list))
 937                goto free_ctrl;
 938
 939        mutex_lock(&nvme_rdma_ctrl_mutex);
 940        list_del(&ctrl->list);
 941        mutex_unlock(&nvme_rdma_ctrl_mutex);
 942
 943        nvmf_free_options(nctrl->opts);
 944free_ctrl:
 945        kfree(ctrl->queues);
 946        kfree(ctrl);
 947}
 948
 949static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
 950{
 951        /* If we are resetting/deleting then do nothing */
 952        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
 953                WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
 954                        ctrl->ctrl.state == NVME_CTRL_LIVE);
 955                return;
 956        }
 957
 958        if (nvmf_should_reconnect(&ctrl->ctrl)) {
 959                dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
 960                        ctrl->ctrl.opts->reconnect_delay);
 961                queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
 962                                ctrl->ctrl.opts->reconnect_delay * HZ);
 963        } else {
 964                nvme_delete_ctrl(&ctrl->ctrl);
 965        }
 966}
 967
 968static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
 969{
 970        int ret = -EINVAL;
 971        bool changed;
 972
 973        ret = nvme_rdma_configure_admin_queue(ctrl, new);
 974        if (ret)
 975                return ret;
 976
 977        if (ctrl->ctrl.icdoff) {
 978                dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
 979                goto destroy_admin;
 980        }
 981
 982        if (!(ctrl->ctrl.sgls & (1 << 2))) {
 983                dev_err(ctrl->ctrl.device,
 984                        "Mandatory keyed sgls are not supported!\n");
 985                goto destroy_admin;
 986        }
 987
 988        if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
 989                dev_warn(ctrl->ctrl.device,
 990                        "queue_size %zu > ctrl sqsize %u, clamping down\n",
 991                        ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
 992        }
 993
 994        if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
 995                dev_warn(ctrl->ctrl.device,
 996                        "sqsize %u > ctrl maxcmd %u, clamping down\n",
 997                        ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
 998                ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
 999        }
1000
1001        if (ctrl->ctrl.sgls & (1 << 20))
1002                ctrl->use_inline_data = true;
1003
1004        if (ctrl->ctrl.queue_count > 1) {
1005                ret = nvme_rdma_configure_io_queues(ctrl, new);
1006                if (ret)
1007                        goto destroy_admin;
1008        }
1009
1010        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1011        if (!changed) {
1012                /* state change failure is ok if we're in DELETING state */
1013                WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1014                ret = -EINVAL;
1015                goto destroy_io;
1016        }
1017
1018        nvme_start_ctrl(&ctrl->ctrl);
1019        return 0;
1020
1021destroy_io:
1022        if (ctrl->ctrl.queue_count > 1)
1023                nvme_rdma_destroy_io_queues(ctrl, new);
1024destroy_admin:
1025        nvme_rdma_stop_queue(&ctrl->queues[0]);
1026        nvme_rdma_destroy_admin_queue(ctrl, new);
1027        return ret;
1028}
1029
1030static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1031{
1032        struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1033                        struct nvme_rdma_ctrl, reconnect_work);
1034
1035        ++ctrl->ctrl.nr_reconnects;
1036
1037        if (nvme_rdma_setup_ctrl(ctrl, false))
1038                goto requeue;
1039
1040        dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1041                        ctrl->ctrl.nr_reconnects);
1042
1043        ctrl->ctrl.nr_reconnects = 0;
1044
1045        return;
1046
1047requeue:
1048        dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1049                        ctrl->ctrl.nr_reconnects);
1050        nvme_rdma_reconnect_or_remove(ctrl);
1051}
1052
1053static void nvme_rdma_error_recovery_work(struct work_struct *work)
1054{
1055        struct nvme_rdma_ctrl *ctrl = container_of(work,
1056                        struct nvme_rdma_ctrl, err_work);
1057
1058        nvme_stop_keep_alive(&ctrl->ctrl);
1059        nvme_rdma_teardown_io_queues(ctrl, false);
1060        nvme_start_queues(&ctrl->ctrl);
1061        nvme_rdma_teardown_admin_queue(ctrl, false);
1062
1063        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1064                /* state change failure is ok if we're in DELETING state */
1065                WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1066                return;
1067        }
1068
1069        nvme_rdma_reconnect_or_remove(ctrl);
1070}
1071
1072static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1073{
1074        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1075                return;
1076
1077        queue_work(nvme_wq, &ctrl->err_work);
1078}
1079
1080static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1081                const char *op)
1082{
1083        struct nvme_rdma_queue *queue = cq->cq_context;
1084        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1085
1086        if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1087                dev_info(ctrl->ctrl.device,
1088                             "%s for CQE 0x%p failed with status %s (%d)\n",
1089                             op, wc->wr_cqe,
1090                             ib_wc_status_msg(wc->status), wc->status);
1091        nvme_rdma_error_recovery(ctrl);
1092}
1093
1094static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1095{
1096        if (unlikely(wc->status != IB_WC_SUCCESS))
1097                nvme_rdma_wr_error(cq, wc, "MEMREG");
1098}
1099
1100static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1101{
1102        struct nvme_rdma_request *req =
1103                container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1104        struct request *rq = blk_mq_rq_from_pdu(req);
1105
1106        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1107                nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1108                return;
1109        }
1110
1111        if (refcount_dec_and_test(&req->ref))
1112                nvme_end_request(rq, req->status, req->result);
1113
1114}
1115
1116static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1117                struct nvme_rdma_request *req)
1118{
1119        struct ib_send_wr wr = {
1120                .opcode             = IB_WR_LOCAL_INV,
1121                .next               = NULL,
1122                .num_sge            = 0,
1123                .send_flags         = IB_SEND_SIGNALED,
1124                .ex.invalidate_rkey = req->mr->rkey,
1125        };
1126
1127        req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1128        wr.wr_cqe = &req->reg_cqe;
1129
1130        return ib_post_send(queue->qp, &wr, NULL);
1131}
1132
1133static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1134                struct request *rq)
1135{
1136        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1137        struct nvme_rdma_device *dev = queue->device;
1138        struct ib_device *ibdev = dev->dev;
1139
1140        if (!blk_rq_nr_phys_segments(rq))
1141                return;
1142
1143        if (req->mr) {
1144                ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1145                req->mr = NULL;
1146        }
1147
1148        ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1149                        req->nents, rq_data_dir(rq) ==
1150                                    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1151
1152        nvme_cleanup_cmd(rq);
1153        sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1154}
1155
1156static int nvme_rdma_set_sg_null(struct nvme_command *c)
1157{
1158        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1159
1160        sg->addr = 0;
1161        put_unaligned_le24(0, sg->length);
1162        put_unaligned_le32(0, sg->key);
1163        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1164        return 0;
1165}
1166
1167static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1168                struct nvme_rdma_request *req, struct nvme_command *c,
1169                int count)
1170{
1171        struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1172        struct scatterlist *sgl = req->sg_table.sgl;
1173        struct ib_sge *sge = &req->sge[1];
1174        u32 len = 0;
1175        int i;
1176
1177        for (i = 0; i < count; i++, sgl++, sge++) {
1178                sge->addr = sg_dma_address(sgl);
1179                sge->length = sg_dma_len(sgl);
1180                sge->lkey = queue->device->pd->local_dma_lkey;
1181                len += sge->length;
1182        }
1183
1184        sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1185        sg->length = cpu_to_le32(len);
1186        sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1187
1188        req->num_sge += count;
1189        return 0;
1190}
1191
1192static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1193                struct nvme_rdma_request *req, struct nvme_command *c)
1194{
1195        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1196
1197        sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1198        put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1199        put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1200        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1201        return 0;
1202}
1203
1204static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1205                struct nvme_rdma_request *req, struct nvme_command *c,
1206                int count)
1207{
1208        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1209        int nr;
1210
1211        req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1212        if (WARN_ON_ONCE(!req->mr))
1213                return -EAGAIN;
1214
1215        /*
1216         * Align the MR to a 4K page size to match the ctrl page size and
1217         * the block virtual boundary.
1218         */
1219        nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1220        if (unlikely(nr < count)) {
1221                ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1222                req->mr = NULL;
1223                if (nr < 0)
1224                        return nr;
1225                return -EINVAL;
1226        }
1227
1228        ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1229
1230        req->reg_cqe.done = nvme_rdma_memreg_done;
1231        memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1232        req->reg_wr.wr.opcode = IB_WR_REG_MR;
1233        req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1234        req->reg_wr.wr.num_sge = 0;
1235        req->reg_wr.mr = req->mr;
1236        req->reg_wr.key = req->mr->rkey;
1237        req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1238                             IB_ACCESS_REMOTE_READ |
1239                             IB_ACCESS_REMOTE_WRITE;
1240
1241        sg->addr = cpu_to_le64(req->mr->iova);
1242        put_unaligned_le24(req->mr->length, sg->length);
1243        put_unaligned_le32(req->mr->rkey, sg->key);
1244        sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1245                        NVME_SGL_FMT_INVALIDATE;
1246
1247        return 0;
1248}
1249
1250static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1251                struct request *rq, struct nvme_command *c)
1252{
1253        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1254        struct nvme_rdma_device *dev = queue->device;
1255        struct ib_device *ibdev = dev->dev;
1256        int count, ret;
1257
1258        req->num_sge = 1;
1259        refcount_set(&req->ref, 2); /* send and recv completions */
1260
1261        c->common.flags |= NVME_CMD_SGL_METABUF;
1262
1263        if (!blk_rq_nr_phys_segments(rq))
1264                return nvme_rdma_set_sg_null(c);
1265
1266        req->sg_table.sgl = req->first_sgl;
1267        ret = sg_alloc_table_chained(&req->sg_table,
1268                        blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1269                        SG_CHUNK_SIZE);
1270        if (ret)
1271                return -ENOMEM;
1272
1273        req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1274
1275        count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1276                    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1277        if (unlikely(count <= 0)) {
1278                ret = -EIO;
1279                goto out_free_table;
1280        }
1281
1282        if (count <= dev->num_inline_segments) {
1283                if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1284                    queue->ctrl->use_inline_data &&
1285                    blk_rq_payload_bytes(rq) <=
1286                                nvme_rdma_inline_data_size(queue)) {
1287                        ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1288                        goto out;
1289                }
1290
1291                if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1292                        ret = nvme_rdma_map_sg_single(queue, req, c);
1293                        goto out;
1294                }
1295        }
1296
1297        ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1298out:
1299        if (unlikely(ret))
1300                goto out_unmap_sg;
1301
1302        return 0;
1303
1304out_unmap_sg:
1305        ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1306                        req->nents, rq_data_dir(rq) ==
1307                        WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1308out_free_table:
1309        sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1310        return ret;
1311}
1312
1313static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1314{
1315        struct nvme_rdma_qe *qe =
1316                container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1317        struct nvme_rdma_request *req =
1318                container_of(qe, struct nvme_rdma_request, sqe);
1319        struct request *rq = blk_mq_rq_from_pdu(req);
1320
1321        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1322                nvme_rdma_wr_error(cq, wc, "SEND");
1323                return;
1324        }
1325
1326        if (refcount_dec_and_test(&req->ref))
1327                nvme_end_request(rq, req->status, req->result);
1328}
1329
1330static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1331                struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1332                struct ib_send_wr *first)
1333{
1334        struct ib_send_wr wr;
1335        int ret;
1336
1337        sge->addr   = qe->dma;
1338        sge->length = sizeof(struct nvme_command),
1339        sge->lkey   = queue->device->pd->local_dma_lkey;
1340
1341        wr.next       = NULL;
1342        wr.wr_cqe     = &qe->cqe;
1343        wr.sg_list    = sge;
1344        wr.num_sge    = num_sge;
1345        wr.opcode     = IB_WR_SEND;
1346        wr.send_flags = IB_SEND_SIGNALED;
1347
1348        if (first)
1349                first->next = &wr;
1350        else
1351                first = &wr;
1352
1353        ret = ib_post_send(queue->qp, first, NULL);
1354        if (unlikely(ret)) {
1355                dev_err(queue->ctrl->ctrl.device,
1356                             "%s failed with error code %d\n", __func__, ret);
1357        }
1358        return ret;
1359}
1360
1361static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1362                struct nvme_rdma_qe *qe)
1363{
1364        struct ib_recv_wr wr;
1365        struct ib_sge list;
1366        int ret;
1367
1368        list.addr   = qe->dma;
1369        list.length = sizeof(struct nvme_completion);
1370        list.lkey   = queue->device->pd->local_dma_lkey;
1371
1372        qe->cqe.done = nvme_rdma_recv_done;
1373
1374        wr.next     = NULL;
1375        wr.wr_cqe   = &qe->cqe;
1376        wr.sg_list  = &list;
1377        wr.num_sge  = 1;
1378
1379        ret = ib_post_recv(queue->qp, &wr, NULL);
1380        if (unlikely(ret)) {
1381                dev_err(queue->ctrl->ctrl.device,
1382                        "%s failed with error code %d\n", __func__, ret);
1383        }
1384        return ret;
1385}
1386
1387static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1388{
1389        u32 queue_idx = nvme_rdma_queue_idx(queue);
1390
1391        if (queue_idx == 0)
1392                return queue->ctrl->admin_tag_set.tags[queue_idx];
1393        return queue->ctrl->tag_set.tags[queue_idx - 1];
1394}
1395
1396static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1397{
1398        if (unlikely(wc->status != IB_WC_SUCCESS))
1399                nvme_rdma_wr_error(cq, wc, "ASYNC");
1400}
1401
1402static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1403{
1404        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1405        struct nvme_rdma_queue *queue = &ctrl->queues[0];
1406        struct ib_device *dev = queue->device->dev;
1407        struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1408        struct nvme_command *cmd = sqe->data;
1409        struct ib_sge sge;
1410        int ret;
1411
1412        ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1413
1414        memset(cmd, 0, sizeof(*cmd));
1415        cmd->common.opcode = nvme_admin_async_event;
1416        cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1417        cmd->common.flags |= NVME_CMD_SGL_METABUF;
1418        nvme_rdma_set_sg_null(cmd);
1419
1420        sqe->cqe.done = nvme_rdma_async_done;
1421
1422        ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1423                        DMA_TO_DEVICE);
1424
1425        ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1426        WARN_ON_ONCE(ret);
1427}
1428
1429static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1430                struct nvme_completion *cqe, struct ib_wc *wc)
1431{
1432        struct request *rq;
1433        struct nvme_rdma_request *req;
1434
1435        rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1436        if (!rq) {
1437                dev_err(queue->ctrl->ctrl.device,
1438                        "tag 0x%x on QP %#x not found\n",
1439                        cqe->command_id, queue->qp->qp_num);
1440                nvme_rdma_error_recovery(queue->ctrl);
1441                return;
1442        }
1443        req = blk_mq_rq_to_pdu(rq);
1444
1445        req->status = cqe->status;
1446        req->result = cqe->result;
1447
1448        if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1449                if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1450                        dev_err(queue->ctrl->ctrl.device,
1451                                "Bogus remote invalidation for rkey %#x\n",
1452                                req->mr->rkey);
1453                        nvme_rdma_error_recovery(queue->ctrl);
1454                }
1455        } else if (req->mr) {
1456                int ret;
1457
1458                ret = nvme_rdma_inv_rkey(queue, req);
1459                if (unlikely(ret < 0)) {
1460                        dev_err(queue->ctrl->ctrl.device,
1461                                "Queueing INV WR for rkey %#x failed (%d)\n",
1462                                req->mr->rkey, ret);
1463                        nvme_rdma_error_recovery(queue->ctrl);
1464                }
1465                /* the local invalidation completion will end the request */
1466                return;
1467        }
1468
1469        if (refcount_dec_and_test(&req->ref))
1470                nvme_end_request(rq, req->status, req->result);
1471}
1472
1473static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1474{
1475        struct nvme_rdma_qe *qe =
1476                container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1477        struct nvme_rdma_queue *queue = cq->cq_context;
1478        struct ib_device *ibdev = queue->device->dev;
1479        struct nvme_completion *cqe = qe->data;
1480        const size_t len = sizeof(struct nvme_completion);
1481
1482        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1483                nvme_rdma_wr_error(cq, wc, "RECV");
1484                return;
1485        }
1486
1487        ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1488        /*
1489         * AEN requests are special as they don't time out and can
1490         * survive any kind of queue freeze and often don't respond to
1491         * aborts.  We don't even bother to allocate a struct request
1492         * for them but rather special case them here.
1493         */
1494        if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1495                        cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1496                nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1497                                &cqe->result);
1498        else
1499                nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1500        ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1501
1502        nvme_rdma_post_recv(queue, qe);
1503}
1504
1505static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1506{
1507        int ret, i;
1508
1509        for (i = 0; i < queue->queue_size; i++) {
1510                ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1511                if (ret)
1512                        goto out_destroy_queue_ib;
1513        }
1514
1515        return 0;
1516
1517out_destroy_queue_ib:
1518        nvme_rdma_destroy_queue_ib(queue);
1519        return ret;
1520}
1521
1522static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1523                struct rdma_cm_event *ev)
1524{
1525        struct rdma_cm_id *cm_id = queue->cm_id;
1526        int status = ev->status;
1527        const char *rej_msg;
1528        const struct nvme_rdma_cm_rej *rej_data;
1529        u8 rej_data_len;
1530
1531        rej_msg = rdma_reject_msg(cm_id, status);
1532        rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1533
1534        if (rej_data && rej_data_len >= sizeof(u16)) {
1535                u16 sts = le16_to_cpu(rej_data->sts);
1536
1537                dev_err(queue->ctrl->ctrl.device,
1538                      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1539                      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1540        } else {
1541                dev_err(queue->ctrl->ctrl.device,
1542                        "Connect rejected: status %d (%s).\n", status, rej_msg);
1543        }
1544
1545        return -ECONNRESET;
1546}
1547
1548static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1549{
1550        int ret;
1551
1552        ret = nvme_rdma_create_queue_ib(queue);
1553        if (ret)
1554                return ret;
1555
1556        ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1557        if (ret) {
1558                dev_err(queue->ctrl->ctrl.device,
1559                        "rdma_resolve_route failed (%d).\n",
1560                        queue->cm_error);
1561                goto out_destroy_queue;
1562        }
1563
1564        return 0;
1565
1566out_destroy_queue:
1567        nvme_rdma_destroy_queue_ib(queue);
1568        return ret;
1569}
1570
1571static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1572{
1573        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1574        struct rdma_conn_param param = { };
1575        struct nvme_rdma_cm_req priv = { };
1576        int ret;
1577
1578        param.qp_num = queue->qp->qp_num;
1579        param.flow_control = 1;
1580
1581        param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1582        /* maximum retry count */
1583        param.retry_count = 7;
1584        param.rnr_retry_count = 7;
1585        param.private_data = &priv;
1586        param.private_data_len = sizeof(priv);
1587
1588        priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1589        priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1590        /*
1591         * set the admin queue depth to the minimum size
1592         * specified by the Fabrics standard.
1593         */
1594        if (priv.qid == 0) {
1595                priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1596                priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1597        } else {
1598                /*
1599                 * current interpretation of the fabrics spec
1600                 * is at minimum you make hrqsize sqsize+1, or a
1601                 * 1's based representation of sqsize.
1602                 */
1603                priv.hrqsize = cpu_to_le16(queue->queue_size);
1604                priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1605        }
1606
1607        ret = rdma_connect(queue->cm_id, &param);
1608        if (ret) {
1609                dev_err(ctrl->ctrl.device,
1610                        "rdma_connect failed (%d).\n", ret);
1611                goto out_destroy_queue_ib;
1612        }
1613
1614        return 0;
1615
1616out_destroy_queue_ib:
1617        nvme_rdma_destroy_queue_ib(queue);
1618        return ret;
1619}
1620
1621static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1622                struct rdma_cm_event *ev)
1623{
1624        struct nvme_rdma_queue *queue = cm_id->context;
1625        int cm_error = 0;
1626
1627        dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1628                rdma_event_msg(ev->event), ev->event,
1629                ev->status, cm_id);
1630
1631        switch (ev->event) {
1632        case RDMA_CM_EVENT_ADDR_RESOLVED:
1633                cm_error = nvme_rdma_addr_resolved(queue);
1634                break;
1635        case RDMA_CM_EVENT_ROUTE_RESOLVED:
1636                cm_error = nvme_rdma_route_resolved(queue);
1637                break;
1638        case RDMA_CM_EVENT_ESTABLISHED:
1639                queue->cm_error = nvme_rdma_conn_established(queue);
1640                /* complete cm_done regardless of success/failure */
1641                complete(&queue->cm_done);
1642                return 0;
1643        case RDMA_CM_EVENT_REJECTED:
1644                nvme_rdma_destroy_queue_ib(queue);
1645                cm_error = nvme_rdma_conn_rejected(queue, ev);
1646                break;
1647        case RDMA_CM_EVENT_ROUTE_ERROR:
1648        case RDMA_CM_EVENT_CONNECT_ERROR:
1649        case RDMA_CM_EVENT_UNREACHABLE:
1650                nvme_rdma_destroy_queue_ib(queue);
1651                /* fall through */
1652        case RDMA_CM_EVENT_ADDR_ERROR:
1653                dev_dbg(queue->ctrl->ctrl.device,
1654                        "CM error event %d\n", ev->event);
1655                cm_error = -ECONNRESET;
1656                break;
1657        case RDMA_CM_EVENT_DISCONNECTED:
1658        case RDMA_CM_EVENT_ADDR_CHANGE:
1659        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1660                dev_dbg(queue->ctrl->ctrl.device,
1661                        "disconnect received - connection closed\n");
1662                nvme_rdma_error_recovery(queue->ctrl);
1663                break;
1664        case RDMA_CM_EVENT_DEVICE_REMOVAL:
1665                /* device removal is handled via the ib_client API */
1666                break;
1667        default:
1668                dev_err(queue->ctrl->ctrl.device,
1669                        "Unexpected RDMA CM event (%d)\n", ev->event);
1670                nvme_rdma_error_recovery(queue->ctrl);
1671                break;
1672        }
1673
1674        if (cm_error) {
1675                queue->cm_error = cm_error;
1676                complete(&queue->cm_done);
1677        }
1678
1679        return 0;
1680}
1681
1682static enum blk_eh_timer_return
1683nvme_rdma_timeout(struct request *rq, bool reserved)
1684{
1685        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1686        struct nvme_rdma_queue *queue = req->queue;
1687        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1688
1689        dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1690                 rq->tag, nvme_rdma_queue_idx(queue));
1691
1692        if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1693                /*
1694                 * Teardown immediately if controller times out while starting
1695                 * or we are already started error recovery. all outstanding
1696                 * requests are completed on shutdown, so we return BLK_EH_DONE.
1697                 */
1698                flush_work(&ctrl->err_work);
1699                nvme_rdma_teardown_io_queues(ctrl, false);
1700                nvme_rdma_teardown_admin_queue(ctrl, false);
1701                return BLK_EH_DONE;
1702        }
1703
1704        dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1705        nvme_rdma_error_recovery(ctrl);
1706
1707        return BLK_EH_RESET_TIMER;
1708}
1709
1710static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1711                const struct blk_mq_queue_data *bd)
1712{
1713        struct nvme_ns *ns = hctx->queue->queuedata;
1714        struct nvme_rdma_queue *queue = hctx->driver_data;
1715        struct request *rq = bd->rq;
1716        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1717        struct nvme_rdma_qe *sqe = &req->sqe;
1718        struct nvme_command *c = sqe->data;
1719        struct ib_device *dev;
1720        bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1721        blk_status_t ret;
1722        int err;
1723
1724        WARN_ON_ONCE(rq->tag < 0);
1725
1726        if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1727                return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1728
1729        dev = queue->device->dev;
1730
1731        req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1732                                         sizeof(struct nvme_command),
1733                                         DMA_TO_DEVICE);
1734        err = ib_dma_mapping_error(dev, req->sqe.dma);
1735        if (unlikely(err))
1736                return BLK_STS_RESOURCE;
1737
1738        ib_dma_sync_single_for_cpu(dev, sqe->dma,
1739                        sizeof(struct nvme_command), DMA_TO_DEVICE);
1740
1741        ret = nvme_setup_cmd(ns, rq, c);
1742        if (ret)
1743                goto unmap_qe;
1744
1745        blk_mq_start_request(rq);
1746
1747        err = nvme_rdma_map_data(queue, rq, c);
1748        if (unlikely(err < 0)) {
1749                dev_err(queue->ctrl->ctrl.device,
1750                             "Failed to map data (%d)\n", err);
1751                nvme_cleanup_cmd(rq);
1752                goto err;
1753        }
1754
1755        sqe->cqe.done = nvme_rdma_send_done;
1756
1757        ib_dma_sync_single_for_device(dev, sqe->dma,
1758                        sizeof(struct nvme_command), DMA_TO_DEVICE);
1759
1760        err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1761                        req->mr ? &req->reg_wr.wr : NULL);
1762        if (unlikely(err)) {
1763                nvme_rdma_unmap_data(queue, rq);
1764                goto err;
1765        }
1766
1767        return BLK_STS_OK;
1768
1769err:
1770        if (err == -ENOMEM || err == -EAGAIN)
1771                ret = BLK_STS_RESOURCE;
1772        else
1773                ret = BLK_STS_IOERR;
1774unmap_qe:
1775        ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1776                            DMA_TO_DEVICE);
1777        return ret;
1778}
1779
1780static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1781{
1782        struct nvme_rdma_queue *queue = hctx->driver_data;
1783
1784        return ib_process_cq_direct(queue->ib_cq, -1);
1785}
1786
1787static void nvme_rdma_complete_rq(struct request *rq)
1788{
1789        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1790        struct nvme_rdma_queue *queue = req->queue;
1791        struct ib_device *ibdev = queue->device->dev;
1792
1793        nvme_rdma_unmap_data(queue, rq);
1794        ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1795                            DMA_TO_DEVICE);
1796        nvme_complete_rq(rq);
1797}
1798
1799static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1800{
1801        struct nvme_rdma_ctrl *ctrl = set->driver_data;
1802        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1803
1804        if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1805                /* separate read/write queues */
1806                set->map[HCTX_TYPE_DEFAULT].nr_queues =
1807                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
1808                set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1809                set->map[HCTX_TYPE_READ].nr_queues =
1810                        ctrl->io_queues[HCTX_TYPE_READ];
1811                set->map[HCTX_TYPE_READ].queue_offset =
1812                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
1813        } else {
1814                /* shared read/write queues */
1815                set->map[HCTX_TYPE_DEFAULT].nr_queues =
1816                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
1817                set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1818                set->map[HCTX_TYPE_READ].nr_queues =
1819                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
1820                set->map[HCTX_TYPE_READ].queue_offset = 0;
1821        }
1822        blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1823                        ctrl->device->dev, 0);
1824        blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1825                        ctrl->device->dev, 0);
1826
1827        if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1828                /* map dedicated poll queues only if we have queues left */
1829                set->map[HCTX_TYPE_POLL].nr_queues =
1830                                ctrl->io_queues[HCTX_TYPE_POLL];
1831                set->map[HCTX_TYPE_POLL].queue_offset =
1832                        ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1833                        ctrl->io_queues[HCTX_TYPE_READ];
1834                blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1835        }
1836
1837        dev_info(ctrl->ctrl.device,
1838                "mapped %d/%d/%d default/read/poll queues.\n",
1839                ctrl->io_queues[HCTX_TYPE_DEFAULT],
1840                ctrl->io_queues[HCTX_TYPE_READ],
1841                ctrl->io_queues[HCTX_TYPE_POLL]);
1842
1843        return 0;
1844}
1845
1846static const struct blk_mq_ops nvme_rdma_mq_ops = {
1847        .queue_rq       = nvme_rdma_queue_rq,
1848        .complete       = nvme_rdma_complete_rq,
1849        .init_request   = nvme_rdma_init_request,
1850        .exit_request   = nvme_rdma_exit_request,
1851        .init_hctx      = nvme_rdma_init_hctx,
1852        .timeout        = nvme_rdma_timeout,
1853        .map_queues     = nvme_rdma_map_queues,
1854        .poll           = nvme_rdma_poll,
1855};
1856
1857static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1858        .queue_rq       = nvme_rdma_queue_rq,
1859        .complete       = nvme_rdma_complete_rq,
1860        .init_request   = nvme_rdma_init_request,
1861        .exit_request   = nvme_rdma_exit_request,
1862        .init_hctx      = nvme_rdma_init_admin_hctx,
1863        .timeout        = nvme_rdma_timeout,
1864};
1865
1866static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1867{
1868        cancel_work_sync(&ctrl->err_work);
1869        cancel_delayed_work_sync(&ctrl->reconnect_work);
1870
1871        nvme_rdma_teardown_io_queues(ctrl, shutdown);
1872        if (shutdown)
1873                nvme_shutdown_ctrl(&ctrl->ctrl);
1874        else
1875                nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1876        nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1877}
1878
1879static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1880{
1881        nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1882}
1883
1884static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1885{
1886        struct nvme_rdma_ctrl *ctrl =
1887                container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1888
1889        nvme_stop_ctrl(&ctrl->ctrl);
1890        nvme_rdma_shutdown_ctrl(ctrl, false);
1891
1892        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1893                /* state change failure should never happen */
1894                WARN_ON_ONCE(1);
1895                return;
1896        }
1897
1898        if (nvme_rdma_setup_ctrl(ctrl, false))
1899                goto out_fail;
1900
1901        return;
1902
1903out_fail:
1904        ++ctrl->ctrl.nr_reconnects;
1905        nvme_rdma_reconnect_or_remove(ctrl);
1906}
1907
1908static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1909        .name                   = "rdma",
1910        .module                 = THIS_MODULE,
1911        .flags                  = NVME_F_FABRICS,
1912        .reg_read32             = nvmf_reg_read32,
1913        .reg_read64             = nvmf_reg_read64,
1914        .reg_write32            = nvmf_reg_write32,
1915        .free_ctrl              = nvme_rdma_free_ctrl,
1916        .submit_async_event     = nvme_rdma_submit_async_event,
1917        .delete_ctrl            = nvme_rdma_delete_ctrl,
1918        .get_address            = nvmf_get_address,
1919};
1920
1921/*
1922 * Fails a connection request if it matches an existing controller
1923 * (association) with the same tuple:
1924 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1925 *
1926 * if local address is not specified in the request, it will match an
1927 * existing controller with all the other parameters the same and no
1928 * local port address specified as well.
1929 *
1930 * The ports don't need to be compared as they are intrinsically
1931 * already matched by the port pointers supplied.
1932 */
1933static bool
1934nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1935{
1936        struct nvme_rdma_ctrl *ctrl;
1937        bool found = false;
1938
1939        mutex_lock(&nvme_rdma_ctrl_mutex);
1940        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1941                found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1942                if (found)
1943                        break;
1944        }
1945        mutex_unlock(&nvme_rdma_ctrl_mutex);
1946
1947        return found;
1948}
1949
1950static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1951                struct nvmf_ctrl_options *opts)
1952{
1953        struct nvme_rdma_ctrl *ctrl;
1954        int ret;
1955        bool changed;
1956
1957        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1958        if (!ctrl)
1959                return ERR_PTR(-ENOMEM);
1960        ctrl->ctrl.opts = opts;
1961        INIT_LIST_HEAD(&ctrl->list);
1962
1963        if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1964                opts->trsvcid =
1965                        kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1966                if (!opts->trsvcid) {
1967                        ret = -ENOMEM;
1968                        goto out_free_ctrl;
1969                }
1970                opts->mask |= NVMF_OPT_TRSVCID;
1971        }
1972
1973        ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1974                        opts->traddr, opts->trsvcid, &ctrl->addr);
1975        if (ret) {
1976                pr_err("malformed address passed: %s:%s\n",
1977                        opts->traddr, opts->trsvcid);
1978                goto out_free_ctrl;
1979        }
1980
1981        if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1982                ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1983                        opts->host_traddr, NULL, &ctrl->src_addr);
1984                if (ret) {
1985                        pr_err("malformed src address passed: %s\n",
1986                               opts->host_traddr);
1987                        goto out_free_ctrl;
1988                }
1989        }
1990
1991        if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1992                ret = -EALREADY;
1993                goto out_free_ctrl;
1994        }
1995
1996        INIT_DELAYED_WORK(&ctrl->reconnect_work,
1997                        nvme_rdma_reconnect_ctrl_work);
1998        INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1999        INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2000
2001        ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2002                                opts->nr_poll_queues + 1;
2003        ctrl->ctrl.sqsize = opts->queue_size - 1;
2004        ctrl->ctrl.kato = opts->kato;
2005
2006        ret = -ENOMEM;
2007        ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2008                                GFP_KERNEL);
2009        if (!ctrl->queues)
2010                goto out_free_ctrl;
2011
2012        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2013                                0 /* no quirks, we're perfect! */);
2014        if (ret)
2015                goto out_kfree_queues;
2016
2017        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2018        WARN_ON_ONCE(!changed);
2019
2020        ret = nvme_rdma_setup_ctrl(ctrl, true);
2021        if (ret)
2022                goto out_uninit_ctrl;
2023
2024        dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2025                ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2026
2027        nvme_get_ctrl(&ctrl->ctrl);
2028
2029        mutex_lock(&nvme_rdma_ctrl_mutex);
2030        list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2031        mutex_unlock(&nvme_rdma_ctrl_mutex);
2032
2033        return &ctrl->ctrl;
2034
2035out_uninit_ctrl:
2036        nvme_uninit_ctrl(&ctrl->ctrl);
2037        nvme_put_ctrl(&ctrl->ctrl);
2038        if (ret > 0)
2039                ret = -EIO;
2040        return ERR_PTR(ret);
2041out_kfree_queues:
2042        kfree(ctrl->queues);
2043out_free_ctrl:
2044        kfree(ctrl);
2045        return ERR_PTR(ret);
2046}
2047
2048static struct nvmf_transport_ops nvme_rdma_transport = {
2049        .name           = "rdma",
2050        .module         = THIS_MODULE,
2051        .required_opts  = NVMF_OPT_TRADDR,
2052        .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2053                          NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2054                          NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES,
2055        .create_ctrl    = nvme_rdma_create_ctrl,
2056};
2057
2058static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2059{
2060        struct nvme_rdma_ctrl *ctrl;
2061        struct nvme_rdma_device *ndev;
2062        bool found = false;
2063
2064        mutex_lock(&device_list_mutex);
2065        list_for_each_entry(ndev, &device_list, entry) {
2066                if (ndev->dev == ib_device) {
2067                        found = true;
2068                        break;
2069                }
2070        }
2071        mutex_unlock(&device_list_mutex);
2072
2073        if (!found)
2074                return;
2075
2076        /* Delete all controllers using this device */
2077        mutex_lock(&nvme_rdma_ctrl_mutex);
2078        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2079                if (ctrl->device->dev != ib_device)
2080                        continue;
2081                nvme_delete_ctrl(&ctrl->ctrl);
2082        }
2083        mutex_unlock(&nvme_rdma_ctrl_mutex);
2084
2085        flush_workqueue(nvme_delete_wq);
2086}
2087
2088static struct ib_client nvme_rdma_ib_client = {
2089        .name   = "nvme_rdma",
2090        .remove = nvme_rdma_remove_one
2091};
2092
2093static int __init nvme_rdma_init_module(void)
2094{
2095        int ret;
2096
2097        ret = ib_register_client(&nvme_rdma_ib_client);
2098        if (ret)
2099                return ret;
2100
2101        ret = nvmf_register_transport(&nvme_rdma_transport);
2102        if (ret)
2103                goto err_unreg_client;
2104
2105        return 0;
2106
2107err_unreg_client:
2108        ib_unregister_client(&nvme_rdma_ib_client);
2109        return ret;
2110}
2111
2112static void __exit nvme_rdma_cleanup_module(void)
2113{
2114        nvmf_unregister_transport(&nvme_rdma_transport);
2115        ib_unregister_client(&nvme_rdma_ib_client);
2116}
2117
2118module_init(nvme_rdma_init_module);
2119module_exit(nvme_rdma_cleanup_module);
2120
2121MODULE_LICENSE("GPL v2");
2122