linux/drivers/nvme/target/fc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   4 */
   5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   6#include <linux/module.h>
   7#include <linux/slab.h>
   8#include <linux/blk-mq.h>
   9#include <linux/parser.h>
  10#include <linux/random.h>
  11#include <uapi/scsi/fc/fc_fs.h>
  12#include <uapi/scsi/fc/fc_els.h>
  13
  14#include "nvmet.h"
  15#include <linux/nvme-fc-driver.h>
  16#include <linux/nvme-fc.h>
  17
  18
  19/* *************************** Data Structures/Defines ****************** */
  20
  21
  22#define NVMET_LS_CTX_COUNT              256
  23
  24/* for this implementation, assume small single frame rqst/rsp */
  25#define NVME_FC_MAX_LS_BUFFER_SIZE              2048
  26
  27struct nvmet_fc_tgtport;
  28struct nvmet_fc_tgt_assoc;
  29
  30struct nvmet_fc_ls_iod {
  31        struct nvmefc_tgt_ls_req        *lsreq;
  32        struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
  33
  34        struct list_head                ls_list;        /* tgtport->ls_list */
  35
  36        struct nvmet_fc_tgtport         *tgtport;
  37        struct nvmet_fc_tgt_assoc       *assoc;
  38
  39        u8                              *rqstbuf;
  40        u8                              *rspbuf;
  41        u16                             rqstdatalen;
  42        dma_addr_t                      rspdma;
  43
  44        struct scatterlist              sg[2];
  45
  46        struct work_struct              work;
  47} __aligned(sizeof(unsigned long long));
  48
  49/* desired maximum for a single sequence - if sg list allows it */
  50#define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
  51
  52enum nvmet_fcp_datadir {
  53        NVMET_FCP_NODATA,
  54        NVMET_FCP_WRITE,
  55        NVMET_FCP_READ,
  56        NVMET_FCP_ABORTED,
  57};
  58
  59struct nvmet_fc_fcp_iod {
  60        struct nvmefc_tgt_fcp_req       *fcpreq;
  61
  62        struct nvme_fc_cmd_iu           cmdiubuf;
  63        struct nvme_fc_ersp_iu          rspiubuf;
  64        dma_addr_t                      rspdma;
  65        struct scatterlist              *next_sg;
  66        struct scatterlist              *data_sg;
  67        int                             data_sg_cnt;
  68        u32                             offset;
  69        enum nvmet_fcp_datadir          io_dir;
  70        bool                            active;
  71        bool                            abort;
  72        bool                            aborted;
  73        bool                            writedataactive;
  74        spinlock_t                      flock;
  75
  76        struct nvmet_req                req;
  77        struct work_struct              defer_work;
  78
  79        struct nvmet_fc_tgtport         *tgtport;
  80        struct nvmet_fc_tgt_queue       *queue;
  81
  82        struct list_head                fcp_list;       /* tgtport->fcp_list */
  83};
  84
  85struct nvmet_fc_tgtport {
  86
  87        struct nvmet_fc_target_port     fc_target_port;
  88
  89        struct list_head                tgt_list; /* nvmet_fc_target_list */
  90        struct device                   *dev;   /* dev for dma mapping */
  91        struct nvmet_fc_target_template *ops;
  92
  93        struct nvmet_fc_ls_iod          *iod;
  94        spinlock_t                      lock;
  95        struct list_head                ls_list;
  96        struct list_head                ls_busylist;
  97        struct list_head                assoc_list;
  98        struct ida                      assoc_cnt;
  99        struct nvmet_fc_port_entry      *pe;
 100        struct kref                     ref;
 101        u32                             max_sg_cnt;
 102};
 103
 104struct nvmet_fc_port_entry {
 105        struct nvmet_fc_tgtport         *tgtport;
 106        struct nvmet_port               *port;
 107        u64                             node_name;
 108        u64                             port_name;
 109        struct list_head                pe_list;
 110};
 111
 112struct nvmet_fc_defer_fcp_req {
 113        struct list_head                req_list;
 114        struct nvmefc_tgt_fcp_req       *fcp_req;
 115};
 116
 117struct nvmet_fc_tgt_queue {
 118        bool                            ninetypercent;
 119        u16                             qid;
 120        u16                             sqsize;
 121        u16                             ersp_ratio;
 122        __le16                          sqhd;
 123        atomic_t                        connected;
 124        atomic_t                        sqtail;
 125        atomic_t                        zrspcnt;
 126        atomic_t                        rsn;
 127        spinlock_t                      qlock;
 128        struct nvmet_cq                 nvme_cq;
 129        struct nvmet_sq                 nvme_sq;
 130        struct nvmet_fc_tgt_assoc       *assoc;
 131        struct list_head                fod_list;
 132        struct list_head                pending_cmd_list;
 133        struct list_head                avail_defer_list;
 134        struct workqueue_struct         *work_q;
 135        struct kref                     ref;
 136        struct nvmet_fc_fcp_iod         fod[];          /* array of fcp_iods */
 137} __aligned(sizeof(unsigned long long));
 138
 139struct nvmet_fc_tgt_assoc {
 140        u64                             association_id;
 141        u32                             a_id;
 142        struct nvmet_fc_tgtport         *tgtport;
 143        struct list_head                a_list;
 144        struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
 145        struct kref                     ref;
 146        struct work_struct              del_work;
 147};
 148
 149
 150static inline int
 151nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
 152{
 153        return (iodptr - iodptr->tgtport->iod);
 154}
 155
 156static inline int
 157nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
 158{
 159        return (fodptr - fodptr->queue->fod);
 160}
 161
 162
 163/*
 164 * Association and Connection IDs:
 165 *
 166 * Association ID will have random number in upper 6 bytes and zero
 167 *   in lower 2 bytes
 168 *
 169 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
 170 *
 171 * note: Association ID = Connection ID for queue 0
 172 */
 173#define BYTES_FOR_QID                   sizeof(u16)
 174#define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
 175#define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
 176
 177static inline u64
 178nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
 179{
 180        return (assoc->association_id | qid);
 181}
 182
 183static inline u64
 184nvmet_fc_getassociationid(u64 connectionid)
 185{
 186        return connectionid & ~NVMET_FC_QUEUEID_MASK;
 187}
 188
 189static inline u16
 190nvmet_fc_getqueueid(u64 connectionid)
 191{
 192        return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
 193}
 194
 195static inline struct nvmet_fc_tgtport *
 196targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
 197{
 198        return container_of(targetport, struct nvmet_fc_tgtport,
 199                                 fc_target_port);
 200}
 201
 202static inline struct nvmet_fc_fcp_iod *
 203nvmet_req_to_fod(struct nvmet_req *nvme_req)
 204{
 205        return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
 206}
 207
 208
 209/* *************************** Globals **************************** */
 210
 211
 212static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
 213
 214static LIST_HEAD(nvmet_fc_target_list);
 215static DEFINE_IDA(nvmet_fc_tgtport_cnt);
 216static LIST_HEAD(nvmet_fc_portentry_list);
 217
 218
 219static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
 220static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
 221static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
 222static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
 223static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
 224static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
 225static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
 226static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
 227static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
 228                                        struct nvmet_fc_fcp_iod *fod);
 229static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
 230
 231
 232/* *********************** FC-NVME DMA Handling **************************** */
 233
 234/*
 235 * The fcloop device passes in a NULL device pointer. Real LLD's will
 236 * pass in a valid device pointer. If NULL is passed to the dma mapping
 237 * routines, depending on the platform, it may or may not succeed, and
 238 * may crash.
 239 *
 240 * As such:
 241 * Wrapper all the dma routines and check the dev pointer.
 242 *
 243 * If simple mappings (return just a dma address, we'll noop them,
 244 * returning a dma address of 0.
 245 *
 246 * On more complex mappings (dma_map_sg), a pseudo routine fills
 247 * in the scatter list, setting all dma addresses to 0.
 248 */
 249
 250static inline dma_addr_t
 251fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 252                enum dma_data_direction dir)
 253{
 254        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 255}
 256
 257static inline int
 258fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 259{
 260        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 261}
 262
 263static inline void
 264fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 265        enum dma_data_direction dir)
 266{
 267        if (dev)
 268                dma_unmap_single(dev, addr, size, dir);
 269}
 270
 271static inline void
 272fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 273                enum dma_data_direction dir)
 274{
 275        if (dev)
 276                dma_sync_single_for_cpu(dev, addr, size, dir);
 277}
 278
 279static inline void
 280fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 281                enum dma_data_direction dir)
 282{
 283        if (dev)
 284                dma_sync_single_for_device(dev, addr, size, dir);
 285}
 286
 287/* pseudo dma_map_sg call */
 288static int
 289fc_map_sg(struct scatterlist *sg, int nents)
 290{
 291        struct scatterlist *s;
 292        int i;
 293
 294        WARN_ON(nents == 0 || sg[0].length == 0);
 295
 296        for_each_sg(sg, s, nents, i) {
 297                s->dma_address = 0L;
 298#ifdef CONFIG_NEED_SG_DMA_LENGTH
 299                s->dma_length = s->length;
 300#endif
 301        }
 302        return nents;
 303}
 304
 305static inline int
 306fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 307                enum dma_data_direction dir)
 308{
 309        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 310}
 311
 312static inline void
 313fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 314                enum dma_data_direction dir)
 315{
 316        if (dev)
 317                dma_unmap_sg(dev, sg, nents, dir);
 318}
 319
 320
 321/* *********************** FC-NVME Port Management ************************ */
 322
 323
 324static int
 325nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 326{
 327        struct nvmet_fc_ls_iod *iod;
 328        int i;
 329
 330        iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
 331                        GFP_KERNEL);
 332        if (!iod)
 333                return -ENOMEM;
 334
 335        tgtport->iod = iod;
 336
 337        for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 338                INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
 339                iod->tgtport = tgtport;
 340                list_add_tail(&iod->ls_list, &tgtport->ls_list);
 341
 342                iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
 343                        GFP_KERNEL);
 344                if (!iod->rqstbuf)
 345                        goto out_fail;
 346
 347                iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
 348
 349                iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
 350                                                NVME_FC_MAX_LS_BUFFER_SIZE,
 351                                                DMA_TO_DEVICE);
 352                if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
 353                        goto out_fail;
 354        }
 355
 356        return 0;
 357
 358out_fail:
 359        kfree(iod->rqstbuf);
 360        list_del(&iod->ls_list);
 361        for (iod--, i--; i >= 0; iod--, i--) {
 362                fc_dma_unmap_single(tgtport->dev, iod->rspdma,
 363                                NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
 364                kfree(iod->rqstbuf);
 365                list_del(&iod->ls_list);
 366        }
 367
 368        kfree(iod);
 369
 370        return -EFAULT;
 371}
 372
 373static void
 374nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 375{
 376        struct nvmet_fc_ls_iod *iod = tgtport->iod;
 377        int i;
 378
 379        for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 380                fc_dma_unmap_single(tgtport->dev,
 381                                iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
 382                                DMA_TO_DEVICE);
 383                kfree(iod->rqstbuf);
 384                list_del(&iod->ls_list);
 385        }
 386        kfree(tgtport->iod);
 387}
 388
 389static struct nvmet_fc_ls_iod *
 390nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
 391{
 392        struct nvmet_fc_ls_iod *iod;
 393        unsigned long flags;
 394
 395        spin_lock_irqsave(&tgtport->lock, flags);
 396        iod = list_first_entry_or_null(&tgtport->ls_list,
 397                                        struct nvmet_fc_ls_iod, ls_list);
 398        if (iod)
 399                list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
 400        spin_unlock_irqrestore(&tgtport->lock, flags);
 401        return iod;
 402}
 403
 404
 405static void
 406nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
 407                        struct nvmet_fc_ls_iod *iod)
 408{
 409        unsigned long flags;
 410
 411        spin_lock_irqsave(&tgtport->lock, flags);
 412        list_move(&iod->ls_list, &tgtport->ls_list);
 413        spin_unlock_irqrestore(&tgtport->lock, flags);
 414}
 415
 416static void
 417nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 418                                struct nvmet_fc_tgt_queue *queue)
 419{
 420        struct nvmet_fc_fcp_iod *fod = queue->fod;
 421        int i;
 422
 423        for (i = 0; i < queue->sqsize; fod++, i++) {
 424                INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
 425                fod->tgtport = tgtport;
 426                fod->queue = queue;
 427                fod->active = false;
 428                fod->abort = false;
 429                fod->aborted = false;
 430                fod->fcpreq = NULL;
 431                list_add_tail(&fod->fcp_list, &queue->fod_list);
 432                spin_lock_init(&fod->flock);
 433
 434                fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
 435                                        sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 436                if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
 437                        list_del(&fod->fcp_list);
 438                        for (fod--, i--; i >= 0; fod--, i--) {
 439                                fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 440                                                sizeof(fod->rspiubuf),
 441                                                DMA_TO_DEVICE);
 442                                fod->rspdma = 0L;
 443                                list_del(&fod->fcp_list);
 444                        }
 445
 446                        return;
 447                }
 448        }
 449}
 450
 451static void
 452nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 453                                struct nvmet_fc_tgt_queue *queue)
 454{
 455        struct nvmet_fc_fcp_iod *fod = queue->fod;
 456        int i;
 457
 458        for (i = 0; i < queue->sqsize; fod++, i++) {
 459                if (fod->rspdma)
 460                        fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 461                                sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 462        }
 463}
 464
 465static struct nvmet_fc_fcp_iod *
 466nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
 467{
 468        struct nvmet_fc_fcp_iod *fod;
 469
 470        lockdep_assert_held(&queue->qlock);
 471
 472        fod = list_first_entry_or_null(&queue->fod_list,
 473                                        struct nvmet_fc_fcp_iod, fcp_list);
 474        if (fod) {
 475                list_del(&fod->fcp_list);
 476                fod->active = true;
 477                /*
 478                 * no queue reference is taken, as it was taken by the
 479                 * queue lookup just prior to the allocation. The iod
 480                 * will "inherit" that reference.
 481                 */
 482        }
 483        return fod;
 484}
 485
 486
 487static void
 488nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
 489                       struct nvmet_fc_tgt_queue *queue,
 490                       struct nvmefc_tgt_fcp_req *fcpreq)
 491{
 492        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
 493
 494        /*
 495         * put all admin cmds on hw queue id 0. All io commands go to
 496         * the respective hw queue based on a modulo basis
 497         */
 498        fcpreq->hwqid = queue->qid ?
 499                        ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
 500
 501        nvmet_fc_handle_fcp_rqst(tgtport, fod);
 502}
 503
 504static void
 505nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
 506{
 507        struct nvmet_fc_fcp_iod *fod =
 508                container_of(work, struct nvmet_fc_fcp_iod, defer_work);
 509
 510        /* Submit deferred IO for processing */
 511        nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
 512
 513}
 514
 515static void
 516nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
 517                        struct nvmet_fc_fcp_iod *fod)
 518{
 519        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
 520        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
 521        struct nvmet_fc_defer_fcp_req *deferfcp;
 522        unsigned long flags;
 523
 524        fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
 525                                sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 526
 527        fcpreq->nvmet_fc_private = NULL;
 528
 529        fod->active = false;
 530        fod->abort = false;
 531        fod->aborted = false;
 532        fod->writedataactive = false;
 533        fod->fcpreq = NULL;
 534
 535        tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
 536
 537        /* release the queue lookup reference on the completed IO */
 538        nvmet_fc_tgt_q_put(queue);
 539
 540        spin_lock_irqsave(&queue->qlock, flags);
 541        deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 542                                struct nvmet_fc_defer_fcp_req, req_list);
 543        if (!deferfcp) {
 544                list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
 545                spin_unlock_irqrestore(&queue->qlock, flags);
 546                return;
 547        }
 548
 549        /* Re-use the fod for the next pending cmd that was deferred */
 550        list_del(&deferfcp->req_list);
 551
 552        fcpreq = deferfcp->fcp_req;
 553
 554        /* deferfcp can be reused for another IO at a later date */
 555        list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
 556
 557        spin_unlock_irqrestore(&queue->qlock, flags);
 558
 559        /* Save NVME CMD IO in fod */
 560        memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
 561
 562        /* Setup new fcpreq to be processed */
 563        fcpreq->rspaddr = NULL;
 564        fcpreq->rsplen  = 0;
 565        fcpreq->nvmet_fc_private = fod;
 566        fod->fcpreq = fcpreq;
 567        fod->active = true;
 568
 569        /* inform LLDD IO is now being processed */
 570        tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
 571
 572        /*
 573         * Leave the queue lookup get reference taken when
 574         * fod was originally allocated.
 575         */
 576
 577        queue_work(queue->work_q, &fod->defer_work);
 578}
 579
 580static struct nvmet_fc_tgt_queue *
 581nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
 582                        u16 qid, u16 sqsize)
 583{
 584        struct nvmet_fc_tgt_queue *queue;
 585        unsigned long flags;
 586        int ret;
 587
 588        if (qid > NVMET_NR_QUEUES)
 589                return NULL;
 590
 591        queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
 592        if (!queue)
 593                return NULL;
 594
 595        if (!nvmet_fc_tgt_a_get(assoc))
 596                goto out_free_queue;
 597
 598        queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
 599                                assoc->tgtport->fc_target_port.port_num,
 600                                assoc->a_id, qid);
 601        if (!queue->work_q)
 602                goto out_a_put;
 603
 604        queue->qid = qid;
 605        queue->sqsize = sqsize;
 606        queue->assoc = assoc;
 607        INIT_LIST_HEAD(&queue->fod_list);
 608        INIT_LIST_HEAD(&queue->avail_defer_list);
 609        INIT_LIST_HEAD(&queue->pending_cmd_list);
 610        atomic_set(&queue->connected, 0);
 611        atomic_set(&queue->sqtail, 0);
 612        atomic_set(&queue->rsn, 1);
 613        atomic_set(&queue->zrspcnt, 0);
 614        spin_lock_init(&queue->qlock);
 615        kref_init(&queue->ref);
 616
 617        nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
 618
 619        ret = nvmet_sq_init(&queue->nvme_sq);
 620        if (ret)
 621                goto out_fail_iodlist;
 622
 623        WARN_ON(assoc->queues[qid]);
 624        spin_lock_irqsave(&assoc->tgtport->lock, flags);
 625        assoc->queues[qid] = queue;
 626        spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
 627
 628        return queue;
 629
 630out_fail_iodlist:
 631        nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
 632        destroy_workqueue(queue->work_q);
 633out_a_put:
 634        nvmet_fc_tgt_a_put(assoc);
 635out_free_queue:
 636        kfree(queue);
 637        return NULL;
 638}
 639
 640
 641static void
 642nvmet_fc_tgt_queue_free(struct kref *ref)
 643{
 644        struct nvmet_fc_tgt_queue *queue =
 645                container_of(ref, struct nvmet_fc_tgt_queue, ref);
 646        unsigned long flags;
 647
 648        spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
 649        queue->assoc->queues[queue->qid] = NULL;
 650        spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
 651
 652        nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
 653
 654        nvmet_fc_tgt_a_put(queue->assoc);
 655
 656        destroy_workqueue(queue->work_q);
 657
 658        kfree(queue);
 659}
 660
 661static void
 662nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
 663{
 664        kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
 665}
 666
 667static int
 668nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
 669{
 670        return kref_get_unless_zero(&queue->ref);
 671}
 672
 673
 674static void
 675nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
 676{
 677        struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
 678        struct nvmet_fc_fcp_iod *fod = queue->fod;
 679        struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
 680        unsigned long flags;
 681        int i, writedataactive;
 682        bool disconnect;
 683
 684        disconnect = atomic_xchg(&queue->connected, 0);
 685
 686        spin_lock_irqsave(&queue->qlock, flags);
 687        /* about outstanding io's */
 688        for (i = 0; i < queue->sqsize; fod++, i++) {
 689                if (fod->active) {
 690                        spin_lock(&fod->flock);
 691                        fod->abort = true;
 692                        writedataactive = fod->writedataactive;
 693                        spin_unlock(&fod->flock);
 694                        /*
 695                         * only call lldd abort routine if waiting for
 696                         * writedata. other outstanding ops should finish
 697                         * on their own.
 698                         */
 699                        if (writedataactive) {
 700                                spin_lock(&fod->flock);
 701                                fod->aborted = true;
 702                                spin_unlock(&fod->flock);
 703                                tgtport->ops->fcp_abort(
 704                                        &tgtport->fc_target_port, fod->fcpreq);
 705                        }
 706                }
 707        }
 708
 709        /* Cleanup defer'ed IOs in queue */
 710        list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
 711                                req_list) {
 712                list_del(&deferfcp->req_list);
 713                kfree(deferfcp);
 714        }
 715
 716        for (;;) {
 717                deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 718                                struct nvmet_fc_defer_fcp_req, req_list);
 719                if (!deferfcp)
 720                        break;
 721
 722                list_del(&deferfcp->req_list);
 723                spin_unlock_irqrestore(&queue->qlock, flags);
 724
 725                tgtport->ops->defer_rcv(&tgtport->fc_target_port,
 726                                deferfcp->fcp_req);
 727
 728                tgtport->ops->fcp_abort(&tgtport->fc_target_port,
 729                                deferfcp->fcp_req);
 730
 731                tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
 732                                deferfcp->fcp_req);
 733
 734                /* release the queue lookup reference */
 735                nvmet_fc_tgt_q_put(queue);
 736
 737                kfree(deferfcp);
 738
 739                spin_lock_irqsave(&queue->qlock, flags);
 740        }
 741        spin_unlock_irqrestore(&queue->qlock, flags);
 742
 743        flush_workqueue(queue->work_q);
 744
 745        if (disconnect)
 746                nvmet_sq_destroy(&queue->nvme_sq);
 747
 748        nvmet_fc_tgt_q_put(queue);
 749}
 750
 751static struct nvmet_fc_tgt_queue *
 752nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
 753                                u64 connection_id)
 754{
 755        struct nvmet_fc_tgt_assoc *assoc;
 756        struct nvmet_fc_tgt_queue *queue;
 757        u64 association_id = nvmet_fc_getassociationid(connection_id);
 758        u16 qid = nvmet_fc_getqueueid(connection_id);
 759        unsigned long flags;
 760
 761        if (qid > NVMET_NR_QUEUES)
 762                return NULL;
 763
 764        spin_lock_irqsave(&tgtport->lock, flags);
 765        list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
 766                if (association_id == assoc->association_id) {
 767                        queue = assoc->queues[qid];
 768                        if (queue &&
 769                            (!atomic_read(&queue->connected) ||
 770                             !nvmet_fc_tgt_q_get(queue)))
 771                                queue = NULL;
 772                        spin_unlock_irqrestore(&tgtport->lock, flags);
 773                        return queue;
 774                }
 775        }
 776        spin_unlock_irqrestore(&tgtport->lock, flags);
 777        return NULL;
 778}
 779
 780static void
 781nvmet_fc_delete_assoc(struct work_struct *work)
 782{
 783        struct nvmet_fc_tgt_assoc *assoc =
 784                container_of(work, struct nvmet_fc_tgt_assoc, del_work);
 785
 786        nvmet_fc_delete_target_assoc(assoc);
 787        nvmet_fc_tgt_a_put(assoc);
 788}
 789
 790static struct nvmet_fc_tgt_assoc *
 791nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
 792{
 793        struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
 794        unsigned long flags;
 795        u64 ran;
 796        int idx;
 797        bool needrandom = true;
 798
 799        assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
 800        if (!assoc)
 801                return NULL;
 802
 803        idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
 804        if (idx < 0)
 805                goto out_free_assoc;
 806
 807        if (!nvmet_fc_tgtport_get(tgtport))
 808                goto out_ida_put;
 809
 810        assoc->tgtport = tgtport;
 811        assoc->a_id = idx;
 812        INIT_LIST_HEAD(&assoc->a_list);
 813        kref_init(&assoc->ref);
 814        INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
 815
 816        while (needrandom) {
 817                get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
 818                ran = ran << BYTES_FOR_QID_SHIFT;
 819
 820                spin_lock_irqsave(&tgtport->lock, flags);
 821                needrandom = false;
 822                list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
 823                        if (ran == tmpassoc->association_id) {
 824                                needrandom = true;
 825                                break;
 826                        }
 827                if (!needrandom) {
 828                        assoc->association_id = ran;
 829                        list_add_tail(&assoc->a_list, &tgtport->assoc_list);
 830                }
 831                spin_unlock_irqrestore(&tgtport->lock, flags);
 832        }
 833
 834        return assoc;
 835
 836out_ida_put:
 837        ida_simple_remove(&tgtport->assoc_cnt, idx);
 838out_free_assoc:
 839        kfree(assoc);
 840        return NULL;
 841}
 842
 843static void
 844nvmet_fc_target_assoc_free(struct kref *ref)
 845{
 846        struct nvmet_fc_tgt_assoc *assoc =
 847                container_of(ref, struct nvmet_fc_tgt_assoc, ref);
 848        struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
 849        unsigned long flags;
 850
 851        spin_lock_irqsave(&tgtport->lock, flags);
 852        list_del(&assoc->a_list);
 853        spin_unlock_irqrestore(&tgtport->lock, flags);
 854        ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
 855        kfree(assoc);
 856        nvmet_fc_tgtport_put(tgtport);
 857}
 858
 859static void
 860nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
 861{
 862        kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
 863}
 864
 865static int
 866nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
 867{
 868        return kref_get_unless_zero(&assoc->ref);
 869}
 870
 871static void
 872nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
 873{
 874        struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
 875        struct nvmet_fc_tgt_queue *queue;
 876        unsigned long flags;
 877        int i;
 878
 879        spin_lock_irqsave(&tgtport->lock, flags);
 880        for (i = NVMET_NR_QUEUES; i >= 0; i--) {
 881                queue = assoc->queues[i];
 882                if (queue) {
 883                        if (!nvmet_fc_tgt_q_get(queue))
 884                                continue;
 885                        spin_unlock_irqrestore(&tgtport->lock, flags);
 886                        nvmet_fc_delete_target_queue(queue);
 887                        nvmet_fc_tgt_q_put(queue);
 888                        spin_lock_irqsave(&tgtport->lock, flags);
 889                }
 890        }
 891        spin_unlock_irqrestore(&tgtport->lock, flags);
 892
 893        nvmet_fc_tgt_a_put(assoc);
 894}
 895
 896static struct nvmet_fc_tgt_assoc *
 897nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
 898                                u64 association_id)
 899{
 900        struct nvmet_fc_tgt_assoc *assoc;
 901        struct nvmet_fc_tgt_assoc *ret = NULL;
 902        unsigned long flags;
 903
 904        spin_lock_irqsave(&tgtport->lock, flags);
 905        list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
 906                if (association_id == assoc->association_id) {
 907                        ret = assoc;
 908                        nvmet_fc_tgt_a_get(assoc);
 909                        break;
 910                }
 911        }
 912        spin_unlock_irqrestore(&tgtport->lock, flags);
 913
 914        return ret;
 915}
 916
 917static void
 918nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
 919                        struct nvmet_fc_port_entry *pe,
 920                        struct nvmet_port *port)
 921{
 922        lockdep_assert_held(&nvmet_fc_tgtlock);
 923
 924        pe->tgtport = tgtport;
 925        tgtport->pe = pe;
 926
 927        pe->port = port;
 928        port->priv = pe;
 929
 930        pe->node_name = tgtport->fc_target_port.node_name;
 931        pe->port_name = tgtport->fc_target_port.port_name;
 932        INIT_LIST_HEAD(&pe->pe_list);
 933
 934        list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
 935}
 936
 937static void
 938nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
 939{
 940        unsigned long flags;
 941
 942        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
 943        if (pe->tgtport)
 944                pe->tgtport->pe = NULL;
 945        list_del(&pe->pe_list);
 946        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
 947}
 948
 949/*
 950 * called when a targetport deregisters. Breaks the relationship
 951 * with the nvmet port, but leaves the port_entry in place so that
 952 * re-registration can resume operation.
 953 */
 954static void
 955nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
 956{
 957        struct nvmet_fc_port_entry *pe;
 958        unsigned long flags;
 959
 960        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
 961        pe = tgtport->pe;
 962        if (pe)
 963                pe->tgtport = NULL;
 964        tgtport->pe = NULL;
 965        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
 966}
 967
 968/*
 969 * called when a new targetport is registered. Looks in the
 970 * existing nvmet port_entries to see if the nvmet layer is
 971 * configured for the targetport's wwn's. (the targetport existed,
 972 * nvmet configured, the lldd unregistered the tgtport, and is now
 973 * reregistering the same targetport).  If so, set the nvmet port
 974 * port entry on the targetport.
 975 */
 976static void
 977nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
 978{
 979        struct nvmet_fc_port_entry *pe;
 980        unsigned long flags;
 981
 982        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
 983        list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
 984                if (tgtport->fc_target_port.node_name == pe->node_name &&
 985                    tgtport->fc_target_port.port_name == pe->port_name) {
 986                        WARN_ON(pe->tgtport);
 987                        tgtport->pe = pe;
 988                        pe->tgtport = tgtport;
 989                        break;
 990                }
 991        }
 992        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
 993}
 994
 995/**
 996 * nvme_fc_register_targetport - transport entry point called by an
 997 *                              LLDD to register the existence of a local
 998 *                              NVME subystem FC port.
 999 * @pinfo:     pointer to information about the port to be registered
1000 * @template:  LLDD entrypoints and operational parameters for the port
1001 * @dev:       physical hardware device node port corresponds to. Will be
1002 *             used for DMA mappings
1003 * @portptr:   pointer to a local port pointer. Upon success, the routine
1004 *             will allocate a nvme_fc_local_port structure and place its
1005 *             address in the local port pointer. Upon failure, local port
1006 *             pointer will be set to NULL.
1007 *
1008 * Returns:
1009 * a completion status. Must be 0 upon success; a negative errno
1010 * (ex: -ENXIO) upon failure.
1011 */
1012int
1013nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1014                        struct nvmet_fc_target_template *template,
1015                        struct device *dev,
1016                        struct nvmet_fc_target_port **portptr)
1017{
1018        struct nvmet_fc_tgtport *newrec;
1019        unsigned long flags;
1020        int ret, idx;
1021
1022        if (!template->xmt_ls_rsp || !template->fcp_op ||
1023            !template->fcp_abort ||
1024            !template->fcp_req_release || !template->targetport_delete ||
1025            !template->max_hw_queues || !template->max_sgl_segments ||
1026            !template->max_dif_sgl_segments || !template->dma_boundary) {
1027                ret = -EINVAL;
1028                goto out_regtgt_failed;
1029        }
1030
1031        newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1032                         GFP_KERNEL);
1033        if (!newrec) {
1034                ret = -ENOMEM;
1035                goto out_regtgt_failed;
1036        }
1037
1038        idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1039        if (idx < 0) {
1040                ret = -ENOSPC;
1041                goto out_fail_kfree;
1042        }
1043
1044        if (!get_device(dev) && dev) {
1045                ret = -ENODEV;
1046                goto out_ida_put;
1047        }
1048
1049        newrec->fc_target_port.node_name = pinfo->node_name;
1050        newrec->fc_target_port.port_name = pinfo->port_name;
1051        newrec->fc_target_port.private = &newrec[1];
1052        newrec->fc_target_port.port_id = pinfo->port_id;
1053        newrec->fc_target_port.port_num = idx;
1054        INIT_LIST_HEAD(&newrec->tgt_list);
1055        newrec->dev = dev;
1056        newrec->ops = template;
1057        spin_lock_init(&newrec->lock);
1058        INIT_LIST_HEAD(&newrec->ls_list);
1059        INIT_LIST_HEAD(&newrec->ls_busylist);
1060        INIT_LIST_HEAD(&newrec->assoc_list);
1061        kref_init(&newrec->ref);
1062        ida_init(&newrec->assoc_cnt);
1063        newrec->max_sg_cnt = template->max_sgl_segments;
1064
1065        ret = nvmet_fc_alloc_ls_iodlist(newrec);
1066        if (ret) {
1067                ret = -ENOMEM;
1068                goto out_free_newrec;
1069        }
1070
1071        nvmet_fc_portentry_rebind_tgt(newrec);
1072
1073        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1074        list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1075        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1076
1077        *portptr = &newrec->fc_target_port;
1078        return 0;
1079
1080out_free_newrec:
1081        put_device(dev);
1082out_ida_put:
1083        ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1084out_fail_kfree:
1085        kfree(newrec);
1086out_regtgt_failed:
1087        *portptr = NULL;
1088        return ret;
1089}
1090EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1091
1092
1093static void
1094nvmet_fc_free_tgtport(struct kref *ref)
1095{
1096        struct nvmet_fc_tgtport *tgtport =
1097                container_of(ref, struct nvmet_fc_tgtport, ref);
1098        struct device *dev = tgtport->dev;
1099        unsigned long flags;
1100
1101        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1102        list_del(&tgtport->tgt_list);
1103        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1104
1105        nvmet_fc_free_ls_iodlist(tgtport);
1106
1107        /* let the LLDD know we've finished tearing it down */
1108        tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1109
1110        ida_simple_remove(&nvmet_fc_tgtport_cnt,
1111                        tgtport->fc_target_port.port_num);
1112
1113        ida_destroy(&tgtport->assoc_cnt);
1114
1115        kfree(tgtport);
1116
1117        put_device(dev);
1118}
1119
1120static void
1121nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1122{
1123        kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1124}
1125
1126static int
1127nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1128{
1129        return kref_get_unless_zero(&tgtport->ref);
1130}
1131
1132static void
1133__nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1134{
1135        struct nvmet_fc_tgt_assoc *assoc, *next;
1136        unsigned long flags;
1137
1138        spin_lock_irqsave(&tgtport->lock, flags);
1139        list_for_each_entry_safe(assoc, next,
1140                                &tgtport->assoc_list, a_list) {
1141                if (!nvmet_fc_tgt_a_get(assoc))
1142                        continue;
1143                if (!schedule_work(&assoc->del_work))
1144                        nvmet_fc_tgt_a_put(assoc);
1145        }
1146        spin_unlock_irqrestore(&tgtport->lock, flags);
1147}
1148
1149/*
1150 * nvmet layer has called to terminate an association
1151 */
1152static void
1153nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1154{
1155        struct nvmet_fc_tgtport *tgtport, *next;
1156        struct nvmet_fc_tgt_assoc *assoc;
1157        struct nvmet_fc_tgt_queue *queue;
1158        unsigned long flags;
1159        bool found_ctrl = false;
1160
1161        /* this is a bit ugly, but don't want to make locks layered */
1162        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1163        list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1164                        tgt_list) {
1165                if (!nvmet_fc_tgtport_get(tgtport))
1166                        continue;
1167                spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1168
1169                spin_lock_irqsave(&tgtport->lock, flags);
1170                list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1171                        queue = assoc->queues[0];
1172                        if (queue && queue->nvme_sq.ctrl == ctrl) {
1173                                if (nvmet_fc_tgt_a_get(assoc))
1174                                        found_ctrl = true;
1175                                break;
1176                        }
1177                }
1178                spin_unlock_irqrestore(&tgtport->lock, flags);
1179
1180                nvmet_fc_tgtport_put(tgtport);
1181
1182                if (found_ctrl) {
1183                        if (!schedule_work(&assoc->del_work))
1184                                nvmet_fc_tgt_a_put(assoc);
1185                        return;
1186                }
1187
1188                spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1189        }
1190        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1191}
1192
1193/**
1194 * nvme_fc_unregister_targetport - transport entry point called by an
1195 *                              LLDD to deregister/remove a previously
1196 *                              registered a local NVME subsystem FC port.
1197 * @target_port: pointer to the (registered) target port that is to be
1198 *               deregistered.
1199 *
1200 * Returns:
1201 * a completion status. Must be 0 upon success; a negative errno
1202 * (ex: -ENXIO) upon failure.
1203 */
1204int
1205nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1206{
1207        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1208
1209        nvmet_fc_portentry_unbind_tgt(tgtport);
1210
1211        /* terminate any outstanding associations */
1212        __nvmet_fc_free_assocs(tgtport);
1213
1214        nvmet_fc_tgtport_put(tgtport);
1215
1216        return 0;
1217}
1218EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1219
1220
1221/* *********************** FC-NVME LS Handling **************************** */
1222
1223
1224static void
1225nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1226{
1227        struct fcnvme_ls_acc_hdr *acc = buf;
1228
1229        acc->w0.ls_cmd = ls_cmd;
1230        acc->desc_list_len = desc_len;
1231        acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1232        acc->rqst.desc_len =
1233                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1234        acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1235}
1236
1237static int
1238nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1239                        u8 reason, u8 explanation, u8 vendor)
1240{
1241        struct fcnvme_ls_rjt *rjt = buf;
1242
1243        nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1244                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1245                        ls_cmd);
1246        rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1247        rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1248        rjt->rjt.reason_code = reason;
1249        rjt->rjt.reason_explanation = explanation;
1250        rjt->rjt.vendor = vendor;
1251
1252        return sizeof(struct fcnvme_ls_rjt);
1253}
1254
1255/* Validation Error indexes into the string table below */
1256enum {
1257        VERR_NO_ERROR           = 0,
1258        VERR_CR_ASSOC_LEN       = 1,
1259        VERR_CR_ASSOC_RQST_LEN  = 2,
1260        VERR_CR_ASSOC_CMD       = 3,
1261        VERR_CR_ASSOC_CMD_LEN   = 4,
1262        VERR_ERSP_RATIO         = 5,
1263        VERR_ASSOC_ALLOC_FAIL   = 6,
1264        VERR_QUEUE_ALLOC_FAIL   = 7,
1265        VERR_CR_CONN_LEN        = 8,
1266        VERR_CR_CONN_RQST_LEN   = 9,
1267        VERR_ASSOC_ID           = 10,
1268        VERR_ASSOC_ID_LEN       = 11,
1269        VERR_NO_ASSOC           = 12,
1270        VERR_CONN_ID            = 13,
1271        VERR_CONN_ID_LEN        = 14,
1272        VERR_NO_CONN            = 15,
1273        VERR_CR_CONN_CMD        = 16,
1274        VERR_CR_CONN_CMD_LEN    = 17,
1275        VERR_DISCONN_LEN        = 18,
1276        VERR_DISCONN_RQST_LEN   = 19,
1277        VERR_DISCONN_CMD        = 20,
1278        VERR_DISCONN_CMD_LEN    = 21,
1279        VERR_DISCONN_SCOPE      = 22,
1280        VERR_RS_LEN             = 23,
1281        VERR_RS_RQST_LEN        = 24,
1282        VERR_RS_CMD             = 25,
1283        VERR_RS_CMD_LEN         = 26,
1284        VERR_RS_RCTL            = 27,
1285        VERR_RS_RO              = 28,
1286};
1287
1288static char *validation_errors[] = {
1289        "OK",
1290        "Bad CR_ASSOC Length",
1291        "Bad CR_ASSOC Rqst Length",
1292        "Not CR_ASSOC Cmd",
1293        "Bad CR_ASSOC Cmd Length",
1294        "Bad Ersp Ratio",
1295        "Association Allocation Failed",
1296        "Queue Allocation Failed",
1297        "Bad CR_CONN Length",
1298        "Bad CR_CONN Rqst Length",
1299        "Not Association ID",
1300        "Bad Association ID Length",
1301        "No Association",
1302        "Not Connection ID",
1303        "Bad Connection ID Length",
1304        "No Connection",
1305        "Not CR_CONN Cmd",
1306        "Bad CR_CONN Cmd Length",
1307        "Bad DISCONN Length",
1308        "Bad DISCONN Rqst Length",
1309        "Not DISCONN Cmd",
1310        "Bad DISCONN Cmd Length",
1311        "Bad Disconnect Scope",
1312        "Bad RS Length",
1313        "Bad RS Rqst Length",
1314        "Not RS Cmd",
1315        "Bad RS Cmd Length",
1316        "Bad RS R_CTL",
1317        "Bad RS Relative Offset",
1318};
1319
1320static void
1321nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1322                        struct nvmet_fc_ls_iod *iod)
1323{
1324        struct fcnvme_ls_cr_assoc_rqst *rqst =
1325                                (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1326        struct fcnvme_ls_cr_assoc_acc *acc =
1327                                (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1328        struct nvmet_fc_tgt_queue *queue;
1329        int ret = 0;
1330
1331        memset(acc, 0, sizeof(*acc));
1332
1333        /*
1334         * FC-NVME spec changes. There are initiators sending different
1335         * lengths as padding sizes for Create Association Cmd descriptor
1336         * was incorrect.
1337         * Accept anything of "minimum" length. Assume format per 1.15
1338         * spec (with HOSTID reduced to 16 bytes), ignore how long the
1339         * trailing pad length is.
1340         */
1341        if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1342                ret = VERR_CR_ASSOC_LEN;
1343        else if (be32_to_cpu(rqst->desc_list_len) <
1344                        FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1345                ret = VERR_CR_ASSOC_RQST_LEN;
1346        else if (rqst->assoc_cmd.desc_tag !=
1347                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1348                ret = VERR_CR_ASSOC_CMD;
1349        else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1350                        FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1351                ret = VERR_CR_ASSOC_CMD_LEN;
1352        else if (!rqst->assoc_cmd.ersp_ratio ||
1353                 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1354                                be16_to_cpu(rqst->assoc_cmd.sqsize)))
1355                ret = VERR_ERSP_RATIO;
1356
1357        else {
1358                /* new association w/ admin queue */
1359                iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1360                if (!iod->assoc)
1361                        ret = VERR_ASSOC_ALLOC_FAIL;
1362                else {
1363                        queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1364                                        be16_to_cpu(rqst->assoc_cmd.sqsize));
1365                        if (!queue)
1366                                ret = VERR_QUEUE_ALLOC_FAIL;
1367                }
1368        }
1369
1370        if (ret) {
1371                dev_err(tgtport->dev,
1372                        "Create Association LS failed: %s\n",
1373                        validation_errors[ret]);
1374                iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1375                                NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1376                                FCNVME_RJT_RC_LOGIC,
1377                                FCNVME_RJT_EXP_NONE, 0);
1378                return;
1379        }
1380
1381        queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1382        atomic_set(&queue->connected, 1);
1383        queue->sqhd = 0;        /* best place to init value */
1384
1385        /* format a response */
1386
1387        iod->lsreq->rsplen = sizeof(*acc);
1388
1389        nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1390                        fcnvme_lsdesc_len(
1391                                sizeof(struct fcnvme_ls_cr_assoc_acc)),
1392                        FCNVME_LS_CREATE_ASSOCIATION);
1393        acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1394        acc->associd.desc_len =
1395                        fcnvme_lsdesc_len(
1396                                sizeof(struct fcnvme_lsdesc_assoc_id));
1397        acc->associd.association_id =
1398                        cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1399        acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1400        acc->connectid.desc_len =
1401                        fcnvme_lsdesc_len(
1402                                sizeof(struct fcnvme_lsdesc_conn_id));
1403        acc->connectid.connection_id = acc->associd.association_id;
1404}
1405
1406static void
1407nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1408                        struct nvmet_fc_ls_iod *iod)
1409{
1410        struct fcnvme_ls_cr_conn_rqst *rqst =
1411                                (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1412        struct fcnvme_ls_cr_conn_acc *acc =
1413                                (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1414        struct nvmet_fc_tgt_queue *queue;
1415        int ret = 0;
1416
1417        memset(acc, 0, sizeof(*acc));
1418
1419        if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1420                ret = VERR_CR_CONN_LEN;
1421        else if (rqst->desc_list_len !=
1422                        fcnvme_lsdesc_len(
1423                                sizeof(struct fcnvme_ls_cr_conn_rqst)))
1424                ret = VERR_CR_CONN_RQST_LEN;
1425        else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1426                ret = VERR_ASSOC_ID;
1427        else if (rqst->associd.desc_len !=
1428                        fcnvme_lsdesc_len(
1429                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1430                ret = VERR_ASSOC_ID_LEN;
1431        else if (rqst->connect_cmd.desc_tag !=
1432                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1433                ret = VERR_CR_CONN_CMD;
1434        else if (rqst->connect_cmd.desc_len !=
1435                        fcnvme_lsdesc_len(
1436                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1437                ret = VERR_CR_CONN_CMD_LEN;
1438        else if (!rqst->connect_cmd.ersp_ratio ||
1439                 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1440                                be16_to_cpu(rqst->connect_cmd.sqsize)))
1441                ret = VERR_ERSP_RATIO;
1442
1443        else {
1444                /* new io queue */
1445                iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1446                                be64_to_cpu(rqst->associd.association_id));
1447                if (!iod->assoc)
1448                        ret = VERR_NO_ASSOC;
1449                else {
1450                        queue = nvmet_fc_alloc_target_queue(iod->assoc,
1451                                        be16_to_cpu(rqst->connect_cmd.qid),
1452                                        be16_to_cpu(rqst->connect_cmd.sqsize));
1453                        if (!queue)
1454                                ret = VERR_QUEUE_ALLOC_FAIL;
1455
1456                        /* release get taken in nvmet_fc_find_target_assoc */
1457                        nvmet_fc_tgt_a_put(iod->assoc);
1458                }
1459        }
1460
1461        if (ret) {
1462                dev_err(tgtport->dev,
1463                        "Create Connection LS failed: %s\n",
1464                        validation_errors[ret]);
1465                iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1466                                NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1467                                (ret == VERR_NO_ASSOC) ?
1468                                        FCNVME_RJT_RC_INV_ASSOC :
1469                                        FCNVME_RJT_RC_LOGIC,
1470                                FCNVME_RJT_EXP_NONE, 0);
1471                return;
1472        }
1473
1474        queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1475        atomic_set(&queue->connected, 1);
1476        queue->sqhd = 0;        /* best place to init value */
1477
1478        /* format a response */
1479
1480        iod->lsreq->rsplen = sizeof(*acc);
1481
1482        nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1483                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1484                        FCNVME_LS_CREATE_CONNECTION);
1485        acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1486        acc->connectid.desc_len =
1487                        fcnvme_lsdesc_len(
1488                                sizeof(struct fcnvme_lsdesc_conn_id));
1489        acc->connectid.connection_id =
1490                        cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1491                                be16_to_cpu(rqst->connect_cmd.qid)));
1492}
1493
1494static void
1495nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1496                        struct nvmet_fc_ls_iod *iod)
1497{
1498        struct fcnvme_ls_disconnect_rqst *rqst =
1499                        (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1500        struct fcnvme_ls_disconnect_acc *acc =
1501                        (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1502        struct nvmet_fc_tgt_assoc *assoc;
1503        int ret = 0;
1504
1505        memset(acc, 0, sizeof(*acc));
1506
1507        if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1508                ret = VERR_DISCONN_LEN;
1509        else if (rqst->desc_list_len !=
1510                        fcnvme_lsdesc_len(
1511                                sizeof(struct fcnvme_ls_disconnect_rqst)))
1512                ret = VERR_DISCONN_RQST_LEN;
1513        else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1514                ret = VERR_ASSOC_ID;
1515        else if (rqst->associd.desc_len !=
1516                        fcnvme_lsdesc_len(
1517                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1518                ret = VERR_ASSOC_ID_LEN;
1519        else if (rqst->discon_cmd.desc_tag !=
1520                        cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1521                ret = VERR_DISCONN_CMD;
1522        else if (rqst->discon_cmd.desc_len !=
1523                        fcnvme_lsdesc_len(
1524                                sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1525                ret = VERR_DISCONN_CMD_LEN;
1526        else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1527                        (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1528                ret = VERR_DISCONN_SCOPE;
1529        else {
1530                /* match an active association */
1531                assoc = nvmet_fc_find_target_assoc(tgtport,
1532                                be64_to_cpu(rqst->associd.association_id));
1533                iod->assoc = assoc;
1534                if (!assoc)
1535                        ret = VERR_NO_ASSOC;
1536        }
1537
1538        if (ret) {
1539                dev_err(tgtport->dev,
1540                        "Disconnect LS failed: %s\n",
1541                        validation_errors[ret]);
1542                iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1543                                NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1544                                (ret == VERR_NO_ASSOC) ?
1545                                        FCNVME_RJT_RC_INV_ASSOC :
1546                                        (ret == VERR_NO_CONN) ?
1547                                                FCNVME_RJT_RC_INV_CONN :
1548                                                FCNVME_RJT_RC_LOGIC,
1549                                FCNVME_RJT_EXP_NONE, 0);
1550                return;
1551        }
1552
1553        /* format a response */
1554
1555        iod->lsreq->rsplen = sizeof(*acc);
1556
1557        nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1558                        fcnvme_lsdesc_len(
1559                                sizeof(struct fcnvme_ls_disconnect_acc)),
1560                        FCNVME_LS_DISCONNECT);
1561
1562        /* release get taken in nvmet_fc_find_target_assoc */
1563        nvmet_fc_tgt_a_put(iod->assoc);
1564
1565        nvmet_fc_delete_target_assoc(iod->assoc);
1566}
1567
1568
1569/* *********************** NVME Ctrl Routines **************************** */
1570
1571
1572static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1573
1574static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1575
1576static void
1577nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1578{
1579        struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1580        struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1581
1582        fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1583                                NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1584        nvmet_fc_free_ls_iod(tgtport, iod);
1585        nvmet_fc_tgtport_put(tgtport);
1586}
1587
1588static void
1589nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1590                                struct nvmet_fc_ls_iod *iod)
1591{
1592        int ret;
1593
1594        fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1595                                  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1596
1597        ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1598        if (ret)
1599                nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1600}
1601
1602/*
1603 * Actual processing routine for received FC-NVME LS Requests from the LLD
1604 */
1605static void
1606nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1607                        struct nvmet_fc_ls_iod *iod)
1608{
1609        struct fcnvme_ls_rqst_w0 *w0 =
1610                        (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1611
1612        iod->lsreq->nvmet_fc_private = iod;
1613        iod->lsreq->rspbuf = iod->rspbuf;
1614        iod->lsreq->rspdma = iod->rspdma;
1615        iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1616        /* Be preventative. handlers will later set to valid length */
1617        iod->lsreq->rsplen = 0;
1618
1619        iod->assoc = NULL;
1620
1621        /*
1622         * handlers:
1623         *   parse request input, execute the request, and format the
1624         *   LS response
1625         */
1626        switch (w0->ls_cmd) {
1627        case FCNVME_LS_CREATE_ASSOCIATION:
1628                /* Creates Association and initial Admin Queue/Connection */
1629                nvmet_fc_ls_create_association(tgtport, iod);
1630                break;
1631        case FCNVME_LS_CREATE_CONNECTION:
1632                /* Creates an IO Queue/Connection */
1633                nvmet_fc_ls_create_connection(tgtport, iod);
1634                break;
1635        case FCNVME_LS_DISCONNECT:
1636                /* Terminate a Queue/Connection or the Association */
1637                nvmet_fc_ls_disconnect(tgtport, iod);
1638                break;
1639        default:
1640                iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1641                                NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1642                                FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1643        }
1644
1645        nvmet_fc_xmt_ls_rsp(tgtport, iod);
1646}
1647
1648/*
1649 * Actual processing routine for received FC-NVME LS Requests from the LLD
1650 */
1651static void
1652nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1653{
1654        struct nvmet_fc_ls_iod *iod =
1655                container_of(work, struct nvmet_fc_ls_iod, work);
1656        struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1657
1658        nvmet_fc_handle_ls_rqst(tgtport, iod);
1659}
1660
1661
1662/**
1663 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1664 *                       upon the reception of a NVME LS request.
1665 *
1666 * The nvmet-fc layer will copy payload to an internal structure for
1667 * processing.  As such, upon completion of the routine, the LLDD may
1668 * immediately free/reuse the LS request buffer passed in the call.
1669 *
1670 * If this routine returns error, the LLDD should abort the exchange.
1671 *
1672 * @target_port: pointer to the (registered) target port the LS was
1673 *              received on.
1674 * @lsreq:      pointer to a lsreq request structure to be used to reference
1675 *              the exchange corresponding to the LS.
1676 * @lsreqbuf:   pointer to the buffer containing the LS Request
1677 * @lsreqbuf_len: length, in bytes, of the received LS request
1678 */
1679int
1680nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1681                        struct nvmefc_tgt_ls_req *lsreq,
1682                        void *lsreqbuf, u32 lsreqbuf_len)
1683{
1684        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1685        struct nvmet_fc_ls_iod *iod;
1686
1687        if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1688                return -E2BIG;
1689
1690        if (!nvmet_fc_tgtport_get(tgtport))
1691                return -ESHUTDOWN;
1692
1693        iod = nvmet_fc_alloc_ls_iod(tgtport);
1694        if (!iod) {
1695                nvmet_fc_tgtport_put(tgtport);
1696                return -ENOENT;
1697        }
1698
1699        iod->lsreq = lsreq;
1700        iod->fcpreq = NULL;
1701        memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1702        iod->rqstdatalen = lsreqbuf_len;
1703
1704        schedule_work(&iod->work);
1705
1706        return 0;
1707}
1708EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1709
1710
1711/*
1712 * **********************
1713 * Start of FCP handling
1714 * **********************
1715 */
1716
1717static int
1718nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1719{
1720        struct scatterlist *sg;
1721        unsigned int nent;
1722
1723        sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1724        if (!sg)
1725                goto out;
1726
1727        fod->data_sg = sg;
1728        fod->data_sg_cnt = nent;
1729        fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1730                                ((fod->io_dir == NVMET_FCP_WRITE) ?
1731                                        DMA_FROM_DEVICE : DMA_TO_DEVICE));
1732                                /* note: write from initiator perspective */
1733        fod->next_sg = fod->data_sg;
1734
1735        return 0;
1736
1737out:
1738        return NVME_SC_INTERNAL;
1739}
1740
1741static void
1742nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1743{
1744        if (!fod->data_sg || !fod->data_sg_cnt)
1745                return;
1746
1747        fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1748                                ((fod->io_dir == NVMET_FCP_WRITE) ?
1749                                        DMA_FROM_DEVICE : DMA_TO_DEVICE));
1750        sgl_free(fod->data_sg);
1751        fod->data_sg = NULL;
1752        fod->data_sg_cnt = 0;
1753}
1754
1755
1756static bool
1757queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1758{
1759        u32 sqtail, used;
1760
1761        /* egad, this is ugly. And sqtail is just a best guess */
1762        sqtail = atomic_read(&q->sqtail) % q->sqsize;
1763
1764        used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1765        return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1766}
1767
1768/*
1769 * Prep RSP payload.
1770 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1771 */
1772static void
1773nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1774                                struct nvmet_fc_fcp_iod *fod)
1775{
1776        struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1777        struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1778        struct nvme_completion *cqe = &ersp->cqe;
1779        u32 *cqewd = (u32 *)cqe;
1780        bool send_ersp = false;
1781        u32 rsn, rspcnt, xfr_length;
1782
1783        if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1784                xfr_length = fod->req.transfer_len;
1785        else
1786                xfr_length = fod->offset;
1787
1788        /*
1789         * check to see if we can send a 0's rsp.
1790         *   Note: to send a 0's response, the NVME-FC host transport will
1791         *   recreate the CQE. The host transport knows: sq id, SQHD (last
1792         *   seen in an ersp), and command_id. Thus it will create a
1793         *   zero-filled CQE with those known fields filled in. Transport
1794         *   must send an ersp for any condition where the cqe won't match
1795         *   this.
1796         *
1797         * Here are the FC-NVME mandated cases where we must send an ersp:
1798         *  every N responses, where N=ersp_ratio
1799         *  force fabric commands to send ersp's (not in FC-NVME but good
1800         *    practice)
1801         *  normal cmds: any time status is non-zero, or status is zero
1802         *     but words 0 or 1 are non-zero.
1803         *  the SQ is 90% or more full
1804         *  the cmd is a fused command
1805         *  transferred data length not equal to cmd iu length
1806         */
1807        rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1808        if (!(rspcnt % fod->queue->ersp_ratio) ||
1809            nvme_is_fabrics((struct nvme_command *) sqe) ||
1810            xfr_length != fod->req.transfer_len ||
1811            (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1812            (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1813            queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1814                send_ersp = true;
1815
1816        /* re-set the fields */
1817        fod->fcpreq->rspaddr = ersp;
1818        fod->fcpreq->rspdma = fod->rspdma;
1819
1820        if (!send_ersp) {
1821                memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1822                fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1823        } else {
1824                ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1825                rsn = atomic_inc_return(&fod->queue->rsn);
1826                ersp->rsn = cpu_to_be32(rsn);
1827                ersp->xfrd_len = cpu_to_be32(xfr_length);
1828                fod->fcpreq->rsplen = sizeof(*ersp);
1829        }
1830
1831        fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1832                                  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1833}
1834
1835static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1836
1837static void
1838nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1839                                struct nvmet_fc_fcp_iod *fod)
1840{
1841        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1842
1843        /* data no longer needed */
1844        nvmet_fc_free_tgt_pgs(fod);
1845
1846        /*
1847         * if an ABTS was received or we issued the fcp_abort early
1848         * don't call abort routine again.
1849         */
1850        /* no need to take lock - lock was taken earlier to get here */
1851        if (!fod->aborted)
1852                tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1853
1854        nvmet_fc_free_fcp_iod(fod->queue, fod);
1855}
1856
1857static void
1858nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1859                                struct nvmet_fc_fcp_iod *fod)
1860{
1861        int ret;
1862
1863        fod->fcpreq->op = NVMET_FCOP_RSP;
1864        fod->fcpreq->timeout = 0;
1865
1866        nvmet_fc_prep_fcp_rsp(tgtport, fod);
1867
1868        ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1869        if (ret)
1870                nvmet_fc_abort_op(tgtport, fod);
1871}
1872
1873static void
1874nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1875                                struct nvmet_fc_fcp_iod *fod, u8 op)
1876{
1877        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1878        struct scatterlist *sg = fod->next_sg;
1879        unsigned long flags;
1880        u32 remaininglen = fod->req.transfer_len - fod->offset;
1881        u32 tlen = 0;
1882        int ret;
1883
1884        fcpreq->op = op;
1885        fcpreq->offset = fod->offset;
1886        fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1887
1888        /*
1889         * for next sequence:
1890         *  break at a sg element boundary
1891         *  attempt to keep sequence length capped at
1892         *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
1893         *    be longer if a single sg element is larger
1894         *    than that amount. This is done to avoid creating
1895         *    a new sg list to use for the tgtport api.
1896         */
1897        fcpreq->sg = sg;
1898        fcpreq->sg_cnt = 0;
1899        while (tlen < remaininglen &&
1900               fcpreq->sg_cnt < tgtport->max_sg_cnt &&
1901               tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
1902                fcpreq->sg_cnt++;
1903                tlen += sg_dma_len(sg);
1904                sg = sg_next(sg);
1905        }
1906        if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
1907                fcpreq->sg_cnt++;
1908                tlen += min_t(u32, sg_dma_len(sg), remaininglen);
1909                sg = sg_next(sg);
1910        }
1911        if (tlen < remaininglen)
1912                fod->next_sg = sg;
1913        else
1914                fod->next_sg = NULL;
1915
1916        fcpreq->transfer_length = tlen;
1917        fcpreq->transferred_length = 0;
1918        fcpreq->fcp_error = 0;
1919        fcpreq->rsplen = 0;
1920
1921        /*
1922         * If the last READDATA request: check if LLDD supports
1923         * combined xfr with response.
1924         */
1925        if ((op == NVMET_FCOP_READDATA) &&
1926            ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1927            (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1928                fcpreq->op = NVMET_FCOP_READDATA_RSP;
1929                nvmet_fc_prep_fcp_rsp(tgtport, fod);
1930        }
1931
1932        ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1933        if (ret) {
1934                /*
1935                 * should be ok to set w/o lock as its in the thread of
1936                 * execution (not an async timer routine) and doesn't
1937                 * contend with any clearing action
1938                 */
1939                fod->abort = true;
1940
1941                if (op == NVMET_FCOP_WRITEDATA) {
1942                        spin_lock_irqsave(&fod->flock, flags);
1943                        fod->writedataactive = false;
1944                        spin_unlock_irqrestore(&fod->flock, flags);
1945                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1946                } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1947                        fcpreq->fcp_error = ret;
1948                        fcpreq->transferred_length = 0;
1949                        nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1950                }
1951        }
1952}
1953
1954static inline bool
1955__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1956{
1957        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1958        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1959
1960        /* if in the middle of an io and we need to tear down */
1961        if (abort) {
1962                if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1963                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1964                        return true;
1965                }
1966
1967                nvmet_fc_abort_op(tgtport, fod);
1968                return true;
1969        }
1970
1971        return false;
1972}
1973
1974/*
1975 * actual done handler for FCP operations when completed by the lldd
1976 */
1977static void
1978nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1979{
1980        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1981        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1982        unsigned long flags;
1983        bool abort;
1984
1985        spin_lock_irqsave(&fod->flock, flags);
1986        abort = fod->abort;
1987        fod->writedataactive = false;
1988        spin_unlock_irqrestore(&fod->flock, flags);
1989
1990        switch (fcpreq->op) {
1991
1992        case NVMET_FCOP_WRITEDATA:
1993                if (__nvmet_fc_fod_op_abort(fod, abort))
1994                        return;
1995                if (fcpreq->fcp_error ||
1996                    fcpreq->transferred_length != fcpreq->transfer_length) {
1997                        spin_lock(&fod->flock);
1998                        fod->abort = true;
1999                        spin_unlock(&fod->flock);
2000
2001                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2002                        return;
2003                }
2004
2005                fod->offset += fcpreq->transferred_length;
2006                if (fod->offset != fod->req.transfer_len) {
2007                        spin_lock_irqsave(&fod->flock, flags);
2008                        fod->writedataactive = true;
2009                        spin_unlock_irqrestore(&fod->flock, flags);
2010
2011                        /* transfer the next chunk */
2012                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2013                                                NVMET_FCOP_WRITEDATA);
2014                        return;
2015                }
2016
2017                /* data transfer complete, resume with nvmet layer */
2018                nvmet_req_execute(&fod->req);
2019                break;
2020
2021        case NVMET_FCOP_READDATA:
2022        case NVMET_FCOP_READDATA_RSP:
2023                if (__nvmet_fc_fod_op_abort(fod, abort))
2024                        return;
2025                if (fcpreq->fcp_error ||
2026                    fcpreq->transferred_length != fcpreq->transfer_length) {
2027                        nvmet_fc_abort_op(tgtport, fod);
2028                        return;
2029                }
2030
2031                /* success */
2032
2033                if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2034                        /* data no longer needed */
2035                        nvmet_fc_free_tgt_pgs(fod);
2036                        nvmet_fc_free_fcp_iod(fod->queue, fod);
2037                        return;
2038                }
2039
2040                fod->offset += fcpreq->transferred_length;
2041                if (fod->offset != fod->req.transfer_len) {
2042                        /* transfer the next chunk */
2043                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2044                                                NVMET_FCOP_READDATA);
2045                        return;
2046                }
2047
2048                /* data transfer complete, send response */
2049
2050                /* data no longer needed */
2051                nvmet_fc_free_tgt_pgs(fod);
2052
2053                nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2054
2055                break;
2056
2057        case NVMET_FCOP_RSP:
2058                if (__nvmet_fc_fod_op_abort(fod, abort))
2059                        return;
2060                nvmet_fc_free_fcp_iod(fod->queue, fod);
2061                break;
2062
2063        default:
2064                break;
2065        }
2066}
2067
2068static void
2069nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2070{
2071        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2072
2073        nvmet_fc_fod_op_done(fod);
2074}
2075
2076/*
2077 * actual completion handler after execution by the nvmet layer
2078 */
2079static void
2080__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2081                        struct nvmet_fc_fcp_iod *fod, int status)
2082{
2083        struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2084        struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2085        unsigned long flags;
2086        bool abort;
2087
2088        spin_lock_irqsave(&fod->flock, flags);
2089        abort = fod->abort;
2090        spin_unlock_irqrestore(&fod->flock, flags);
2091
2092        /* if we have a CQE, snoop the last sq_head value */
2093        if (!status)
2094                fod->queue->sqhd = cqe->sq_head;
2095
2096        if (abort) {
2097                nvmet_fc_abort_op(tgtport, fod);
2098                return;
2099        }
2100
2101        /* if an error handling the cmd post initial parsing */
2102        if (status) {
2103                /* fudge up a failed CQE status for our transport error */
2104                memset(cqe, 0, sizeof(*cqe));
2105                cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2106                cqe->sq_id = cpu_to_le16(fod->queue->qid);
2107                cqe->command_id = sqe->command_id;
2108                cqe->status = cpu_to_le16(status);
2109        } else {
2110
2111                /*
2112                 * try to push the data even if the SQE status is non-zero.
2113                 * There may be a status where data still was intended to
2114                 * be moved
2115                 */
2116                if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2117                        /* push the data over before sending rsp */
2118                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2119                                                NVMET_FCOP_READDATA);
2120                        return;
2121                }
2122
2123                /* writes & no data - fall thru */
2124        }
2125
2126        /* data no longer needed */
2127        nvmet_fc_free_tgt_pgs(fod);
2128
2129        nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2130}
2131
2132
2133static void
2134nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2135{
2136        struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2137        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2138
2139        __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2140}
2141
2142
2143/*
2144 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2145 */
2146static void
2147nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2148                        struct nvmet_fc_fcp_iod *fod)
2149{
2150        struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2151        u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2152        int ret;
2153
2154        /*
2155         * if there is no nvmet mapping to the targetport there
2156         * shouldn't be requests. just terminate them.
2157         */
2158        if (!tgtport->pe)
2159                goto transport_error;
2160
2161        /*
2162         * Fused commands are currently not supported in the linux
2163         * implementation.
2164         *
2165         * As such, the implementation of the FC transport does not
2166         * look at the fused commands and order delivery to the upper
2167         * layer until we have both based on csn.
2168         */
2169
2170        fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2171
2172        if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2173                fod->io_dir = NVMET_FCP_WRITE;
2174                if (!nvme_is_write(&cmdiu->sqe))
2175                        goto transport_error;
2176        } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2177                fod->io_dir = NVMET_FCP_READ;
2178                if (nvme_is_write(&cmdiu->sqe))
2179                        goto transport_error;
2180        } else {
2181                fod->io_dir = NVMET_FCP_NODATA;
2182                if (xfrlen)
2183                        goto transport_error;
2184        }
2185
2186        fod->req.cmd = &fod->cmdiubuf.sqe;
2187        fod->req.cqe = &fod->rspiubuf.cqe;
2188        fod->req.port = tgtport->pe->port;
2189
2190        /* clear any response payload */
2191        memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2192
2193        fod->data_sg = NULL;
2194        fod->data_sg_cnt = 0;
2195
2196        ret = nvmet_req_init(&fod->req,
2197                                &fod->queue->nvme_cq,
2198                                &fod->queue->nvme_sq,
2199                                &nvmet_fc_tgt_fcp_ops);
2200        if (!ret) {
2201                /* bad SQE content or invalid ctrl state */
2202                /* nvmet layer has already called op done to send rsp. */
2203                return;
2204        }
2205
2206        fod->req.transfer_len = xfrlen;
2207
2208        /* keep a running counter of tail position */
2209        atomic_inc(&fod->queue->sqtail);
2210
2211        if (fod->req.transfer_len) {
2212                ret = nvmet_fc_alloc_tgt_pgs(fod);
2213                if (ret) {
2214                        nvmet_req_complete(&fod->req, ret);
2215                        return;
2216                }
2217        }
2218        fod->req.sg = fod->data_sg;
2219        fod->req.sg_cnt = fod->data_sg_cnt;
2220        fod->offset = 0;
2221
2222        if (fod->io_dir == NVMET_FCP_WRITE) {
2223                /* pull the data over before invoking nvmet layer */
2224                nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2225                return;
2226        }
2227
2228        /*
2229         * Reads or no data:
2230         *
2231         * can invoke the nvmet_layer now. If read data, cmd completion will
2232         * push the data
2233         */
2234        nvmet_req_execute(&fod->req);
2235        return;
2236
2237transport_error:
2238        nvmet_fc_abort_op(tgtport, fod);
2239}
2240
2241/**
2242 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2243 *                       upon the reception of a NVME FCP CMD IU.
2244 *
2245 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2246 * layer for processing.
2247 *
2248 * The nvmet_fc layer allocates a local job structure (struct
2249 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2250 * CMD IU buffer to the job structure. As such, on a successful
2251 * completion (returns 0), the LLDD may immediately free/reuse
2252 * the CMD IU buffer passed in the call.
2253 *
2254 * However, in some circumstances, due to the packetized nature of FC
2255 * and the api of the FC LLDD which may issue a hw command to send the
2256 * response, but the LLDD may not get the hw completion for that command
2257 * and upcall the nvmet_fc layer before a new command may be
2258 * asynchronously received - its possible for a command to be received
2259 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2260 * the appearance of more commands received than fits in the sq.
2261 * To alleviate this scenario, a temporary queue is maintained in the
2262 * transport for pending LLDD requests waiting for a queue job structure.
2263 * In these "overrun" cases, a temporary queue element is allocated
2264 * the LLDD request and CMD iu buffer information remembered, and the
2265 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2266 * structure is freed, it is immediately reallocated for anything on the
2267 * pending request list. The LLDDs defer_rcv() callback is called,
2268 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2269 * is then started normally with the transport.
2270 *
2271 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2272 * the completion as successful but must not reuse the CMD IU buffer
2273 * until the LLDD's defer_rcv() callback has been called for the
2274 * corresponding struct nvmefc_tgt_fcp_req pointer.
2275 *
2276 * If there is any other condition in which an error occurs, the
2277 * transport will return a non-zero status indicating the error.
2278 * In all cases other than -EOVERFLOW, the transport has not accepted the
2279 * request and the LLDD should abort the exchange.
2280 *
2281 * @target_port: pointer to the (registered) target port the FCP CMD IU
2282 *              was received on.
2283 * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2284 *              the exchange corresponding to the FCP Exchange.
2285 * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2286 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2287 */
2288int
2289nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2290                        struct nvmefc_tgt_fcp_req *fcpreq,
2291                        void *cmdiubuf, u32 cmdiubuf_len)
2292{
2293        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2294        struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2295        struct nvmet_fc_tgt_queue *queue;
2296        struct nvmet_fc_fcp_iod *fod;
2297        struct nvmet_fc_defer_fcp_req *deferfcp;
2298        unsigned long flags;
2299
2300        /* validate iu, so the connection id can be used to find the queue */
2301        if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2302                        (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2303                        (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2304                        (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2305                return -EIO;
2306
2307        queue = nvmet_fc_find_target_queue(tgtport,
2308                                be64_to_cpu(cmdiu->connection_id));
2309        if (!queue)
2310                return -ENOTCONN;
2311
2312        /*
2313         * note: reference taken by find_target_queue
2314         * After successful fod allocation, the fod will inherit the
2315         * ownership of that reference and will remove the reference
2316         * when the fod is freed.
2317         */
2318
2319        spin_lock_irqsave(&queue->qlock, flags);
2320
2321        fod = nvmet_fc_alloc_fcp_iod(queue);
2322        if (fod) {
2323                spin_unlock_irqrestore(&queue->qlock, flags);
2324
2325                fcpreq->nvmet_fc_private = fod;
2326                fod->fcpreq = fcpreq;
2327
2328                memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2329
2330                nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2331
2332                return 0;
2333        }
2334
2335        if (!tgtport->ops->defer_rcv) {
2336                spin_unlock_irqrestore(&queue->qlock, flags);
2337                /* release the queue lookup reference */
2338                nvmet_fc_tgt_q_put(queue);
2339                return -ENOENT;
2340        }
2341
2342        deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2343                        struct nvmet_fc_defer_fcp_req, req_list);
2344        if (deferfcp) {
2345                /* Just re-use one that was previously allocated */
2346                list_del(&deferfcp->req_list);
2347        } else {
2348                spin_unlock_irqrestore(&queue->qlock, flags);
2349
2350                /* Now we need to dynamically allocate one */
2351                deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2352                if (!deferfcp) {
2353                        /* release the queue lookup reference */
2354                        nvmet_fc_tgt_q_put(queue);
2355                        return -ENOMEM;
2356                }
2357                spin_lock_irqsave(&queue->qlock, flags);
2358        }
2359
2360        /* For now, use rspaddr / rsplen to save payload information */
2361        fcpreq->rspaddr = cmdiubuf;
2362        fcpreq->rsplen  = cmdiubuf_len;
2363        deferfcp->fcp_req = fcpreq;
2364
2365        /* defer processing till a fod becomes available */
2366        list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2367
2368        /* NOTE: the queue lookup reference is still valid */
2369
2370        spin_unlock_irqrestore(&queue->qlock, flags);
2371
2372        return -EOVERFLOW;
2373}
2374EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2375
2376/**
2377 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2378 *                       upon the reception of an ABTS for a FCP command
2379 *
2380 * Notify the transport that an ABTS has been received for a FCP command
2381 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2382 * LLDD believes the command is still being worked on
2383 * (template_ops->fcp_req_release() has not been called).
2384 *
2385 * The transport will wait for any outstanding work (an op to the LLDD,
2386 * which the lldd should complete with error due to the ABTS; or the
2387 * completion from the nvmet layer of the nvme command), then will
2388 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2389 * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2390 * to the ABTS either after return from this function (assuming any
2391 * outstanding op work has been terminated) or upon the callback being
2392 * called.
2393 *
2394 * @target_port: pointer to the (registered) target port the FCP CMD IU
2395 *              was received on.
2396 * @fcpreq:     pointer to the fcpreq request structure that corresponds
2397 *              to the exchange that received the ABTS.
2398 */
2399void
2400nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2401                        struct nvmefc_tgt_fcp_req *fcpreq)
2402{
2403        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2404        struct nvmet_fc_tgt_queue *queue;
2405        unsigned long flags;
2406
2407        if (!fod || fod->fcpreq != fcpreq)
2408                /* job appears to have already completed, ignore abort */
2409                return;
2410
2411        queue = fod->queue;
2412
2413        spin_lock_irqsave(&queue->qlock, flags);
2414        if (fod->active) {
2415                /*
2416                 * mark as abort. The abort handler, invoked upon completion
2417                 * of any work, will detect the aborted status and do the
2418                 * callback.
2419                 */
2420                spin_lock(&fod->flock);
2421                fod->abort = true;
2422                fod->aborted = true;
2423                spin_unlock(&fod->flock);
2424        }
2425        spin_unlock_irqrestore(&queue->qlock, flags);
2426}
2427EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2428
2429
2430struct nvmet_fc_traddr {
2431        u64     nn;
2432        u64     pn;
2433};
2434
2435static int
2436__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2437{
2438        u64 token64;
2439
2440        if (match_u64(sstr, &token64))
2441                return -EINVAL;
2442        *val = token64;
2443
2444        return 0;
2445}
2446
2447/*
2448 * This routine validates and extracts the WWN's from the TRADDR string.
2449 * As kernel parsers need the 0x to determine number base, universally
2450 * build string to parse with 0x prefix before parsing name strings.
2451 */
2452static int
2453nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2454{
2455        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2456        substring_t wwn = { name, &name[sizeof(name)-1] };
2457        int nnoffset, pnoffset;
2458
2459        /* validate if string is one of the 2 allowed formats */
2460        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2461                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2462                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2463                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2464                nnoffset = NVME_FC_TRADDR_OXNNLEN;
2465                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2466                                                NVME_FC_TRADDR_OXNNLEN;
2467        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2468                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2469                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2470                                "pn-", NVME_FC_TRADDR_NNLEN))) {
2471                nnoffset = NVME_FC_TRADDR_NNLEN;
2472                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2473        } else
2474                goto out_einval;
2475
2476        name[0] = '0';
2477        name[1] = 'x';
2478        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2479
2480        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2481        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2482                goto out_einval;
2483
2484        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2485        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2486                goto out_einval;
2487
2488        return 0;
2489
2490out_einval:
2491        pr_warn("%s: bad traddr string\n", __func__);
2492        return -EINVAL;
2493}
2494
2495static int
2496nvmet_fc_add_port(struct nvmet_port *port)
2497{
2498        struct nvmet_fc_tgtport *tgtport;
2499        struct nvmet_fc_port_entry *pe;
2500        struct nvmet_fc_traddr traddr = { 0L, 0L };
2501        unsigned long flags;
2502        int ret;
2503
2504        /* validate the address info */
2505        if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2506            (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2507                return -EINVAL;
2508
2509        /* map the traddr address info to a target port */
2510
2511        ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2512                        sizeof(port->disc_addr.traddr));
2513        if (ret)
2514                return ret;
2515
2516        pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2517        if (!pe)
2518                return -ENOMEM;
2519
2520        ret = -ENXIO;
2521        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2522        list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2523                if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2524                    (tgtport->fc_target_port.port_name == traddr.pn)) {
2525                        /* a FC port can only be 1 nvmet port id */
2526                        if (!tgtport->pe) {
2527                                nvmet_fc_portentry_bind(tgtport, pe, port);
2528                                ret = 0;
2529                        } else
2530                                ret = -EALREADY;
2531                        break;
2532                }
2533        }
2534        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2535
2536        if (ret)
2537                kfree(pe);
2538
2539        return ret;
2540}
2541
2542static void
2543nvmet_fc_remove_port(struct nvmet_port *port)
2544{
2545        struct nvmet_fc_port_entry *pe = port->priv;
2546
2547        nvmet_fc_portentry_unbind(pe);
2548
2549        kfree(pe);
2550}
2551
2552static void
2553nvmet_fc_discovery_chg(struct nvmet_port *port)
2554{
2555        struct nvmet_fc_port_entry *pe = port->priv;
2556        struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2557
2558        if (tgtport && tgtport->ops->discovery_event)
2559                tgtport->ops->discovery_event(&tgtport->fc_target_port);
2560}
2561
2562static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2563        .owner                  = THIS_MODULE,
2564        .type                   = NVMF_TRTYPE_FC,
2565        .msdbd                  = 1,
2566        .add_port               = nvmet_fc_add_port,
2567        .remove_port            = nvmet_fc_remove_port,
2568        .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2569        .delete_ctrl            = nvmet_fc_delete_ctrl,
2570        .discovery_chg          = nvmet_fc_discovery_chg,
2571};
2572
2573static int __init nvmet_fc_init_module(void)
2574{
2575        return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2576}
2577
2578static void __exit nvmet_fc_exit_module(void)
2579{
2580        /* sanity check - all lports should be removed */
2581        if (!list_empty(&nvmet_fc_target_list))
2582                pr_warn("%s: targetport list not empty\n", __func__);
2583
2584        nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2585
2586        ida_destroy(&nvmet_fc_tgtport_cnt);
2587}
2588
2589module_init(nvmet_fc_init_module);
2590module_exit(nvmet_fc_exit_module);
2591
2592MODULE_LICENSE("GPL v2");
2593